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Abstract 

Crowdsourcing ideas from consumers can enrich idea input in new product development. 

After a decade of initiatives (e.g., Starbucks’ MyStarbucksIdea, Dell’s IdeaStorm), the 

implications of crowdsourcing for idea generation are well understood, but challenges remain 

in dealing with the large volume of rapidly-generated ideas produced in crowdsourcing 

communities. This study proposes a model that can assist managers in efficiently processing 

crowdsourced ideas by identifying the aspects of ideas that are most predictive of future 

implementation and identifies three sources of information available for an idea: its content, 

the contributor proposing it, and the crowd’s feedback on the idea (the “3Cs”). These 

information sources differ in their time of availability (content/contributor information is 

available immediately; crowd feedback accumulates over time) and in the extent to which 

they comprise structured or unstructured data. This study draws from prior research to 

operationalize variables corresponding to the 3Cs and develops a new measure to quantify an 

idea’s distinctiveness. Applying automated information retrieval methods (latent semantic 

indexing) and testing several linear methods (linear discriminant analysis, regularized logistic 
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regression) and nonlinear machine-learning algorithms (stochastic adaptive boosting, random 

forests), this article identifies the variables that are most useful towards predicting idea 

implementation in a crowdsourcing community for an IT product (Mendeley). Our results 

indicate that consideration of content and contributor information improves ranking 

performance between 22.6% and 26.0% over random idea selection, and that adding crowd-

related information further improves performance by up to 48.1%. Crowd feedback is the 

best predictor of idea implementation, followed by idea content and distinctiveness, and the 

contributor’s past idea-generation experience. Firms are advised to implement two idea 

selection support systems: one to rank new ideas in real time based on content and 

contributor experience, and another that integrates the crowd’s idea evaluation after it has had 

sufficient time to provide feedback. 

Keywords: idea selection, crowdsourcing, idea selection support system, innovation, real-

time analysis, machine learning  

Practitioner Points 

 When using automated idea screening that incorporates crowd feedback as an initial 

step for subsequent human evaluation, practitioners should utilize nonlinear machine 

learning algorithms because these outperform classical linear methods. 

 Ranking ideas in real time is a viable option, but waiting for the wisdom of the crowd 

is desirable. Therefore, firms should implement two idea selection support systems: 

one real-time system that can immediately rank new ideas based on content and 

contributor experience; and an additional one that integrates the crowd’s idea 

evaluation after sufficient time for feedback. The two systems are complementary and 
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can be used simultaneously. 

 When ranking ideas in real time, managers should use classical statistical methods, 

because their performance is similar to more computational intensive machine 

learning methods.  
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Introduction 

The new product development (NPD) process, in which firms develop new products 

and improve existing ones, is dependent on firms’ capacity to produce and identify good 

ideas. Firms have traditionally relied on in-house development teams and marketing research 

for this purpose, but they can now use consumer feedback and discussion collected from 

digital, social and mobile environments. Such consumer data flow from a variety of sources 

and are generated in large volumes and at a fast rate (velocity). To organize such data in one 

place, many firms create designated crowdsourcing environments where consumers can 

discuss products, propose new ideas, and evaluate ideas proposed by other consumers. Such 

so-called “crowdsourcing communities” are popular. For example, Google received 150,000 

proposals in its 2008 Project 10^100 contest—a general call for ideas to “help as many 

people as possible”—and devoted 3000 employees to processing them (Blohm, Leimeister, 

and Krcmar, 2013).  

It is highly challenging for firms to process the large volumes of information that flow 

through crowdsourcing communities and to identify the (relatively few) ideas that are worth 

implementing. In particular, attempts to automate or formalize idea processing are 

complicated by the fact that new ideas and discussions of those ideas are usually provided as 

written text, which is a form of unstructured data that cannot be analyzed with classical 

multivariate analysis methods (Calantone, Di Benedetto, and Schmidt, 1999; Cormican and 

O’Sullivan, 2004). Yet some aspects of an idea may be relatively easy to analyze; for 

example, crowdsourcing community platforms are likely to have information on whether a 

given user has submitted ideas in the past and whether those ideas were successful, and these 
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characteristics may be indicative of the likelihood that subsequent ideas will succeed as well. 

Another challenge that firms face is determining the timing at which ideas should be 

processed. Presumably, a firm benefits from identifying good ideas in real time, as soon as 

possible after they are proposed. Yet, after an idea is proposed, it takes time for the 

community to respond to it. This leads to the question—does the firm gain substantial benefit 

from waiting for the community’s response? Or could it just as easily evaluate the worthiness 

of ideas on the basis of other, immediately-available information?  

Herein, this study seeks to shed light on the manner in which a firm presented with a 

flow of incoming ideas in a crowdsourcing community might assess those ideas most 

efficiently. To this end, a model is proposed in which the information available on a given 

crowdsourced idea is divided into three categories—content, contributor, and crowd—which 

are called the 3Cs. The content category refers to the idea itself, which is usually expressed in 

unstructured, written text. The contributor category refers to information about the person 

who contributed the idea, such as whether he or she submitted ideas or discussed other ideas 

in the past, and whether those previous ideas were adopted. The crowd category refers to the 

reactions of other consumers. Some of these reactions may be structured—e.g., votes or 

ratings—and some may be unstructured, i.e., textual comments. Whereas information in the 

content and contributor categories are available at the moment an idea is submitted, 

information in the crowd category requires time to accumulate and cannot be used in real-

time evaluations.  

An attempt is then made to evaluate the relative roles of the different information 

categories in determining an idea’s potential for success. To this end, building on existing 
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text-mining approaches and implementing a variety of machine learning algorithms, this 

study integrates information from each of the 3Cs to predict an idea’s likelihood of being 

implemented. In capturing the content dimension of ideas, a method of quantifying the 

innovativeness of a given idea, based on k-means clustering of text-mined idea content, is 

proposed.  

Applying our approach to a data set from a crowdsourcing community for a software 

product called Mendeley, the results indicate that consideration of (real-time) information 

about the content and the contributor significantly improves predictive capacity as compared 

with random idea selection, even using logistic regression models. However, the accuracy of 

classification can be improved substantially by incorporating crowd information. Crowd 

evaluation is most predictive of idea implementation, followed by the content of the idea and 

then the contributor. Overall, more recent machine learning models substantially outperform 

linear models. To our knowledge, our study is the first to evaluate the predictive capacity that 

can be gained from waiting for the feedback of the crowd as opposed to processing ideas in 

real time, and to benchmark different methods for screening ideas in real time. Table 1 

summarizes our contribution relative to other research in this area.  
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Table 1: Literature on Idea Selection in Crowdsourcing Communities 

Study 3Cs 

Studied 
Comparison of different 

analysis methods 
Comparison of 

structured vs. 

unstructured data 

Insights regarding the use of 

crowdsourcing in the NPD process 

Value of real-time processing 

vs. waiting for crowd feedback 

Our study All three Classical and machine learning 

methods benchmarked. Classical 

methods have similar 

performance as ML methods for 

contributor and crowd, but ML 

methods are better for all 3Cs 

Crowd (structured) > 

content (structured) > 

contributor (unstructured) 

Idea scoring: models as support for 

decision makers as an initial ranking 

step for subsequent human evaluation 

 

Real-time ranking acceptable, 

but waiting for crowd improves 

ranking considerably 

 

Di Gangi 

and Wasko 

(2009) 

Content 

and Crowd 
No benchmarking  No benchmarking Understand the technical requirements 

of the ideas and contributor’s needs in 

order to extract value from the idea. 

Not studied 

Bayus 

(2013) 
Contributor No benchmarking  No benchmarking Identifying and studying high quality 

contributors (called ideators) as a 

means to maintain an ongoing supply 

of quality ideas over time 

Not studied 

Walter and 

Back (2013) 
Content No benchmarking  No benchmarking  Idea scoring: models as support for 

decision makers as an initial ranking 

step for subsequent human evaluation 

Not studied 

Westerski, 

Dalamagas, 

and Iglesias 

(2013) 

Content No benchmarking  No benchmarking Idea annotation for distinctive features 

in order to support subsequent human 

evaluation 

Not studied 

Klein and 

Garcia 

(2015) 

Crowd No benchmarking No benchmarking Idea scoring: models as support for 

decision makers as an initial ranking 

step for subsequent human evaluation 

Not studied 
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Nagar, De 

Boer, and 

Garcia  

(2016) 

All three No benchmarking  Crowd > Content > 

Contributor 

Idea scoring: models as support for 

decision makers as an initial ranking 

step for subsequent human evaluation 

Not studied 

Toubia and 

Netzer 

(2017) 

Content No benchmarking  No benchmarking Idea scoring: models as support for 

decision makers as an initial ranking 

step for subsequent human evaluation. 

Recommend words to users to improve 

ideas 

Not studied 

Rhyn and 

Blohm 

(2017) 

Content No benchmarking  No benchmarking Idea scoring: models as support for 

decision makers as an initial ranking 

step for subsequent human evaluation 

Not studied 



 

9 

Literature 

The role of consumer input in the NPD process 

Product innovation is generally conceptualized as a five-stage NPD process consisting 

of idea generation and selection, concept development, product design, product testing, and 

product introduction (Urban and Hauser, 1993). As an idea for a new product passes through 

the NPD process, perceived risk, investments, and development time increase. Therefore, 

firms have been focused on integrating the customer’s perspective as a means of expediting 

this process and reducing the overall NPD cycle time (Alam, 2006), cost, and need for future 

product modifications. Historically, traditional marketing research techniques such as focus 

groups, surveys, prototyping, product testing, and test marketing have been used to gather 

consumer input (Urban and Hauser, 1993). In recent decades, the Internet has enabled larger 

numbers of consumers to participate in product innovation, while facilitating a more cost-

effective, richer, and recurrent dialogue between the firm and its customers (Sawhney, 

Verona, and Prandelli, 2005). In this way, the firm benefits from consumer knowledge and 

expertise as additional input to its value-creation process, while consumers experience more 

value (Bharadwaj and Dong, 2014), are more loyal through increased perceptions of quality 

(Bharadwaj, Nevin, and Wallman, 2012), feel involved and acknowledged (Fuchs and 

Schreier, 2011), and get a sense of belonging and empowerment (Saarijärvi, Kannan, and 

Kuusela, 2013). Meanwhile, both benefit from better products. 

In the last decade, firms have been experimenting with alternative ways to access 

consumer knowledge, of which crowdsourcing is a prime example. Over the years, different 

researchers have conceptualized crowdsourcing in various ways (see Tarrell et al., 2013; 
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Lang, Bharadwaj, and Di Benedetto, 2016). This study refers to the original and most 

dominant definition of this concept in literature: crowdsourcing is a firm’s outsourcing of a 

task that was once performed by an employee, to a large, undefined group of people outside 

the firm in the form of an open call (Howe 2006, 2008). This construct covers a multitude of 

efforts, such as Amazon Mechanical Turk, IdeaStorm, Innocentive, and Threadless. 

In the context of innovation, crowdsourcing can take the form of a one-time event to 

collect ideas (e.g., Cisco’s I-Prize) or a continuous process in which idea generation and 

evaluation happen concurrently (Bayus, 2013). As noted above, platforms in which the latter 

process takes place are often called crowdsourcing or (user) innovation communities (Bayus, 

2013; Di Gangi and Wasko, 2009; Westerski, Dalamagas, and Iglesias, 2013). Members of 

these communities can share suggestions for improvements on a company’s products or 

services, or publicly express their opinions by voting, commenting, rating, ranking, or buying 

idea stocks (Klein and Garcia, 2015). When the firm decides to dismiss an idea or, 

conversely, to advance it to development, it typically notifies the community of the idea’s 

new status, e.g., by posting a comment or a blog post. Examples of popular crowdsourcing 

communities are Dell’s IdeaStorm, Starbucks’ MyStarbucksIdea, and IBM’s Innovation Jam.  

Crowdsourcing communities are popular and can generate valuable ideas. Yet the 

number of ideas is large, and only a few are likely to be useful to the firm. For example, 

25,186 ideas have been submitted to IdeaStorm, but only 549 (~2.2%) have been 

implemented since the platform’s launch in 2007 (IdeaStorm, 2016). MyStarbucksIdea has 

collected 162,156 ideas, of which only 320 (~0.2%) have been implemented since the 

community’s launch in 2008 (Hossain and Islam, 2015; MyStarbucksIdea, 2015). Identifying 
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the ‘needles in the haystack’ can be a challenge. This challenge is further complicated by the 

common problem of duplicate ideas (Di Gangi, Wasko, and Hooker, 2010), which consume 

time and resources without enriching idea input. 

This study proposes a method to automate idea implementation decisions that can deal 

with these challenges. Our method ranks ideas based on their probability for implementation 

using a range of multifaceted metrics identified by prior research. In particular, this study 

focuses on evaluating the relative contributions of the three information sources elaborated 

above—the 3Cs—towards predicting an idea’s likelihood of being implemented. Our 

findings may enable firms to derive value from crowdsourcing more efficiently (i.e., reduce 

evaluation time) and cost-effectively (i.e., reduce evaluation cost)1.  

The following paragraphs draw from literature on creativity research, applied 

psychology and product innovation research to provide a discussion of what can be measured 

about each of the 3Cs and survey literature relevant to the use of each information source to 

select high-quality ideas. Table 1 summarizes the studies discussed and highlights our 

incremental contribution, showing that this study is the first to integrate the 3Cs in one idea 

selection model, thereby providing insight into the value of real-time idea processing and of 

analysis of structured vs. unstructured data, which are questions identified in the call for 

manuscripts for this special issue (Bharadwaj and Noble, 2015). 

The 3Cs 

Content-based idea selection 

The content dimension of an idea refers to the text written by the contributor to 
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describe the idea. It can include additional media such as an image or video. Two broad types 

of evaluations have been discussed in the literature to detect the quality of the content of an 

idea: human evaluations and text mining. The first involves staff, experts or consumers 

formally scoring an idea against predefined decision criteria (Carbonell-Foulquié, Munuera-

Alemán, and Rodríguez-Escudero, 2004), informally evaluating an idea relying on a ‘gut’ 

feeling by drawing from prior experience (Magnusson, Netz, and Wästlund, 2014), or a 

combination of both (Eling, Langerak, and Griffin, 2015).  

Humans can interpret ideas beyond word use or grammatical structure, and, given that 

submitted ideas are often vague (Sternberg and Lubart, 1999), undeveloped (Jouret, 2009) 

and immature (Di Gangi, Wasko, and Hooker, 2010; Magnusson, 2009), this capacity offers 

an advantage over automated approaches. Human evaluations, however, require complex 

cognitive effort and are time-intensive and costly. Furthermore, human evaluators can suffer 

from fatigue or loss of focus. In general, performance of the idea-content evaluation depends 

on the instructions given to evaluators, the possibility of collaboration among them, and their 

level of expertise (Jouret, 2009; Magnusson, Wästlund, and Netz, 2014; Onarheim and 

Christensen, 2012; Rietzschel, Nijstad, and Stroebe, 2010). Delegating idea-content 

evaluation to lower-level employees or external parties (e.g., Amazon Mechanical Turk) may 

be more cost efficient than relying on in-house expert evaluators, but increases the odds of 

missing out on opportunities (Eling, Langerak, and Griffin, 2015). The use of multiple raters 

can mitigate this risk by bringing in different views of the same idea, but reconciling those 

views can be challenging (Moreau, Lehmann, and Markman, 2001).  

Text-mining-based methods of idea content evaluation are promising because they 
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can be used to process large amounts of unstructured content in real time. Recent research has 

found that text-mining-based analysis of raw product ideas captured directly from 

contributors can provide reliable predictions of the proposed products’ commercial success 

and consumers’ purchase intent, without intervention of human evaluators (Kornish and 

Ulrich, 2014). These observations motivate the use of more text mining in innovation.  

Initial studies on text mining and innovation used unsupervised techniques (e.g., 

cluster analysis) for detecting new ideas in patent texts (e.g., Thorleuchter, Van den Poel, and 

Prinzie, 2010; see Christensen et al., 2016 for a review). Later on, other studies used 

supervised techniques (e.g., regression) to investigate the capacity of text mining to provide 

information on idea-content quality in crowdsourcing communities (Walter and Back, 2013; 

Westerski, Dalamagas, and Iglesias, 2013). More specifically, Westerski, Dalamagas, and 

Iglesias (2013) looked at word dissimilarity between ideas, and Walter and Back (2013) 

looked at an idea’s set of unique words, to investigate how text mining features can predict 

human idea evaluation decisions. This study extends the research method of Walter and Back 

(2013) by performing latent semantic indexing (LSI) before applying k-means clustering to 

quantify an idea’s level of novelty, which is subsequently used to predict the idea’s likelihood 

of implementation by the firm. 

Contributor-based idea selection 

When a crowdsourcing community member contributes an idea, the firm is likely to 

have access to data about him or her that can be informative regarding the value of the 

proposed idea. For example, the idea contributor, also called the ideator, may have a history 

of contributing ideas. A contributor’s record of previous suggestions may be predictive 
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because of the notion that high-quality ideas come from new and original arrangements of a 

person’s existing knowledge (Dahl and Moreau, 2002). People with diverse expertise pool 

their knowledge to come up with ideas that are more innovative than users who have 

narrower, domain-relevant skills (Amabile, 1983). The more competence and experience 

contributors possess, the higher the expected quality of their solutions (Magee, 2005; Poetz 

and Schreier, 2012). Correspondingly, a history of successful ideas may be indicative of a 

contributor who possesses expertise, suggesting a likelihood of proposing additional 

successful ideas in the future. However, applied psychological research has noted how prior 

knowledge can impede idea generation. People with knowledge in a given domain may fixate 

on prior examples and consequently neglect to explore the entire solution space, which results 

in less original and valuable ideas (Dahl and Moreau, 2002). In other words, people with a 

history of contributing ideas may produce subsequent ideas that are simply adjustments of 

previous ones, adapted according to prior experiences of success or failure (Marsh, Landau, 

and Hicks, 1996). This pattern of idea production tends to occur in settings where users need 

to suggest ideas on topics they are familiar with or on features that are commonly known 

(Jansson and Smith, 1991; Perttula and Sipilä, 2007; Purcell and Gero, 1996). Even though 

fixation is likely to occur in crowdsourcing communities, Bayus (2013) found that previous 

experience promotes rather than limits creativity. Yet, the same study found that, after a 

contributor’s idea has been implemented, his or her subsequent ideas become less diverse. 

Thus, there is theoretical support for a contributor’s number of previous contributions and/or 

previous implementations having either a positive or negative effect on the likelihood of 

future implementation. 

Another potentially informative aspect of the contributor is the extent to which he or 



 

15 

she has discussed other ideas in the community. As proposed by Osborn (1953) more than 

half a century ago, such discussion causes participants to revise their knowledge and to refine 

their own ideas (Kohn, Paulus, and Choi, 2011). Furthermore, solving consumer problems 

encourages members to stay active in the community (Lu, Singh, and Srinivasan, 2011). In 

addition, members who participate in discussions perceive more benefits, tend to feel a 

greater sense of community membership, and take their contributions more seriously (Preece, 

Nonnecke, and Andrews, 2004). These observations suggest that a tendency to engage in 

discussion might have a positive effect on future idea implementation.  

Crowd-based idea selection 

In crowdsourcing communities, members express their opinions of an idea by voting, 

commenting, rating, ranking, or buying idea stocks in prediction markets (Klein and Garcia, 

2015). Different communities implement different systems: For example, IdeaStorm and 

MyStarbucksIdea use a system of up- and downvoting. Other communities, like Mendeley, 

give each user a budget of 10 votes to spend on ideas. Once an idea is implemented or 

declined, votes are returned. Commenting is unlimited and allows members to exchange 

thoughts on idea suggestions, and to further refine and develop ideas with the community. 

Only one study (Di Gangi and Wasko, 2009) investigated voting and commenting behavior in 

crowdsourcing communities and did not find a significant effect of either one on the 

likelihood of idea implementation. Zhu and He (2002), however, found that social context 

significantly influences implementation. 

Several factors suggest that crowdsourcing community members can be a valuable 

resource in the idea selection process, potentially even outperforming experts or employees, 
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in selecting ideas. A crowdsourcing community is likely to be made up of individuals who 

use the firm’s products, and users often know their own needs and wants best and are in a 

premier position to understand how a product or service might create value for them 

(Magnusson, Wästlund, and Netz, 2014b). In particular, leading-edge users can detect 

product requirements earlier than the more occasional user because of their more advanced 

knowledge (Franke and Shah, 2003; von Hippel, 2005). Consequently, they can be powerful 

allies in idea selection (Pitta and Fowler, 2005). Surowiecki (2004) also refers to the value of 

the ‘wisdom of the crowd’ in idea selection, proposing that large numbers of individuals can 

make decisions that are superior to those of experts. However, his thesis refers to independent 

individuals, whereas in crowdsourcing communities users view and are influenced by the 

activity of others. Therefore, it is not clear whether Surowiecki’s concept of the wisdom of 

the crowd is applicable to this context. 

Research has shown that people perform better individually than collectively at 

generating ideas, yet no such pattern has been observed in the idea selection process (Faure, 

2004; Rietzschel, Nijstad, and Stroebe, 2006). Studies attempting to explore this issue 

exposed a general problem with crowd-based idea selection, which is the misalignment of 

decision criteria. The crowd assesses ideas based on its own criteria (e.g., feasibility, 

desirability) or out of self-interest rather than the ideas’ potential value to the firm 

(Rietzschel, Nijstad, and Stroebe, 2010). Providing participants with predefined decision 

criteria can mitigate this problem but increases time and cognitive complexity for the crowd 

(Riedl et al., 2010, 2013); likewise, it may disclose firm-sensitive information on innovation 

strategy.  
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In sum, it is unclear whether and to what extent data regarding the crowd’s response 

to an idea is likely to be informative regarding an idea’s probability of implementation. 

Methodology 

Sample 

Data were obtained from the Mendeley crowdsourcing community, which has been in 

operation since 2008; these data are publicly available. This study uses the Mendeley 

community because its functionalities (i.e., idea submission, idea evaluation and user 

collaboration) are similar to those of previously-researched communities (e.g., IdeaStorm, 

MyStarbucksIdea) (Hrastinski et al., 2010). In addition, it contains sufficient data for our  

analysis methods (n =7,046 ideas). Mendeley, an Elsevier-owned product, offers users—

predominantly scholars and college students—a library manager to collect and annotate 

reference material (e.g., articles, book chapters), and integrate citations in word processing 

systems. In addition, users can communicate, share resources, or collaborate on projects with 

other members. The company implements a freemium pricing strategy in which it offers a 

free version with 2GB of library space. Additional storage space can be purchased for a 

monthly fee.  

The firm engages with its community to improve its software using a feedback forum 

built on the UserVoice platform. This forum (feedback.mendeley.com) enables users to 

suggest improvements for future releases. Upon registration, users can contribute their own 

ideas, and comment or vote on ideas from other members. No compensation or rewards are 

offered. Mendeley employees can provide feedback to the community by commenting on 

ideas and by assigning a status to each idea reflecting its stage in the consideration process. 
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The status options are implemented, declined, under review, started or planned. The latter 

three categories (under review, started or planned) are intermediate statuses, whereas the first 

two (implemented, declined) are more definitive. Started ideas refer to those that the firm 

began work on but were not yet completed and implemented ideas are ones that were 

completed and integrated into their software product. In our study, the focus is on ideas that 

were either implemented or declined and do not investigate the intermediate idea statuses 

further, given their limited use (2.59% of the total number of ideas in our sample)2. It should 

be noted that our focus on ideas that were actually implemented is in line with previous 

studies (Bayus, 2013; Di Gangi and Wasko, 2009; Hossain and Islam, 2015); this approach 

ensures that the ideas analyzed have a certain degree of value and usefulness (Franke, von 

Hippel, and Schreier, 2006; Levitt, 1963). 

Data on 7,546 ideas were collected, comprising all ideas contributed between the 

launch of Mendeley’s feedback forum on November 27, 2008 and December 5, 2014. After 

deleting ideas without a valid publication date (time stamp) and those whose status was not 

implemented or declined, 7,127 ideas remained. Some of those ideas (n = 81, 1.1%) had been 

contributed by the firm itself. Ultimately, the firm decides which ideas it implements; so for 

its own suggested ideas, it is both judge and jury. Therefore, ideas authored by the firm were 

dropped from the analysis. This resulted in a final sample of 7,046 ideas. These ideas were 

posted by 5,555 unique contributors during the observed period. The majority of those 

contributors (83.84%) posted one idea, 10.92% posted two ideas, and the remaining 5.24% 

posted three ideas or more. 

Model/Variables 
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Idea implementation (DV) 

During the observed period, 630 ideas (~9% of the final sample) were implemented, 

and 6,416 were declined. The dependent variable in our research, idea implementation (yi), 

equals 1 if idea i was implemented and 0 if it was declined. Table 2 offers summary statistics 

and an overview of the variables included in our model. Ideas that are not considered relevant 

by the firm tend to linger in the forum and continue to receive votes and comments from the 

crowd. Eventually, Mendeley can decide to mark an idea as dead by assigning a declined 

status. This occurs, on average, after 3 years and 47 days (M = 1,142 days, SD = 507 days). 

Both the company and the community scan for duplicate ideas. This practice is reflected, for 

example, in the comment of a Mendeley employee on an idea suggested on November 8, 

2012: “... various duplicate tickets have been merged to increase its priority (thanks to those 

who pointed them out).” As a result, duplication is limited among the ideas circulated in the 

Mendeley community, with only 15 detected duplicate ideas since the community’s launch.  

Idea content 

Content is analyzed following a standard text mining procedure (Feldman and Sanger, 

2007; Walter and Back, 2013). First, spaces, punctuation, stop words and numbers are 

removed from an idea’s title and description. Next, sentences are broken down into terms 

(individual words) and each term is stemmed (e.g., the terms “usage”, “using”, and “used” 

are transformed into the root form “use”). Third, term occurrence for each idea is calculated, 

resulting in a term-frequency (tf) matrix. Next, sparse terms that occur in less than .5% of the 

idea corpus are deleted, and terms are inversely weighted by their relative occurrence in the 

idea corpus, producing a term frequency-inverse document frequency (tf-idf) matrix. As a last 
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step, LSI is performed to scale down the terms to their underlying semantic meaning 

(Deerwester et al., 1990). LSI works well for term reduction and is good at grouping terms 

with similar (synonymy) or several (polysemy) meanings (Deerwester et al., 1990). 

Following Coussement and Van den Poel (2008), the number of LSI concepts (11 in our 

study) was determined using cross-validation. 

In addition to using LSI concepts, a new way of characterizing the novelty of an idea 

is developed. A highly innovative idea contains new thoughts and concepts that are 

fundamentally different from previous ideas. In our study, an idea’s relative novelty (also 

referred to here as ‘distinctiveness’) is operationalized by measuring how (dis)similar that 

idea is to past idea submissions. This operationalization ties into operationalizations used in 

previous text mining studies in innovation (e.g., Walter and Back, 2013). Using k-means 

clustering, three clusters of ideas are identified in the training set using the 11 LSI idea 

concepts. Next, ideas from the validation and test set are assigned to their closest clusters. 

Finally, an idea’s score on distinctiveness is calculated as the number of prior ideas in the 

cluster to which the idea was assigned, divided by the number of prior ideas across all idea 

clusters. High values (e.g., >70% similarity to previous ideas) indicate that the idea is very 

similar to past ideas resulting in a low score on relative distinctiveness. Conversely, low 

values signal a highly dissimilar idea, resulting in a high score on relative distinctiveness. 

Contributor experience 

Contributor experience is operationalized similarly to Bayus (2013)3. More 

specifically, contributor experience is measured as the number of past implemented ideas, 

number of previous contributor comments, number of past ideas, and tenure. These variables 
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are log-transformed to alleviate skewness and to allow for non-linear effects. 

Number of past implemented ideas measures the success of a contributor in generating 

ideas that were implemented by the firm before submitting idea i. Since the start of the forum, 

5,555 users contributed ideas. Approximately 10.3% (n = 553) had at least one idea 

implemented, of which 7.41% (n = 41) got two ideas implemented, 2.35% (n = 13) three 

ideas, and 0.54% (n = 3) four or five. Of the contributors who suggested more than one idea, 

13.95% had more than half of their submitted ideas implemented. Compared with first-time 

contributors, contributors whose previous ideas were implemented more than double their 

odds (×2.09) of getting new ideas implemented (χ2(1, n = 7,046) = 31.27, p<.001) and receive 

95.74% more crowd comments on their ideas (comments: t(357.16) = 0.91, p = .026). 

However, they have to wait 478 days longer for a decision (W = 1,416,900, p < .001). In sum, 

the firm seems to favor ideas from contributors who have created ideas in the past, yet there 

is no indication that their ideas are prioritized strategically over ideas from new contributors.  

Number of previous contributor comments measures how many comments an idea 

contributor posted before submitting idea i. Compared with contributors who do not 

participate in conversations on other members’ ideas, those who do participate prior to 

submitting their own ideas are 2.61 times more likely to have their ideas implemented (χ2(1, n 

= 7046) = 59.24, p < .001), receive 3.67 times more crowd comments (t(301.88) = 4.64, 

p < .001), but have to wait 165 days longer for their ideas to be implemented (W = 1,053,300, 

p = .004). 

In addition to these variables, also included are the number of past ideas, the number 

of ideas the contributor posted before submitting idea i; tenure, the number of days a member 
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has been in the crowdsourcing community; and month to account for seasonal effects. 

Crowd feedback 

In Mendeley’s community, voting is allowed until the firm makes a decision to 

implement or decline an idea. Commenting, on the other hand, is still possible after an idea 

has been implemented or declined, yet only takes place for 5% of the ideas. Our analysis only 

includes crowd votes and crowd comments up until an idea received its implementation 

status. Figure 1 demonstrates that ideas accumulate crowd comments slowly. An idea 

receives 70% of its final number of comments after approximately 500 days (~1 year 5 

months). 

 

Figure 1: Cumulative Distribution of the Number of Crowd Comments 

The time between idea contribution and final status (implemented/declined) varies 

significantly (M = 1,071 days, SD = 547 days, Min = 0, Max = 2,184), so some ideas have 
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more time to gather crowd feedback than others. This problem is addressed by normalizing 

the number of votes and comments by the time it took the firm to implement or decline an 

idea (in days). In this way, the focus is on the rate rather than the quantity of votes and 

comments. Experiments with a logarithmic discount for time were conducted (based on 

Figure 1) and found the results and relationships to be consistent with the proposed linear 

normalization. Summarizing, two measures related to crowd feedback are include into our 

model: number of crowd votes (per day) and number of crowd comments (per day). Both 

measures were log-transformed prior to the analysis. 

Table 2: Variables Included in the Model 

Variable 

category 
Variable 

name 
Description M SD Min Max 

Idea 

implementatio

n (dependent 

variable) 

yi =1 if idea i‘s status is marked as 

implemented; 0 if marked as 

declined. 

0.09 0.29 0 1 

Content LSI 

components 
11 idea concepts derived from 

previously submitted ideas. 
-0.001 0.003 -0.89 0.84 

Relative 

distinctiveness 
Degree of similarity idea i has 

compared to previously submitted 

ideas. 

0.79 0.26 0.01 1 

Contributor 

experience 
Number of 

past ideas 
Number of ideas contributor c 

posted before submitting idea i. 
0.15 0.40 0 2.57 

Number of 

previous 

contributor 

comments 

Number of comments contributor c 

posted on ideas before submitting 

idea i. 

0.05 0.28 0 3.37 

Number of 

past 

implemented 

ideas 

Number of implemented ideas 

contributor c posted before 

submitting idea i. 

0.04 0.19 0 1.79 

Tenure Number of days contributor c spent 

in the community before submitting 

idea i. 

0.66 1.66 0 7.40 

Crowd 

feedback 
Number of 

crowd votes 
Crowd voting activity idea i 

acquired during observation time, 

0.02 0.12 0 2.49 
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 normalized by observation time. 

Number of 

crowd 

comments 

Crowd commenting activity idea i 

acquired during observation time, 

normalized by observation time. 

0.01 0.005 0 1.39 

Control 

variables 
Month Month idea i was submitted. 6.53 3.50 1 12 

 

Data analysis methods 

A benchmark of four methods was conducted in predicting, on the basis of the 3C 

data outlined above, whether an idea will be implemented or declined: linear discriminant 

analysis (LDA; Fisher, 1936); regularized logistic regression (LR; Friedman, Hastie, and 

Tibshirani, 2010); stochastic adaptive boosting (AB; Friedman, 2001); and random forests 

(RF; Breiman, 2001). Each of these methods can estimate a probability of implementation for 

a given new idea. 

For LDA, maximum likelihood estimation was used and equal covariance matrices 

between implemented and declined ideas was assumed. LR uses lasso regularization, which 

reduces the probability of overfitting by shrinking the coefficients with an L1 penalty term, 

multiplied by λ, added to the log likelihood objective function4. 

The following two paragraphs provide background on the tree models used by RF and 

AB. Consider the hypothetical tree model in Figure 2. Starting from the top node, 20% of the 

ideas in the dataset are implemented. Breaking down the ideas according to the number of 

votes, 36% of those that received at least one vote are implemented, whereas only 4% of 

those that received no votes are implemented. Going further down the tree, ideas with at least 

one vote that have a relative distinctiveness score of 0.9 or higher are implemented in 89% of 
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cases. An idea with no votes and a distinctiveness score of less than 0.9, on the other hand, is 

implemented only in 3% of cases. In sum, in this hypothetical example, one only needs a new 

idea’s number of crowd votes and its relative distinctiveness to predict its probability of 

implementation. An idea with two votes and a relative distinctiveness of 0.95, for example, 

has an 89% probability of implementation. 

 

Figure 2: Hypothetical Tree Model 

Both RF and AB grow a large number of single decision trees on a sample equal in 

size to the original data with replacement. Each decision tree makes a prediction when a new 

idea i is presented. The final probability for idea i is then the number of trees that predict this 

idea as implemented divided by the number of grown trees. This averaging step improves 

model performance by reducing the likelihood that a wrong model is chosen (Breiman, 

1996). The main difference between the two algorithms is that RF only considers a random 

subset of candidate variables at each node of a decision tree (Breiman, 2001), whereas AB 
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grows subsequent decision trees on samples of previously misclassified ideas (Friedman, 

2001). Both algorithms only require two parameters to consider; for RF, the number of 

decision trees to grow (default: 500) and the number of variables to select at each node 

(default: sqrt(k), where k is the number of variables in the dataset); and for AB, the number of 

iterations (default: 150) and the number of terminal nodes (default: 8). In a recent benchmark 

study, RF and AB were the top two performing classification algorithms currently available 

(Fernández-Delgado et al., 2014). 

Model evaluation 

Model performance is examined using the Area Under the Receiver Operating 

Characteristic Curve (AUROC or AUC), which gives the probability that a model will rank a 

randomly-selected implemented idea higher than a randomly-selected declined idea (DeLong, 

DeLong, and Clarke-Pearson, 1988)5. Its values range from .5 (no differentiation between 

ideas) to 1 (perfect idea differentiation). The null hypothesis states that the AUCs are equal 

and is tested with the DeLong test, which is a variant of the Mann-Whitney U-test (DeLong, 

DeLong, and Clarke-Pearson, 1988). 

Results 

The added value of crowd feedback: Real-time data vs. time-delayed data 

As discussed above, one of our key aims was to determine whether a firm benefits from 

waiting to obtain crowd data, which take time to accumulate, or whether it can just as easily 

make decisions in real time, based on contributor and content information. Two separate 

models are built to assess the added value of crowd feedback in idea selection: the first 

contains content and contributor experience (scenario 1) and the second additionally includes 
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crowd feedback (scenario 2). Figure 3 summarizes the results for the various prediction 

algorithms implemented. 

In all cases, the performance of the model that included all of the 3Cs was superior to 

that of the model that included only content and contributor experience. The improvement in 

terms of AUC was by .113 (+17.9%), .186 (+29.6%), .295 (+48.1%), and .274 (+43.8%) in 

LDA, LR, AB, and RF, respectively. The DeLong test confirms that these increases are 

significant across all classifiers (p < .001). In scenario 1, the models can predict idea 

implementation accurately with an AUC ranging between .613 (AB) and .630 (LDA). This 

means that the probability that a model will rank an implemented idea higher than a declined 

idea is between 61.3% and 63.0%. After including crowd feedback (scenario 2), this 

probability increases to between 74.3% (LDA) and 90.8% (AB). 

 

Figure 3: AUC for Scenarios 1 and 2 
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The performance of our automated models is further compared with the performance 

of convenient heuristics (Table 3). These heuristics are intuitive and easy to implement, and 

are used by firms for idea ranking (Jouret, 2009). Three idea ranking heuristics are 

investigated: the first was based on the number of crowd votes (high to low), the second was 

based on the number of crowd comments (high to low), and the third was based on random 

selection (equivalent to an unbiased coin toss). For scenario 1, the use of our model improved 

idea selection by between 8.7% and 11.7% over ranking by votes (AUC = .564), between -

3.8% and -1.1% over ranking by comments (AUC = .637), and between 22.6% and 26.0% 

over random idea selection (AUC = .5). Thus, idea selection on the basis of content coupled 

with contributor experience is superior to random idea selection or idea selection based on the 

number of votes, but is marginally inferior to idea selection based on the number of 

comments. For scenario 2, the use of our model improved idea selection by between 31.7% 

and 61.0% over ranking by votes (AUC = .564), between 16.6% and 42.5% over ranking by 

comments (AUC = .637), and between 48.6% and 81.6% over random idea selection 

(AUC=.5). In sum, using all 3Cs performs systematically better than using idea ranking 

heuristics over several algorithms. Across algorithms, AB and LDA were, respectively, the 

best- and worst-performing classifiers for both scenarios. 

Table 3: Benchmarking Model Performance over Heuristics 

 Linear 

discriminant 

analysis (LDA) 

Regularized logistic 

regression (LR) 
Stochastic 

adaptive boosting 

(AB) 

Random forests 

(RF) 

Scenario 1: Content + Contributor Experience 

AUC .630 .629 .613 .625 

Percentage 

improvement over 

crowd vote ranking 

11.7% 

 

11.5% 8.7% 10.8% 
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(AUC=.564) 

Percentage 

improvement over 

crowd comment 

ranking (AUC=.637) 

-1.1% -1.3% -3.8% -1.9% 

Percentage 

improvement over 

random idea selection 

(AUC=.500) 

26.0% 25.8% 22.6% 25.0% 

Scenario 2: Content + Contributor Experience + Crowd Feedback 

AUC .743 .815 .908 .899 

Percentage 

improvement over 

crowd vote ranking 

(AUC=.564) 

31.7% 44.5% 61.0% 59.4% 

Percentage 

improvement over 

crowd comment 

ranking (AUC=.637) 

16.6% 27.9% 42.5% 41.1% 

Percentage 

improvement over 

random idea selection 

(AUC=.500) 

48.6% 63.0% 81.6% 79.8% 

 

The relative importance of the 3Cs 

Next, the random forests (RF) algorithm is used to investigate the relative importance 

of each of the 3Cs in predicting idea implementation, and the nature of each variable’s 

relationship with idea implementation. RF was selected for this purpose because it performs 

well on this problem and has convenient model interpretation tools. Instead of coefficients 

and t-statistics, RF offers variable importance measures and partial dependence plots. 

Variable importance in RF is most often measured using the mean decrease in the Gini 

measure of node impurity, defined as p(1-p), where p is the estimated probability that an idea 

is implemented. This measure represents the total decrease in node impurity from all splits in 
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the trees divided by the total number of trees. The more a variable decreases impurity (i.e., 

the higher the Gini) the more predictive it becomes.  

Figure 4 displays variable importance values for all variables in the most 

comprehensive model (scenario 2). There is a clear break in the plot based on the mean 

decrease in Gini: higher than 80 for all crowd feedback variables, between 25 and 10 for all 

content variables, and lower than 5 for all contributor experience variables. The number of 

crowd votes and crowd comments are, respectively, ranked first and second, confirming our 

model-level results that crowd feedback is indeed important. The number of votes 

(Gini = 152.7) is 1.75 times more important than the number of comments (Gini = 86.9). The 

LSI concepts are ranked between 3 and 14, with relative distinctiveness at rank 5. The four 

lowest-ranked items all relate to contributor experience and have similar Gini scores. 

Figure 4: Variable Importance Plot for Scenario 2 
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Having assessed the relative importance of the 3Cs, our attention is turned to the 

relationships of the variables with idea implementation. Whereas the direction of the 

relationship in statistical models such as logistic regression would be determined by looking 

at the signs of the coefficients, the nature of the relationship can be explored in RF with 

partial dependence plots. A partial dependence plot shows the average probability of 

implementation for each value of a variable x, holding all other variables constant (Breiman, 

2001). 

Figure 5 displays the partial dependence plots for each variable of the 3Cs, except for 

the LSI components, which are highly specific to Mendeley. The probability of 

implementation stabilizes after 0.05 for the number of crowd votes and crowd comments 

(Figure 5a, 5b). This means that if an idea receives at least one (=exp(0.05)) vote (comment) 

per day, it is, on average, more likely to be implemented. Interestingly, receiving two or more 

votes (comments) per day does not improve the likelihood of implementation over receiving 

one. Regarding idea content, Figure 5c shows that if an idea is either very similar (i.e., less 

distinctive) or very dissimilar (i.e., more distinctive) to previous ideas, its odds of 

implementation increase. Ideas stuck in the middle however, have a lower probability of 

implementation. 

Figures 5d-g depict the variables of contributor experience: tenure, number of past 

implemented ideas, number of previous contributor comments, and number of past ideas. All 

show similar, positive relationships with idea implementation: more interaction with the 

community or longer membership in the community is associated with a higher probability of 

implementation. Specifically, contributors have a higher probability of having their ideas 
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implemented when they have been with the community for at least 25 (=exp(3.2)) days 

(Figure 5d), have had one idea implemented previously (Figure 5e), made at least one 

comment on another idea (Figure 5f) or posted at least 7 (=exp(2)) ideas (Figure 5g). Finally, 

Figure 5h shows the relationship between month and idea implementation. Given that it is a 

control variable and that its effects are likely to be firm-specific (and therefore not 

generalizable), this is not discussed in greater detail.
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Figure 5: Partial Dependence Plots of the 3Cs 

Discussion 

Our results suggest that waiting for crowd data—and specifically, structured data, i.e., 

the number of votes and comments that an idea receives per day—may be worthwhile: 

including this information improves idea selection between 17.9% and 48.1% over using 

content and contributor experience. The nonlinear models (AB, RF) substantially 

outperformed the linear models (LDA, LR) when crowd data is incorporated, suggesting that 
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the former can capture nonlinearities and interactions not captured by the latter. This finding 

necessitates more research on the use of nonlinear methods in idea selection. Our results 

further indicate that ideas need to surpass an initial threshold of obtaining one crowd vote 

(comment); achieving this improves the odds of implementation substantially. These findings 

suggest that, after controlling for content and contributor experience, the decision criteria of 

both the crowd and the firm are likely to be well aligned.  

When the manager does not have time to wait for the crowd, then he or she can gain 

information from the idea’s content, which is comprised of unstructured textual data. To 

distinguish between novel and similar ideas, this study developed a measure for ideas’ 

relative distinctiveness as compared with previously-submitted ideas. This operationalization 

is similar to Walter and Back (2013) except that latent semantic indexing (LSI) is performed 

before applying k-means clustering. Both highly dissimilar (i.e., distinctive, new) and highly 

similar (i.e., more of the same) ideas have a higher implementation probability. Moderately 

distinctive ideas, however, are not likely to be implemented. The use of nonlinear data 

analysis methods exposed this previously undiscovered relationship between idea 

distinctiveness and idea implementation. Our observations here make sense, since firms look 

for both incremental (‘do better, yet more of the same’) and radical (‘new to the firm or 

industry’) ideas (Pisano, 2015; Tidd and Bessant, 2009). Highly innovative ideas typically 

demand more support from senior management (Ettlie, Bridges, and O’keefe, 1984), and 

require substantial time and investments to develop. Therefore, it makes sense to first identify 

ideas that the firm considers quick wins (e.g., bug fixes; Dahl, Lawrence, and Pierce, 2011). 

Since community members who vote and comment on ideas, it is reasonable to find that idea 

content is important, but not the top predictor of idea implementation compared to crowd 
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feedback, since text mining approaches, unlike humans, can fail to accurately capture 

information in ideas (Westerski, Dalamagas, and Iglesias, 2013).  

Contributor experience was also predictive of idea implementation; however, of the 

3Cs, its role was smallest. Generally, similarly to Bayus (2013), more experience in 

generating ideas facilitates idea implementation: community members who have a history of 

generating ideas or have had ideas implemented previously have a higher probability of 

having new ideas implemented compared with contributors with no such history. This 

observation is supported by research of Simonton (2003, 2004), which argues that a 

contributor’s productivity in generating implemented ideas is strongly associated with the 

number of submitted ideas. One reason for our observations could be that, as users generate 

more ideas and monitor the firm’s response on these ideas, they get a better sense of what the 

firm considers valuable and likewise adapt their suggestions to the firm’s feedback (Marsh, 

Landau, and Hicks, 1996). Although this may result in ideas that are less original and less 

valuable to the firm (Dahl and Moreau, 2002), this is not necessarily a problem in cases of 

small updates. Similarly, a positive effect of community membership (tenure) and 

community interaction (number of previous contributor comments) on idea implementation 

can be observed. This finding supports prior literature that stated that by communicating, 

contributors revise their own ideas (Perry-Smith, 2006; Perry-Smith and Shalley, 2003), get 

multiple views on their ideas, and are more exposed to problems faced by other consumers 

(Lu, Singh, and Srinivasan, 2011). As a result, they are more likely to generate ideas relevant 

to the firm (Osborn, 1953). 

It is important to note that the positive effects of prior idea generation took time to 
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develop. More specifically, contributors become better at generating valuable ideas in a 

nonlinear fashion. Therefore, in line with previous research (Bayus, 2013; Lu, Singh, and 

Srinivasan, 2011), firms are advised to aim to retain contributors for longer periods of time to 

be able to sufficiently capitalize on this effect. In our study, members who were active for 

about a month (25 days) prior to their idea suggestion had a higher probability of getting their 

idea implemented.  

Theoretical Implications 

Our study is the first to simultaneously include the 3Cs regarding new ideas—content, 

contributor experience, and crowd feedback—and benchmark classical linear methods and 

nonlinear machine learning methods in predicting idea implementation. Though extant 

literature has pointed to the potential contributions of each of the 3Cs to the idea selection 

process, our study is among the first empirical studies to integrate all three categories and 

assess their relative predictive importance. A key consideration in our approach is that the 

information categories differ in terms of the extent to which they contain structured data—

which are easier to process compared with unstructured data—and the timing at which they 

become available. In particular, whereas idea content and contributor information are 

available immediately, crowd feedback takes time to accumulate.  

To the best of our knowledge our approach of applying nonlinear machine learning 

algorithms (with superior accuracy) to the combined 3Cs is both unique and more robust than 

models in extant literature. Our results indicate that crowd feedback is the best predictor of 

idea implementation. This conclusion contradicts previous research that found that the crowd 

is unable to select valuable ideas (Di Gangi and Wasko, 2009; Faure, 2004; Rietzschel, 
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Nijstad, and Stroebe, 2006). In the context of crowdsourcing communities, reliance on crowd 

feedback may be beneficial because popularity may reflect future demand for the innovation, 

thereby reducing the firm’s uncertainty regarding idea selection (Di Gangi and Wasko, 2009; 

Di Gangi, Wasko, and Hooker, 2010); or the firm may feel pressure to be more user-oriented 

to ensure enduring community participation (Di Gangi, Wasko, and Hooker, 2010). In 

conclusion, empowering the crowd is important because it can help the firm in making better 

idea implementation decisions. This means that it is important for firms to manage the crowd 

in the long run by keeping them engaged and by avoiding resentment. Di Gangi, Wasko, and 

Hooker (2010) argue that the best way to do this is for the firm to comment on ideas, ask 

questions, pay attention to crowd feedback, and, especially, respond swiftly. A timely 

response is important because it signals to the community that its efforts are appreciated. 

Managerial Implications 

Innovation in today’s data-rich environment presents unique challenges to firms. 

Crowdsourcing communities afford us to elicit large volumes of new product suggestions, 

ideas, and potential solutions, but selecting the best ideas can be expensive and time-

consuming (Klein and Garcia, 2015). Calls have been made to examine which methods and 

data are best to make real-time NPD decisions—in our case selecting ideas—in data-rich 

environments (Bharadwaj and Noble 2015). From Table 1, it is apparent that the limited 

number of studies that focus on idea selection in crowdsourcing communities have directed 

little or no attention towards these suggestions. This study responds to these calls and next the 

managerial implication that stem from our results are described. This manuscript, to the best 

of our knowledge, marks the first study to: 1) benchmark classical and machine learning 
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methods in idea scoring, and 2) compare the performance of idea scoring models 

incorporating data that is available in real time with models that utilize data that becomes 

available at a later stage. Our results assist managers in determining how to process large 

volumes of rapidly-generated ideas in crowdsourcing communities as efficiently as possible.  

Our analysis indicates that the nonlinear machine learning methods utilized in this 

study substantially outperform classical statistical methods. This is only true when crowd 

data are included in the model. When only content and contributor variables are included 

both classes of methods show similar performance. Therefore, it is recommended to refrain 

from using more computational intensive machine learning methods in a real-time setting. 

For models that include the 3Cs it is recommended to use machine learning algorithms to 

capture the complex relationships that govern the data. 

The information on idea content and the contributor’s past idea generation experience 

(scenario 1) improves predictive performance up to 26.0% over random idea selection. If idea 

ranking can wait for the wisdom of the crowd, however, performance can be improved 

further by up to 48.1% (scenario 2). Hence, ranking ideas in real time is a viable option, but 

waiting for the wisdom of the crowd is desirable. Therefore, it is recommended that firms 

implement two idea selection support systems: one real-time system that can immediately 

rank new ideas based on content and contributor experience; and an additional one that 

integrates the crowd’s idea evaluation after it has had sufficient time to provide feedback. 

The two systems are complementary and can be used simultaneously. 

Limitations and Future Research 

Despite our contributions to literature and practice, several limitations apply to our study. 
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First, our analysis regards ideas from a crowdsourcing community in the IT industry. This 

industry was chosen to enable us to compare our findings to those of prior research on 

crowdsourcing communities (e.g., IdeaStorm, MyStarbucksIdea) and because of the public 

availability of these ideas. Yet, it is possible that our findings are inherently specific to the IT 

industry and that the relative predictive roles of the 3Cs vary across industries or contexts. 

Future research could investigate whether our results hold in other industries. 

In addition, Mendeley’s business model may impact the generalizability of our 

findings. In contrast to Dell or Starbucks, Mendeley uses a freemium pricing strategy. As a 

result, price is unlikely to impact a consumer’s decision whether or not to use Mendeley. In 

Dell’s case, however, purchasing power does play a role. Furthermore, Mendeley focuses its 

efforts on a niche market (i.e., academic reference software), whereas Dell’s products apply 

to a broader, more heterogeneous consumer market (i.e., personal computers and technology). 

Both elements, however, can influence user participation in crowdsourcing communities, 

which in turn impacts the quality of idea generation efforts (Lu, Singh, and Srinivasan, 2011). 

More research on this aspect is therefore required. 

Finally, our study analyzed ideas that had either been implemented or declined. 

Advancing an idea to development is seldom a straightforward go/no-go decision, so the firm 

may make mistakes on idea implementation given this uncertainty. Instead of analyzing a 

binary decision (i.e., implementation or rejection), future research could use dependent 

measures in the implementation decision that are more proximal to the firm’s bottom line 

such as sales, R&D investments, cost structure, or market uncertainty. In addition, future 

research could explore the intermediate statuses of idea implementation more thoroughly. In 
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the case of Mendeley, these included under review, started, and planned. Future research to 

investigate these intermediate states in more detail is encouraged.  
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1 

Footnotes 

1Note that it also takes time and resources to set up these automated methods. Whereas for 

human evaluation the direct cost per idea is roughly the same, automated methods have a 

high setup cost after which the operational cost (e.g., machine processing time) of rerunning 

the model is marginal. The author team thanks an anonymous reviewer for pointing this out. 

2The intermediate categories represent only 2.59% of the total number of ideas in the sample: 

under review (n=114, 1.58%), started (n=22, 0.30%) and planned (n=51, 0.71%). 

3Given that contributors in Mendeley rarely assign their ideas to idea categories (~2% of 

contributors), the variables from Bayus (2013) related to idea categories are not 

operationalized in our study. 

4The amount of shrinkage λ was chosen by maximizing the AUC over a range of 100 λ-

values on a holdout sample. Note that regularized logistic regression is the same as (standard) 

logistic regression when λ=0. 

5To mimic their operational deployment, our models are evaluated with out-of-period 

validation, which is the most stringent type of evaluation (Mosteller and Tukey 1977, p. 38). 

Ideas submitted in 2008-2009 were used to fit the models (training set; n=1040) and ideas 

submitted in 2010-2014 were used as a holdout sample (n=6006). A random selection of 50% 

of the holdout sample was used to determine the optimal shrinkage value λ for LR (validation 

set) and the remaining 50% was used to estimate final model performance (test set). 
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Appendix 

ID Date 

Posted 

Idea Title and Description Remark Status 

366509 Oct. 27, 

2009 

Android 

An android app to access 

Mendeley from android phones 

would be welcome (when all bugs 

in the desktop app are fixed ;-). 

Best, Claude. 

Received most 

crowd votes 

(7837 votes) 

Implemented 

142951 Mar. 18, 

2009 

Check for duplicates 

Please add a possibility for 

checking for duplicates and not 

adding those/modifying the 

existing entries when importing! 

Especially please check for 

duplicates when automatic PDF 

extraction! 

Clear problem 

description 

Implemented 

139635

1 

Jan. 20, 

2011 

Share This on Twitter thru 

Desktop 

It's great that I can share on 

twitter through the web interface, 

but I usually close my browser 

when I'm working, to minimize 

interruptions. But I WOULD like 

to share what I'm reading on my 

twitter account, so it would be 

great if I could share directly from 

the Desktop application.  

Unclear 

problem 

description 

Declined 

233839

9 

Oct. 23, 

2011 

Webos Incomplete 

idea 

Declined 

 

 


