12th International Conference on Renewable Resources & Biorefineries 30 – 31 May & 1 June, 2016, Ghent, Belgium

MEASURING SUSTAINABLE PRODUCTION AND USE OF RENEWABLES-BASED PRODUCTS

Jo Dewulf and L. Boone, S. Huysveld & S.E. Taelman

Contents

1. Introduction:

The Sustainability Assessment Toolbox today

- 2. Sustainability assessment of biobased production: Role of site specificity of agriculture
- 3. Resource efficiency of bio-based

versus fossil-based products?

4. The resource footprint of biomass: how to deal with marine resources?

1. Introduction: The Sustainability Assessment Toolbox today:

- Key advantage: avoiding burden shifting
- Some convergence in practice: ISO, ILCD, PEF
- Key input: data

Dewulf et al., 2016

Bottle necks in Environmental LCA for (biobased) products:

- Resources: footprinting and efficiency
- Land use: role in resource footprint and source of biodiversity

From LCA to LCSA: e.g.: Horizon 2020 BB-01 call (now 2nd stage phase):

Building in next to LCA:

- economic and social factors
- aspects of the circular economy
- resource efficiency
- the principle of cascade use
- the development of ILUC factors

2. Sustainability assessment of biobased production: role of site specificity of agriculture

- Core element: data inventory
- Can we use data from a generically applied database?

Variability in Flanders:

Relative LCA results Flanders versus CH:

Need for site-specific and practice-specific data

Boone et al., 2016

3. Resource efficiency of bio-based versus fossil-based products?

- Resource efficiency: output (products) versus input (resources)
- Cumulative overall resource efficiency assessment (COREA): Resources: - at cradle: full production chain / life cycle
 - all types of natural resources
- To be solved:
 - Land resources
 - Renewables versus fossils: cradle?

Resource efficiency metric: exergy

- = Resource Accounting Method (RAM)
- = Resource efficiency: from 0-100% scale

Dewulf et al., 2008

Exergy-based RAM: how to deal with land?

CEENE 2013:

Land resources: accounting via deprived solar energy 11

Alternatives for resource accounting for land:

What is the "maximum" solar energy deprived and to be taken into account for resource efficiency calculation ?

1. TMCA :

Theoretical Maximum Conserved solar energy into Aboveground biomass:

= 4.8% of the solar energy

2. OMCA :

Observed Maximum Conserved solar energy into Aboveground biomass

= 2.3% of the solar energy

Resource efficiency (%) of electricity production:

Approach	bio-based electricity	fossil-based electricity	
CEENE TMCA	7.6	34.9	4.6 times less resource efficient
CEENE OMCA	15.6	35.0	2.2 times less resource efficient
	94-97% land	99% fossil	

Huysveld et al., 2015

Solar energy consumption of fossils?

- Dukes (2003): recovery factors (RFs) for fossils:
 - RF = proportion of the original photosynthetic product
 - e.g. 0.000084 kg C gas/kg C biomass

0.074 kg C hard coal/kg C biomass

Efficiency of original photosynthesis: 1.7%

Accounting for solar energy in fossils	Νο		Yes	
Approach	bio-based	fossil-based	bio-based	fossil-based
	electricity	electricity	electricity	electricity
CEENE TMCA	7.6 34.9 4.6 times less resource efficient		0.014 0.00073 18.6 times more resource efficient	
CEENE OMCA	15.6	35.0	0.029	0.0016
	2.2 ti	mes less	18.6 time	es more
	resour	rce efficient	resource	efficient

4. The resource footprint of biomass: how to deal with marine resources?

Human made

Saccharina latissima

- Seaweed growth
- \rightarrow extra shadow
- \rightarrow Natural NPP production hindered

Natural biomass

Natural:

Taelman et al., 2014

Human-made:

Development of NPP marine world maps (MJ_{ex} m⁻² year⁻¹)

Human-made

Area-weighted CF's for coastal regions (level of realms, provinces or ecoregions according to Spalding et al. 2007) and open ocean

Taelman et al., 2014

Case Seaweed cultivation system in NW Europe:

Partial shading \rightarrow natural NPP production is not fully avoided and an *occupation factor* α (between 0-1) is introduced

THANK YOU