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CHAPTER 1: INTRODUCTION 

1. CANCER AND TUMOR MICROENVIRONMENT  

Cancer remains one of the most important causes of death worldwide and accounted for 8.8 

million deaths globally in 2015 [1]. Briefly, cancer could be summarized as an uncontrolled 

growth of abnormal cells that are invasive, move to other sites in the body, and impair 

normal functioning of affected organs. Hanahan and Weinberg managed to comprehend this 

extremely complicated disorder by 10 hallmarks (Fig. 1).  

 

 

FIGURE 1: Hallmarks of cancer.  

The hallmarks of cancer constitute an organizing principle for rationalizing the complexities of 

neoplastic disease. These acquired capabilities of cancer include (1) sustaining proliferative signaling, 

(2) evading growth suppressors, (3) resisting cell death, (4) enabling replicative immortality, (5) 

inducing angiogenesis, and (6) activating invasion and metastasis. Conceptual progress in the last 

decades led to addition of 4 more hallmarks: (7) genome instability, which generates the genetic 

diversity that expedites their acquisition, (8) inflammation, which fosters multiple hallmark functions, 

(9) reprogramming of energy metabolism and (10) evading immune destruction, leading to a total of 

10 hallmarks. Adapted from [2]. 

 

Treatment of cancer has traditionally focused on eliminating cancer cells, by one, or a 

combination of the following treatments: surgery, chemotherapy and radiotherapy. Indeed, 
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tumors were formerly thought to be made of a nest of cancer cells only and research and 

therapies were focused only on the cancer cells (Fig. 2). At present, it is clear that the tumor 

microenvironment (TME) plays a crucial role in tumorigenesis. The TME consists of 

fibroblasts, immune cells and cells that comprise the blood vessels (pericytes, endothelial 

cells (EC’s)) and is believed to be the second building block of the tumor. These seemingly 

normal environmental cells actively enable the malignant progression through cell-cell 

interactions (cancer versus environment) [3]. 

 

FIGURE 2: Tumor micro-environment.  

The field of cancer research has largely been guided by a reductionist focus on cancer cells and the 

genes within them (above left). This view has evolved into a newer vision where tumors are seen as 

complex tissues in which mutant cancer cells have recruited seemingly normal cell types to act as 

active participants in their neoplastic development (beneath right). The interactions between the 

genetically altered malignant cells and the supporting microenvironmental cells are critical to 

understand cancer pathogenesis and to the development of novel, effective therapies. Adapted from 

[2, 3]. 

 

These important insights provided new approaches for cancer treatment that focused on the 

tumor as a whole (cancer cells + TME), like immunotherapy or anti-angiogenic therapy. An 

omnipresent feature of the TME is hypoxia. In the following sections, we describe the 

etiology of tumor hypoxia and highlight its importance as a potential target in cancer 

treatment, and as a predictive and prognostic biomarker.  
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2. TUMOR HYPOXIA 

A. ETIOLOGY 

Oxygen is a key factor in cell metabolism. It is extracted from air in the lungs, bound to 

hemoglobin in the blood and transported to the capillaries where it enters tissue cells 

through diffusion. The critical oxygen level required for normal cell functioning is 10 

mmHg [4]. Lower oxygen levels are considered hypoxic. In healthy tissues, oxygen delivery 

and consumption are well balanced, but tumors are prone to oxygen deficits for several 

reasons. First, consumption of oxygen is higher because cancer cells are highly 

proliferative. To meet this highly proliferative character, cancer cell’s energy metabolism 

is reprogrammed to aerobic glycolysis instead of oxidative phosphorylation, known as the 

Warburg effect [5]. Second, oxygen delivery is compromised due to the limited diffusion 

distance of oxygen (limited to about 150-200 µm). Some tumor cells are located too far 

from existing blood vessels leading to diffusion-limited hypoxia (Fig. 3) [6].  

 

FIGURE 3: Diffusion-limited 

hypoxia.  

Schematic illustration of oxygen 

diffusion from a capillary resulting 

in hypoxic cells. Oxygen diffuses 

an average of 150 µm from the 

capillary. Cells beyond this region 

are anoxic and nonviable. Cells at 

the periphery of this radius are 

hypoxic but viable. Adapted from [7]. 

 

Oxygen delivery is further compromised due to the dysfunctional tumor vasculature (Fig. 

4). This originates from the stimulation of tumor angiogenesis to cope with the fast growing 

tumor cells (one of the hallmarks of cancer [2]). Instead of forming well-structured 

functional vessels, tumor vessels are dilated, tortuous and the vessel wall is more permeable. 

These immature vessels eventually lead to a hypoxic and acidotic tumor microenvironment 

with high interstitial fluid pressures [8].  
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FIGURE 4: Tumor angiogenesis.  

(Left) Normal vasculature. There is a balance between progrowth and antigrowth factor signals 

leading to an organized network, with large vessels regularly branching into smaller ones. (Right) 

Abnormal tumor vessels. There is an excessive number of proangiogenic factors, primarily vascular 

endothelial growth factor (VEGF), which causes an overgrowth of disorganized vessels that are 

typically permeable, dilated and tortuous. Adapted from [8]. 

 

Depending on the duration of hypoxia, two main types have been distinguished: chronic 

and cycling hypoxia, initially called acute hypoxia [9]. Chronic hypoxia is characterized by 

a deficit in O2 for a continuous period in time (at least several hours). This is believed to 

originate mostly from diffusion-limited hypoxia and the immature tumor vasculature. 

Cycling hypoxia, on the other hand, describes a hypoxia-reoxygenation pattern in which 

periods of poor and better perfusion alternate. It is believed to originate from perfusion-

limited hypoxia where an intermittent constriction of tumor blood vessels lead to 

interruptions in tumor perfusion (Fig. 5).  

 

FIGURE 5: Cycling hypoxia.  

Immunofluorescence staining of a mouse tumor 

section depicting endothelial cells (red, CD31-

staining), perfused vessels (blue, Hoechst 33342 

injected 2 min before mouse sacrifice) and hypoxia 

area (green, pimonidazole staining). Note the 

existence of endothelial cells (red) in the hypoxic 

regions (green), reflecting ongoing angiogenesis or 

non-perfused blood vessels. Adapted from [9]. 
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All these factors contribute to tumor hypoxia, which is distributed heterogeneously between 

tumor types, between individuals, and within the same tumor (space/time) and is present in 

up to 60% of locally advanced solid tumors [6, 10].  

 

B. TUMOR RESPONSE TO HYPOXIA 

One could think that hypoxia leads to starvation of the tumor resulting in growth arrest, cell 

death and tumor growth inhibition, but the opposite occurs. Three main oxygen sensitive 

signaling pathways are activated independently where the Hypoxia Inducible Factor- 1 

(HIF- 1) pathway is the most important one (Fig. 6). The Mammalian (or Mechanistic) 

Target Of Rapamycin (mTOR) and the Unfolded Protein Response (UPR) pathways are 

also activated. Through different intermediate steps, they lead to changes in cell metabolism 

and functioning and eventually result in adaptation and resistance of the cancer cells to 

hypoxia [6, 11-13]. 

 

 

FIGURE 6: Cellular response to hypoxia.  

(1) Hypoxia stabilizes hypoxia-inducible factor 1α (HIF- 1α), facilitating heterodimerization with 

HIF- 1β and transcriptional activation of many genes. (2) Hypoxia triggers the unfolded protein 

response (UPR) by activation of the endoplasmic reticulum (ER) stress sensors PKR-like ER kinase 

(PERK), inositol-requiring protein 1 (IRE1) and, most probably, activating transcription factor 6 

(ATF6). IRE1 and ATF6 both contribute to a transcriptional response whereas PERK causes 

inhibition of mRNA translation. (3) The activity of mTORC1, a complex containing the mammalian 
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target of rapamycin (mTOR) kinase, which integrates and transmits positive and negative growth 

signals to the translational machinery, is inhibited by hypoxia. Together these three pathways 

influence the phenotype of hypoxic cells by altering metabolism, angiogenesis, autophagy and ER 

homeostasis. Adapted from [12]. 

 

Tumor cells do not only succeed in adapting their cell metabolism to the hypoxic 

circumstances, they also evolve to a more aggressive phenotype. It has been shown that 

tumor hypoxia is correlated with sustained angiogenesis [14], metastasis and invasion [15, 

16], escaping apoptosis [17], suppression of the immune response [18] and genomic 

instability [19, 20], all hallmarks of cancer [2].  

Further, clear associations with radio- and chemoresistance have been described [21-23]. 

The underlying mechanism of radioresistance is based on the crucial role of oxygen in the 

radiochemical process to cause DNA damage. Oxygen facilitates the making of DNA strand 

breaks by free radicals, as a result of ionizing radiation. In the absence of oxygen, 2-3 times 

higher doses of irradiation are needed to cause the same amount of DNA damage, also called 

the oxygen enhancement ratio (OER) and illustrated in Figure 7.  

 

FIGURE 7: Schematic representation 

of the relationship between 

radiosensitivity and oxygen tension.  

This graph summarizes the results of in 

vitro experiments with EMT6 mouse 

mammary tumor cells. Briefly, these were 

irradiated at different oxygen tensions 

with 250 kV x-rays. Cell survival was 

measured immediately after irradiation 

using a colony formation assay. 

Importantly this illustrates that the 

radiosensitivity increases rapidly as the oxygen tension rises from anoxia to ∼10 Torr. At higher 

concentrations of O2, similar to those found in venous blood, the radiosensitivity plateaus and does 

not increase greatly as the oxygen tension rises to that of cells equilibrated with air or with 100% O2 

at normal atmospheric pressure or even hyperbaric pressures (HBO). Adapted from [24, 25]. 

 

Tumor hypoxia was proven to be an independent negative predictive and prognostic factor 

in different solid tumors of which some examples are given in Table 1 [6, 26].  
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TABLE 1: Representative examples of the prognostic and predictive significance of hypoxia in 

human cancer.  

CA9= carbonic anhydrase 9= endogenous hypoxia marker; CHART= continuous hyperfractionated 

accelerated radiotherapy; DFS= disease free survival; EF5= etanidazole pentafluoride; HIF= hypoxia-

inducible factor; HNSCC= head and neck squamous cell carcinoma; OS= overall survival. PSA= 

prostate specific antigen. Adapted from [26]. 
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In conclusion, hypoxia is present to some extent in all solid tumors and has been correlated 

with treatment resistance and patients’ prognosis. This makes it on the one hand an 

attractive target for therapy modifications and improvements, and on the other hand, an 

interesting biomarker to predict treatment response (predictive biomarker) and survival 

(prognostic biomarker). 

 

3. TARGETING TUMOR HYPOXIA 

The importance of hypoxia in solid tumors has been recognized and investigated for over 

100 years. Hereby, a diversity of therapies have been developed to act on this 

microenvironmental phenomenon. In this section we summarize some major mechanisms 

in targeting hypoxia. 

 

A. ENHANCING OXYGEN DELIVERY 

Therapies to enhance the oxygen delivery by the blood were developed in the idea it would 

make tumors less radioresistant. Older studies tested the effect of blood transfusions and 

administration of erythropoietin (EPO) to increase hemoglobin levels and oxygen transport, 

but had questionable results as it was shown that EPO also increases tumor cell proliferation 

[27]. Later, different breathing schedules were tested like hyperbaric oxygen (HBO) or 

carbogen, a hyperoxic gas (95%- 98% O2 and 2%- 5% CO2) [28]. Combination with 

nicotinamide, a vitamin B3 analog and vasoactive agent, and accelerated radiotherapy led 

to the ARCON strategy, accelerated radiotherapy with carbogen and nicotinamide. It would 

counteract cellular repopulation and reduce diffusion- and perfusion-limited hypoxia. 

ARCON seems the most promising with good local control rates in head and neck and 

bladder cancers in phase II trials [29].  

 

However, the two main approaches to target hypoxia in cancer are the use of bioreductive 

prodrugs on the one hand, and drugs that inhibit molecular targets upon which hypoxic cell 

survival depends on the other hand [26]. 

 

B. BIOREDUCTIVE PRODRUGS 

The bioreductive prodrugs, also called hypoxia activated prodrugs (HAP’s), are 

administered in their inactive state and are activated in hypoxic cells ensuring hypoxia 
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specific functioning [26]. Five groups of chemical structures have been identified with these 

hypoxia specific activation properties: nitro groups, aromatic N-oxides, aliphatic N-oxides, 

quinones and transition metals [30]. Figure 8 illustrates the chemical mechanism underlying 

the hypoxia dependent activation of HAP’s with a nitro group, also called oxygen dependent 

redox cycling.  

 

 

FIGURE 8: Mechanism of hypoxia dependent activation of HAP’s with a nitro group.  

The prodrug has entered the cell through diffusion and is reduced enzymatically by intracellular 

reductases. Under normoxic conditions, oxygen takes back the electron, reversing the reduction and 

returning the drug to its inactive state. Under hypoxic conditions, the reduction activates the prodrug 

to its active state of a radical anion. Adapted from [31]. 

 

The nitroimidazoles have besides the hypoxia specific cytotoxic activity also a hypoxic 

radiosensitizing effect. They are able to replace the effect of oxygen in the radiobiological 

process, in producing free radicals and generating cytotoxic DNA strand breaks. The 

oxygen enhancement ratio is valued at 1.5 to 2 maximally, thereby not reaching the level of 

normoxic conditions [32]. Misonidazole was the first tested nitroimidazole combined with 

radiotherapy. Several randomized clinical trials were performed, which proved the proof of 

principal, but due to high toxicities (neuropathy) and lack of major benefits on clinical 

outcomes, this was not adopted in daily clinic [33, 34]. Nimorazole however (Fig. 9), 

showed to improve clinical outcomes in head and neck cancer and is now used in daily 

practice in Denmark [35]. It is a 5-nitroimidazole with lower cytotoxicity and neurotoxicity. 

The lack of overall survival improvement is probably because no patient selection was 

performed. 
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FIGURE 9: Chemical structure of 

nimorazole, 4-[2-(5-nitro-1H-1-

imidazolyl)ethyl]morpholine. 

 

 

 

 

C. TARGETING THE HYPOXIC CELL  

The use of drugs that inhibit molecular targets upon which hypoxic cell survival depends, 

mainly concern the three primary hypoxia-sensing signaling pathways HIF, UPR and 

mTOR [26]. Different drugs have been developed that interfere with HIF1α expression, 

HIF1 transcription, HIF1 target gene products (CA9, Glut1), receptor tyrosine kinases 

(VEGFR, EGFR), RAS-MAPK signaling, mTOR (autophagy, mTORC1) and UPR 

(SERCA, HSP90). Different examples of HIF-targeted therapies are summarized in Table 

2. 

 

Currently, no clear clinical evidence exists yet of antitumor activity due to direct HIF1 

inhibition, UPR targeting is still in the in vitro phase and also mTOR inhibitors (e.g. 

rapamycin) area still in their preclinical phase. Targets downstream the primary hypoxia-

sensing pathways are also investigated, like inhibiting autophagy (induced by UPR), 

inhibiting glycolysis (induced by HIF1 and mTOR), and targeting DNA damage response 

and repair pathways in response to hypoxia are investigated, like reactivating p53 to restore 

hypoxia-mediated apoptosis. These newer approaches are just at their start.  

Targeting hypoxia induced angiogenesis on the other hand, has been studied extensively 

and will be discussed in the next section. 
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TABLE 2: Inhibitors of HIF activity by different mechanisms and targets. Adapted from [36]. 
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- VEGF(R) INHIBITION 

In response to hypoxia, vascular endothelial growth factor (VEGF) is secreted by cancer 

cells and cancer associated stromal cells (EC, CAF’s, macrophages). VEGF binds its 

receptor (VEGFR), mainly located on endothelial cells (EC) of blood vessels and lymphatic 

vessels, and induces angiogenesis by promoting survival, proliferation and migration of EC, 

increasing the display of adhesion molecules and increasing vascular permeability [37]. It 

is one of the major driving forces of survival of hypoxic cancer cells. Anti-angiogenic 

therapy through inhibition of VEGF(R) blocks these pathways. Depending on the resulting 

balance between pro- and anti-angiogenic factors, inhibition of VEGF(R) induces a 

normalization of the tumor vasculature (leading to better delivery of nutrients, oxygen 

(radiosensitizer) and drugs (chemo- or immunotherapy)), or the inhibition induces a 

regression of tumor vasculature (leading to tumor ‘starvation’ [38], but also an increase in 

hypoxia and a more hostile TME). With the eye on targeting hypoxia, normalization is 

aimed at. Radio-, chemo- and immunotherapy efficiency depend on tumor perfusion and 

oxygenation. Theoretically, combination with VEGF(R) inhibition could have synergistic 

effects and indeed this synergism has been proven for the combination with chemotherapy. 

Bevacizumab (Avastin®), for example, a VEGFA antibody, has been FDA-approved 

((BLA) 125085) for treatment of different cancer types such as first line treatment of 

metastasized colorectal cancer in combination with chemotherapy [39]. Timing and dosage 

of VEGF(R) inhibition is important as is explained in figure 10 [40, 41].  

 

FIGURE 10: Normalization window.  

Proposed effect of drug dose and schedule on 

tumor vascular normalization. The efficacy of 

cancer therapies that combine antiangiogenic and 

cytotoxic drugs depends on the dose and delivery 

schedule of each drug. The vascular normalization 

model posits that a well-designed strategy should 

passively prune away immature, dysfunctional 

vessels and actively fortify those remaining, while 

incurring minimal damage to normal tissue 

vasculature. During this “normalization” window 

(green), cancer cells may be more vulnerable to 

traditional cytotoxic therapies and to novel 
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targeted therapies. The degree of normalization will be spatially and temporally dependent in a tumor. 

Vascular normalization will occur only in regions of the tumor where the imbalance of pro- and 

antiangiogenic molecules has been corrected. Adapted from [41]. 

 

In conclusion, numerous therapies exist to target hypoxia and improve treatment outcomes. 

Most of them showed promising results in the early trials, but eventually failed to confirm 

their benefit in phase III trials. For sure, this has to do with the lack of patient selection. The 

key to prove success of hypoxia modification lies in adequate patient selection. Therefore, 

methods to detect and quantify tumor hypoxia are needed and are discussed in the following 

section. 

 

4. DETECTING TUMOR HYPOXIA [42-44] 

 

A. pO2 PROBE MEASUREMENTS 

Direct measurement of pO2 with a polarographic needle electrode system (pO2 histograph, 

Eppendorf, Hamburg, Germany) inserted in different tracks in the tumor, has long been the 

golden standard [45] (Table 3). This technique is based on the polarographic reduction of 

molecular oxygen at a cathode sensor, covered by a semipermeable membrane, inducing a 

current [46]. The magnitude of this current is linearly correlated with the amount of oxygen 

at the cathode and thus with the partial oxygen tension. In the clinical setting, it could 

confirm the hypothesis that hypoxia is a negative prognostic marker in different tumors (e.g. 

cervix cancer, soft tissue sarcomas, head and neck cancer) [47-49]. Later, the fluorescence-

based fiberoptic probe followed (OxyLite, Oxford Optronix, UK) [50]. Short pulses of LED 

light are transmitted along the fiberoptic sensor and excite a platinum-based fluorophore at 

the sensor tip. The resulting emission of fluorescent light, quenched by the presence of 

oxygen molecules, is detected and the lifetime of fluorescence is inversely proportional to 

the concentration of dissolved oxygen.  

 

These pO2 probe systems proved their use, but major disadvantages remain, like their 

invasiveness, operator dependency, sample size dependency and most importantly their 

inapplicability for deeper lying pathologies and repetition of measurements. At present, they 

are very little used in the clinical setting. 
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pO2 probe system Advantage Disadvantage 

Polarographic 

needle 

- rapid data sampling - oxygen consumption 

during read-out 

- not reaching a steady state 

Fluorescence-based 

fiberoptic needle 

- measuring at individual 

locations over a 

prolonged period 

- absence of oxygen 

consumption 

- stabilization period of 1-2 

min before measuring 

 

TABLE 3: Comparison of polarographic and fluorescence-based pO2 probe systems. 

 

B. IMMUNOHISTOCHEMISTRY 

Immunohistochemical detection of hypoxia is another frequently used quantification 

method. Endogenous hypoxia markers (e.g. HIF-1α or CA9) or exogenous markers that are 

administered before biopsy (e.g. pimonidazole or EF5 (2-(2-Nitro-1H-imidazol-1-yl)-N-

(2,2,3,3,3-pentafluoropropyl) acetamide)), are stained in tumor specimens [51] (Fig. 11). 

This technique however implies taken biopsies, is sample size dependent, difficult for 

deeper lying structures, difficult to repeat and difficult to quantify.  

 

 

FIGURE 11: Immunohistochemistry to detect hypoxia.  

SQ20b subcutaneous tumor in hind leg of nude mice. (A) H&E staining of tumor section. (B) 

Immunofluorescent pimonidazole staining of consecutive section (green). Pimonidazole was 

administered intravenously 90 min before sacrifice. The tumor was perforated with a 28-gauge 

angiocatheter after resection to facilitate tumor section orientation after staining (circular defect in the 

left upper corner). Scale bar= 2 mm. Adapted from [52]. 
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C. AUTORADIOGRAPHY 

Autoradiography is the technique of recording an image of a preparation that contains 

radioactivity using a radiation-sensitive medium. The radioactive samples are placed 

directly against a film for a period to allow radioactive emissions from the sample to interact 

with the film emulsion and this creates an image (Fig. 12).  When using a hypoxia tracer, 

the image represents hypoxic areas. This technique is mostly used for biodistribution studies 

or validity studies in tracer development, but is less suited for predictive and prognostic use 

because it requires tumor resections/biopsies and is sample size dependent.  

 

 

 

FIGURE 12: Distribution of 18F-FAZA with autoradiography versus immunofluorescent 

staining.  

SQ20b murine xenografts. Registered 3-color immunofluorescent image (A) and corresponding 

autoradiography (B) from tumor section. Blue= Hoechst (perfusion marker); green= pimonidazole 

(hypoxia marker); red= CA9 (hypoxia marker); yellow= overlay of pimonidazole and CA9.  (C) 

Rebinned scatterplots showing relationship between fluorescence markers on y-axis, and indicated 

hypoxia radiotracer on x-axis. Areas of hypoxia on immunofluorescent staining correspond with areas 

of high 18F-FAZA activity on autoradiography. Adapted from [52]. 
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D. GENETIC MARKERS 

Intense efforts have been made to identify a gene signature correlating with tumor hypoxia 

and having predictive and prognostic capacities. To date, 32 hypoxia gene expression 

signatures have been published and are summarized in a recent review [53]. An ongoing 

RCT investigates whether nimorazole with cisplatin-based CRT in patients with locally 

advanced head and neck cancer is superior to CRT alone, using a 15-gene hypoxia signature 

(ClinicalTrials.gov:NCT01880359). At our center, blood samples of esophageal cancer 

patients (pre, during and post treatment) are being collected in a biobank with the eye on 

identifying a predictive and prognostic gene signature. 

 

E. IMAGING METHODS 

Besides genetic biomarkers, imaging modalities are another very interesting non-invasive 

method to detect hypoxia and are summarized in Table 4 [44, 54, 55]. 

 

Optical based methods are being used like phosphorescence or near-infrared spectroscopy 

(NIRS) [44]. These calculate the hemoglobin oxygen saturation (StO2) by measuring 

phosphorescence (oxygen dependently quenched) or optical absorption (different for oxy- 

and deoxyhemoglobin) (Fig. 13). Hyperspectral imaging (HSI), a third optical based 

imaging method, determines the electromagnetic spectrum of each pixel of an image [56]. 

As such, it can provide a very detailed image map of the hemoglobin saturation at the 

microvascular level. The major limitation of these optical based techniques is that they 

measure intravascular pO2 instead of tissue pO2 as a parameter for hypoxia.  

 

FIGURE 13: Absorption spectra of oxy- and 

deoxyhemoglobin.  

The absorption spectra of oxygenated and 

deoxygenated hemoglobin differ. For example, 

at a wavelength of 660 nm (red light), 

deoxygenated hemoglobin absorbs more light 

than oxygenated hemoglobin. The opposite 

occurs at a wavelength of 940 nm (infrared 

light), where oxygenated hemoglobin absorbs 

more light than deoxygenated hemoglobin. By measuring the absorption at different wavelengths, the 

fraction of heme that is bound to oxygen can be determined. Adapted from [57]. 
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TABLE 4: Examples of non-invasive methods for hypoxia determination in living tissues. 

Adapted from [54]. 
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Further, magnetic resonance imaging (MRI) based modalities are being used like blood 

oxygen level-dependent (BOLD-) MRI, electron paramagnetic resonance imaging (EPRI) 

or dynamic contrast enhanced (DCE-) MRI [58]. These have low specificity for tissue 

hypoxia because they actually measure perfusion and vascular oxygenation.  

 

Finally and most importantly, nuclear imaging is being used which offers several 

advantages compared to the previously mentioned methods. It measures tissue hypoxia and 

not vascular oxygenation, the hypoxia distribution is imaged in a 3-dimensional way (3D), 

the imaging can be repeated allowing the evaluation of changes in hypoxia status, and whole 

tumor quantification is possible [59, 60]. A hypoxia specific tracer coupled to a radionuclide 

is injected and imaged with positron emission tomography (PET) or single-photon emission 

computed tomography (SPECT), according to the injected radionuclide. A good hypoxia 

tracer should be highly specific for hypoxia (oxygen-specific retention mechanism), have a 

fast uptake and homogeneous distribution in tissues, and thus be lipophilic to diffuse 

through the cell membrane, but at the same time have a fast washout from non-hypoxic 

tissue with fast elimination, and thus be hydrophilic [61, 62]. No tracer meets all criteria, 

but the family of nitroimidazoles showed the most promising results (Table 5).  

 

Hypoxia specific tracer entrapment of nitroimidazoles is based on sequential reduction 

reactions of the NO2-group under hypoxic conditions and eventually binding to intracellular 

macromolecules [31]. 18F-FMISO (fluoromisonidazole) was the first to be developed and 

provided the broadest evidence as a hypoxia tracer (Table 5). Due to its lipophilic character, 

clearance from non-hypoxic tissues is slow and tumor-to-background contrast is not optimal 

[61]. Development of several second generation tracers followed, with slightly adapted 

pharmacokinetic properties to improve tumor-to-background contrast (Table 5). 18F-FAZA 

(fluoroazomycin arabinoside), for example, was developed as an adaptation of FMISO in 

which the alkyl side chain of FMISO was replaced by a polar arabinose sugar (Fig. 14) [63]. 

This increased the hydrophilicity of the molecule, leading to an increased clearance from 

blood and non-hypoxic tissues and an increased tumor-to-background contrast [62, 64].  
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TABLE 5: Nitroimidazole hypoxia tracers for PET imaging. Adapted from [54] and extended with 

information on 18F-HX4. References: (a, b, c) [52, 65, 66], (d, e, f) [67-69], (g, h, i) [68, 70, 71], (j) 

[72]. 

 

 

FIGURE 14: Molecular structure of 18F-FMISO and 18F-FAZA. 

 

 

18F-HX4 (flortanidazole) [73], 18F-FETNIM (fluoroerythronitroimidazole) [74] and 18F-

EF5 (2-nitroimidazol-pentafluoropropyl acetamide  [75] are other examples of second 

generation nitroimidazole tracers that were developed to overcome the limitations of 

FMISO. Main studies, benefits and limitations are summarized in Table 5.  

In the end, nitroimidazole-based PET tracers have proven reliability in measuring tumor 

hypoxia, with each tracer having its advantages and disadvantages, but overall only modest 

differences. This thesis focused on 18F-FAZA for several reasons. 18F-FAZA is a feasible 

tracer to detect tumor hypoxia and has indeed superior biokinetics compared to 18F-FMISO 

[76, 77]. 18F-FAZA PET was studied in different tumors and showed to be predictive for 

treatment response in rhabdomyosarcoma and breast carcinoma (preclinical) [78, 79], and 

NSCLC and HNSCC (clinical) [80, 81]. Further, clinical trials are ongoing for rectal, lung, 

cervix and prostate carcinoma (ClinicalTrials.gov: NCT02624115, NCT02701699, 

NCT01989364, NCT01567800).  

  

https://clinicaltrials.gov/show/NCT02624115
https://clinicaltrials.gov/show/NCT02701699
https://clinicaltrials.gov/show/NCT01989364
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CHAPTER 2: OBJECTIVES AND THESIS OUTLINE 

Despite ongoing progression in oncology, there is a lack of patient-specific approaches 

based on biomarkers. The objective of this thesis was to use tumor hypoxia, an omnipresent 

feature of the TME, as a biomarker and target for treatment in solid tumors.  

 

Two main research questions were investigated: 

1. Can hypoxia imaging with 18F-FAZA PET/CT serve as a predictive biomarker and as a 

guidance for hypoxia targeting? 

2. Can anti-angiogenic therapy reduce hypoxia by vascular normalization and enhance 

radiotherapy efficacy? 

 

The first question was studied in an esophageal adenocarcinoma tumor model. Most patients 

with esophageal adenocarcinoma are diagnosed in a locally advanced stage and are 

standardly treated with neoadjuvant chemoradiotherapy followed by surgery. This 

treatment is associated with a considerable morbidity and treatment response is highly 

variable and unpredictable, making it an interesting pathology for a patient-tailored 

approach based on biomarkers [82]. Further, evidence exists (mostly histologically) that 

tumor hypoxia plays a role in treatment resistance in esophageal cancer [83, 84].  

 

Because no appropriate tumor model was available for our research objective, our first aim 

was to develop an EAC model in mice, which is described in chapter 3. 

 

Subsequently, we aimed to evaluate the feasibility of 18F-FAZA PET/CT in the orthotopic 

and subcutaneous EAC model which is outlined in chapter 4.  

 

Finally, we aimed to use 18F-FAZA PET/CT as hypoxia detection method to predict 

radiation response in our tumor model. In chapter 5 we describe the predictive value of 

18F-FAZA PET/CT in EAC xenografts for radiation response. We further evaluated if 18F-

FAZA PET/CT could identify tumors that might benefit from hypoxia targeted therapy to 

improve radiation response. To target hypoxia, we used nimorazole, a 5-nitroimidazole that 

mimics oxygen in the radiobiological process and has already showed to successfully 

increase radiation response in hypoxic HNSCC and rhabdomyosarcomas [35, 78].  
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The second research question, regarding the effect of anti-angiogenic therapy on hypoxia 

and radiotherapy, was discussed in chapter 6 in a colorectal cancer tumor model. This 

model was chosen because CRC tumors are highly angiogenic and were one of the first 

tumor types that showed significant response to anti-angiogenic therapy. We were 

interested in the effects of anti-angiogenic agents on hypoxia and radiotherapy efficacy. 

This could be of special interest for patients with locally advanced rectal cancer (LARC), 

who receive chemoradiation before surgical resection. Anti-angiogenic agents might 

enhance pathological response and outcomes. We aimed to link tumor hypoxia with tumor 

angiogenesis and aimed to target it by administration of a pan-VEGFR inhibitor cediranib. 

We evaluated tumor hypoxia with a fluorescence based fiberoptic oxygen probe (Oxylite) 

and with immunohistochemistry (endogenous marker pimonidazole). The underlying 

structural and functional vascular changes were investigated by in vivo imaging in dorsal 

skinfold window chambers and by DCE-MRI of subcutaneous tumors. 
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CHAPTER 3: ESOPHAGEAL ADENOCARCINOMA 

TUMOR MODEL IN MICE 

 

 

 

 This chapter is based on the following article: 

Melsens E, De Vlieghere E, Descamps B, Vanhove C, De Wever O, Ceelen W, 

Pattyn P. Improved xenograft efficiency of esophageal adenocarcinoma cell lines 

through in vivo selection. Oncol Rep, 38: 71-81, 2017.  

 

ABSTRACT 

Background: Esophageal adenocarcinoma is an aggressive disease with rising incidence 

rates. The need for development of new therapies is high and preclinical research plays 

herein a crucial role. However, there is a lack of preclinical (orthotopic) EAC models. We 

aimed to develop an EAC model in mice.  

Methods: Two esophageal adenocarcinoma cell lines, OE33 and OACM5 1.C, and a third 

in vivo selected subpopulation, OACM5 1.C SC1, were used. One group of mice was 

injected subcutaneously in the hind legs. Tumor growth was followed with calipers. 

Another group was injected orthotopically in the distal esophageal wall through median 

laparotomy. Tumor development was evaluated macroscopically and confirmed 

microscopically and tumor take rates were calculated. A subset of mice was evaluated with 

MRI to follow tumor progression. Additionally, functional cell line characteristics were 

evaluated in vitro (clonogenic assays, collagen invasion assays, sphere formation assays 

and protein analysis of cell-cell adhesion and cytoskeletal proteins) to better understand 

xenograft behavior.  

To answer our first research question ‘Can hypoxia imaging with 18F-FAZA 

PET/CT serve as a predictive biomarker and as a guidance for hypoxia 

targeting?’, we first developed an esophageal adenocarcinoma model in 

mice, which is described in this chapter. 
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Results: OE33 cells were shown to be epithelial-like, whereas OACM5 1.C and OACM5 

1.C SC1 were more mesenchymal-like. The three cell lines were non-invasive into native 

type I collagen gels. In vivo, OE33 cells led to 63.6% and 100% tumor nodules after 

orthotopic (n= 12) and subcutaneous (n= 8) injection, respectively. Adversely, OACM5 1.C 

cells did not lead to tumor formation after orthotopic injection (n= 6) and only 50% of 

subcutaneous injections led to tumor nodules (n= 8). However, the newly established cell 

line OACM5 1.C SC1 resulted in 33% tumor formation when injected orthotopically (n= 6) 

and in 100% tumors when injected subcutaneously (n= 8). The higher xenograft rate of 

OACM5 1.C SC1 (P< 0.05) corresponded with a higher clonogenic potential compared to 

its parental (P< 0.0001). All models showed local tumor growth without metastasis 

formation.  

Conclusion: In conclusion, OACM5 1.C has a poor tumor take rate at an orthotopic and 

ectopic site. A subpopulation obtained through in vivo selection, OACM5 1.C SC1, gives a 

significant higher take rate ectopically. Further, OE33 establishes orthotopic (and 

subcutaneous) xenografts in mice. Our paper provides an orthotopic and subcutaneous 

xenograft EAC model in mice, which will hopefully contribute to further preclinical 

research on EAC.  
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INTRODUCTION 

Esophageal cancer is the eighth most frequent cancer worldwide [85]. Despite the latest 

evolutions in treatment, overall mortality of esophageal cancer patients remains high, with 

a 5-year survival of only 9.8% in Europe [86, 87]. Therefore, the need for development of 

new therapies is high and preclinical research plays herein a crucial role.  

The majority of preclinical research in esophageal carcinoma has been performed in 

heterotopic models (subcutaneous xenograft tumors) [88]. However, orthotopic tumor 

models, where tumors are grown at their primary site, are preferred, because they resemble 

tumor development in patients more closely [89]. Furthermore, it has been proven that 

interaction between the tumor and its microenvironment plays a crucial role during 

carcinogenesis [2]. This tumor microenvironment is considerably different when 

esophageal tumors are grown subcutaneous (heterotopic), i.e. different blood supplies 

leading to different metastatic routes.  

Some preclinical research in esophageal carcinoma has been performed on orthotopic 

models. Tumor cells were injected either directly in the esophageal wall, or subcutaneously 

in donor animals to transplant tumor fragments onto the surgically injured esophageal wall. 

The surgical procedures to induce orthotopic esophageal tumors are technically challenging 

due to the location and size of the esophagus in laboratory animals (mostly mice). Five 

surgical approaches to the esophagus have been described: (i) median laparotomy [90-95], 

(ii) median laparotomy combined with transgastric approach [96], (iii) subcostal laparotomy 

[97], (iv) transoral approach [98], and (v) cervical approach [99]. Tumor take varied 

between 0% and 100% (mean 80.06%) and seemed to depend more on the aggressiveness 

of the tumor cell line, than on the surgical technique. A total of 9 different esophageal 

squamous cell carcinoma (ESSC) cell lines (81-T, KYSE30, KYSE150, SLMT-1, TE1, 

TE8, TE4, TE10 and T.Tn) and 3 esophageal adenocarcinoma (EAC) cell lines (OE19 [92, 

94, 100, 101], PT1590 [93, 102] and OE33 [92]) were described for orthotopic use. Because 

EAC has become the main subtype in patients in the United States and Northern and 

Western Europe [103], this study will focus on EAC. Overall, there is a lack of preclinical 

orthotopic EAC models. Of the 3 EAC cell lines previously described for orthotopic use, 

OE33 represents locally advanced EAC. This cell line was used by Habibollahi et al. for 

diagnostic properties [92], but only in 5 mice. They described orthotopic OE33 tumors of 

2-3mm in diameter at 4 weeks after injection. OE19 and PT1590 on the other hand, are 

representative cell lines for aggressive metastatic EAC. Moreover, OE19 overexpresses 



 

42 

Her2, which is found in only a minority of EAC patients (17- 32% of gastro-esophageal 

junction tumors GEJ [104]). 

The purpose of this study was to establish an orthotopic EAC model in the mouse based on 

two generally available human EAC cell lines, OE33 and OACM5 1.C. In vivo tumor take 

and growth were evaluated (orthotopic as well as subcutaneous) and in vitro cell line 

characterization was performed. 

 

MATERIALS AND METHODS 

IN VITRO 

CELL LINES 

The human EAC cell lines OE33 and OACM5 1.C were obtained from Dr. W. Dinjens, 

Department of Pathology, Erasmus MC, Rotterdam, the Netherlands, and are available at 

the European Collection of Authenticated Cell Cultures (ECACC), number 96070808 and 

11012006 respectively. MDA-MB-231 GFP Luc, human mammary carcinoma cell line 

(ATCC: HTB-26), and HCT8/E11, human colon adenocarcinoma cell line (ATCC number: 

CCL-244), were controls for in vitro experiments. OE33, HCT-8/E11 and MDA-MB-231 

GFP Luc were cultured at 37 °C in 10% CO2 humidified atmosphere in DMEM medium 

(Life Technologies, Ghent, Belgium), supplemented with 10% fetal bovine serum, 

penicillin-streptomycin and fungizone. Doxycycline (50 µg/ 100 ml medium) was added to 

the medium of MDA-MB-231 GFP Luc to express GFP. OACM5 1.C and the in vivo 

selected cell line OACM5 1.C SC1 (see further) were cultured at 37 °C in 5% CO2 

humidified atmosphere in RPMI 1640 Medium (Life Technologies) supplemented with 

GlutaMAX™-I (Life Technologies), 10% fetal bovine serum, penicillin-streptomycin and 

fungizone. EAC cell lines and the in vivo selected cell line OACM5 1.C SC1 were 

authenticated by STR DNA profiling. Microscopic images were taken with a phase contrast 

microscope (Leica DMI3000B, Diegem, Belgium). 

 

SPHERE FORMATION ASSAY 

One million single cells were diluted in 6 ml culture medium in an Erlenmeyer flask (50 

ml). They were incubated for 72 hours on a Gyrotory shaker at 37 °C and 70 rpm in 5 or 

10% CO2. Aggregation was analyzed with a phase contrast microscope and was scored on 

at least 50 aggregates. They were scored as compacted (individual cells not visible) or loose 
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(individual cells still visible) (n= 2). HCT8/E11 and MDA-MB-231 GFP Luc were used as 

a control for a respectively compacted and loose sphere formation. 

 

COLLAGEN INVASION ASSAY 

The assay was performed according to De Wever et al. [105]. Briefly, 1x105 cells were 

seeded as a single cell suspension on a 0.1% type I collagen gel (Santa Cruz). After 24 h 

incubation at 37 °C and 5 or 10% CO2, invasiveness was scored (n= 2x2) and expressed as 

a mean. HCT8/E11 and MDA-MB-231 GFP Luc were used as a control for a respectively 

low and high invasive cell line. 

 

COLONY FORMATION ASSAY 

1000 single cells were seeded in T75 falcons (15 ml culture medium) and cultured for 14 

days at 37 °C. Colonies were stained with 0.5% crystal violet, scanned and counted using 

ImageJ software (NIH). Results were expressed as the mean percentage of colonies formed 

out of 1000 cells (colony formation index (CFI)) (n= 2x5). HCT8/E11 and MDA-MB-231 

GFP Luc were used as a control for a respectively positive and negative colony formation 

cell line. 

 

WESTERN BLOT 

Cells were lysed and sonicated for 10 seconds on ice. Lysates were diluted to a protein 

concentration of 1 µg/ µl and boiled for 5 minutes at 95 °C. Equal amounts of proteins were 

separated on 8 and 10% gels and transferred to nitrocellulose membranes. Membranes were 

blocked (PBS, 5% non-fat milk, 0.5% Tween) and immunostained with primary antibodies: 

E-cadherin M106 (TaKaRa, The Netherlands), P-cadherin 610228 (BD Biosciences, 

Belgium), vimentin V6389, α-catenin C2081, β-catenin C2206, and cytokeratin C2931, 

recognizing subtype (4, 5, 6, 8, 10, 13 and 18), (Sigma-Aldrich, St. Louis, MO, USA). Then, 

secondary antibodies were applied, either ECLTM Anti-Mouse IgG or ECLTM Anti-Rabbit 

IgG (GE Healthcare UK Limited, UK). Immunodetection was performed with Pierce ECL 

Western Blotting Substrate (Thermo Scientific, Rockford, IL, USA) and imaged with 

Proxima2850 (Isogen, Life Science, Belgium). HCT8/E11 was used as positive control for 

E-, P-cadherin and cytokeratin. MDA-MB-231 GFP Luc was used as a positive control for 

vimentin. Both cell lines were positive controls for α- and β-catenin. 
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IN VIVO 

ANIMALS 

Animal experiments were approved by the Animal Ethical Committee of Ghent University, 

Belgium (ECD 14/82). Athymic mice (Foxn1nu male) were obtained from Envigo, the 

Netherlands, and were kept under environmentally controlled conditions (12 h normal light/ 

dark cycle, 20- 23 °C and 50% relative humidity) with food and water ad libitum. At 8 

weeks of age, tumor cells were implanted (subcutaneous or orthotopic) under general 

anesthesia (Isoflurane, Abbott, Belgium). At the end of the experiments, or when humane 

endpoints were reached, mice were euthanized by cervical dislocation.  

 

SUBCUTANEOUS TUMOR MODEL 

Subcutaneous tumors were grown to evaluate overall growth behavior of the cell lines in 

mice and to provide tumors for in vivo selection of cancer cells. Under general anesthesia, 

tumor cells suspended in 100 µl of Matrigel/injection site were injected SC in both hind 

legs. Tumor nodules were measured biweekly with calipers and volumes were calculated 

according to the following formula: 𝑉 = (𝑙𝑒𝑛𝑔𝑡ℎ × 𝑤𝑖𝑑𝑡ℎ)3/2 × 𝜋/6.  

 

ORTHOTOPIC TUMOR MODEL 

Mice were positioned supine on a heating pad. Under general anesthesia and analgesia 

(Ketoprofen, 5 mg/ kg, SC) a vertical skin incision of 10 mm was performed medially in 

the upper abdomen. Abdominal muscles were split and the peritoneum was opened through 

sharp dissection (Fig. 1.A). The liver was gently elevated with a moist Q-tip to give access 

to the abdominal esophagus. The stomach was lifted extra-corporeally by traction on the 

greater curvature with a forceps. A micro-forceps was positioned underneath the distal 

esophagus to lift it (Fig. 1.B). While the esophagus was stretched by gentle tension on the 

stomach by an assistant, a 30-gauge needle was inserted in the distal part of the esophageal 

wall and tunneled proximally for about 3 mm (Fig. 1.C). Tumor cells, suspended in 20 µl 

Matrigel/animal were injected slowly, resulting in a local bulging (Fig. 1.D). At body 

temperature, Matrigel solidifies within seconds, minimalizing the risk of intra-abdominal 

spilling of tumor cells. The stomach was cautiously repositioned and the abdominal wall 

and skin were closed with a running PDS 6-0 suture. Hartmann solution (500 µl) was given 

SC to prevent dehydration. Animals were followed daily and weighed 2 times per week.  
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Subcutaneous (TTSC) and orthotopic tumor take (TTorth) were defined as the percentage of 

macroscopic tumor nodules (confirmed on histology) on the total number of injections. At 

7 weeks, mice were euthanized and tumors were excised for histopathology. 

 

 

FIGURE 1: Surgical technique of orthotopic injection of tumor cells. (A) Upper abdominal 

median laparotomy in a mouse under general inhalation anesthesia, positioned using tape; (B) The 

stomach is lifted extra-corporal with a forceps. Another forceps (micro-instrument) is positioned 

underneath the esophagus to improve the access; (C) Insertion of a 30 G needle in the distal esophageal 

wall; (D) Injection of tumor cells in Matrigel resulting in a bleb in situ. 

 

MAGNETIC RESONANCE IMAGING 

A subpopulation of mice with orthotopic tumors (OE33 tumor nodules, n= 5) were 

evaluated by magnetic resonance imaging (MRI) at 1, 2, 3, 5, 8 and 12 weeks after tumor 

injection to follow tumor progression. MR images were acquired on a 7T system (Bruker 

PharmaScan 70/16, Ettlingen, Germany) with a mouse body volume coil. Mice were 

anaesthetized with isoflurane (5% induction, 1.5% maintenance, 0.3 L/ min) and warmed 

with a water-based heating blanket. Respiration was monitored using a respiration pad 

underneath the mouse. Anatomical information was obtained with a T2-weighted sequence 

(TurboRARE) with the following parameters: TR 3661 ms, TE 37.1 ms, 109 µm in-plane 

resolution, 30 contiguous transverse slices of 600 µm, and acquisition time 9’1”. Mice were 

euthanized 15 weeks after tumor induction. 

 

IN VIVO SELECTION OF CANCER CELLS 

To obtain subcultures of cell lines that grow well in mice, tumors (SC and orthotopic) were 

excised under sterile conditions and divided into small pieces. Tumor fragments were 

dissociated (gentleMAX Dissociator, Miltenyl Biotec GmbH, Germany) together with a 
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collagenase 1 mg/ ml (Sigma- Aldrich) in PBSD+ mixture to disrupt tissue structures. The 

suspension was filtered through a cell strainer (70 µm) and centrifuged. Cells were seeded 

in T75 falcons and incubated. After 24 hours, non-adherent cells were cleared and replaced 

by fresh culture medium.  

 

TUMOR SAMPLES AND HISTOLOGY 

Tumors were excised fixed with 4% formaldehyde, processed and embedded in paraffin.   

Tumor sections of 5 µm were cut with a microtome (Microm HM355S, Thermo Scientific, 

Rockford, IL, USA). H&E staining and Ki67 staining (ready-to-use DAKO Envision+ 

system- HRP kit (K4011)) were performed according to standard protocols. Slides were 

scanned on 100x and 200x magnification and proliferation indices were determined by an 

overall visual scoring system. Tumors were categorized low, moderate or high proliferative. 

Microscopic images were taken with a light microscope (ColorView I, BX43F, Olympus, 

Tokyo, Japan). 

 

STATISTICAL METHODS 

Statistical analysis was performed with GraphPad Prism6 (Graphpad Software, Inc.: La 

Jolla, CA, USA). Mann- Whitney test was used to compare in vitro results of the parental 

and in vivo selected cell line. Fisher’s exact test was used to compare tumor take rates. 

Results were summarized as means with standard deviation (SD) and were considered 

statistically significant when the probability of a type I error was ≤ 0.05.  

 

RESULTS 

CELL CHARACTERIZATION OF OE33 

OE33 cells had an epithelial morphology, characterized by adherent cells, cell-cell contacts 

and a typical formation of islands (Fig. 2.A above). These cell-cell contacts resulted in the 

ability to form compact spheres under Gyrotory shaking (Fig. 2.A middle). On type I 

collagen gels, 21.6% (95% CI [8.12%, 35.04%]) of OE33 cells showed cellular extensions 

invading the matrix (Fig. 2.A under, B left). When seeded in a low density on tissue culture 

substrate, only a limited number of these cells were able to form a colony (mean CFI= 

7.23%, 95% CI [6.24%, 8.23%]) (Fig. 2.B right). Additionally, Western blot was performed 

(Fig. 2.C). OE33 cells expressed cytokeratin, an intermediate filament supporting the 
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epithelial origin of the cancer cell line. Furthermore, cells showed expression of α- and β-

catenin and E- and P-cadherin, proteins important for cell- cell adhesion and tissue 

organization. They did not express vimentin, a major cytoskeletal component in 

mesenchymal cells. 

 

 

FIGURE 2: In vitro characteristics of OE33. (A) Above: Cell lines in culture, phase contrast image 

(scale bar= 200 µm); Middle: Sphere formation assay 72 h after initiation, phase contrast image (scale 

bar= 100 µm); Under: Collagen type I invasion assay 24 h after seeding, phase contrast image (scale 

bar= 100 µm), yellow arrows show invasive cells in collagen type I gel. (B) Left: Collagen invasion 
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index (%); Right: colony formation index (%). Single values, mean, standard deviation. (C) Western 

blot of OE33 compared to HCT8/E11 and MDA-MB-231 GFP Luc.  

 

TUMOR DEVELOPMENT WITH OE33 

Four mice were injected subcutaneously bilaterally with OE33 cells (Table 1). These all 

resulted in similar small tumor nodules, but volumes seemed to decrease progressively (Fig. 

3.A). Histologically, nodules consisted of well differentiated tumor cells organized in 

islands and surrounded by infiltrating stromal cells connective tissue (Fig. 3.B-C). They 

were not invasive into surrounding tissues and Ki67 indices were low to moderate (Fig. 

3.D). Two nodules were used for in vivo selection and were confirmed to contain tumor 

cells through that means.  

Twelve mice were orthotopically injected with OE33 cells (Table I). Seven animals 

developed tumor nodules at the distal site of the esophagus without evidence for metastasis 

(liver, diaphragm, peritoneum and omentum were free of lesions) (Fig. 4. A). Tumors were 

located at the submucosal space and were not invasive into surrounding tissue (Fig. 4.B, D). 

They were well differentiated and had a low proliferation index (Fig. 4.C). Three nodules 

were used for in vivo selection and were confirmed to contain tumor cells through that 

means.  
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FIGURE 3: SC xenograft OE33 tumor. (A) Tumor volumes (mm3) of 7 SC tumors, time after 

injection of tumor cells; (B-C) H&E of SC tumor at different magnifications; (D) Ki67 staining of 

adjacent tumor slide.  

 

 

FIGURE 4: Orthotopic xenograft OE33 tumor. (A) Macroscopic tumor nodule at the distal site of 

the esophagus (yellow arrow). The stomach is pulled downwards with a forceps; (B, D) H&E of tumor 

nodule. E= esophageal lumen. T= tumor nodule. M= muscle layers of the esophageal wall. m= 

esophageal mucosa. The nodule is situated in the submucosal space and does not invade the mucosa. 

In the right upper corner, the transition to the stomach is situated; (C) Ki67 staining of adjacent tumor 

slide. 

 

 

TABLE 1: Summary of in vivo experiments. 
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MRI scans were performed in a subset of mice (n= 5) to follow tumor development (Fig. 5. 

A). At the initial MRI scan 1 week post-tumor induction, all of them showed a clear tumor-

like nodule at the distal site of the esophagus. During follow-up, volumes remained the 

same and at the end 4 out of 5 animals showed a tumor-like nodule on MRI. These were 

confirmed to contain tumor cells microscopically (Fig. 5. B-D). 

 

 

FIGURE 5: MRI images of orthotopic OE33 esophageal tumor. (A) Transverse MRI images at 

different time points (in weeks) after tumor induction. Yellow arrow= tumor nodule; (B) Macroscopic 

tumor (yellow arrow) at distal esophagus, E= esophagus, S= stomach; (C-D) H&E staining of tumor. 

T= tumor nodule. E= esophagus. M= muscle layer of esophageal wall.  

 

CELL CHARACTERIZATION OF OACM5 1.C 

OACM5 1.C cells had two morphological subtypes: a majority of multicellular floating cell 

clusters, and some adherent cells with a fibroblast-like appearance, growing as single cells 

(Fig. 6.A above). These did not form cell-cell contacts and only very few cells were adherent 

to plastic. OACM5 1.C cells were not able to form compact spheres under Gyrotory 

shaking, but formed loose cell clusters with recognition of individual cells (Fig. 6.A 

middle). Furthermore, they were non-invasive into collagen gels (mean 1.38%, 95% CI [-

0.30%, 2.47%]) (Fig. 6.A under, B above) and were not clonogenic (CFI= 0.10%, 95% CI 

[-0.001%, 0.201%]) (Fig. 6.B under). OACM5 1.C cells expressed cytokeratin on Western 

blot supporting the epithelial origin of the cancer cell line. They expressed β-catenin and 

poorly expressed α-catenin but lacked expression of E-cadherin to consolidate cell-cell 
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contacts. OACM5 1.C expressed vimentin representing the mesenchymal characteristics of 

the cell line. (Fig. 6.C)  

 

 

FIGURE 6: In vitro characteristics of OACM5 1.C and OACM5 1.C SC1. (A) Above: Cell lines 

in culture, phase contrast image (scale bar= 200 µm); Middle: Sphere formation assay 72 h after 

initiation, phase contrast image (scale bar= 100 µm); Under: Collagen type I invasion assay 24 h after 

seeding, phase contrast image (scale bar= 100 µm); (B) Above: collagen invasion index (%), single 

values, mean, standard deviation, P= 0.368; Under: Colony formation index (%), single values, mean, 

standard deviation, P< 0.0001. (C) Western blot of OACM5 1.C and OACM5 1.C SC1 compared to 

MDA-MB-231 GFP Luc and HCT8/E11.  

 

TUMOR DEVELOPMENT WITH OACM5 1.C  

Four mice were injected subcutaneously bilaterally with OACM5 1.C cells (Table 1). Four 

out of eight injections resulted in macroscopic tumor nodules. One nodule had an 

exponential growth curve, while the others remained stable (Fig. 7. A). Histology showed 

nodules packed with tumor cells with little infiltrating stromal cells. They were not invasive 

into surrounding tissues and Ki67 staining was overall low to moderate (Fig. 7. B-D). 
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Injection sites that did not develop macroscopic nodules (4/8) resulted in palpable fibrous 

remnants in which some loose tumor cell islands could be identified on histology. One 

nodule was used for in vivo selection and was confirmed to contain tumor cells through that 

means. An additional six mice were orthotopically injected with OACM5 1.C cells (Table 

1). Of 4 mice evaluable, no tumor nodules, metastasis or involved lymph nodes were 

macroscopically visible and histology was negative for tumor cells.  

 

 

FIGURE 7: SC xenograft OACM5 1.C tumor. (A) Tumor volumes (mm3) of 8 SC tumors, time 

after injection of tumor cells. 4 out of 8 injections did not develop tumor nodules; (B-C) H&E of SC 

tumor at different magnifications; (D) Ki67 staining of adjacent tumor slide.  

 

ESTABLISHMENT OF NEW IN VIVO SELECTED CELL LINE 

OACM5 1.C SC1 

OACM5 1.C cells harvested from a SC tumor nodule, were stable through different in vitro 

passages and could be re-injected in mice according to the above protocols. Five mice were 

injected subcutaneously bilaterally with OACM5 1.C SC1 cells, resulting in 10 

macroscopically visible tumors (Table 1). 5 out of 10 were fast growing (Fig. 8. A). 

Histology showed presence of tumor cells in all nodules (Fig. 8. B-C) and Ki67 staining 
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was low to moderate (Fig. 8. D). An additional six mice were injected orthotopically with 

OACM5 1.C SC1 cells, leading to two small macroscopic tumor nodules (Table 1). No 

metastasis were observed. Histology confirmed presence of tumor cells and nodules did not 

invade surrounding tissues (Fig. 9. A-C). In vivo selection of OE33 cells was not successful 

(n= 5). Tumor cells were microscopically present, but did not survive different in vitro 

passages. 

 

 

 

FIGURE 8: SC xenograft OACM5 1.C SC1 tumor. (A) Tumor volumes (mm3) of 10 SC tumors, 

time after injection of tumor cells; (B) H&E staining of SC tumor with close-up (C), packed with 

tumor cells; (D) Ki67 staining of adjacent tumor slide.  

 

COMPARISON OF OACM5 1.C AND OACM5 1.C SC1 

Both cell lines had the same morphological appearance in vitro (Fig. 6.A above) and in vivo 

(Fig. 7 and Fig. 8). Further, they had the same cell line characteristics concerning sphere 

formation and collagen invasion (Fig. 6.A-B). Moreover, cell-cell adhesion and cytoskeletal 

protein expression were similar (Fig. 6.C). Yet, the in vivo selected cell line had higher 

subcutaneous tumor take rates than the parental cell line (TTSC= 100% versus 50% (P< 

0.023) (Fig. 10). This can be related to the significant higher clonogenicity (P< 0.0001) of 

the in vivo selected cell line compared to the parental cell line in vitro. 
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FIGURE 9: Orthotopic xenograft OACM5 1.C SC1 tumor. (A-B) H&E staining of orthotopic 

OACM5 1.C SC1 tumor nodule, situated at the submucosal space. E= esophageal lumen. T= tumor 

nodule. M= muscle layers of the esophageal wall; (C) Ki67 staining of adjacent tumor slide. 

 

FIGURE 10: Tumor take of OACM5 1.C and 

OACM5 1.C SC1. SC and orthotopic tumor take 

were compared between the two cell lines. 

Development of tumors was expressed as a 

percentage of the total amount of implanted tumors: 

OACM5 1.C (SC) (n= 4/8) versus OACM5 1.C SC1 

(SC) (n= 10/10); OACM5 1.C (orth) (n= 0/6) versus 

OACM5 1.C SC1 (orth) (n= 2/6). Subcutaneous 

tumor take was significantly increase with the in vivo 

selected cell line (OACM5 1.C SC1) compared to the 

parental cell line (OACM5 1.C) (P< 0.023). The 

observed increase in orthotopic tumor take was not 

statistically significant (P= 0.4667). 

 

DISCUSSION 

This study investigated the orthotopic growth potential of two generally available EAC cell 

lines, OE33 and OACM5 1.C, and a third cell line obtained through in vivo selection, 



 

55 

OACM5 1.C SC1. Additionally, in vitro experiments were performed to better understand 

functional characteristics in relationship with in vivo growth behavior.  

OE33 showed successful orthotopic xenografts in 63.6% (n= 12) of the cases. Nevertheless, 

volumes remained stable during follow-up, as can be seen on the serial MRI scans. 

Subcutaneous tumor take was higher (TTSC= 100%, n= 7) but resulted in similar small 

tumor nodules with stable to decreasing volumes. To our knowledge, only one previous 

study used OE33 cells for orthotopic use. The study was diagnostic and had similar results 

to ours. Small tumors of 2-3 mm in diameter at 4 weeks after injection (n= 5) were seen 

[92]. OE33 seems to be a low aggressive cell line with a high subcutaneous and orthotopic 

tumor take in nude mice, but extremely slow growth pattern. The decreasing subcutaneous 

volumes may be explained by clearance of Matrigel with slow replacement of tumor cells.  

In contrast to the OE33 cell line, OACM5 1.C cells were not able to develop orthotopic 

tumor nodules (TTorth= 0%, n= 6). Also subcutaneous tumor take was low (TTsc= 50%, n= 

8). To improve these poor tumor take rates, a technique of in vivo selection of tumor cells 

was applied. As such, the new cell line OACM5 1.C SC1 was established and successfully 

led to a significant higher subcutaneous tumor take than the parental cell line (100% (n= 

10) versus 50% (n= 8), P< 0.023). Orthotopic tumor take did not differ significantly (33.3% 

(n= 6) versus 0% (n= 6), P= 0.467). Cell lines had similar in vitro characteristics, except 

from the significant increased ability of the in vivo selected cell line to form colonies (P< 

0.0001). The latter may partially explain the increased tumor take rate.  

Another correlation between the in vitro and in vivo results was seen in the invasiveness of 

the cell lines. The investigated EAC cell lines were almost non-invasive in collagen type I 

gels in vitro and none of the xenografts in the mouse experiments invaded the surrounding 

tissues.  

Beside in vivo selection, improved tumor take rates may be reached by simply increasing 

the amount of injected tumor cells. Unfortunately, the injection volume in the esophageal 

wall is limited. As such, the amount of injectable tumor cells is also limited to about 1.5 x 

10^6 cells per injection. This can be bypassed by transplanting a subcutaneous tumor 

fragment on the esophageal wall according to the technique of Gros et al. [93]. An additional 

experiment was performed with transplantation of 1mm3 tumor fragments of a subcutaneous 

OE33 tumor on the esophageal wall of 7 mice. Due to postoperative complications, three 

animals died within the first week postoperative. The remaining 4 did not show any vital 

tumor on the esophageal wall up to 70 days of follow up. We believe this is a technically 
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more difficult procedure, with a low success rate if fragments of slow growing tumor 

nodules are used and concluded this is not beneficial for the investigated cell lines. 

It needs to be mentioned that the development of EAC in this tumor model differs from the 

situation in patients. While the pathogenesis is not yet fully understood, it is believed that 

chronic inflammation of the esophageal mucosa can develop dysplasia and eventually can 

evolve in EAC. As such, gastro-esophageal reflux disease (GERD) is one of the major risk 

factors for developing EAC, besides obesity [85]. In literature, several other models have 

been described, that reflect the clinical situation more closely [88]. On one hand, different 

reflux models have been used: surgical esphagojejunostomy [106] or drinking of caustic 

substances [107]. These reflux models lead to less than 50% cancer development in a time 

period of 6 months making it unreliable for therapeutic studies [88]. On the other hand, the 

use of genetically engineered mouse models (GEMMs) has been investigated. Transgenic 

mice with IL-1β overexpression were shown to develop moderate inflammation by 6 

months, with a small percentage of mice developing high grade dysplasia or EAC after 20-

22 months [107]. Best results with GEMMs were obtained in combination with the caustic 

substance deoxycholate (DCA), where 45% of mice developed EAC after a long follow-up 

period of 15 months [107]. The technique of injecting tumor cells in the esophageal wall is 

considered to be the best option available for the development of a relative rapid and reliable 

orthotopic mouse model.  

Surprisingly, the three investigated EAC cell lines grew more efficient subcutaneously than 

orthotopically. To rule out technical issues with the orthotopic injection method, the 

technique was checked with a highly aggressive ovarian carcinoma cell line, SK-OV-3 Luc 

IP1 cells, that is known to be 100% tumorigenic in Foxn1nu mice, according to previous 

experiments in our research group [108]. Injection of 5 x 105 SK-OV-3 Luc IP1 cells in the 

esophageal wall resulted in 100% tumor take and 100% exponential tumor growth (n= 5), 

confirmed on IVIS, MRI and histology (Fig. 11). After 4 weeks, exophytic tumors of about 

8 mm diameter were observed. We believe the low orthotopic tumor take rates with the 

investigated EAC cells is due to a combination of low aggressive cells and the limited 

amount of injectable cells. 
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FIGURE 11: SK-OV-3 Luc IP1 heterotopic esophageal tumor growth. (A) Weight of mice with 

heterotopic SK-OV-3 Luc IP1 cells at the esophagus; (B) Macroscopic xenograft tumor (=yellow 

arrow) on the distal esophageal wall, with no sign of compression or dilatation of the proximal 

esophagus; (C) T2 weighed MRI, yellow arrow appoints the voluminous tumor; (D-E) H&E at 

different magnifications of a xenograft ovarian tumor at the esophageal wall.  

 

The fact that the OACM5 1.C SC1 experiments are based on cells originating from one 

tumor nodule, could be point of discussion. Nevertheless, the in vivo selection technique is 

a validated technique to improve cell line characteristics (such as metastatic potential or 

take rates [108, 109]). Our aim was not to validate the technique, but to use it to improve 

tumor take rates and to show it can be of use for esophageal cancer models. The OACM5 

1.C SC1 cell line was authenticated by STR assay, was stable through different passages 

and led to increased tumor take rates. The unsuccessful in vivo selection of OE33 was 

probably due to the small amount of tumor cells in the excised tumors and the low 

clonogenic potential of the cells. Repetitions would most probably lead to the same results. 

Finally, the follow-up of esophageal tumor growth in mice is challenging (i.e. due to its 

location). Performing a laparotomy at different time points is easy, fast and does not require 

specialized tools or knowledge. However, this causes intra-abdominal adhesions, making 

esophageal exposure more difficult after every laparotomy and could cause an inflammatory 

reaction influencing tumor development. MRI imaging was already confirmed to be feasible 
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and accurate for the follow-up of esophageal cancer in mice [93, 100, 101]. In this study, a 

dedicated small animal MRI scanner was used, leading to detailed images. Tumor nodules 

could be defined precisely as hyper-intense nodular structures, at a fixed location, slightly 

proximal of the gastro-esophageal junction. Also, the volumes of nodules could be 

measured accurately. However, MRI is not able to differentiate tumor tissue from 

inflammatory scar tissue or residual Matrigel. If volumes increase, viable tumor cells are 

plausible. If not, presence of tumor cells cannot be assured. It would be interesting to 

transfect the investigated EAC cell lines with luciferase, like shown by Gros et al. [93], to 

perform in vivo fluorescence imaging in case of stable nodules and be able to differentiate 

viable tumor cells from scar tissue and Matrigel. 

This study can be of interest for future experiments. Especially the OE33 cell line is 

appropriate for orthotopic injection for diagnostic studies on EAC. Yet, some limitations, 

such as low aggressive cells, slow growth pattern and different etiology in patients should 

be kept in mind. It must be mentioned that this was the first study to describe growth 

behavior of OACM5 1.C in mice. OACM5 1.C had a poor tumor take rate at an orthotopic 

and ectopic site. The in vivo selected cell line OACM5 1.C SC1 showed higher 

subcutaneous take rates. The use of a more immunodeficient mouse strain (NOD SCID 

mice) could improve tumor take and should be considered for future research with these 

low aggressive cell lines.  

 

CONCLUSION 

Little research is available about esophageal cancer, especially the EAC subtype, which is 

the more prevalent type in the Western world. Our paper provides an orthotopic and 

subcutaneous xenograft EAC model in mice, which will hopefully contribute to further 

preclinical research on EAC. 
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CHAPTER 4: PILOT STUDY: 18F-FAZA PET/CT IN 

SUBCUTANEOUS AND ORTHOTOPIC EAC 

XENOGRAFTS 
 

 

 

 The following researchers contributed to the pilot study: 

Melsens E, De Vlieghere E, Descamps B, Vanhove C, Kersemans K, De Vos F, 

Goethals I, Brans B, De Wever O, Ceelen W, Pattyn P. 

 

ABSTRACT 

Aim: In this chapter, we aimed to evaluate the feasibility of 18F-FAZA PET/CT in the 

orthotopic and subcutaneous xenograft EAC models described in Chapter 3.  

Methods: Subcutaneous tumors (OACM5 1.C SC1, human EAC) (n= 6) and esophageal 

tumors (SK-OV-3 IP1, human ovarian cancer) (n= 3) were used. The hypoxia tracer 18F-

FAZA (37 MBq) was injected in the tail vein of tumor bearing mice and PET/CT was 

performed 3 hours after tracer injection (30 min acquisition). Images were analyzed with 

AMIDE software and tumor to background ratios were calculated. Mice were euthanized 

on the same day of imaging, 1 hour after pimonidazole injection (IP). Tumors were excised 

and examined histologically. 

Results: All subcutaneous tumors could be delineated on FAZA PET/CT and T/B rates 

could be calculated. The esophageal tumors could not be delineated due to insufficient soft 

tissue resolution on the CT scan and abundant background tracer activity in the liver region. 

Further, background activity was seen in the gall bladder, gastro-intestinal tract and urinary 

bladder. 

In the previous chapter, we described the development of an orthotopic and 

subcutaneous EAC tumor model in mice that can be used to investigate our 

first research question ‘Can hypoxia imaging with 18F-FAZA PET/CT serve 

as a predictive biomarker and as a guidance for hypoxia targeting?’. We 

tested the feasibility of 18F-FAZA PET/CT in both tumor models in a pilot 

study, which is described in this chapter. 
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Conclusion: 18F-FAZA PET/CT imaging is feasible in the subcutaneous OACM5 1.C SC1 

model, but not in the orthotopic model.  
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MATERIALS AND METHODS 

SUBCUTANEOUS (SC) XENOGRAFTS 

To visualize hypoxia with 18F-FAZA PET/CT, a minimum tumor volume is needed. Most 

studies set the absolute minimum at a diameter of 5-10 mm or a volume of 200 mm3 [62, 

79, 110, 111]. We used SC OAMC5 1.C SC1 tumors, 7 weeks after tumor inoculation. 

According to the results of Chapter 3 these should have reached a volume of 100-200 mm3.  

 

ORTHOTOPIC XENOGRAFTS 

The orthotopic EAC xenograft model with OE33 provided slow growing and small tumors, 

which is not ideal for this pilot. Therefore, we opted for the SK-OV-3 Luc IP1 ovarian cell 

line, described in Chapter 3 in the Discussion section, in which macroscopic bulky tumors 

were reached at the distal site of the esophagus, 5 weeks after tumor inoculation.  

For more details on animals or cell lines, see Materials and Methods section of Chapter 3. 

 

18F-FAZA PET-CT 

The radiosynthesis of 18F-FAZA was performed on a Synthra RNplus module (Synthra 

GmbH, Hamburg, Germany) using a fully automated procedure that was based on standard 

procedures [112, 113]. The precursor for the radiosynthesis, 1-(2,3-diacetyl-5-tosyl-(α-d-

arabinofuranosyl)-2-nitroimidazole, was purchased from ABX GmbH (Radeberg, 

Germany) and all other required reagents and solvents were acquired from Sigma-Aldrich 

(Overijse, Belgium). 

Mice were anaesthetized and a target activity of 37 MBq of 18F-FAZA was injected in the 

tail vein. Three hours after injection and under anesthesia, the animals were positioned on 

a heated animal bed of a small animal PET/CT scanner (TriFoil Imaging, Triumph II, 

Northridge, CA, USA). CT projection data were acquired using the following parameters: 

256 projections, detector pixel size 50 µm, focal spot size 100 µm, tube voltage 50 kV, tube 

current 640 µA, and a field-of-view of 90 mm. A 30 minutes PET scan was acquired in list 

mode, with a 75-mm axial field-of-view and a 1.3-mm spatial resolution, on the same 

scanner and without moving the animal. CT images were analytically reconstructed using a 

filtered back projection reconstruction algorithm (Cobra Version 7.3.4, Exxim Computing 

Corporation, Pleasanton, CA) into a 256x256x512 matrix with 200 µm isotropic voxel size. 

The acquired PET images were reconstructed into a 200x200x64 matrix by a 2D maximum 
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likelihood expectation maximization (MLEM) algorithm (LabPET Version 1.12.1, TriFoil 

Imaging®, Northridge, CA) using 50 iterations and a voxel size of 0.5x0.5x1.175 mm3 (x, 

y, z). Each resultant CT image is inherently co-registered with the corresponding PET scan. 

PET and CT images were imported into A Medical Image Data Examiner (AMIDE) [114], 

where tumor-to-background ratios (T/B) were calculated as the mean tumor uptake divided 

by the background activity. Mean tumor uptake was quantified into a volume-of-interest 

that was semi-automatically delineated as the activity >40% of the maximum activity using 

the 3D-isocontour tool, similar to Tran et al. [78], and a sphere with radius 1.5 mm was 

delineated in the foreleg muscle as background tissue. 

 

MRI 

See Chapter 3, Materials and Methods. 

 

IMMUNOHISTOCHEMISTRY 

The exogenous hypoxia marker pimonidazole (Hypoxyprobe, MA, USA) was administered 

1 hour before sacrifice (60 mg/kg, IP) and stained on formalin-fixed paraffin-embedded 

tumor sections (5 µm) with the Hypoxyprobe anti-pimonidazole mouse IgG1 monoclonal 

primary Ab (HP1-100 Kit) (1/50, 1 h, RT) and the LSAB+ System-AP kit (DAKO K0675). 

 

RESULTS 

A total of 6 animals were imaged: 3 mice with bilateral OACM5 1.C SC1 tumors (6 tumors 

in total) and 3 mice with a SK-OV-3 Luc IP1 tumor at the distal site of the esophagus. 

Overall, a high background staining was seen in the liver, gall bladder, small and large 

intestine and the urinary bladder (Fig. 1). 

 

SC XENOGRAFTS 

All 6 tumors could be delineated on the PET/CT images and SUV values and T/B ratios 

were calculated (Table 1, Fig. 2). 
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FIGURE 1: 18F-FAZA PET/CT. 

Coronal images of 18F-FAZA PET/CT scans of 2 mice (A and B) illustrating the main regions of 

background activity: *= gall bladder; L= liver; GI= small and large intestine; U= urinary bladder. 

 

 

TABLE 1: Results of 18F-FAZA PET/CT imaging. 

SUV= Standardized uptake value. Tracer uptake is quantified as percentage of the totally injected 

activity (%ID/g) and standardized to the animals’ weight. T/B= Tumor to background. Mean tumor 

uptake was the activity in the >40% isocontour VOI. A sphere (radius 1.5 mm) in the foreleg muscle 

was background. 

 

 

Macro- 

scopic 

tumor 

Tumor 

Volume 

(mm3) 

(CT/MRI) 

IHC 

(pimoni-

dazole) 

Visualization 

of tumor on 
18F-FAZA 

PET/CT 

18F-FAZA 

parameters 

SUV T/B 

SUBCUTANEOUS 

Tumor 1 Yes 97.0 +/- Yes 0.09 1.79 

Tumor 2 Yes 78.8 + Yes 0.09 2.40 

Tumor 3 Yes 156.8 / Yes 0.10 1.59 

Tumor 4 Yes 91.7 + Yes 0.13 3.90 

Tumor 5 Yes 219.7 + Yes 0.15 2.13 

Tumor 6 Yes 231.2 + Yes 0.17 2.73 

ORTHOTOPIC 

Tumor 1 Yes 95.16 + No / / 

Tumor 2 Yes 116.3 + No / / 

Tumor 3 Yes 59.7 +/- No / / 
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FIGURE 2: 18F-FAZA PET/CT in SC xenografts. 

(A-B) Pimonidazole staining (=brown) of tumor section at different magnifications ((A) 40x and (B) 

400x). Hypoxia is distributed heterogeneously in the tumor. (C-E) Transverse slices with mice in 

prone position on the PET/CT bed with right SC tumor on the hind leg. (C) CT image with tumor 

delineated spherically (yellow). (D) 18F-FAZA PET image. An irregular hypoxic area is visualized 

at this level of the tumor. The intense 18F-FAZA signal in the middle of the image is background 

activity from the gastro-intestinal tract. (E) Overlay 18F-FAZA PET/CT. The PET data exterior to 

the ROI was erased. Orange= ROI >40% isocontour.  

 

ORTHOTOPIC XENOGRAFTS 

Three mice with SK-OV-3 Luc IP1 tumors at the distal site of the esophagus were imaged 

5 weeks after tumor inoculation (Fig. 3). Tumor volumes were determined on MRI at the 

day of the 18F-FAZA PET/CT. Despite the clear presence of a voluminous tumors, it was 
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impossible to identify the tumors on PET/CT. First, soft tissue resolution on the CT was 

insufficient to differentiate the tumor from the neighboring tissues. Second, the intense 

background staining in the liver compromised tumor visualization on the PET images. As 

a result, no quantification of tumor hypoxia could be done on the 18F-FAZA PET/CT (Table 

1). Yet, the presence of tumor hypoxia was confirmed histologically with pimonidazole 

staining in all 3 tumors (Fig. 3). 

 

 

FIGURE 3: 18F-FAZA PET/CT in orthotopic xenografts. 

(A-B) Pimonidazole staining (=brown) of tumor section at different magnifications ((A) 40x and (B) 

400x).  A small hypoxic zone is identified in the upper right quadrant of the tumor. (C) Transverse 

slice of MRI image. Tumor mass is delineated in yellow. (D-E) Transverse and coronal image of 

overlay 18F-FAZA PET/CT scan. The esophageal tumor mass clearly visible on MRI, could not be 

identified on the 18F-FAZA PET/CT scan. 

 

DISCUSSION 

Overall, high background activity was observed in the liver, gall bladder, small and large 

intestine and urinary bladder, which is due to the pharmacokinetic properties of the tracer. 

18F-FAZA is excreted through the gall bladder and gastro-intestinal tract, after hepatic 
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metabolization, and directly through the kidneys and the urinary bladder [62]. The SC 

tumors were localized outside these regions and could be visualized and delineated 

successfully on the 18F-FAZA PET/CT in all 6 tumors. The orthotopic xenografts were 

located near the liver, making visualization impossible.  

This raises the question whether translation to the clinical setting would be feasible. 

First, these experiments showed that the small dimensions of the mice, together with the 

low soft tissue resolution on the small animal PET/CT, were a primary cause of difficult 

tumor visualization. In the clinical setting, all esophageal cancer patients undergo CT-

imaging as part of the standard staging modalities. Esophageal tumors are delineated more 

easily on CT images of patients than in mice which will be a first factor in favor of the 

clinical setting. 

Second, not all tumors will be located in the field of background activity (liver). This tumor 

model represented esophageal adenocarcinomas (EAC) and was chosen because this has 

become the main subtype in the United States and Northern and Western Europe [103]. 

EAC is typically located at the lower 1/3 of the esophagus and at the gastro-esophageal 

junction [115], and thus near the liver. The second most common subtype is esophageal 

squamous cell carcinoma (ESCC). These tumors are mainly located in the proximal 2/3 of 

the esophagus [115], and thus outside any background activity fields, as can be seen on the 

scans (Fig. 1 and 3). The higher the tumor will be located, the easier visualization will be. 

 

CONCLUSION 

18F-FAZA PET/CT imaging is feasible in the subcutaneous OACM5 1.C SC1 model, but 

not in the orthotopic model. 
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CHAPTER 5: PREDICTIVE VALUE OF 18F-FAZA PET/CT 

AND HYPOXIC MODIFICATION WITH NIMORAZOLE  

 

 

 

 This chapter is based on the following article: 

Melsens E, De Vlieghere E, Descamps B, Vanhove C, Kersemans K, De Vos F, 

Goethals I, Brans B, De Wever O, Ceelen W, Pattyn P. Hypoxia imaging with 18F-

FAZA PET/CT predicts radiotherapy response in esophageal adenocarcinoma 

xenografts. Submitted. 

 

ABSTRACT 

Background: Esophageal cancer is an aggressive disease with poor survival rates. Standard 

treatment encompasses neoadjuvant chemoradiation (locally advanced stage). Response to 

neoadjuvant therapy is highly variable and difficult to predict. As it is known that tumor 

hypoxia is correlated with treatment resistance and worse prognosis in solid tumors, this 

could be an interesting predictive factor for esophageal cancer. By imaging hypoxia with 

18F-FAZA PET/CT, we aimed to predict treatment response of esophageal adenocarcinoma 

(EAC) xenografts. Further, we investigated hypoxic radioresistance and the radiosensitizing 

effect of the hypoxia modifier nimorazole in vitro and in vivo.  

Methods: In vitro MTS cell proliferation assays were performed under normoxic and 

hypoxic conditions with 8 treatment groups: control, nimorazole, irradiation (5, 10 or 20 

Gy) with or without nimorazole. In vivo, subcutaneous xenografts were induced in the hind 

legs of nude mice (human EAC cell line OACM5 1.C SC1). Mice were divided in 3 

In chapter 3, we described the development of an orthotopic and 

subcutaneous EAC model in mice. Chapter 4 showed that only the 

subcutaneous model was feasible for 18F-FAZA PET/CT hypoxia imaging. 

In this chapter, we investigated the first research question ‘Can hypoxia 

imaging with 18F-FAZA PET/CT serve as a predictive biomarker and as a 

guidance for hypoxia targeting?’ in our subcutaneous EAC tumor model. 
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treatment groups: (A) control, (B) radiotherapy (RT) (5 Gy/d during 5 days) and (C) 

combination (nimorazole (200 mg/kg/d, IP) 30 min before RT). 18F-FAZA PET/CT was 

performed before and after treatment and tumor to background (T/B) ratios were calculated. 

Tumors were measured daily with calipers and relative tumor growth (RTG) was calculated. 

Tumor sections were examined histologically (hypoxia, DNA double-strand breaks (DSB), 

apoptosis and proliferation).  

Results: A T/B ≥ 3.59 on pretreatment 18F-FAZA PET/CT was predictive for worse RT 

response in xenograft EAC tumors (sensitivity 92.3%, specificity 71.4%). Radiation 

induced growth inhibition was significantly less in hypoxic tumors (T/B ≥ 3.59) than 

normoxic tumors (T/B < 3.59) (P= 0.0011). Pre-treatment with nimorazole significantly 

decreased in vitro hypoxic radioresistance (P< 0.01) and improved in vivo RT induced 

proliferation inhibition in hypoxic tumor areas (Ki67, P= 0.064).  

Conclusions: 18F-FAZA PET/CT is predictive for RT response in an EAC xenograft model. 

Pre-treatment with nimorazole may benefit treatment response in hypoxic tumors. 
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INTRODUCTION 

Esophageal cancer is an aggressive disease with poor survival rates. Patients are mostly 

diagnosed in a locally advanced stage and treated with neoadjuvant chemoradiation 

followed by surgery [82]. Response to chemoradiation is highly variable with a pathological 

complete response (pCR) in about 30%, but presence of residual carcinoma in the remaining 

70% [116]. Therefore, identification of imaging biomarkers that allow to predict response 

to chemoradiation is an important challenge.  

An attractive predictive factor is tumor hypoxia that is present in up to 60% of locally 

advanced solid tumors. It has been proven to be an independent negative predictive and 

prognostic factor and has been correlated with chemoresistance, radioresistance, 

invasiveness, propensity to metastasize, and genomic instability [6]. Also in esophageal 

cancer, hypoxia has been correlated with worse outcomes. Histologic examination of 

carbonic anhydrase 9 (CAIX) and hypoxia-inducible factor 1-alpha (HIF-1α), two factors 

that are overexpressed in hypoxic conditions, were correlated with worse outcomes and 

hypoxia imaging with 18F-FETNIM (fluoroerythronitroimidazole) positron emission 

tomography (PET) showed that tracer uptake might be predictive for treatment response in 

esophageal cancer [83, 117, 118]. 

Here, 18F-FAZA PET (fluoroazomycin arabinoside) was used to image and quantify tumor 

hypoxia and investigate its predictive potential in esophageal cancer. PET imaging has the 

advantages that it is non-invasive, it can be repeated and it gives a 3D-image of the hypoxia 

distribution [54]. 18F-FAZA is a second generation 2-nitroimidazole with superior 

pharmacokinetics compared to 18F-FMISO (fluoromisonidazole), resulting in a better 

tumor-to-background ratio [64]. The tracer entrapment is based on a reduction of the NO2-

group followed by continued reduction under hypoxic conditions and eventually covalent 

binding to intracellular macromolecules [54]. 18F-FAZA PET already showed to be 

predictive for treatment response in preclinical models of rhabdomyosarcoma and breast 

carcinoma [78, 79]. Clinically, FAZA imaging has been studied in non-small cell lung 

cancer and head and neck squamous cell cancer, while trials are ongoing in rectal, lung, 

cervix, and prostate carcinoma (ClinicalTrials.gov: NCT02624115, NCT02701699, 

NCT01989364, NCT01567800). 

Further, we investigated whether this tumor hypoxia, diagnosed on 18F-FAZA PET, could 

be modified and eventually enhance radiation response. We focused on the radiosensitizer 

nimorazole because it is easy applicable, has few side effects and is already part of daily 

https://clinicaltrials.gov/show/NCT02624115
https://clinicaltrials.gov/show/NCT02701699
https://clinicaltrials.gov/show/NCT01989364
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practice in Denmark for HNSCC patients [35] (DAHANCA guidelines). It is a 5-

nitroimidazole and mimics oxygen in the radiochemical process by promoting fixation of 

free radicals [32].  

In summary, this study investigated the predictive value of 18F-FAZA PET/CT for hypoxia-

induced radioresistance in EAC xenografts and the radiosensitizing effect of nimorazole. 

 

MATERIALS AND METHODS 

CELL LINE 

OACM5 1.C SC1 was established through in vivo selection from the parental cell line 

OACM5 1.C cell line, a human esophageal adenocarcinoma (EAC) cell line, as described 

previously [119], and was authenticated by short tandem repeat DNA profiling. This cell 

line was preferred over the parental cell line because it has increased tumor take rates. Cells 

were cultured at 37°C in 5% CO2 humidified atmosphere in RPMI 1640 Medium (Life 

Technologies) supplemented with GlutaMAX™-I (Life Technologies), 10% fetal bovine 

serum and penicillin-streptomycin. 

 

MTS ASSAY 

Cells were seeded (8x105) in T25 flasks and incubated overnight (ON) at normoxic (5% 

CO2 in air) or hypoxic (Anaerobic Work Station, Baker Ruskinn, gas mixture 80% N2, 10% 

CO2, 10% H2) conditions. Hypoxia was confirmed with an anaerobic indicator (BR0055, 

ThermoScientific). Treatment was given 24 h after seeding. Flasks of the hypoxic group 

were closed in the anaerobic station to ensure hypoxia at the moment of irradiation. One 

dose of 5, 10 or 20 Gy was given, with or without pre-treatment with nimorazole (30 min 

before irradiation, 0.2 mg/mL in PBS). Controls received 100 µL PBS. RT was applied 

using the small animal radiation research platform (SARRP). The voltage of the X-ray 

source was fixed at 220 kV with a tube current of 13 mA, emitted from the 3 mm focal spot 

and filtered by a copper filter of 0.15 mm. A vertical radiation beam of 10x10 cm2 was used 

that permitted simultaneous irradiation of 2 T25 falcons. Flasks were further incubated 

under standard conditions (37°C in 5% CO2 humidified atmosphere) and MTS assay (3-(4, 

5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) 

was performed 72 hours after treatment. MTS Reagent Powder (CellTiter 96® Aqueous 

MTS (Promega)) was dissolved at 2mg/mL in PBSD+. PMS (phenazine methosulfate, 
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dissolved at 0.92 mg/mL in PBSD+) was added at a concentration of 1/20 and 1 mL of the 

solution was added to each flask. After 90 min of incubation at 37°C and 5% CO2, 

absorbance was measured with Paradigm (490 nm) (SPECTRAMax Paradigm, Molecular 

Devices, USA). Cell viability was calculated relative to controls (%). Experiments were 

performed in duplicate and repeated 3 times (n= 3x2). An additional MTS assay was 

performed in a control group on the day of treatment (24 hours after seeding) to quantify 

cell viability at that time point. 

 

ANIMALS 

Animal experiments were approved by the Animal Ethical Committee of Ghent University, 

Belgium (ECD 14/82). Athymic mice (Foxn1nu male) were obtained from Envigo, the 

Netherlands, and were kept under environmentally controlled conditions (12 h normal 

light/dark cycle, 20-23°C and 50% relative humidity) with food and water ad libitum. 

Inhalation anesthesia was performed with isoflurane (Abbott, Belgium), 5% induction, 

1.5% maintenance, 0.3 L/min. Mice were euthanized by cervical dislocation under 

anesthesia one day post-treatment or when humane endpoints were reached.  

 

TUMOR MODEL AND TREATMENT 

At 5 weeks of age, 3 x 106 cancer cells suspended in 100 µl of Matrigel were injected 

subcutaneously in both hind legs under anesthesia. Tumors were grown for 7 weeks. 

Tumors with a minimum volume of 150 mm3 were included and divided into 3 treatment 

groups. Daily treatment was given for 5 consecutive days: (A) Control (600 µl NaCl 0.9% 

intraperitoneally (IP)) (N= 5, n= 7), (B) RT (5 Gy/d) (N= 11, n= 20), (C) Combination 

(nimorazole (200 mg/kg/d IP) given 30 min before RT) (N= 13, n= 21). N= number of mice, 

n= number of tumors. Nimorazole (Adooq Bioscience LLC, USA) was dissolved in NaCl 

0.9% at 10 mg/mL on the day of administration. The dosage and timing was according to 

previous literature [120]. RT was applied using the SARRP with X-ray source parameters 

as described above. A pair of parallel-opposed (anterior-posterior) radiation beams of 10x10 

mm2 were used. Mice were anesthetized and positioned on the bed of the SARRP. Guided 

by lasers, the bed was moved to position tumors at the isocenter of the beam. To allow 

parallel- opposed beam irradiations, mice were turned around when half of the dose was 

given. Doses of 5 Gy (2x2.5 Gy) were delivered daily during 5 consecutive days. Tumor 

nodules were measured daily with calipers and volumes were calculated according to the 
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following formula: 𝑉 = (𝑙𝑒𝑛𝑔𝑡ℎ × 𝑤𝑖𝑑𝑡ℎ)3/2 × 𝜋/6. Relative tumor growth (RTG) was 

calculated as the ratio of the volume at the day of euthanasia to the volume before treatment. 

 

18F-FAZA PET-CT 

The radiosynthesis of 18F-FAZA was performed on a Synthra RNplus module (Synthra 

GmbH, Hamburg, Germany) using a fully automated procedure that was based on standard 

procedures [121, 122]. The precursor for the radiosynthesis, 1-(2,3-diacetyl-5-tosyl-(α-d-

arabinofuranosyl)-2-nitroimidazole, was purchased from ABX GmbH (Radeberg, 

Germany) and all other required reagents and solvents were acquired from Sigma-Aldrich 

(Overijse, Belgium). 

18F-FAZA PET/CT was performed one day before treatment. Mice were anaesthetized and 

a target activity of 37 MBq of 18F-FAZA (mean 37 MBq, SD 1.85) was injected in the tail 

vein. Three hours after injection and under anesthesia, the animals were positioned on a 

heated animal bed of a small animal PET/CT scanner (TriFoil Imaging, Triumph II, 

Northridge, CA, USA). CT projection data were acquired using the following parameters: 

256 projections, detector pixel size 50 µm, focal spot size 100 µm, tube voltage 50 kV, tube 

current 640 µA, and a field-of-view of 90 mm. A 30 minutes PET scan was acquired in list 

mode, with a 75-mm axial field-of-view and a 1.3-mm spatial resolution, on the same 

scanner and without moving the animal. CT images were analytically reconstructed using a 

filtered back projection reconstruction algorithm (Cobra Version 7.3.4, Exxim Computing 

Corporation, Pleasanton, CA) into a 256x256x512 matrix with 200 µm isotropic voxel size. 

The acquired PET images were reconstructed into a 200x200x64 matrix by a 2D maximum 

likelihood expectation maximization (MLEM) algorithm (LabPET Version 1.12.1, TriFoil 

Imaging®, Northridge, CA) using 50 iterations and a voxel size of 0.5x0.5x1.175 mm3 (x, 

y, z). Each resultant CT image is inherently co-registered with the corresponding PET scan. 

PET and CT images were imported into A Medical Image Data Examiner (AMIDE) [114], 

where tumor-to-background (T/B) ratios were calculated as the mean tumor uptake divided 

by the background activity. Mean tumor uptake (Bq/mL) was quantified in a volume-of-

interest that was semi-automatically delineated as the activity >40% of the maximum 

activity using the 3D-isocontour tool, similar to Tran et al. [123], and a sphere with radius 

1.5 mm was delineated in the foreleg muscle as background tissue. In a subset of mice (RT: 

n=7; combination: n=6), an additional 18F-FAZA PET/CT was performed after treatment to 

evaluate the influence of treatment on hypoxia status. 
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TUMOR SAMPLES AND HISTOLOGY 

Consecutive 5µm sections of formaldehyde-fixed paraffin-embedded tumors were 

prepared. Standard H&E staining was performed and necrotic areas were excluded for 

further analysis. The hypoxia marker pimonidazole, administered 1 hour before sacrifice 

(60mg/kg, IP, Hypoxyprobe, USA), was stained with Hypoxyprobe anti-pimonidazole 

mouse IgG1 monoclonal Ab (HP1-100 Kit) (1/50, 1 h, RT) and the LSAB+ System-AP kit 

(DAKO K0675). Ki67 staining was performed with the primary rabbit monoclonal anti-

human/mouse/rat anti-Ki67 Ab ([SP6] Abcam 16667) (1/100, ON, 4°C) and the labelled 

polymer HRP anti-rabbit secondary Ab (Dako, K4011) (40 min, RT). Proliferation indices 

(fraction of Ki67+ cells/total cells) were calculated in normoxic and hypoxic regions, 

according to pimonidazole staining (magnification 400x, 3x2 hotspots/tumor) (ImageJ 

(ImmunoRatio)). γ-H2AX was stained to evaluate DNA-DSB and confirm irradiation. The 

primary rabbit polyclonal anti-human/mouse anti- γ-H2AX Ab (Bethyl IHC-00059) 

(1/3000, ON, 4°C), the polyclonal goat anti-rabbit biotinylated secondary Ab (E0432) 

(1/200, 30 min, RT) and streptavidine-HRP (1/200, 30 min, RT) were used. Number of foci 

per nucleus (mean) were determined (magnification 400x, 5 at random areas, 15 cells per 

area). As last, cleaved caspase-3 (Asp 175) was stained with the primary rabbit monoclonal 

anti-mouse/human/rat anti-Asp175 Ab (Cell Signaling Technology, ab#9661) (1/400, ON, 

4°) and the labelled polymer HRP anti-rabbit secondary Ab (Dako, K4011) (30 min, RT). 

Sections were scanned (100x and 200x magnification) and apoptotic indices were 

determined by an overall visual scoring system: 0 means no staining and 10 means full 

staining.  

Microscopy was performed with a light microscope (ColorView I, BX43F, Olympus, 

Japan). 

 

STATISTICAL METHODS 

Statistical analysis was performed with GraphPad Prism6 (Graphpad Software, Inc.: La 

Jolla, USA). Data was tested for normality (Shapiro-Wilk), analyzed with the Mann-

Whitney U test (non-parametric) or t-test (parametric) and summarized as medians or means 

with standard deviation (SD). ID50 values of the MTS-assay were calculated with non-

linear regression analysis (log(inhibitor) vs. normalized response). The cut-off T/B ratio to 

predict treatment response was determined with ROC-analysis. T/B ratios of pre- and post-

treatment scans were compared with the Wilcoxon matched-pairs signed rank test. Results 
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were considered statistically significant when the probability of a type I error was ≤ 0.05. 

P-values were abbreviated as *= P <0.05, **= P <0.01, ***= P <0.001, ****= P <0.0001. 

 

RESULTS 

IN VITRO EFFECTS OF HYPOXIA AND NIMORAZOLE ON RT 

RESPONSE 

Cell viabilities were analyzed 72 h after RT and represented the net result of cell growth 

and proliferation, and cell cycle arrest and apoptosis. As expected, RT was less efficient 

under hypoxic conditions, illustrated by an upwards movement of the dose-response curve 

(Fig. 1A). The ID50 was doubled (11.48 Gy versus 23.03 Gy) and cell viabilities were 

significantly higher for all radiation doses (5 Gy: P= 0.0004; 10 Gy: P= 0.0012; 20 Gy: P= 

0.0012) (Fig. 1C, Suppl Fig. 1). Hypoxia also induced a steepening of the dose-response 

curve (HillSlopeNorm= -0.64 (95%CI [-0.77; -0.51]) and HillSlopeHypox= -1.32 (95%CI [-1.67 

to -0.97])), meaning hypoxia-induced resistance decreased upon irradiation with higher 

doses. 

 

 

FIGURE 1: In vitro effects of hypoxia and nimorazole on radiotherapy (RT) response. 



 

79 

(A-B) Normoxia;  Hypoxia;  Normoxia + nimorazole;  Hypoxia + nimorazole. 

(A) Dose-response curve of MTS-assay with RT doses (x-axis, logarithmic) and cell viabilities (y-

axis, mean, SD, non-linear regression fitted curve) relative to controls (0 Gy, cell viability=100%). 

Dotted line= cell viability at the day of treatment. (B) Effect of nimorazole on RT response in hypoxic 

conditions. X-axis: RT doses (5, 10 or 20 Gy) with (+) or without nimorazole. Y-axis: cell viabilities 

relative to controls (single values, medians). (C) Parameters derived from the dose-response curve. 

ID50 values represent the required radiation dose to inhibit 50% of the cell viability. 

 

Nimorazole induced a radiosensitization of hypoxic cancer cells, represented by a 

downward movement of the dose-response curve under hypoxic conditions (Fig. 1A). 

Nimorazole significantly reduced treatment resistance for irradiation with 5 and 10 Gy (P= 

0.0087 and P= 0.0087) (Fig. 1B), but did not enhance radiation response with 20 Gy, nor 

did it reduce the ID50 value (Fig. 1C). Further, nimorazole had no effect on RT efficacy in 

normoxic conditions. 

 

HYPOXIC RADIORESISTANCE AND RADIOSENSITIZING 

EFFECT OF NIMORAZOLE IN EAC XENOGRAFTS 

Cancer cell proliferation was significantly reduced by RT and combination treatment in 

normoxic tumor areas compared to controls (P= 0.0012 and P= 0.0022) (Fig. 2A, 2D). 

Hypoxic areas were resistant to RT with significant higher proliferation indices than in 

normoxic areas (P= 0.0025). Pre-treatment with nimorazole radiosensitized hypoxic cancer 

cells by reducing the proliferation indices in hypoxic tumor areas (trend, P= 0.064) and not 

in normoxic areas (Fig. 2A, 2D).  

Irradiation significantly induced DNA-DSB compared to controls (P< 0.0001) (Fig. 2B, 

2D). A minority of this DNA-damage led to cancer cell apoptosis. Controls scored 0-2, 

whereas 57% (8/14) of the irradiated tumors scored higher (3-5) (Fig. 2C-D). However, no 

tumors scored higher than 5. No difference between normoxic and hypoxic tumor regions 

was observed for DNA-DSB or apoptosis (Fig. 2D). 
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FIGURE 2: Hypoxic radioresistance and radiosensitizing effect of nimorazole in EAC 

xenografts. 

 = Control;  = RT;  = Combination (RT+). (A) Cancer cell proliferation indices from Ki67 

staining (single values, mean, SD). Normoxia/hypoxia was defined by co-localization of 

pimonidazole staining on consecutive sections. (B) Mean DNA-DSB/cancer cell nucleus, resulting 

from γ-H2AX staining (single values, mean, SD). (C) Number of tumors (%) for every apoptotic index 

(0-10) resulting from the cleaved caspase-3 staining. (D) Pimonidazole, γ-H2AX, cleaved caspase-3 

and Ki67 staining of consecutive sections. Representative pictures of each treatment group. Irradiation 

caused DNA-DSB and apoptosis in all treatment groups with no difference between normoxic and 

hypoxic areas. There was less Ki67 staining in normoxic than hypoxic RT treated areas, representing 

hypoxic radioresistance.  
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18F-FAZA PET/CT AS A PREDICTIVE BIOMARKER 

Radiosensitive and radioresistant tumors were identified retrospectively based on RTG. 

Tumors that regressed after RT (RTG <100%) were defined radiosensitive (35%, n= 13) 

and tumors that continued growing (RTG >100%) radioresistant (65%, n= 7) (Fig. 3A). Pre-

treatment 18F-FAZA uptake (T/B ratios) was significantly higher in radioresistant tumors 

than in radiosensitive tumors (P= 0.046, Fig. 3B, 3D), demonstrating that more hypoxic 

tumors are more resistant to RT than less hypoxic tumors. ROC-analysis was performed to 

identify a cut-off value for predicting RT response with 18F-FAZA PET/CT, which showed 

that a T/B of 3.59 predicted treatment response with the highest sensitivity and specificity 

(92.3% and 71.4% respectively, AUC 0.75). Based on pre-treatment 18F-FAZA PET/CT, 

tumors were divided in normoxic (T/B < 3.59) and hypoxic (T/B ≥ 3.59). Irradiation 

inhibited tumor growth significantly better in normoxic tumors compared to hypoxic tumors 

(P= 0.0011) (Fig. 3C) and nimorazole seemed to improve tumor growth control in hypoxic 

tumors, but not significantly (Fig. 3C). 

 

TUMOR REOXYGENATION AFTER RADIOTHERAPY 

T/B ratios were significantly reduced by RT (P= 0.047) and combination treatment (P= 

0.031) (Fig. 4A, 4C). This reduction did not differ between RT or combination treatment 

(Fig. 4B) and no link was observed between reoxygenation status and treatment response 

(Fig. 4A). Although 3/4 hypoxic tumors reoxygenated, all 4 were radioresistant (Fig. 4A, 

red). Also after combined treatment 2 out of 2 hypoxic tumors reoxygenated, while one was 

radioresistant (Fig. 4A red) and the other was radiosensitive (green).  
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FIGURE 3: Predictive value of 18F-FAZA PET/CT. 

(A) Relative tumor growth (RTG) of RT treated tumors (mean, SD). X-axis: time in days after start 

of treatment. Grey curve: tumors that continued growing (RTG at day 5 >100%= radioresistant, n= 

7). Black curve: tumors that regressed (RTG at day 5 <100%= radiosensitive, n= 13). (B) Pre-

treatment 18F-FAZA uptake of RT treated tumors, T/B ratios (single values, mean, SD). X-axis: 

tumors that regressed (radiosensitive) and tumors that continued growing (radioresistant) after RT. 

(C) RTG of EAC xenografts (single values, mean, SD). Hypoxia status was defined by 18F-FAZA 

PET/CT: T/B < 3.59 = normoxic; T/B ≥ 3.59 = hypoxic. (C) Transverse slices at the level of the hind 

legs with mice in prone position. Left: 18F-FAZA PET images with subcutaneous EAC tumors 

delineated spherically (orange). Middle: corresponding CT images. Right: Overlay 18F-FAZA 

PET/CT. The PET data exterior to the ROI’s was erased. Orange= ROI >40% isocontour. Upper 

scans: bilateral tumors with high FAZA uptake, representative for hypoxic tumors. Lower scans: non-

hypoxic tumor (left) with low FAZA uptake. High 18F-FAZA uptake was also seen in the urinary 

bladder due to renal excretion of the tracer. 

 



 

83 

 

FIGURE 4: Radiation induced tumor reoxygenation. 
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RT;  = Combination (RT+). (A) T/B ratios (single values) of 18F-FAZA PET/CT (pre- or post-

treatment). Dotted line= cut-off for hypoxic tumors (T/B≥ 3.59). Hypoxic tumors are numbered. 

Colors refer to treatment response: red= radioresistant (RTG> 100%); green= radiosensitive (RTG< 

100%).  (B) Ratios of T/B after treatment to T/B before treatment (single values, mean, SD). (C) 

Transverse 18F-FAZA PET/CT slices at the level of the hind legs with a left subcutaneous tumor 

(orange). Mice in prone position. The clear hypoxic zone with high FAZA uptake that existed pre-

treatment, disappeared after irradiation. 

 

DISCUSSION 

This study investigated the predictive value of 18F-FAZA PET/CT for hypoxia-induced 

radioresistance in EAC and the radiosensitizing effect of nimorazole. 

We confirmed the existence of hypoxia-induced radioresistance and the radiosensitizing 

effect of nimorazole in the OACM5 1.C SC1 cell line in vitro as well as in vivo in EAC 

xenografts. We showed that a T/B of ≥ 3.59 on pre-treatment 18F-FAZA PET/CT predicts 

radioresistance with a sensitivity of 92.3% and specificity of 71.4%. Further, we showed 

R
e

la
ti

v
e

 t
u

m
o

r 
g

ro
w

th
 (

%
)

0

1 0 0

2 0 0

3 0 0

**

P =  0 .0 7 8 C o m b in a tio n

C o n tro l

RT

C o n tro l N o rm o x ia H y p o x ia

****



 

84 

that this cut-off also identifies tumors that could benefit from combination treatment with 

nimorazole.  

It is difficult to compare the cut-off value of 3.59 with other studies, because no consensus 

exists for quantifying 18F-FAZA uptake. Some studies quantify tracer uptake as percentage 

of the totally injected activity (%ID/g or SUV (standardized uptake values) if standardized 

to the animals’ weight). Because FAZA is excreted in urine and feces, individual tracer 

activity at the moment of the scan, i.d. 3 hours post-injection, varied substantially between 

animals. Therefore, like other studies [78, 124], we used tumor to background ratios, where 

tumor activity is compared to a reference non-hypoxic tissue. We calculated mean and 

maximum tumor uptakes and used lung or muscle as background tissue. We also calculated 

tumor uptake using the 40% isocontour VOI tool (available in Amide.exe 1.0.4), similar to 

Tran et al. [123]. The last method provided the strongest T/B parameter to predict treatment 

response and was chosen as predictive parameter for this model. Interestingly, the cut-off 

of 3.59 is in the range of the cut-off value proposed by Tran et al. [78]. They investigated 

18F-FAZA uptake in a rhabdomyosarcoma xenograft model and found that T/B > 2.72 

identifies highly hypoxic tumors which benefit from pre-treatment with nimorazole.  

As 18F-FAZA PET/CT has already been proven to be safe in the clinical setting and this 

study proved its predictive value in EAC xenografts, we believe it would now be interesting 

to analyze 18F-FAZA PET/CT in EAC patients. However, certain difficulties may arise. 

EAC tumors are preferentially localized at the distal esophagus [115]. Because FAZA is 

excreted biliary (after hepatic metabolization) and renally [62], there is a lot of background 

tracer activity in those regions, which could impede tumor visualization. We tested the 

feasibility of 18F-FAZA-PET/CT in a distal esophageal tumor mass in an additional mouse 

experiment. Tumor delineation was not possible due to intense liver tracer uptake combined 

with poor soft tissue resolution of the small animal CT. Nevertheless, we believe 

visualization in patients will be better because the higher soft tissue resolution on human 

CT scans. For esophageal squamous cell carcinomas, typically located in the thoracic part 

of the esophagus, this should not be a problem. 

The benefit of nimorazole was more evident in the in vitro experiments than in the xenograft 

model. Probably, the RT regimen itself had radiosensitizing effects. In vitro, single doses 

were used, where in vivo we used a hypofractionated schedule because a clinically relevant 

schedule was aimed at (23 x 1.8 Gy according to the recent CROSS trial [82]). Because 

copying the exact clinical regimen would be impracticable, we opted for a hypofractionated 
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schedule of 5 x 5 Gy. On the one hand, as was seen in vitro, higher irradiation doses cause 

less hypoxic radioresistance than smaller doses. On the other hand, fractionation is known 

to cause tumor cell reoxygenation between the doses and enhances RT efficacy as such 

[125, 126]. Indeed, post-treatment 18F-FAZA PET/CT showed a normalization of hypoxia 

status in 5/6 hypoxic tumors after RT alone or combined with nimorazole.  

Predicting treatment response in the clinical setting offers possibilities for individualized 

treatments. For example, if a tumor is predicted to show a good response, it is worth to 

administer neoadjuvant treatment before surgery. Meanwhile, if a tumor is predicted to be 

resistant to neoadjuvant treatment, it could be better to perform the surgical resection earlier 

or to modify the neoadjuvant treatment and decrease radioresistance, like modifications to 

the RT regimen itself (e.g. dose-painting [127]) or addition of a hypoxia modifier (e.g. 

nimorazole [128]). Still, tumor hypoxia is distributed heterogeneously in space and over 

time [6]. For sure, hypoxia distribution and status of the tumors will change during the 

neoadjuvant treatment. Repetitions of 18F-FAZA PET/CT during treatment are needed to 

reevaluate tumor’s hypoxia status and indications for radiosensitizers.  

 

CONCLUSION 

This study on esophageal adenocarcinoma showed that a T/B ≥ 3.59 on 18F-FAZA PET/CT 

is predictive for worse RT response. The benefit of nimorazole in hypoxic tumors seems 

doubtful and should be limited to individuals with proven hypoxic tumors on 18F-FAZA 

PET/CT. 
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CHAPTER 6: HYPOXIA AS RESULT OF TUMOR 

ANGIOGENESIS AND MODIFICATION WITH 

CEDIRANIB  

 

 

 

 This chapter is based on the following article:  

Melsens E, Verberckmoes B, Rosseel N, Vanhove C, Descamps B, Pattyn P, Ceelen 

W. The VEGFR Inhibitor Cediranib Improves the Efficacy of Fractionated 

Radiotherapy in a Colorectal Cancer Xenograft Model. Eur Surg Res. 2016;58(3-

4):95-108. 

 

ABSTRACT 

Background: Radiotherapy (RT) increases local tumor control in locally advanced rectal 

cancer, but complete histological response is seen in only a minority of cases. Anti-

angiogenic therapy has been proposed to improve RT efficacy by ‘normalizing’ the tumor 

microvasculature. Here, we examined whether Cediranib, a pan–VEGF receptor tyrosine 

In the previous chapters, we developed an EAC tumor model that was 

feasible for 18F-FAZA PET/CT imaging and that was used to answer the 

first research question ‘Can hypoxia imaging with 18F-FAZA PET/CT 

serve as a predictive biomarker and as a guidance for hypoxia targeting?’. 

We showed that tumor hypoxia imaging with 18F-FAZA PET/CT is a 

useful predictive biomarker for treatment response in an EAC model in 

mice. We further showed that targeting of hypoxia with nimorazole 

seemed to improve radiation response of hypoxic tumor (identified with 

18F-FAZA PET/CT). 

In this chapter, we investigated the second research question: ‘Can anti-

angiogenic therapy reduce hypoxia and enhance radiotherapy efficacy?’ 
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kinase inhibitor, improves microvascular function and tumor control in combination with 

RT in a mouse colorectal cancer (CRC) model.  

Methods: CRC xenografts (HT29) were grown subcutaneously in mice. Animals were 

treated for 5 consecutive days with vehicle, RT (1.8 Gy daily), cediranib (6mg/kg PO), or 

combined therapy (cediranib 2 hours prior to radiation). Tumor volume was measured with 

calipers. Vascular changes were analyzed by dynamic contrast enhanced-MRI, oxygenation 

and interstitial fluid pressure probes and histology. To investigate vascular changes more in 

detail, a second set of mice were fitted with titanium dorsal skinfold window chambers, 

wherein a HT29 tumor cell suspension was injected. In vivo fluorescence microscopy was 

performed before and after treatment (same treatment protocol).  

Results: IVM analyzes showed that VEGFR-inhibition with cediranib led to a 

‘normalization’ of the vessel wall, with decreased microvessel permeability (p< 0.0001), 

tortuosity (p< 0.01) and a trend to decreased vessel diameters. This seemed to lead to lower 

tumor hypoxia rates in the cediranib and combination groups compared to the control and 

RT groups. This led to an increased tumor control in the combination group compared to 

controls or monotherapy (p< 0.0001). 

Conclusions: The combination of RT with cediranib enhances tumor control in a CRC 

xenograft mouse model. Microvascular analyses suggest that cediranib leads to vascular 

normalization and improved oxygenation. 
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INTRODUCTION 

Colorectal cancer (CRC) is the third most frequent cancer and the fourth most frequent 

cause of cancer related death worldwide [129]. Standard therapy consists of surgical 

resection with or without adjuvant chemotherapy or radiotherapy (RT). The addition of 

neoadjuvant RT has been shown to increase local tumor control and sphincter preservation 

in case of locally advanced rectal cancer (LARC), compared to surgery alone [130]. 

Nevertheless, this did not lead to a significant benefit in overall survival. Despite regimens 

combining RT with chemotherapy, complete histological response is seen in only a minority 

of cases and has been linked to patient’s prognosis. As such, there is a need to enhance the 

efficacy of RT. 

An important cause of radioresistance is related to the vascular tumor microenvironment 

[131]. Because tumor cells are highly proliferative, angiogenesis is stimulated to cope with 

the increased need for oxygen and nutrients. Tumor vessels are typically dilated, 

hyperpermeable and tortuous, and lead to an abnormal tumor microenvironment 

characterized by an increase in interstitial fluid pressure (IFP), hypoxia and acidosis, 

leading to chemo and radioresistance [8].  

The key pro-angiogenic factor in tumor angiogenesis is vascular endothelial growth factor 

(VEGF). The VEGF family consist of 5 signal proteins, of which VEGF-A is the most 

important for angiogenesis. After binding with one of the three tyrosine kinase receptors, 

angiogenesis (VEGFR-1 and -2) or lymphangiogenesis (VEGFR-3) is stimulated. 

Activation of the VEGF signaling pathway has stimulating effects on endothelial cells 

(migration, survival and proliferation) and increases vascular permeability [37]. As such, 

inhibition of the VEGF signaling pathway is a promising way to rebalance tumor 

angiogenesis and ‘normalize’ the hostile tumor microenvironment, making tumors more 

acceptable for chemo and RT. 

In this study, cediranib (AZD2171) was investigated, an orally active, highly potent tyrosine 

kinase inhibitor that acts on all 3 VEGF-receptors. Cediranib may lead to a more 

pronounced anti-angiogenic effect than for instance bevacizumab (Avastin), which 

specifically binds VEGF-A. Previous in vitro and in vivo experiments in colon, head and 

neck and non-small cell lung cancer models, demonstrated the inhibitory effects of 

cediranib monotherapy on tumor angiogenesis and tumor growth [132-135]. Clinical trials 

showed promising results for cediranib combined with chemotherapy in patients with 

metastatic CRC (mCRC), but results for progression free survival (PFS) and overall survival 
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(OS) were rather disappointing when compared to chemotherapy with bevacizumab 

(HORIZON trials) [136-138]. Yet, combination of cediranib and RT in CRC has not been 

studied except for one [139]. Williams et al. performed a mouse xenograft study (colon 

tumors (LoVo)) and illustrated a significant higher tumor growth inhibition with cediranib 

and RT compared to RT alone. Unfortunately, underlying anti- angiogenic effects were only 

studied in lung carcinoma xenografts.  

Here we investigated the effects of combination treatment of fractionated RT and cediranib 

on tumor growth and tumor microvessels and microenvironment in a CRC xenograft mouse 

model. Understanding the potential enhancement of RT efficacy in CRC through VEGF 

signaling inhibition with cediranib is important for future clinical studies and could change 

neoadjuvant therapy regimens.  

 

MATERIALS AND METHODS 

TUMOR MODEL 

The human colon cancer cell line HT29 was kindly provided by the Department of 

Experimental Cancer Research, Ghent University, Belgium. Cells were cultured at 37°C in 

5% CO2 humidified atmosphere in McCoy’s Medium (Life Technologies, Ghent, Belgium), 

supplemented with 10% fetal bovine serum, penicillin-streptomycin and fungizone. Cells 

were authenticated by STR DNA profiling. 

Animal experiments were approved by the Animal Ethical Committee of the Ghent 

University, Belgium (approval code 14/02). Athymic mice (Foxn1nu male) were obtained 

from ENVIGO, the Netherlands, and housed with access to tap water and standard pellet 

food. At 8 weeks of age, tumors were induced under general anesthesia (Isoflurane, 5% 

induction, 2% maintenance) at two locations: subcutaneously (SC) or in dorsal skinfold 

window chambers (DSWC). At the end of the experiments, or when humane endpoints were 

reached, mice were euthanized by cervical dislocation. 

 

DSWC 

Under general anesthesia (Isoflurane) and analgesia (Ketoprofen, 5mg/kg, SC) DSWC were 

implanted on a heating pad. First, the posterior part of the titanium frame was sutured on 

the back of the mouse. Then, a circular skin flap (dermis and subcutis) was unilaterally 

removed and the anterior part of the frame was attached. The open wound was humidified 
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(saline water) and closed with a cover glass. After initial in vivo microscopy (day 0), tumor 

cells (1x106 HT29 cells suspended in 20µL Matrigel® (Corning BV, Amsterdam, the 

Netherlands)) were injected into the chamber (Fig 1.A). 

 

SC XENOGRAFTS 

1.5x106 HT29 cells suspended in 40 µL Matrigel were injected (30G needle) bilaterally SC 

in the hind legs of the animal. One nodule was used for DCE-MRI imaging and 

immunohistochemistry, the other for probe measurements. Pimonidazole hydrochloride 

(Hypoxyprobe®, Burlington, MA, USA) (60mg/kg, IP), a hypoxia marker, and Hoechst®-

33342 (Sigma- Aldrich, Diegem, België) (15mg/kg, IV), used as perfusion marker, were 

administered in the tail vein 2 hours and 1 minute before sacrifice, respectively. Tumor 

dimensions were measured weekly with calipers and daily during therapy. Tumor volumes 

(V) were calculated as V = (length * width) 3/2 * π/6 (Fig 1.B). 

 

 

FIGURE 1: Experiment timeline. (A) Induction of HT29 tumors in DSWC in mice at day 0. Four 

treatment groups. Daily treatment from day 3 to 7. IVM before and after treatment. Euthanasia after 

last measurement. (B) Induction of HT29 tumors subcutaneous in the hind legs of mice at day 0. Four 
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treatment groups. Daily treatment from day 17 to 21. DCE-MRI and pO2 measurements before and 

after treatment. IFP measurement after treatment. Euthanasia after last measurement. 

 

EXPERIMENTAL THERAPY 

Treatment was started at day 3 (DSWC) and day 17 (SC xenograft) after tumor induction 

and given for 5 consecutive days (Fig 1). Mice were divided into 4 groups. A control group 

received 150 µl of 1% Polysorbate 80 orally once daily. A second group received cediranib 

(Recentin™, AZD2171, Astra Zeneca, Brussels, Belgium) (6mg/kg/day, orally). The third 

group received RT at a dose of 1.8 Gy/day, while the fourth group was treated with 

combined cediranib and RT with cediranib administered 2 hours before RT. Cediranib was 

dissolved in 1% polysorbate 80 (tween 80) with deionised water and sterilised by 

autoclaving.  

RT was applied using the small animal radiation research platform (SARRP, XStrahl LTD, 

Surrey, UK). Mice were anesthetized and positioned on the bed of the SARRP. Guided by 

lasers, the bed was moved to position tumors/DSWC at the isocenter of the beam. A pair of 

parallel- opposed (anterior- posterior) radiation beams of 10x10mm2 were used. The 

voltage of the X-ray source was fixed at 220 kV with a tube current of 13 mA, emitted from 

the 3 mm focal spot and filtered by a copper filter of 0.15 mm. Doses of 1.8Gy were 

delivered daily for 5 consecutive days. 

 

EXPERIMENTAL MEASUREMENTS 

IN VIVO MICROSCOPY (IVM) 

Fluorescence IVM was performed on day 0 and day 8 after tumor implantation. Mice were 

anesthetized (Isoflurane) and positioned on a heating pad. A catheter (30G) was placed in 

the tail vein for administration of fluorescent tracer, the cover slip was removed from the 

chamber and the animal was placed under the microscope (modified BX51W, Olympus, 

Aartselaar, Belgium). In case of dehydration of the chamber, saline water was locally 

applied. Mice received a bolus of 30 µL of IV Fluorescein isothiocyanate (FITC)-dextran 

(MW 40 kDa) in NaCl 0.9% (20 mg/mL). At the same time, registration of images (dynamic 

and static) started (magnification 100x). Fluorescence microscopy was performed using a 

HBO 50W mercury lamp (Osram, Zaventem, Belgium) and a FITC filter set (excitation 

filter 460-490nm). Images were saved on a computer using a high sensitivity digital camera 

(model C8484-05, Hamamatsu, Louvain-la-Neuve, Belgium). To analyze vascular 
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permeability, one location was imaged over 15 minutes at 4 time intervals (0’–0’30”; 1’30”-

2’00”; 4’30”-5’00”; 15’00”-15’30”). Two other locations were imaged (each 30”) at the 

right upper and left lower quadrants of the tumor.  

 

MICROCIRCULATORY ANALYSIS 

Off-line analysis was performed with the CapImage software package (H Zeintl 

Engineering, Heidelberg, Germany) and included the calculation of: number of 

microvessels per area (N/A, count/mm2), microvessel diameter (d, µm) and centerline red 

blood cell velocity (VRBC, mm/s). Microvessel diameter and VRBC were analyzed for 10 

randomly chosen microvessels of interest crossing a vertical line in the middle of the image 

at 3 locations, as described previously [140]. Considering the parabolic velocity profile of 

blood in microvessels, the volumetric blood flow (VQ) was calculated by VQ = π * (d/2)2 

* VRBC/K, where K (=1.3) represents the Baker/Wayland factor [141]. Post- to pre-treatment 

rates were calculated and compared between groups. Additionally, microvessel tortuosity 

(T) and mean interstitial fluorescence intensity (MFIinter) were calculated with the NIH 

ImageJ software (Version 1.48, available from https://imagej.nih.gov/ij/). T was calculated 

from 6 randomly chosen microvessels at 3 locations and was defined as T (%) = (1-

SP/L)*100, where SP represents the shortest distance between 2 branching points (i.e. the 

distance between two branching points along a straight line) and L represents the segment 

length (i.e. the distance between the branching points along the vessel), according to Norrby 

et al [142]. MFIinter was calculated from 10 randomly chosen regions-of-interest (ROIs) that 

were drawn in the interstitial space at 3 locations. Using the TimeSeriesAnalyzer plugin, 

the mean fluorescence intensity (=mean grey value) was calculated as a function of time 

and curve analysis was performed. 

  

DYNAMIC CONTRAST-ENHANCED MRI (DCE-MRI) 

Animals were scanned before and after treatment (day 13 and 24) on a 7 tesla magnet 

(PharmaScan 70/16, Bruker, Ettlingen, Germany) with a mouse body volume coil. Mice 

were anesthetized with isoflurane (5% induction, 1.5% maintenance, 0.3L/min) and 

warmed with a water-based heating blanket. Respiration was monitored using a respiration 

pad underneath the mouse. Anatomical information was obtained with a T2-weighted 

sequence (TurboRARE) with the following parameters: TR 3661ms, TE 37.1ms, in-plane 

resolution 109 µm, 30 contiguous transverse sections of 600 µm, and acquisition time 9’1”. 
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Pre- and post-contrast injection, T1-weighted images were obtained with a RARE sequence 

with parameters TR 1464 ms, TE 9.1 ms, in-plane resolution 117 µm, 30 contiguous 

sections of 600 µm, and acquisition time 4’17”. DCE-MRI images were acquired for a 

single slice using a FLASH sequence with the following parameters: TR 12 ms, TE 3.4 ms, 

in-plane resolution 268 µm, 550 repetitions, temporal resolution 1.344 seconds, and 

acquisition time 12’19”. An oblique slice was chosen such that both tumors were imaged. 

One minute after the start of acquisition, the gadolinium-based contrast agent Vistarem® 

(50 mmol/kg IV, Guerbet, Villepinte, France) was injected. Total acquisition time per 

session was 35 minutes. Dynamic time series were analyzed with MIStar version 3.2.62.03 

(Apollo MIT, Melbourne, Australia) using curve analysis. The following parameters were 

calculated: area under the curve (AUC), maximum uptake slope (MUS), maximum washout 

slope (MWS), area under the curve until time to peak (rAUC ttp). ROIs were manually 

drawn around tumors (ROI) and mean values were calculated. 

 

TISSUE OXYGENATION AND INTERSTITIAL FLUID PRESSURE 

At day 14 and 25, tumor oxygenation was measured with a fluorescence based fiberoptic 

probe (OxyLite System, Oxford, Optronix, Oxford, UK), as described previously [143]. 

Mice were anesthetized and placed on a heating pad. The probe was inserted in the tumor 

through pre-tunneled tracks (18G IV catheter BD) and fixed to a micromanipulator (model 

MN151, Narishige International Ltd, London, UK). Tissue pO2 was sampled every spatial 

step of 200 µm for 3 minutes, up to 25 measurements. Data was acquired with a 

Powerlab/8sp (ADInstruments, Oxford, UK) and plotted using Chart 5.0 software. The 

hypoxic fraction was calculated as the percentage of measurements with a pO2 < 5 mmHg 

(HP5 (%)). 

Interstitial fluid pressure (IFP) was measured at day 25, with a Samba Preclin probe (Samba 

Sensors, Bioseb, Vitrolles, France) according to the method reported by Ozerdem [144]. 

The probe was calibrated in air, and inserted in a perforated catheter (22G IV Catheter 

Insyte-W, Becton Dickinson) filled with gel (Duratears, Alcon). The system was placed in 

the tumor center through a pre-tunneled track. After acquiring a stable curve, tumor IFP 

(relative to the atmosphere, mmHg) was recorded during 5 minutes and mean pressures 

were calculated (Samba 200 SP v1.0.1). 
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IMMUNOHISTOCHEMISTRY (IHC) 

Tumors were excised and divided in half. One part was impregnated with formaldehyde 

4%, embedded in paraffin and cut in 5 µm thick sections using a microtome (Microm 

HM355S, Thermo Scientific, Rockford, IL, USA). Tumor regions were identified and 

general aspects (necrosis, cell density…) were evaluated on H&E stained slides with a light 

microscope (ColorView I, BX43F, Olympus, Tokyo, Japan). Standard Ki67 staining was 

carried (primary rabbit monoclonal anti-human/rat/mouse Ab Anti-Ki67 [SP6] (ab16667) 

and HRP anti-rabbit secondary Ab, both DAKO K4011). Proliferation indices (fraction of 

Ki67+ cells/total cells) were calculated by hotspot analysis (6 per slide, magnification 400x) 

with ImmunoRatio (Institute of Biomedical Technology, University of Tampere, Finland).  

Additionally, exogenous administered pimonidazole was stained. Sections were 

deparaffinized in xylene and rehydrated in ethanol. Antigens were unmasked with citrate 

buffer (pH=6, 20 min, 95 °C). Endogenous peroxidase was blocked with 3% H2O2 in PBS 

(10 min at RT) and mouse IgG with the Mouse on Mouse (M.O.M.) basic kit (1hour at RT, 

ref. BMK-2202 Vector Lab.). Then, the primary antibody was applied, Hypoxyprobe anti-

pimonidazole mouse IgG1 monoclonal Ab (HP1-100Kit) for 1h at room temperature 

followed by the secondary antibody from LSAB+ System-AP kit (DAKO K0675(11)) 

according to manufacturer’s protocol. Hypoxic fraction (%, pimonidazole+ area/total tumor 

area) was calculated with ImageJ (NIH).  

Furthermore, staining for endothelial cells (CD105, endoglin) was performed. 

Deparaffination, rehydration, unmasking and blocking (endogenous peroxidase) were 

performed as described above. Then, proteins were blocked with blocking buffer (from 

Vectastain kit, AP Goat IgG AK-5005) for 30 min at 37°C. Primary antibody for endoglin 

(monoclonal goat anti-mouse, CD105 R&D system AF1320) was applied at 1/50 in TBS 

and blocking buffer, according to the manufacturer’s protocol. Secondary antibody was 

applied from Vectastain kit (AP Goat IgG AK- 5005) for 30 min and streptavidin-AP was 

applied for 30 min. Detection was performed with fuchsine chromogen for 1min at room 

temperature (RT) and counterstaining with hematoxylin. Mean vessel density (MVD, 

number of vessels per area (mm2)) was calculated by hotspot analysis (up to 6 hotspots per 

slide, magnification 200x) with ImageJ (NIH). 

In addition, TUNEL staining was performed to detect apoptosis. Deparaffination and 

rehydration were performed as described above. Antigens were unmasked with citrate 

buffer (pH=6, 20min, 95°C, + 0.1% Tween 20). Then, the In-Situ Cell Death Detection Kit, 
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Fluorescein, (Roche 11684795910) was used according to manufacturer’s protocol to 

perform the TUNEL reaction. Counterstaining was performed with Vectashield medium 

with DAPI. Sections were analyzed with the fluorescence microscope (Zeiss Axiovert 

200M, software Axiovision 4.1), 6 random fields with magnification were selected and the 

percentage of double stained cells (TUNEL+ and DAPI+) on all DAPI+ cells was 

calculated. 

The other part of the tumor was snap frozen (-80°C). Ten µm cryostat sections were 

prepared and evaluated for Hoechst staining with fluorescence microscopy. Whole tumor 

sections were scanned at magnification 400x and the perfusion index (Fraction of perfused 

area/total tumor area) was calculated using ImageJ (NIH). 

 

STATISTICAL ANALYSIS 

Statistical analysis was performed with GraphPad Prism 6 (Graphpad Software, Inc.: La 

Jolla, CA, USA). Data were analyzed with non-parametric tests (Kruskal-Wallis and Mann 

Whitney U test) and summarized as medians. Tumor growth and microvessel permeability 

were determined by non-linear regression analysis (exponential growth and one-phase 

association). Results were considered statistically significant when the probability of a type 

I error was ≤ 0.05.  

 

RESULTS 

EFFECT OF CEDIRANIB AND RT ON TUMOR GROWTH AND 

PROLIFERATION 

Tumor growth was calculated from the measurements of SC tumors. Addition of cediranib 

to RT led to a significantly increased growth delay compared to RT alone with an increase 

in tumor doubling time from 13.16 days with RT alone to 27.13 days with combination 

treatment (p<0.0001, Fig. 2A). In addition, cediranib monotherapy and RT monotherapy 

led to a similar growth inhibition compared to controls. 

Addition of cediranib to RT led to moderately higher apoptotic rates compared to RT alone 

(Fig 2.B, D above). Alternatively, cediranib and RT led to somewhat higher proliferation 

rates, while the combined treatment led to significantly higher proliferation rate compared 

to controls (p< 0.05) (Fig 2.C, D under). The control group had the densest tumors, with the 

least necrotic areas. All treatment groups showed diffuse areas with less tumor cell density, 
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probably due to treatment induced cell death followed by cell loss. The combination 

treatment group had the least cell-dense tumors. 

 

 

FIGURE 2: Tumor growth. (A) Relative tumor growth of subcutaneous HT29 tumors. Exponential 

growth curves, mean, standard deviation. (B) Apoptotic rates calculated from TUNEL staining. 

Percentage of TUNEL positive stained cells on the total cell count. p= 0.5208, single values, median. 

(C) Proliferation rates calculated from Ki67 staining. Percentage of Ki67 positive stained cells on the 

total cell count. p= 0.0772, single values, median. (D) Representative images of TUNEL staining 

(above) and Ki67 staining (under) of each treatment group. Above: green= TUNEL positive cells, 

blue= DAPI positive cells. Magnification 200x, scale bar 100µm. Compared to controls, treatment 

groups show more apoptosis. Under: brown= Ki67 positive cells. Magnification 400x, scale bar 50µm. 

No difference in Ki67 staining between the groups is seen at first sight. After quantification, the 

combination treated group shows significant higher proliferation rates than controls (p< 0.05).  
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EFFECT OF CEDIRANIB AND RT ON TUMOR VASCULATURE 

Figure 3 shows representative pictures of a DSWC of each treatment group, illustrating that 

the cediranib and combination groups (Fig 3.C-D) displayed more linear and less dilated 

vessels than the control and RT groups (Fig 3.A-B), whereas microvessel density did not 

differ greatly between the groups. 

 

 

FIGURE 3: In vivo microscopy. (A-D) DSWC images after 5 days of treatment. Representative 

images of each treatment group. Magnification 100x, scale bar 100µm. Vessels of the control and 

radiotherapy group appear to be more tumoral (more tortuous, more dilated) than those of the groups 

treated with cediranib.  

 

Quantification of these DSWC with the additional histologic and DCE-MRI analyses of the 

SC xenografts led to the following results on tumor vasculature. Cediranib and RT did not 

lead to a change in vessel density calculated from the DSWC (N/A, Fig 4.A) or calculated 

from the endoglin stained sections in the SC xenograft group (MVD, Fig 4.B, E). Further, 

no difference was seen between the groups in volumetric blood flow (VQ, Fig 4.C) or tumor 

perfusion (Hoechst, Fig 4.D). Curve analysis of DCE-MRI did not show any differences 
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between the groups for the amount of leaked contrast (AUC, rAUC ttp), the velocity of 

leakage (MUS) or the velocity of washout of contrast (MWS) (Fig 5. A-D).  

 

 

FIGURE 4: Tumor vessel density and tumor perfusion. (A) Number of vessels per area (N/A) 

calculated from IVM images. p= 0.4563, post- to pre-treatment rate, single values, median. (B) Mean 

vessel density (MVD) calculated from endoglin stained sections of SC tumors. Number of vessels per 

area (mm^2). p= 0.4320, single values, median. (C) Volumetric blood flow (VQ) calculated from 

IVM images. p= 0.6251, post- to pre-treatment rate, single values, median. (D) Perfusion rate 

calculated from Hoechst stained sections of SC tumors. Percentage of Hoechst positive stained area 

on total tumor area. p= 0.0637, single values, median. (E) Representative images of endoglin staining 

of each treatment group. Pink= endoglin. Blue= cell nuclei. Magnification 200x, scale bar 100µm. No 

difference in number of vessels is seen between the groups. 
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FIGURE 5: DCE-MRI analyses. (A) Area under the curve. p= 0.6804, post- to pre-treatment rate, 

single values, median. (B) Area under the curve until time to peak. p= 0.5190, post- to pre-treatment 

rate, single values, median. (C) Maximum uptake slope. p= 0.3119, post- to pre-treatment rate, single 

values, median. (D) Maximum washout slope. p= 0.1180, post- to pre-treatment rate, single values, 

median. 

 

However, cediranib led to a significant decrease in vessel permeability compared to the 

control or RT group (p<0.0001) calculated from the DSWC imaging data (MFIinter, Fig 6). 

As can be seen in Fig 6, there was a relatively fast accumulation of contrast agent (CA) in 

the interstitial space during the first time interval (0” – 30”), reaching a plateau phase at the 

second time interval (1’30”-2’00”) that persisted at the 2 latest time points (4’30” and 

15’00”). The washout phase was not observed.  

Moreover, cediranib led to a significant decrease in microvessel tortuosity (T, Fig 7.A) (p< 

0.01) and cediranib inhibited, although moderately, dilatation of microvessels compared to 

the control group (Fig 7.B). 
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FIGURE 6: Tumor vessel permeability. Mean interstitial fluorescence intensity at 4 time intervals: 

immediately after contrast injection, 90’, 270’ and 900’ after contrast injection.  

 

 

 

FIGURE 7: Tumor vessel tortuosity and diameter. (A) Tumor vessel tortuosity calculated from 

IVM images. p< 0.05, post- to pre-treatment rate, single values, median. (B) Tumor vessel diameter 

calculated from IVM images. p= 0.3551, post- to pre-treatment rate, single values, median. 
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EFFECT OF CEDIRANIB AND RT ON TUMOR 

MICROENVIRONMENT 

Lower tumor hypoxia rates were observed in the cediranib and combination groups 

compared to the control and RT groups (HP5%, Fig 8.A). Furthermore, addition of 

cediranib to RT led to a significant decrease in tumor hypoxia (p< 0.05) (pimonidazole, Fig 

8.B). 

Surprisingly, cediranib led to a significant increase in IFP compared to RT (p< 0.05) while 

RT decreased IFP in comparison to the controls (Fig 8.C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 8: Tumor microenvironment. (A) Tumor hypoxia calculated from OxyLite probe 

measurements of SC tumors. Hypoxic fraction (% < 5 mmHg pO2). p= 0.2418, difference after- 

before, single values, median. (B) Tumor hypoxia calculated from pimonidazole stained sections of 

SC tumors. Percentage of hypoxic area on total tumor area. p< 0.05, single values, median. (C) Tumor 

interstitial fluid pressure calculated from Samba Preclin probe measurements of SC tumors. p< 0.05, 

single values, median. 
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DISCUSSION 

This study investigated the effect of combining fractionated RT with cediranib, a pan-

VEGF-receptor tyrosine kinase inhibitor, in a human CRC mouse model. For the first time, 

the underlying microvascular changes of this combined treatment in CRC were evaluated 

in vivo. 

Cediranib was shown to successfully enhance tumor growth inhibition of RT (p<0.0001) 

and to increase, although moderately, tumor cell apoptosis. Only one previous study was 

performed on the combined effect of RT and cediranib in CRC [139]. Mice with SC 

xenografts (human LoVo cell line) were treated with RT (2Gy/ day, for 5 days) and 

cediranib (6mg/kg, continued for 28 days in total).  Similar to our study, improved tumor 

growth inhibition was seen during combined treatment and continued cediranib treatment. 

Unfortunately, underlying microvascular changes were not investigated.  

One proposed and frequently debated mechanism is the one of microvessel normalization 

[41]. Inhibition of VEGF-signaling may induce ‘normalization’ of tumor microvessels, 

which could lead to better perfusion and oxygenation of tumor tissue. Because oxygen is 

important for the generation of free radicals and DNA damage, oxygenated tumor tissue 

reacts 2- 3 times better to RT than hypoxic tumor tissue [25, 145]. As such, microvessel 

normalization might sensitize tumors for RT. This study focused on the in vivo imaging of 

these vascular changes and normalization. First, microvessels were shown to be 

significantly less tortuous (p=0.0066) after cediranib treatment. Second, microvessels had 

moderately smaller diameters after cediranib treatment and third, cediranib decreased vessel 

permeability (p<0.0001). As previously proposed in other xenograft studies [134, 139, 146, 

147], this suggests cediranib induces clear changes in microvessel structure and leads to a 

normalization of the microvessel wall. For the first time, these changes were imaged in vivo 

with DSWC in CRC.  

Single high dose RT (10-30 Gy) is known to have anti- angiogenic effects with 

disappearance of small tumor vessels in the acute phase and stimulation of tumor 

angiogenesis at long-term (after 14 days) [148]. Yet, nothing is known about the effect of 

fractionated RT and cediranib on tumor microvasculature in CRC. Our results suggest that 

fractionated radiation (5 x 1.8 Gy) has no immediate anti-angiogenic effects like single high 

dose RT. This is illustrated in figure 3 where the control and RT treated tumors clearly show 

tumor vessel structures, in contrast to the cediranib and combination treated group, that 

appear to have a more normal vessel structure. The underlying pathways were not 
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investigated but are suggested to be divergent. VEGF-inhibition with cediranib inhibited 

these pro-angiogenic effects only partially. A new study will be started in the near future to 

investigate microvasculature after single high dose RT versus fractionated RT. 

These observed microvascular changes are thought to lead to changes in tumor 

microenvironment. Indeed, cediranib decreased tumor hypoxia, which explains the lower 

radioresistance and the enhanced tumor growth delay. The fact that addition of cediranib to 

RT led to a decrease in tumor hypoxia compared to RT alone could be due to a better 

response to RT (higher apoptotic rate in combination treated group) followed by a decrease 

in oxygen consumption. The increased proliferation rates of tumors in the combined 

treatment group could be due to the same mechanism of a proportional increased 

proliferative potential of tumor cells that survived treatment. The effect of this proportional 

increased proliferation remains to be investigated in future studies with longer follow-up. 

With respect to the interstitial fluid pressure, it is known that most solid tumors show an 

increased IFP (normal tissue: IFP= -1 to -3mm Hg [149, 150]) due to vessel abnormalities, 

fibrosis and contraction of the interstitial matrix [151]. Certain VEGF signaling pathway 

inhibitors, such as bevacizumab, lead to normalization of this raised IFP [152]. This was 

the first study to investigate the effect of cediranib on IFP. Surprisingly, cediranib led to a 

significant increase in IFP compared to RT. This might be due to the inhibitory effect of 

cediranib on lymphangiogenesis through VEGFR-3 inhibition. Indeed, it has been shown 

previously that stimulation of VEGFR-3 through VEGF-C decreases IFP [153]. 

Remarkably, 3 days after cessation of therapy, the reduction in vessel permeability was not 

visible anymore (DCE-MRI). A similar study, where DCE-MRI was performed 

immediately after administration of cediranib (2h), could demonstrate a reduction of 70% 

in permeability surface area product per unit volume of tissue (parameter for permeability) 

[147]. These findings support the fact that cediranib leads to rapid changes in 

microvasculature, described as a ‘window of normalization’ [8], which disappear after 

cessation of therapy. These fast changes underscore the importance of treatment timing and 

in vivo measurements of treatment effects. 

This study emphasizes the potential benefits of further investigating the role of cediranib in 

a neoadjuvant setting in locally advanced rectal cancer, combined with RT. Several phase 

II trials with bevacizumab and neoadjuvant radiochemotherapy have been performed in 

LARC [154, 155]. So far, results were not very promising with increased toxicities and 
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increased post- operative morbidity as major obstacles. Whether cediranib will do better, is 

to be investigated.  

 

CONCLUSION 

We showed that the combination of fractionated RT with the VEGFR- inhibitor cediranib 

enhances tumor control in a colorectal xenograft model. In addition, the imaged structural 

and functional vascular changes suggest that cediranib has a stabilizing effect on the vessel 

wall leading to vascular normalization. 
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CHAPTER 7: GENERAL DISCUSSION AND 

CONCLUSION 

Our objective was to study hypoxia in solid tumors and use it as a biomarker and target for 

individualized therapy.  

 

We started by describing the development of an EAC tumor model in chapter 3. Two 

generally available EAC cell lines were used, OE33 and OACM5 1.C and injected at an 

ectopic (subcutaneous, hind legs) or orthotopic site (distal esophageal wall through midline 

laparotomy). We also evaluated different in vitro functional cell line characteristics such as 

invasiveness or cell-cell adherence. We could conclude that the OE33 cell line has high 

subcutaneous and orthotopic tumor take rates, but that tumors grew extremely slow. Further, 

the OACM5 1.C cell line was not appropriate for tumor development in our tumor model. 

However, we succeeded to develop a daughter cell line of OACM5 1.C through an in vivo 

selection technique, that was named OACM5 1.C SC1, which had improved tumor take 

rates and faster growing tumors. Taken these results together, we had a reliable orthotopic 

and subcutaneous EAC tumor model to perform further preclinical research on.  

The use of a xenograft model could be a point of criticism. This choice was based on a 

careful study of literature on esophageal carcinoma tumor models and after weighing pros 

and cons. A diversity of esophageal tumor models in a diversity of laboratory animals (rat, 

mouse, rabbit…) exist. The number of ESCC models overshadows the limited number of 

EAC models and no ideal EAC model has been developed yet [88, 156].  

On the one hand, a syngeneic EAC model could be used. These use immunocompetent 

animals and might more closely mimic carcinogenesis with its tumor-host immune 

interactions. With respect to EAC, no syngeneic cell line is available for laboratory animals, 

but a transgenic model is available in mice (GEMM genetically engineered mouse model 

[107]) and different reflux models [157, 158] and carcinogen or diet-induced models (e.g. 

caustic agents to cause inflammation of the esophagus) have been described. Disadvantages 

of these syngeneic models are that tumor development is unpredictable and seen in a late 

stage (time-consuming), and that no human tissues are investigated which can impede 

translation of the results to the clinical setting.  

On the other hand, xenograft models can be used where human cancer material is 

injected/implanted in immunodeficient animals (orthotopic or ectopic). More and more 
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interest is growing for patient derived xenografts (PDX), because tumor heterogeneity is 

better preserved and because they retain the structure and stromal components of the 

original tumor better compared to continuous human cancer cell lines [159]. Xenograft 

models are easy and the timing of tumor development can be approximately predicted. The 

major disadvantage is the use of immunodeficient animals with loss of tumor-host immune 

interactions.  

Taking into account all these aspects, we can support our choice to use a xenograft setting, 

where tumor development is consistent and can be more or less predicted.  

 

The next step was to test the feasibility of the hypoxia tracer 18F-FAZA in both tumor 

models, which was described in chapter 4. We encountered a problem of diffuse background 

activity in the liver and intestines which compromised accurate visualization of tumors in 

those regions (EAC at the distal site of the esophagus and gastro-esophageal junction). 

Background activity was also seen in the urinary bladder and gall bladder, but this was of 

lesser importance for our model. As was already mentioned previously, this is due to the 

tracer characteristics. 18F-FAZA is metabolized hepatically and excreted via the intestines 

and kidneys [62]. One could question why not switch to another tracer. Table 1 gives an 

overview of the principal radiopharmaceuticals applied in hypoxia PET imaging with its 

applications, advantages and disadvantages. As can be seen, a range of tracers has been 

developed in the search for the most specific hypoxia tracer with the highest tumor-to-

background rates. Four big families, based on 4 uptake mechanisms can be identified. The 

first family of tracers is 18F-FDG, where uptake is based on the Pasteur effect, with low 

hypoxia specificity. The second family are the nitroimidazoles which were discussed in the 

introduction of this thesis. These have been studied extensively and already reached clinical 

evidence. However, these face the problem of having to cross the phospholipid bilayer and 

at the same time the need to be hydrophilic, as to rapidly clear from background tissues. 

The third family are the ones based on reduction of Cu-ATSM, but some doubt exists for 

the hypoxia specificity [52]. And as last, the recognizers of CA9, a transmembrane protein 

in hypoxic conditions, which have not been studied much, but seem promising because no 

crossing of the phospholipid bilayer is needed. In this field of hypoxia tracers, FAZA is the 

second most studied one, after FMISO, and has proven to be superior to FMISO concerning 

tumor-to-background rates. Taken together this information, we believe FAZA is one of the 

leading contenders in reaching a clinical applicability for hypoxia imaging and believe 
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research should continue to confirm this. We expect that the delineation of distal esophageal 

tumors would be easier in the clinical setting than in mice because of the larger structures 

and better soft tissue resolution on clinical applications. Therefore, we continued in the 

following chapter with the evaluation of 18F-FAZA as a predictor for radiation response in 

the subcutaneous EAC model. 
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TABLE 1: Principal radiopharmaceuticals applied in PET imaging of tumor hypoxia. Adapted 

from [54] with the addition of 18F-HX4. 
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In chapter 5 we used hypoxia as a biomarker and target for individualized treatment in EAC. 

By using 18F-FAZA PET/CT we evaluated the effect of hypoxia on radiation response in a 

mouse model with subcutaneous human EAC tumors. In a subset of animals, hypoxia 

imaging was performed also after treatment to evaluate the influence of treatment on 

hypoxia status. Further, we evaluated if hypoxic radioresistance could be decreased by 

pretreatment with the radiosensitizer nimorazole. We found that tumors with high 18F-

FAZA activity, were less inhibited by radiotherapy than tumors with less 18F-FAZA activity 

with respect to tumor growth. ROC analysis showed that a cut-off of 3.59 for tumor to 

background ratio could predict treatment response with good sensitivity (92.3%) and 

specificity (71.4%). We further showed on histology of the xenografts and with an in vitro 

cell viability assay (MTS) that hypoxia indeed caused radioresistance. Hereby we 

confirmed that hypoxia is a negative predictive factor in our xenograft model and that 

pretreatment 18F-FAZA PET/CT could identify tumors that will react worse to radiotherapy.  

In our model 18F-FAZA activity in the tumor was quantified as the ratio of mean tumor 

uptake to mean background uptake. Mean tumor uptake was calculated in the >40% 

isocontour volume according to Tran et al [123]. Mean background uptake was the mean 

18F-FAZA activity in a sphere with radius 1.5 mm in the foreleg muscle. This parameter 

was used because it delivered the most accurate cut-off to predict treatment response. Other 

research groups describe the use of maximum tumor uptakes [110] or mean tumor uptake 

of the whole tumor [160] and lung [62], pelvic muscle [160] or blood (heart [66])… as 

background tissues. The cut-off value and the T/B parameter that were used our study, were 

valuable in the xenograft subcutaneous model, but will need to be revised when translating 

it to the clinical setting where tumor growth is more variable, and neoadjuvant treatment 

differs. With respect to the quantification method of 18F-FAZA, it is not known which 

parameter is the most valuable. Most clinical studies use their own quantification method, 

but almost always reflect the most hypoxic areas in the tumor by using SUVmax or a kind of 

> x% isocontour method, and mostly compare this to a reference tissue (muscle, spleen…) 

[161-163]. A future clinical study should determine a spectrum of different parameters, and 

determine the most valuable one. Further, to target hypoxia based on 18F-FAZA PET/CT 

scan, the method of modification will influence the quantification method of 18F-FAZA. For 

dose-painting, a 3D-map of 18F-FAZA uptake is needed, and repeated 18F-FAZA scans are 

needed to offer an up-to-date identification of high hypoxic areas. For radiosensitizers such 
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as nimorazole, a cut-off can be more valuable than a 3D distribution map, to know if the 

modifier will be worth it or not.  

With respect to nimorazole, we found a clear in vitro evidence of radiosensitization under 

hypoxic conditions, but nimorazole was not able to fully revert the resistance. This is in line 

with other preclinical studies where a sensitizer enhancement ratio of about 1.4 is reported 

with single dose irradiation [164, 165], which is indeed smaller than the oxygen 

enhancement ratio of 2 - 3 that is usually referred to [24, 25]. Further, the benefit of 

nimorazole was less obvious in the xenografts. When evaluating all xenografts, no benefit 

is seen, but when evaluating only hypoxic tumors (based on 18F-FAZA) or hypoxic tumor 

areas (based on pimonidazole staining), there seems to be a trend of radiosensitization by 

nimorazole. This less pronounced effect could be due to the different radiation schedule that 

was used in vitro (single dose irradiation) and in vivo (hypofractionated). Indeed, a 

reduction in sensitizer enhancement ratio from 1.4 to 1.3 when combined with fractionated 

irradiation instead of single dose irradiation has been reported [165]. The Danish Head and 

Neck Cancer group (DAHANCA) performed substantial research on combination treatment 

of nimorazole with radiotherapy in patients with head and neck carcinomas (DAHANCA 

trials). Nimorazole was proven to enhance loco-regional control in HNSCC with a 

fractionated RT regimen (62- 68 Gy, 2 Gy per fraction) [35] and is part of daily practice in 

Denmark. In our EAC tumor model, nimorazole does not seem to be the ideal radiosensitizer 

to cope with hypoxic radioresistance. It remains to be investigated whether nimorazole has 

a sensitizing effect in the clinical setting, where a fully fractionated schedule is used. Such 

clinical study has to include hypoxia detection methods to identify patient that could benefit 

from nimorazole, because nimorazole has no effect in normoxic conditions.  

 

In the previous chapter, we investigated the effect of hypoxia on radiation response, and 

how we could target this hypoxic resistance by replacing oxygen by an oxygen mimicker 

in the radiobiological process. We also wanted to investigate the underlying cause of 

hypoxia, to maybe intervene at that stage and enhance radiation efficacy. In the introduction, 

we already discussed the multiple etiologies of hypoxia where the immature tumor vascular 

network plays an important role. In the last chapter (6) we focused on this tumor 

angiogenesis as cause of hypoxia and performed an integrated study on the effect of 

irradiation and antiangiogenic therapy on tumor vasculature, tumor microenvironment (e.g. 

hypoxia) and tumor growth in a xenograft colorectal cancer mouse model. This model was 



 

118 

chosen because anti-angiogenic agents have already proven their benefits in metastatic 

colorectal cancer patients. On the one hand, we investigated the hypoxia status of 

subcutaneous xenografts with an OxyLite probe and immunohistochemistry (exogenous 

marker pimonidazole) and on the other hand, the underlying vascular changes were 

investigated with in vivo fluorescence microscopy in dorsal skinfold window chambers 

(DSWC), with DCE-MRI of subcutaneous xenografts and with immunohistochemisty 

(endoglin) of xenografts. We aimed to link the vascular changes of IVM (DSWC tumor 

model) with changes in DCE-MRI parameters (subcutaneous tumor model), so in the future, 

DCE-MRI might be used to analyze the vascular status of tumors. Our results showed that 

all tumors were highly hypoxic before treatment as was measured with OxyLite probes. 

Despite this hypoxia, radiotherapy managed to inhibit tumor growth control partially, but 

as expected, cediranib further increased radiation induced growth control. We showed that 

after cediranib treatment (pan-VEGFR-inhibitor), a window of normalization arises where 

vessels are less tortuous, less permeable and less dilated and where hypoxia is decreased. If 

radiotherapy is applied during the normalization period, as in our study, cediranib acts as a 

radiosensitizer and leads to increased tumor control. Unfortunately, we could not link the 

observed vascular changes of in vivo fluorescence microscopy with parameters calculated 

from DCE-MRI that was performed 3 days after cessation of cediranib administration, 

because VEGF-stimulated tumor angiogenesis had probably relapsed at that time point. 

 

We would like to also indicate limitations of this thesis.  

First, the use of two tumor types could be seen as a limiting factor. Our first focus was 

esophageal cancer, as there is an existing clinical need for predictive biomarkers and patient 

stratification. To investigate tumor angiogenesis as underlying mechanism, we opted for a 

CRC tumor model, because evidence exists for cediranib efficacy in colorectal cancer 

(metastatic setting). This difference in tumor types causes a certain incoherence between 

the two research questions, but it does not limit possible translation to the clinic, for 18F-

FAZA PET/CT and nimorazole in locally advanced esophageal and for cediranib in locally 

advanced rectal cancer.  

Second, a variety of techniques were used across the different experiments. In chapter 5, 

18F-FAZA PET/CT and IHC with pimonidazole were used, while in chapter 6, OxyLite 

probe, DCE-MRI, in-vivo microscopy, IHC pimonidazole/Hoechst and Samba Preclin 

probe. It would have been interesting to integrate these techniques in one project, to validate 
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measurements and make stronger conclusions on cause-effect. For example, including 18F-

FAZA PET/CT in chapter 6 could maybe select tumors that would benefit from cediranib 

treatment and would provide an added value to the experiments. 

As last, no clinical data were included, limiting conclusions to the preclinical setting. 

Predictions about possible clinical applicability and future clinical studies are described in 

the next chapter. 

 

In conclusion, this thesis emphasized the importance of tumor hypoxia as predictive 

biomarker and target for treatment. For the first time, it was shown that 18F-FAZA PET/CT 

can predict radiation response with high sensitivity and specificity in an EAC mouse model, 

and that repeated imaging contributes to the evaluation of treatment-induced changes in 

hypoxia. We further showed that hypoxia-induced radioresistance can be decreased by 

replacement of oxygen in the radiochemical process with nimorazole. As last, tumor 

angiogenesis was investigated as underlying mechanism of hypoxia. We supported its 

importance and showed that cediranib (pan-VEGFR inhibitor) increases radiation efficacy 

through a transient normalization of tumor vessels and subsequent decrease of hypoxia in a 

CRC mouse model.  

  



 

120 

  



 

121 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 8 

GENERAL RELEVANCE AND FUTURE 

PERSPECTIVES 

 

  



 

122 

  



 

123 

CHAPTER 8: GENERAL RELEVANCE AND FUTURE 

PERSPECTIVES 

Cancer remains one of the most important causes of death worldwide [1]. Treatment mostly 

consists of a combination of chemotherapy, radiotherapy and/or surgery and is based on the 

TNM classification (UICC) of the tumor. This classification is determined by the size and 

extent of the primary tumor, number of nearby lymph nodes and whether the cancer has 

metastasized. However, it has been observed that tumors with the same TNM stage and 

treated with the same therapy, can have a completely different response to treatment. This 

suggests that tumors are more diverse than the factors described by the TNM stage. Indeed, 

tumors differ strongly from one another with respect to genetics, epigenetics and 

microenvironmental characteristics. In the future, it will be critical to include these 

individual tumor characteristics in cancer staging and treatment, to offer a more tumor and 

patient-specific approach. 

 

In an era where medicine is evolving to a more patient-tailored and individualized approach, 

biomarkers are highly important. The world health organization defines them as ‘any 

substance, structure or process that can be measured in the body or its products and 

influence or predict the incidence of outcome or disease’. The most known and widespread 

biomarker is Her2/neu (human epidermal growth factor receptor 2) and is a good example 

of how biomarkers can influence clinical decision making and improve patient’s outcomes. 

Her2/neu is overexpressed in different tumor types (breast cancer, gastric cancer) and has 

been correlated with worse prognosis [166, 167].  The discovery of the targeted agent 

trastuzumab (Herceptin), a monoclonal antibody to the Her2-receptor, brought change to 

his. Trastuzumab showed to increase overall survival of patients with Her2/neu 

overexpressed breast cancers and is now used in the daily work-up of breast cancer patients 

[168]. 

 

This thesis is part of the quest for biomarkers to offer cancer patients a more tumor specific 

and individualized therapy. We focused on tumor hypoxia for several reasons. First, it is a 

microenvironmental characteristic that is present in almost all solid tumors so the potential 

applicability is wide. Second, preclinical as well as clinical evidence exists that tumor 

hypoxia is correlated with worse outcomes in different solid tumors. Third, tumor hypoxia 
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can be measured through non-invasive techniques, which is attractive for the translation to 

patients. Fourth, numerous targeting methods have been described, for example hypoxia 

activated prodrugs or intensity modulated radiotherapy (IMRT), which ensures the potential 

influence on daily clinical decision making. 

 

This thesis showed that 18F-FAZA PET/CT predicts radiation response in an EAC tumor 

model, which suggests that 18F-FAZA PET/CT could play a role in predicting treatment 

response of EAC patients. This could have several advantages.  

First, outcomes of esophageal cancer patients could be improved. Esophageal cancer 

remains a difficult disease to treat. Treatment has evolved from a surgical approach only, 

to a more multimodal therapy with chemo- and radiotherapy. The MAGIC and recent 

CROSS trial have confirmed that addition of neoadjuvant treatment is superior to surgery 

alone in patients with locally advanced disease [82, 169]. Further, two biological agents 

have been FDA-approved. Trastuzumab, targeting Her2/neu, and ramucirumab, targeting 

VEGFR2, showed to improve overall survival in randomized phase III trials in unresectable 

or metastatic gastro-esophageal junction tumors (ToGa trial [170], REGARD and 

RAINBOW trial [171, 172]). However, about 70% of esophageal cancer patients show 

residual disease after neoadjuvant chemoradiation [116]. If these partial responders could 

be identified with 18F-FAZA PET/CT before treatment, their outcomes could be improved 

by methods of hypoxia targeting (e.g. nimorazole or IMRT).  

Second, 18F-FAZA PET/CT is a non-invasive technique that has already been used in 

patients in clinical trials [161, 163, 173]. Besides the exposure to irradiation, 18F-FAZA 

PET/CT seems to have no major disadvantages for the patient.  

Third, the imaging can be performed on a standard PET/CT scanner that is routinely used 

for 18F-FDG PET/CT imaging. If the radionuclide department of the hospital has the 

permission to produce 18F-FAZA, all technical necessities are available to start a trial. 

 

Future work of our team will include a clinical study where 18F-FAZA PET/CT will be 

introduced for locally advanced esophageal adenocarcinoma patients requiring nCRT. First, 

a pilot study should be performed to determine a clinical cut-off of FAZA-tumor uptake 

that is predictive for therapy response. Patients need to be divided in responder and non-

responders which can be done based on the pathological characteristics of the resection 

specimen (e.g. Mandard regression score). If a correlation between pretreatment 18F-FAZA 
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uptake and treatment response can be confirmed, treatment modifications can be considered 

to improve patient outcomes.  

If a modifier like nimorazole would be used, it seems useful to repeat 18F-FAZA PET/CT 

during neoadjuvant treatment to reassess hypoxia status of tumors. As was seen in our study, 

most of the tumors reoxygenated upon treatment. If reoxygenation is found, the modifier 

might be discontinued.  

Also for dose-painting, repeating the 18F-FAZA PET/CT scan is important because the 

hypoxia distribution changes over time, so the irradiation mapping at the beginning of 

treatment will not be useful during the full treatment. Whether an 18F-FAZA PET/CT after 

ending nCRT, so before surgery, would be interesting is arguable. We found no evidence 

that reoxygenation of tumors is linked to treatment response in our model. Further, 18F-FDG 

PET is known to be correlated with treatment response, so it would be more useful to 

perform an 18F-FDG PET.  

Additionally, patient survival data and relapse data will be monitored to also correlate 

pretreatment 18F-FAZA PET/CT with prognosis. Later, this could be extended to other 

tumor types (e.g. rectal cancer, lung cancer…). 

 

Further, this thesis showed how anti-angiogenic therapy with cediranib normalizes tumor 

vasculature, reduces tumor hypoxia and enhances radiotherapy efficacy in a CRC tumor 

model. This stresses the importance of hypoxia in CRC and the potential role of cediranib 

in addition to radiotherapy. At present, patients with locally advanced rectal cancer are 

treated with neoadjuvant chemoradiation followed by surgery [174]. Addition of targeted 

agents such as bevacizumab (targeting VEGF-A) or cetuximab (targeting EGFR) have been 

examined, but provided conflicting results [154, 155, 175]. Whether cediranib will improve 

patients’ outcomes in the neoadjuvant setting, with acceptable toxicities, is to be 

investigated. 

 

In conclusion, tumor hypoxia is a long-known problem within oncology with little impact 

in the daily clinic. This is partially because hypoxia detection methods have not reached the 

routine clinical work-up of cancer patients. To continue enhancing patients’ outcomes and 

minimizing useless treatments, we are convinced a patient-tailored approach is required 

where tumor hypoxia will be one of the guiding biomarkers. 
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CHAPTER 9: SUMMARY 

In a time of continuous development of new approaches in cancer treatment, combined with 

the heterogeneous aspects of tumors, the search for biomarkers to predict treatment response 

and prognosis is extensive. Tumor hypoxia as a biomarker, is a very interesting research 

area, because it has been proven to be a negative predictive and prognostic marker in certain 

solid tumors. After decades of research to target hypoxia, little have reached the clinical 

setting. Mostly because no patient identification was performed and as such, they failed to 

improve outcomes. In this thesis, we present an integrated study on hypoxia in solid tumors 

and investigate its role as biomarker and target for individualized therapy.  

 

The first part of this thesis (chapter 3-5) focused on esophageal adenocarcinoma, an 

aggressive disease with poor survival rates and unpredictable response to neoadjuvant 

therapy. Our aim was to investigate the predictive value of 18F-FAZA PET/CT, a non-

invasive hypoxia imaging method, to radiation response in an EAC tumor model and to 

study the radiosensitizing effect of nimorazole, a promising hypoxia targeting molecule.  

We first described the development of an orthotopic and subcutaneous EAC xenograft 

model in nude mice in chapter 3. Two different human EAC cell lines were used to induce 

xenografts. The first, OE33, is derived from a stage IIA adenocarcinoma of the lower 

esophagus with poor differentiation. The second was OACM5 1.C and is derived from a 

metastatic lymph node of a distal esophageal adenocarcinoma. After injection of the cell 

lines at an orthotopic and ectopic (subcutaneous) site, in vivo tumor growth was evaluated. 

Additionally, functional cell line characteristics were examined through in vitro assays for 

collagen invasion, cell-cell adherence and clonogenicity. OE33 was found to induce 

orthotopic and subcutaneous small, slow growing tumors and was thus not ideal to 

investigate the predictive value of 18F-FAZA PET/CT for radiation response. The second 

cell line, OACM5 1.C had no tumor take orthotopically and only 50% tumor take 

subcutaneously. However, through in vivo selection, a daughter cell line of OACM5 1.C 

was developed, named OACM5 1.C SC1, with enhanced tumor take rates, and most 

importantly, leading to larger and faster growing tumors that could be used to study 

radiation response and predictive value of 18F-FAZA PET/CT. 

Subsequently, the feasibility of 18F-FAZA PET/CT in both the orthotopic and subcutaneous 

EAC tumor model was tested and described in chapter 4.  A problem of intense background 

activity in the gastro-intestinal tract was encountered due to metabolization of the tracer. 
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Because of this, orthotopic tumors could not be delineated. This is an unavoidable aspect of 

nitroimidazole hypoxia tracers, but will probably not cause such a problem in patients 

because of larger structures and better soft tissue resolution on CT. Therefore, we decided 

to continue with the subcutaneous model in which 18F-FAZA PET/CT enabled clear 

visualization of tumor hypoxia distribution and hypoxia quantification. 

In chapter 5, we evaluated the predictive value of 18F-FAZA PET/CT for radiation response 

in subcutaneous EAC xenografts and found that a tumor-to-background ratio of 3.59 or 

higher could identify tumors that responded worse to radiotherapy. We then examined 

whether nimorazole, a hypoxic radiosensitizer, could increase radiotherapy efficacy in 

hypoxic conditions. Nimorazole significantly increased in vitro radiotherapy efficacy in 

hypoxic conditions. In the EAC xenografts, a trend was seen to better inhibition of tumor 

cell proliferation, but results on tumor growth control were limited. FAZA uptake after 

treatment was also evaluated, but no link was found between treatment response and 

normalization of hypoxia status. We did see a reoxygenation in almost all tumors after 

treatment. These results suggest that 18F-FAZA PET/CT could play an important role in 

predicting treatment response in EAC patients and that nimorazole might decrease hypoxia 

induced radioresistance. 

 

In the second section of this thesis, the focus was shifted to tumor angiogenesis as one of 

the underlying mechanisms of tumor hypoxia, and was described in chapter 6. This chapter 

focused on colorectal cancer, one of the most common tumor types worldwide. An 

integrated study on tumor vasculature and microenvironment (e.g. hypoxia) was performed, 

in response to radiotherapy and anti-angiogenic therapy. CRC xenografts were induced in 

dorsal skinfold window chambers and subcutaneously in the hind legs of nude mice. In vivo 

fluorescence microscopy of the DSWC was performed and immunohistochemistry, pO2 and 

IFP measurements and DCE-MRI were performed in the subcutaneous xenografts. The pan-

VEGFR inhibitor cediranib was investigated as anti-angiogenic drug. We showed that all 

tumors expressed a significant amount of tumor hypoxia and that cediranib normalized 

tumor vasculature and decreased tumor hypoxia, leading to an enhanced effect of 

radiotherapy.  

 

In conclusion, this thesis emphasizes the importance of tumor hypoxia in solid tumors. 

Hypoxia imaging with 18F-FAZA PET/CT is a useful detection and quantification method 
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and is predictive for radiation response in an EAC xenograft model. Further we showed that 

targeting hypoxia, by nimorazole and by cediranib, increases radiation response, which 

underscores the applicability of hypoxia as targetable biomarker in patients.  
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SAMENVATTING 

In een tijd waar de ontwikkelingen binnen de oncologie niet stilstaan, gecombineerd met de 

grote heterogeniteit van tumoren, is de zoektocht naar biomerkers om therapierespons en 

prognose te voorspellen enorm. In bepaalde solide tumoren werd reeds aangetoond dat 

tumorhypoxie gecorreleerd is met een slechtere therapierespons en prognose. 

Tumorhypoxie zou dus een zeer interessante biomerker kunnen zijn en vormt een belangrijk 

onderzoeksdomein in de oncologie. Na tientallen jaren onderzoek naar mogelijkheden om 

tumorhypoxie aan te pakken, zijn er slecht weinig geïmplementeerd in de kliniek. Er werd 

meestal geen identificatie verricht van hypoxische versus niet-hypoxische tumoren, 

waardoor de therapieën gericht op hypoxie, er niet in slaagden de outcomes te verbeteren. 

Deze thesis is een geïntegreerde studie over hypoxie in solide tumoren, waar hypoxie wordt 

onderzocht als mogelijke biomerker en als doelwit voor geïndividualiseerde behandeling.  

 

Het eerste deel van deze thesis (hoofdstuk 3-5) richtte zich op slokdarmkanker van het type 

adenocarcinoom. Deze agressieve ziekte heeft slechte overlevingscijfers en reageert 

onvoorspelbaar op neoadjuvante therapie. Ons doel was om de voorspellende waarde van 

18F-FAZA PET/CT, een niet-invasieve manier om hypoxie te beeldvormen, voor respons 

op radiotherapie te onderzoeken in een preklinische studie en om het radiosensitizerend 

effect van nimorazole, een veelbelovende therapie gericht op hypoxie, te bestuderen. 

We zijn gestart met het beschrijven van de ontwikkeling van een orthotoop en subcutaan 

slokdarm adenocarcinoom model in naakte muizen (hoofdstuk 3). Hierbij werden 2 

verschillende humane cellijnen gebruikt om xenografts te induceren. De eerste, OE33, stamt 

af van een stadium IIA adenocarcinoom van de distale slokdarm, met slechte differentiatie. 

De tweede, OACM5 1.C stamt af van een metastatische lymfeknoop van een 

adenocarcinoom van de distale slokdarm. Na injectie van de cellen op een orthotope (distale 

slokdarm) of ectopische (subcutaan in de dijen) plaats werd in vivo tumorgroei geëvalueerd. 

Verder werden met verschillende in vitro testen functionele eigenschappen van de cellen 

onderzocht met betrekking op cel-cel adherentie, invasiviteit en clonogeniciteit. OE33 

leidde tot de ontwikkeling van kleine, traag groeiende tumoren, zowel orthotoop als 

ectopisch, en was dus niet geschikt om de voorspellende waarde van 18F FAZA PET/CT 

voor respons op radiotherapie te onderzoeken. Met de tweede cellijn, OACM5 1.C, konden 

geen orthotope tumoren ontwikkeld worden, en leidde slechts 50% van de subcutane 

injecties tot ontwikkeling van tumoren. Echter, we slaagden erin om met een in vivo selectie 
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techniek een dochtercellijn te ontwikkelen, OACM5 1.C SC1, die tot procentueel meer 

tumorontwikkeling leidde en belangrijker, resulteerde in grotere en sneller groeiende 

tumoren. Deze in vivo geselecteerde cellijn kan in een toekomstige studie gebruikt worden 

om de voorspellende waarde van 18F FAZA PET/CT voor respons op radiotherapie te 

onderzoeken. 

Vervolgens werd de uitvoerbaarheid van 18F-FAZA PET/CT beeldvorming in beide tumor 

modellen (orthotoop en subcutaan) onderzocht en beschreven in hoofdstuk 4. Daar botsten 

we op een probleem van intense achtergrondactiviteit van de tracer ter hoogte van de lever 

en het maagdarmstelsel, door afbraak en excretie van de tracer aldaar. Hierdoor konden de 

tumoren in de distale slokdarm niet gevisualiseerd en afgelijnd worden op de PET/CT scan. 

Dit is een onvermijdbaar aspect van nitroimidazole tracers, maar zal bij patiënten 

waarschijnlijk niet zo’n probleem vormen gezien de structuren groter zijn en de CT resolutie 

voor zachte weefsels beter is. Daarom besloten we verder te gaan met het subcutane model, 

waar de distributie van tumorhypoxie duidelijk gevisualiseerd en afgelijnd kond worden 

met 18F-FAZA PET/CT. 

In hoofdstuk 5 evalueerden we de voorspellende waarde van 18F-FAZA PET/CT voor 

respons op radiotherapie in subcutane slokdarmadenocarcinoma xenografts. We toonden 

aan dat een tumor-to-background ratio van 3.59, met goede sensitiviteit en specificiteit, 

tumoren kon identificeren die slechter zouden reageren op radiotherapie. Daarnaast 

onderzochten we of nimorazole, een radiosensitiseerder gericht op hypoxie, het effect van 

radiotherapie in hypoxische omstandigheden kon verbeteren. Nimorazole verbeterde 

significant het effect van radiotherapie in hypoxische omstandigheden in de in vitro setting, 

en er werd een trend gezien in de xenografts tot betere inhibitie van kankercel proliferatie. 

Het effect op tumorgroei was eerder beperkt. We evalueerde ook 18F-FAZA-opname na 

therapie, maar vonden geen correlatie tussen therapierespons en normalisatie van de 

hypoxie status. Wel zagen we een reoxygenatie in bijna alle tumoren na therapie. Deze 

resultaten tonen aan dat 18F-FAZA PET/CT een belangrijke rol zou kunnen spelen in het 

voorspellen van therapierespons in slokdarmadenocarcinoma patiënten en dat nimorazole 

de hypoxie geïnduceerde radioresistentie zou kunnen verminderen.  

 

Het tweede deel van de thesis richtte zich op tumor angiogenese als onderliggende oorzaak 

van tumorhypoxie (hoofdstuk 6). Hiervoor richtten we ons op colorectaal kanker, een van 

de meest voorkomende kankers wereldwijd, waarvoor reeds bewezen is dat angiogenese 
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remmende therapie een effect heeft bovenop de bestaande modaliteiten. Een geïntegreerde 

studie over de structuur en functie van tumorale bloedvaten, en de tumor micro-omgeving 

(waaronder hypoxie), werd verricht. Het effect van radiotherapie en anti-angiogene 

behandeling met de pan-VEGR inhibitor cediranib werd onderzocht. Hiervoor gebruikten 

we colorectale xenografts in dorsal skinfold window chambers en subcutaan in de dijen, in 

naakte muizen. In vivo fluorescentie microscopie van de DSWC werd verricht en 

immunohistochemische kleuringen, pO2 en IFP probe metingen en DCE-MRI werden 

verricht van de subcutane xenografts. We toonden aan dat alle tumoren een aanzienlijke 

hoeveelheid tumorhypoxie bezaten en dat cediranib de tumorale vaten normaliseerde, 

tumorhypoxie verminderde en het effect van radiotherapie verbeterde.  

 

Deze thesis benadrukt het belang van tumorhypoxie in solide tumoren. We besluiten dat 

18F-FAZA PET/CT een bruikbare techniek is om hypoxie te meten en dat het de respons op 

radiotherapie in een slokdarmadenocarcinoma xenograft model kan voorspellen. Verder 

toonden we aan dat hypoxiegerichte therapie, met nimorazole en cediranib, de respons op 

radiotherapie verbetert, wat de toepasbaarheid van hypoxie als biomerker en doelwit van 

therapie in de kliniek verzekert. 
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