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SCOPE AND AIMS 

Plants growing in their natural environment are continuously exposed to biotic and abiotic stresses 

that adversely affect their growth and reproduction placing a severe threat to sustainable crop 

production in the changing climatic conditions. Abiotic stresses cause crop losses worldwide 

reducing average yield by more than 50% due to the high energy consumed to enhance the 

respiration rates resulting in excessive release of reactive oxygen species that cause the death of the 

plant cells and ultimately, of the whole plant. A biotechnological approach is taken to generate 

plants with reduced energy consumption under stress conditions and with improved yield stability 

particularly using a metabolic engineering strategy. In Arabidopsis and Brassica napus, metabolic 

engineering to broaden stress tolerance in plants by maintaining energy homeostasis under stress 

conditions was reported to enhance tolerance to drought, high light and heat stresses. When the 

stress-induced energy consumption was reduced by enhancing the energy use efficiency, the plants 

could overcome peak stresses or have the opportunity to adapt to moderate but persistent stresses 

(De Block et al., 2005). 

Strong stresses in plants results in excessive production of reactive oxygen species that may lead to 

DNA damage which in turn activates a poly(ADP-ribose) polymerase (PARP). PARP uses high energy 

cost Nicotinamide Adenine Dinucleotide (NAD+) as a substrate to synthesize polymers of ADP-Ribose 

important in triggering a DNA repair mechanism. PARP is one of the enzymes in the poly(ADP-

ribosyl)ation metabolic pathway (PAR) which plays an important role in plant energy homeostasis 

and is also reported to regulate plant responses to abiotic and biotic stresses.  Modulation of the 

level of an ADP-ribose specific Nudix hydrolase (NUDX), another PAR pathway protein, was reported 

to confer tolerance to oxidative stress in Arabidopsis through re-establishing the energy levels by 

supplying an ATP source thus regulating defense mechanism against oxidative DNA damage 

(Ishikawa et al., 2009).  

The main aim of the study was to generate maize and Arabidopsis lines with an altered energy 

homeostasis to improve tolerance to drought, oxidative and genotoxic stresses through 

manipulation of the levels of PARP and NUDX. PARP gene activity in maize was knocked-out or 

downregulated via the CRISPR/CAS9 gene editing system and RNAi hairpin silencing approach 

respectively. Arabidopsis AtNUDX7 and its two maize homologues were overexpressed in B104 

maize using Brachypodium distachyon pBDEF1α promoter and maize ubiquitin pZmUBIL promoter. 

In Arabidopsis, AtNUDX7 and its two maize homologues were overexpressed in Arabidopsis Col-0 

wild type and in nudx7 SALK insertion mutant using either cauliflower mosaic virus p35S promoter, 



 

Brachypodium distachyon pBDEF1α promoter or the maize ubiquitin pZmUBIL promoter.  Maize and 

Arabidopsis transgenic lines showing different levels of expression of NUDX or PARP were selected 

for functional analysis. ZmNUDX Mutator transposon insertion lines and AtNUDX7 T-DNA insertion 

lines were obtained from the Maize genetics cooperation stock center and the Nottingham seed 

stock center respectively, characterised and used as control lines. Functional analysis of the 

generated maize and Arabidopsis lines was carried out using a hydroxyurea induced-DNA damage 

assay, a paraquat-induced oxidative stress assay and water deficit experiments in automated 

platforms. 



SUMMARY 

The main objective of this study was to generate maize and Arabidopsis lines with an altered energy 

homeostasis with an aim of improving tolerance to drought, oxidative and genotoxic stresses 

through manipulation of the levels of Poly(ADP-ribose) polymerase (PARP) and Nudix hydrolase 

proteins (NUDX) using genetic engineering approach. Chapter 1 is a review of the poly(ADP-

ribosyl)ation pathway (PAR)  and its role in energy homeostasis and stress response. The PAR 

pathway proteins PARP, PARG and NUDX are described in details including their Arabidopsis and 

maize homologues, their protein domain structures, products, substrate and their roles in abiotic, 

biotic and genotoxic stresses. Chapter 2 is a review paper that was published in the International 

Journal of Developmental Biology in September 2013. The principles and molecular tools of genetic 

transformation are described including shoot regeneration, gene delivery methods, commonly used 

selectable marker and reporter genes, different types of promoters and the vectors for higher plants 

transformation. In concluding, the Arabidopsis and maize transformation process at the VIB Center 

for Plant System Biology (PSB), Department of Plant Biotechnology and Bioinformatics, Ghent 

University is described. Chapter 3 gives an overview of some of the genetic techniques used in 

modulating the Arabidopsis and maize poly(ADP-ribosyl)ation pathway proteins in our study. T-DNA 

insertional mutagenesis used in generating Arabidopsis mutants is described as well as transposon 

insertional mutagenesis for maize mutants. Uniform Mu transposon insertion collection is further 

elaborated giving its advantages over other maize mutant collections. We also detail the latest 

ground-breaking technology for genome editing using CRISPR/Cas9 that was used in altering 

ZmPARP catalytic domains. Chapter 4 focuses on the maize PARP genes and the alteration of their 

gene expression using RNAi hairpin silencing and CRISPR/Cas9 gene editing system. Characterization 

and gene expression analysis of the transgenic PARP lines is described. We obtained lines showing 5-

6 fold downregulation of the ZmPARP1 gene using RNAi hairpin silencing and more than 200bp 

deletion in ZmPARP2 catalytic domain on using the CRISPR gene editing system. The lines are 

analyzed for their genotoxic stress response using the hydroxyurea induced-DNA damage assay. The 

ZmPARP1 RNAi lines showed a trend of sensitivity to the DNA damage while mixed phenotypes for 

the ZmPARP2 CRISPR lines were observed, showing the importance of carrying out the assay using 

lines with stable and uniform CAS9-induced mutation. Evaluation of the lines for water deficit 

response was carried out together with maize NUDX gene, described in chapter 5 whereby the RNAi 

PARP lines showed a trend of sensitivity while the CRISPR lines showed a trend of tolerance to water 

deficit. Chapter 5 makes a shift to the NUDX genes in which AtNUDX7 and its two maize homologues 

ZmNUDX2 and ZmNUDX8 were overexpressed using either maize ubiquitin or Brachypodium 



 

pBDEF1α constitutive promoters in maize. In addition, a Mutator transposon insertion line in 

ZmNUDX8 gene was identified from the Uniform Mu collection. Lines with high, medium and low 

levels of overexpression were obtained and T3 lines with homozygous insertion of the transgene 

generated. A selected number of lines were analysed for their paraquat-induced oxidative stress 

response and water deficit stress responses in an automated platform at PSB-VIB-UGent. One 

AtNUDX7 OE event resulted in significant tolerance to water deficit stress in one experiment and a 

strong tendency to water deficit stress tolerance in a second experiment but the OE ZmNUDX events 

responded like wildtype to water deficit stress. The AtNUDX7 and ZmNUDX2 OE events resulted in 

sensitivity to paraquat induced-oxidative stress. In Chapter 6 the AtNUDX7 and its two ZmNUDX 

homologues are overexpressed in Arabidopsis. The lines were analysed for their yield and yield 

related-parameters and also functional analysis was carried out for their oxidative and water deficit 

stress response. We make a first reporting of altered seed yield and yield related parameters in lines 

with modulated AtNUDX7 gene expression. Several lines overexpressing AtNUDX7 in Col-0 

background showed a significant increase in total seed weight, seed number, seed size and mass in 

addition to early flowering time, reduced rosette leaf number and inflorescent height. Three 

AtNUDX7 overexpression Arabidopsis lines showed significant tolerance to paraquat induced 

oxidative stress. In addition an AtNUDX7 and two ZmNUDX Arabidopsis overexpression lines showed 

a trend of tolerance to mild drought stress in an automated platform at PSB-VIB-UGent. In Chapter 7 

the overall performance of the NUDX and PARP genes in maize and Arabidopsis observed in our 

study are discussed. Summary tables of the currently published morphological and stress 

phenotypes on different poly(ADP-ribosl)ation pathway genotypes and a summary table of the 

phenotypes we obtained in our study are shown. The future perspectives are discussed and an 

overview of the currently published enzymatic assays in Arabidopsis NUDX and PARP mutants 

shown. 
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Abstract 

Poly(ADP-ribosyl)ation (PAR) is a posttranslational protein modification process in which ADP-ribose 

subunits from NAD+ are covalently attached to target proteins, a process mediated by the Poly(ADP-

ribose) Polymerase enzyme. PAR activity can be reversed by poly(ADP-ribose) glycohydrolases 

generating free ADP-ribose molecules that can be degraded into easily recyclable nucleotides, AMP 

and ribose-5-phosphate, by an ADP-ribose specific Nudix hydrolase enzyme. The AMP produced can 

be utilised to replenish the ATP and NAD+ leading to maintenance of cellular homeostasis. This 

pathway which has been broadly studied in animals is reported to play an important role in DNA 

repair, genotoxic stress response, chromatin structure, transcription regulation, apoptosis and cell 

cycle activities. PAR has been implicated in several plant physiological processes and described as an 

important regulatory mechanism modulating plant responses to abiotic and biotic stresses. This 

chapter gives an overview of the PAR pathway and its role in energy homeostasis, PAR proteins and 

their role in plant biotic and abiotic stress response. 
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1.1 Energy Homeostasis in plants  

1.1.1 General background 

Plants have to maintain high energy levels to grow and reproduce optimally. However, maintenance 

of this energy state is a daily challenge since in their natural environment plants need to cope 

regularly with multiple mild or severe stresses of biotic and abiotic nature consuming a lot of energy 

in the stress response mechanisms and in their struggle for survival. The decrease in energy content 

in a cell and in the whole plants can only be tolerated within a narrow range, further drop in the 

energy content below a certain level results in cellular damage which eventually becomes 

irreversible causing the death of the plant cell and ultimately the whole plant (De Block and Van 

Lijsebettens, 2011). High energy consumption enhances the rates of respiration resulting in the 

production of reactive oxygen species (Rizhsky et al., 2002; Tiwari et al., 2002). It has been shown 

that strong stresses in plants induce poly(ADP-ribosyl)ation  activity  causing a breakdown in the 

Nicotinamide Adenine Dinucleotide (NAD+) pool and enhanced mitochondrial respiration (De Block 

et al., 2005). The enzyme responsible, Poly(ADP-ribose) Polymerase (PARP), is activated by DNA 

damage caused by the free radicals of reactive oxygen species (Vira´g and Szabo´, 2002). PARP uses 

NAD+ as a substrate to synthesize polymers of ADP-Ribose on a range of nuclear enzymes. Stress 

induced depletion of NAD+ results in a depletion of energy in turn, since ATP molecules are required 

to resynthesize the depleted NAD+.   

Many strategies to improve tolerance to stress have been developed in plants starting from 

conventional breeding methods to marker assisted breeding, giving desirable traits such as stress 

tolerance but they generally take a long time and are limited to the available germplasm. Genetic 

engineering overcomes fertilization restrictions within plant species and allows overproduction or 

reduction of specific proteins to improve plant performance in adverse environmental conditions 

and hence yield.  Indeed, plants have been genetically modified to overproduce detoxification 

enzymes such as superoxide dismutases to scavenge reactive oxygen species, to accumulate 

osmoprotectants such as glycine betaine or proline in water deficit or salt stress condition, to 

overproduce abscisic acid, a plant hormone that regulates the adaptive response of plants to 

environmental stresses such as drought, salinity, and cold (Yang et al., 2010). In this work, we focus 

on the role of the PAR pathway in energy use efficiency and homeostasis, its role in stress reaction 

and its potential in generating stress tolerance in plants. Indeed, different reports have shown that 

when the stress-induced energy consumption is reduced by enhancing the energy use efficiency, the 

plant could overcome peak stresses or have the opportunity to adapt to moderate but persistent 

stress (Amor et al., 1998; De Block et al., 2005; Hayashi et al., 2005). De Block et al. (2005) showed 
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that down-regulation of PARP gene in Arabidopsis and Brassica napus by RNAi gene silencing 

resulted in plants with reduced NAD+ depletion and ATP consumption and were tolerant to a broad 

range of abiotic stresses such as high light, drought, and heat.  Therefore, breeding or genetic 

engineering for high energy-use efficiency under stress conditions is a valuable approach to enhance 

overall stress tolerance of crops. The higher energy-use efficiency avoids the need for a too intense 

mitochondrial respiration and consequently reduces the formation of reactive oxygen species. Since 

crop yields are frequently lowered by biotic and abiotic stresses, one of the most effective strategies 

to improve agricultural output is to breed or engineer plants tolerant of, or resistant to stress. 

1.1.2 Poly(ADP-ribosyl)ation Pathway 

 

Fig. 1: Role of Poly(ADP-ribosyl)ation pathway in stress response and energy homeostasis. Reactive oxygen 
species (ROS) produced during abiotic stress may lead to a single or double stranded break in the DNA 
triggering PARP activity. PARP catalyses the formation of a poly(ADP-Ribose) chain on free proteins by 
sequential addition of ADP-ribose molecules from NAD+.  PARG catalyses the catabolism of the poly(ADP-
Ribose) chain into free ADP-ribose monomers and polymers which are hydrolysed to AMP and Ribose 5-
Phosphate by activity of ADP-Ribose specific NUDX enzyme. AMP is a ready precursor of ATP which can be 
used in replenishing the NAD+ pool. 

Poly(ADP-ribosyl)ation (PAR) is a posttranslational protein modification process mediated by the 

PARP enzyme that tags long-branched poly(ADP-ribose) polymers to nuclear target proteins such as 
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histone, transcription factors and most prominently on the PARP enzyme at DNA break sites 

through an auto-modification process to activate DNA repair processes. During stresses, there is a 

concomitant production of reactive oxygen species (ROS) which may lead to a single or double 

stranded break in the DNA strand which in turn activates the PARP enzyme. Activated PARP 

catalyzes the transfer of ADP-ribose moiety from the substrate nicotinamide adenine dinucleotide 

(NAD+) to glutamic acid residue in the target acceptor protein followed by the further transfer of 

ADP-ribose monomers onto the newly formed adduct, forming the poly(ADP-ribose) chain. This 

modification can be reversed by poly(ADP-ribose) glycohydrolase (PARG) that hydrolyzes the 

poly(ADP-ribose) polymers to prevent excessive accumulation of poly(ADP-ribose), generating free 

ADP-ribose monomers and polymers. The free ADP-ribose is degraded into AMP and ribose-5-

phosphate by an ADP-ribose specific Nudix hydrolase enzyme, also known as ADP-ribose 

pyrophosphatases (Kim et al., 2005; Briggs and Bent, 2011). Production of AMP through 

degradation of ADP-ribose generated by PARG has been reported to be an important pathway to 

re-establish utilizable energy units (Rossi et al., 2002). The ATP produced can be utilized to replenish 

the NAD+ pool (see Fig 1. above).  

In Arabidopsis, NAD+ is produced through De novo synthesis from Aspartate or by recycling the 

NAD+ metabolite, Nicotinamide, through the salvage pathway (Hashida et al 2009; De Block and Van 

Lijsebettens, 2011). NAD+ acts as a substrate for (cyclic)ADP-ribose (cADPR) generation, a calcium 

mobilizing molecule important in abscisic acid (ABA) biosynthesis. NAD+ is also an important 

substrate in cellular respiration pathways, redox reactions and production of NADP+, a key molecule 

in photosynthesis and lipid biosynthesis (see Fig 2.). 
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Fig. 2: Metabolism of Nicotinamide Adenine Dinucleotide (NAD+) in plants. Biosynthesis through De novo or 
salvage pathways and utilisation through the Poly(ADP-ribosyl)ation, (cyclic)ADP-ribose (cADPR) and NADP+ 
synthesis, redox reactions and cellular respiration (figure adapted from Vanderauwera et al., 2007) 

PAR occurs in multicellular organisms including plants, animals and some lower unicellular 

eukaryotes, but is absent in prokaryotes and yeast. It is associated with DNA damage responses and 

programmed cell death.  PAR plays an important role within the cellular response to genotoxic 

stress and modulates DNA synthesis and repair, maintenance of genomic stability, chromatin 

structure, transcription regulation, apoptosis, and cell cycle activities (D’Amours et al., 1999; Burkle, 

2005; Kim et al., 2005). The extent of PAR is directly proportional to the severity of the stress and 

determines the type of cellular response, ranging from cellular defence under mild stress to DNA 

repair under moderate stress and to cell death under severe stress (Burkle et al., 2001). In the 

absence of DNA single and double strand breaks, poly(ADP-ribosyl)ation seems to be a very rare 

event in live cells, but it can increase over 100-fold upon DNA damage (Juarez-Salinas et al., 1979). 

More functions of the poly(ADP-ribosyl)ation pathway will be described in the topics below 

describing the respective gene families in PAR recycling.  

1.2 Poly(ADP-ribose) Polymerase (PARP) Family 

Poly(ADP-ribose) polymerases (PARPs) are a large family proteins displaying a conserved PARP 

catalytic domain. The enzymes catalyze the polymerization of ADP-ribose units from donor NAD+ 

molecules onto target proteins, resulting in the attachment of linear or branched poly(ADP-ribose) 

polymers as described above. This enzymatic activity has been detected in eukaryotes ranging from 
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plants to mammals, but is absent in yeast (Rolli et al. 2000; Amé et al. 2004). The PARP protein 

family is involved in a diverse number of functions including DNA damage detection and repair, 

transcriptional regulation, intracellular trafficking, chromatin modification, mitotic apparatus 

formation, centrosome duplication telomere integrity, and cell death (Burkle, 2005).  In humans, the 

PARP family members are encoded by 18 different genes (Amé et al., 2004).  

Human PARP1, the most extensively studied, is a 113 kDa highly conserved and abundant nuclear 

enzyme. It is catalytically active as a dimer and is composed of three functional domains: an N-

terminal DNA-binding domain containing two zinc-finger motifs essential for binding to single or 

double-stranded breaks with high affinity, a central auto-modification domain and a C-terminal 

catalytic domain, which is the most conserved region between PARP1 and PARP2. The catalytic 

domain contains a highly conserved block of 50 amino acids, referred to as the PARP signature. It 

sequentially transfers ADP ribose subunits from NAD+ to protein acceptors, thereby forming the 

poly(ADP-ribose) chain (Rouleau et al 2010). PARP1 binds to a variety of DNA structures, including 

single- and double-strand breaks, crossovers, cruciforms, and supercoils, as well as some specific 

double-stranded sequences (Rolli et al. 2000). The activities and functions of the other PARP family 

members have not been studied to the same extent as PARP1.  

PARP2 is a 62 kDa enzyme, also located in the nucleus, and is activated by DNA strand breaks.  It is 

composed of an N-terminal DNA-binding domain without zinc-fingers and a C-terminal catalytic 

domain containing the PARP signature (Vira´g and Szabo´, 2002). PARP2 was discovered as a result of 

the presence of residual DNA-dependent PARP activity in embryonic fibroblasts derived from PARP1 

deficient mice (Ame et al., 1999). PARP2 interacts with PARP1 sharing common proteins involved in 

the Single Strand Break Repair (SSBR) and Base Excision Repair (BER). In addition, both PARP1 and 

PARP2 localize to mitotic centromeres, the chromosomal regions where kinetochores form to 

capture microtubules from the mitotic spindle (Kim et al., 2005). PARP1 and PARP2 are so far the 

only enzymes with catalytic activity immediately stimulated by DNA strand breaks (Ame et al., 2004). 

PARP3 is a 67KDa enzyme, identified as a core component of the centrosome and preferentially 

localised to the daughter centriole throughout the cell cycle (Augustin et al., 2003). Similar to PARP2, 

it contains a small 54 KDa N-terminal domain which is responsible for its centrosomal localisation. 

Augustin et al. (2003) showed that over-expression of PARP3 or its N-terminal domain does not 

influence centrosomal duplication or amplification but interferes with the G1/S cell cycle 

progression. In addition, PARP3 interacts with PARP1 during its localisation at the centrosome, 

suggesting a link between the DNA damage surveillance network and the mitotic fidelity checkpoint. 

It also catalyses the synthesis of poly(ADP-ribose) in vitro and in purified centrosome preparations. 
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PARP4, also known as VPARP (Vault PARP) is the largest of the family (192.6 KDa) since it was 

discovered in association with vault particles, cytoplasmic ribonucleoprotein, whose biological 

function is presently unknown but are proposed to be part of the nuclear pore complex and have 

also been implicated in multidrug resistance (Kickhoefer et al., 1999). PARP4 poly(ADP-ribosyl)ates 

the major vault protein within the vault particle and to a lesser extent itself. The N-terminal region 

of PARP4 contains a BRCT domain similar to the auto modification domain of PARP1, suggestive of a 

related function (Burkel, 2005). 

Tankyrase1 (PARP5a) is a telomere-associated enzyme that binds to and poly(ADP-ribosylates)  the 

telomeric-repeat binding factor 1 (TRF1), a negative regulator of telomerase (Smith et al., 1998) and 

also auto-poly(ADP-ribosylate) itself. It contains the smallest domain homologous to PARP1 that still 

displays PARP enzymatic activity. The C-terminus of tankyrase displays homology to the PARP1 

catalytic region. Tankyrase activity does not depend on the presence of DNA strand breaks, since it 

lacks the DNA-binding domain, but seems to be regulated by the phosphorylation state of the 

protein. Over-expression of Tankyrase1 promotes ADP-ribosylation of TRF1, leading to its release 

from telomeres and to telomere elongation (Vira´g and Szabo´, 2002; Burkel, 2005). 

Tankyrase2 (PARP5b) was originally described as a Golgi-associated protein (Chi and Lodish, 2000). It 

is an extranuclear PARP ubiquitously expressed in all tested tissues and its protein sequence displays 

85% identity to Tankyrase1. The domain structures of the two proteins are strikingly similar except 

for the N-terminal region which lacks the HSP (Histidine-proline-serine rich) domain present in 

Tankyrase1. The two proteins also interact with the same set of proteins among which is TRF1 and 

probably mediate overlapping functions in telomere homeostasis, vesicle trafficking (glucose 

transport and insulin signalling), poly(ADP-ribosyl)ation of some of their interaction partners as well 

as themselves. However, Tankyrase2 displays preferential automodification activity and its over-

expression caused rapid poly(ADP-ribosyl)ation-dependent cell death (Ame et al., 2004; Burkel, 

2005). 

In both maize and Arabidopsis, two PARP homologues were initially identified, one containing the 

classical Zn-finger DNA binding domain in the N-terminal region and is highly similar in its sequence 

and domain organization to the PARP1 enzyme from human (Chen et al., 1994; Lepiniec et al., 1995; 

Babiychuk et al., 1998). The second one is structurally a non-classical PARP protein lacking the 

characteristic N-terminal Zn-finger domain. The Arabidopsis genome encodes at least three putative 

PARPs [At2g31320 (PARP1), At4g02390 (PARP2), and At5g22470 (PARP3)]; Two Zea mays homologs 

of AtPARP2 have also been characterized: ZmPARP1 a 110-kDa Zn-finger poly(ADP-ribose) 

polymerase (ZAP) and ZmPARP2 a 73-kDa non-classical poly(ADP-ribose) polymerase (NAP) 
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(Babiychuk et al., 1998). These AtPARP1 and AtPARP2 are stress-inducible, structurally and 

functionally homologous to human PARP1 and 2 counterparts respectively. They are localized in the 

nucleus and are activated by DNA strand breaks (Babiychuk et al., 1998; Doucet-Chabeaud et al., 

2001). AtPARP3 is expressed in seed tissue and was shown to be important for seed storage and 

viability (Rissel et al., 2013). In addition, it is reported that the catalytic domain of AtPARP3 has 

acquired changes that may interfere with its enzymatic activity (Lamb et al., 2012). Zhang et al. 

(2015) carried out a double and triple mutant analysis on the Arabidopsis PARPs and indicated that 

AtPARP1 and AtPARP2, but not AtPARP3, play a similar but not critical role in DNA repair in 

Arabidopsis seedlings. Fig. 3 shows a schematic representation of the PARP1 and PARP2 in 

Arabidopsis, maize and human as obtained from the NCBI’s conserved domain database (Marchler-

Bauer et al., 2015). 

 

Fig. 3: Schematic domain architecture of the PARP 1 and 2 genes in Arabidopsis, Maize and Humans. The N-
terminal DNA binding domain containing two Zinc finger motifs (ZN) in PARP 1 and SAP motifs in some PARP2 
essential for DNA binding activity, PADR1 domain whose function is unknown, the Central auto- modification 
domain represented by the BRCT (Breast Cancer carboxy-terminal domain) and a C- terminus region containing 
the WGR domain proposed to function as a nucleic acid binding domain and the highly conserved 
PARP_Catalytic domain. (Figures adapted from NCBI’s conserved domain database (Marchler-Bauer et al., 
2015)). 

Fig. 4 shows the close relationship of stress induced PARP1 and PARP2 proteins in Human, 

Arabidopsis and Maize in a phylogenetic tree generated using MEGA6 software (Tamura et al., 

2013).  
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Fig. 4: Phylogenetic tree showing evolutionary relationship of Arabidopsis, maize and human PARP1 and PARP2 
proteins. Figure generated using MEGA6 software (Tamura et al., 2013). 

1.2.1 Role of plant PARP in stress response 

In plants, PAR has been implicated in several physiological processes and described as an important 

regulatory mechanism modulating plant responses to abiotic and biotic stresses. Amor et al. (1998) 

showed the involvement of PARP enzyme in mild and severe oxidative stress by mediating DNA 

repair and programmed cell death (PCD) processes respectively in cultured soybean cells. The study 

showed that in soybean cells, PCD is preceded by a drop in cellular NAD+ levels which indicates the 

activation of PARP. Application of PARP inhibitors, 3-aminobenzamide and nicotinamide, to soybean 

cells culture inhibited PCD induced by high dose of hydrogen peroxide. Additionally, transient 

overexpression of Arabidopsis PARP gene (app) in sense orientation in cultured soybean cells 

promoted DNA repair and inhibited cell death caused by mild oxidative stress but resulted in 

increased cell death upon severe oxidative stress. On the other hand overexpression of app gene in 

antisense orientation produced opposite effects: increased DNA nicks and inhibition of cell death at 

high but not mild doses of hydrogen peroxide. Doucet-Chabeaud et al. (2001) demonstrated that 

ionising radiation-induced DNA damage triggers rapid and massive accumulation of Arabidopsis 

AtPARP1 and AtPARP2 transcripts. After exposure to ionising radiation, the AtPARP1 transcripts first 

accumulated in all Arabidopsis plant organs followed by an increase in the AtPARP1 protein levels 

only in tissues that contain large amounts of rapidly dividing cells indicating a link between AtPARP1 

activity and maintenance of DNA template integrity during replication. On the other hand, 

expression of AtPARP2 gene was induced by different environmental stresses such as severe water 

deficit (5-7 days without watering) and application of 50µM cadmium in the growing medium 

indicating an additional role for AtPARP2 independent of DNA damage. A recent study by Song et al. 

(2015) reported that in contrast to animals, Arabidopsis PARP2 rather than PARP1 plays a major 

role in DNA damage response induced by bleomycin, mitomycin C or gamma-radiation. In the study, 

more than 50% Arabidopsis parp2 mutants failed to generate true leaves 14 days after germination 

on MS medium supplemented with 1.5µg/ml of bleomycin similar to parp1parp2 double mutants 

whereas approximately 35% of Arabidopsis parp1 mutants failed to generate true leaves under 
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similar bleomycin treatment. Upon 30µM mitomycin C treatment, parp2 mutants and parp1parp2 

double mutant plants had significantly higher number of plants without true leaves 14 days after 

germination compared to wildtype whereas parp1 mutants had moderately increased sensitivity to 

mitomycin C but not significant. A remarkable increase in amount of poly(ADP-ribosyl)ated proteins 

were detected in wildtype plants 20 to 60 minutes after 150Gy of gamma irradiation. The gamma-

induced PARP activity was reduced in parp1 mutants while a higher reduction was observed in 

parp2 single mutant and an even more complete reduction in gamma-induced PARP activity was 

observed in parp1parp2 double mutant (Song et al., 2015). De Block et al. (2005) also showed that 

stresses such as drought, high light and heat activate PARP causing NAD+ breakdown and ATP 

consumption in plants and that when PARP activity is reduced by means of chemical inhibitors or by 

gene silencing, cell death is inhibited and plants become tolerant to a broad range of abiotic 

stresses. In Fig. 5, RNAi silencing of PARP genes through overexpression of dsRNA constructs 

containing 5‘-end of the Arabidopsis AtPARP1 or AtPARP2 genes in Brassica napus and Arabidopsis  

thaliana enhanced the stress tolerance of the plants to drought and heat stresses. The study 

showed that the frequency with which stress tolerant lines were obtained indicated that 

downregulation of PARP2 was more effective that downregulation of PARP1. The group further 

indicated that Arabidopsis lines carrying a hairpin silencing construct targeting the highly conserved 

catalytic domain of AtPARP2 allowed silencing of both AtPARP1 and AtPARP2 and that the lines 

were tolerant to high light stress. 

 

Fig. 5: Drought and heat stress tolerance in Brassica and Arabidopsis upon PARP downregulation. (a) 
Phenotypes of a control and a 3 transgenic: 1 azygous segregating Brassica napus hpAtParp2 line at the end of 
a stress experiment where heat and drought had been combined. (b) Phenotypes of Arabidopsis thaliana 
ecotype C24 lines at the end of a drought stress experiment (De Block et al., 2005). 

Though the stress tolerance obtained was attributed solely to a maintained energy homeostasis due 

to reduced NAD+ consumption, genome wide transcript analysis of stressed PARP2-deficient 
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transgenic Arabidopsis revealed the induction of specific ABA signalling pathways that might be 

steered through increased levels of the cyclic nucleotide cyclic ADP-ribose, facilitating the induction 

of a wide set of defense-related genes (Vanderauwera et al., 2007). Fig. 6 is a heatmap showing 

gene expression of Arabidopsis PARP and PARG genes under different perturbations (biotic, 

chemical, hormone, drought stress, genotoxic stress, osmotic stress and oxidative stress) which we 

selected from a wide microarray database in Genevestigator (Zimmermann et al., 2004). The figure 

was generated using Genesis software (Sturn et al., 2002) and the expression level ranges from -3.0 

(light blue) to +3.0 fold expression (Red) compared to the expression in untreated controls.  

 

Fig. 6: Heatmap showing the gene expression pattern of Arabidopsis PARP1, 2 & 3 and PARG1 genes under 
biotic, chemical, hormonal, drought, genotoxic, osmotic and oxidative stress perturbations using the 
Genevestigator microarray data analysis software (Zimmermann et al., 2004). Fold expression level ranges 
from -3.0 (light blue) to +3.0 (Red) compared to the expression in untreated controls (Sturn et al., 2002)  

Plant PARP has also been implicated in biotic stress response; inhibition of PARP in Arabidopsis 

triggers certain innate immune responses (such as callose deposition, lignin deposition, pigment 

accumulation and phenylalanine ammonia lyase activity) on treatment with microbe-associated 

molecular patterns (MAMPs) such as flg22 and elf18 (Adams-Phillips et al., 2010). In a recent 
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reporting, Feng et al. (2015) showed that AtPARP1 and AtPARP2 positively regulate immune gene 

activation and plant resistance to virulent bacterial pathogen infection whereas Arabidopsis parg1 

mutant displayed enhanced immune gene activation and immunity to pathogen infection thus 

indicating that the reversible posttranslational PARylation process mediated by AtPARPs and 

AtPARGs plays a crucial role in mounting successful innate immune responses upon MAMPs 

perception in Arabidopsis. Song et al. (2015) also showed that AtPARP2 makes a greater 

contribution than AtPARP1 to plant immune responses including restriction of pathogenic 

Pseudomonas syringae pv. tomato growth and reduction of pathogen induced DNA damage. The 

versatile function of PARP in plant growth is shown whereby chemical downregulation of PARP 

activity using 3-Methoxybenzamide (3MB) reduced the accumulation of stress protective agents 

such as anthocyanin and ascorbate under stress conditions which was correlated with enhanced 

biomass production and growth of Arabidopsis plants (Schulz et al., 2012) and later in a non-stress 

condition where similar inhibition of PARP using 3MB led to enhanced growth of Arabidopsis 

thaliana through increased cell number in the leaves indicating a regulatory function of PARP within 

cell growth and potentially development (Schulz et al., 2014). 

1.3 Poly(ADP-ribose) glycohydrolase (PARG) Family 

Poly(ADP-ribose) glycohydrolase (PARG) is an enzyme in the poly(ADP-ribosyl)ation pathway that 

hydrolyzes the glycosidic linkages between the ADP-ribose units of Poly(ADP-ribose) chain producing 

free ADP-ribose monomers and polymers (Davidovic et al., 2001). It is an important player in 

Poly(ADP-ribose) homeostasis, possessing both endoglycosidic and exoglycosidic activity and being 

the only enzyme known to catalyse the hydrolysis of ADP-ribose polymers preventing their excessive 

accumulation. This protein was first reported by Miwa and Sugimura in 1971, it has been identified 

in mammalian cells, flies, worms and plants. It has a catalytic domain, putative regulatory domain, 

nuclear localization signal and a nuclear export signal (Davidovic et al., 2001). Only the catalytic 

domain shows a high level of homology across species, the arrangement of the other motifs and 

domains within the protein varies from species to species (Amé et al. 2000).  

In contrast to PARPs, only one gene for PARG has been detected in mammals and insects. In humans, 

the hPARG gene is expressed in 3 different isoforms encoded by the same open reading frame and 

targeted either to the nucleus or cytoplasm (Meyer-Ficca et al., 2004). Over-expression studies 

revealed that the largest isoform of hPARG is targeted to the nucleus while the two smaller isoforms 

show mostly cytoplasmic localization.  In Arabidopsis however, two adjacent PARG genes resulting 

from gene duplication have been identified. Multiple PARG genes have also been predicted in 

several plants including rice, poplar, tomato and maize (Briggs and Bent, 2011). PARG has not been 
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vastly characterised like its counterpart PARP and much of its function remains unknown possibly 

because of its low abundance in cells and extreme sensitivity to proteases making it difficult to study 

(Bonicalzi et al., 2005). However few functions have recently been reported both in animals and 

plants. 

In animals PARG plays an important role in embryonic development (Hanai et al., 2004), cell death 

(Erdelyi et al., 2009) and DNA repair (Fisher et al., 2007; Fujihara et al., 2009). Drosophila mutants 

lacking a conserved catalytic domain of PARG exhibited lethality in the larval stages at the normal 

development temperature of 25°C while those that developed to adult stage at elevated 

temperature of 29°C showed progressive neurodegeneration with reduced locomotor activity and a 

short lifespan (Hanai et al., 2004). Using cell lines with stable silencing of PARG and PARP, Erdelyi et 

al. (2009) demonstrated PARG similar to PARP1 serves as an apoptosis to necrosis switch in severe 

oxidative stress. Additionally, Fisher et al. (2007) identified PARG as a critical component of single-

strand break repair that accelerates the repair process in concert with PARP1. This role was further 

elucidated by functional inhibition of PARG which showed enhanced lethality of mouse cell lines 

exposed to DNA damaging agent (Fujihara et al., 2009). 

There are two adjacent genes encoding PARG in the Arabidopsis genome (TEJ / AtPARG1 At2g31870; 

AtPARG2, At2g31865) as well as a pseudogene At2g31860 (Doucet-Chabeaud et al., 2001; Panda et 

al., 2002). AtPARG1 has been shown to play a role in regulating circadian rhythms; parg1 mutant 

plant has increased leaf movement, early flowering under both short and long days and lengthened 

the period of all known circadian clock-controlled gene expression (Panda et al., 2002). A few recent 

studies indicate that PARG, just like PARP play a role in plant biotic and abiotic stress responses. The 

heatmap in Fig. 6 above shows induction of AtPARG1 upon pathogenic attacks, chemical and abiotic 

stress such as drought, osmotic and genotoxic stresses.  AtPARG2 was significantly upregulated in 

multiple resistance-avirulent gene interactions between Arabidopsis and Pseudomonas syringae pv 

tomato DC3000 (Adams-Phillips et al., 2008). In addition, a robust up-regulation of AtPARG2 gene 

expression was observed upon infection with Botrytis cinerea (Adams-Phillips et al., 2010). Further 

functional analysis indicates that parg1 mutant plant is sensitive to microbe-associated molecular 

pattern (MAMP) elf18 and plants exhibit exaggerated seedling growth inhibition. The same group 

further reported that both Arabidopsis parg1 and parg2 knockout plants show accelerated the onset 

of disease symptoms upon infection with Botrytis cinerea (Adams-Phillips et al., 2010). These 

observations were also reported by Feng et al. (2015) who carried out a genetic screen and 

identified elevated immune gene expression upon multiple MAMP and pathogen treatment in 

Arabidopsis parg1 mutant. Oxidative stress induced through application of paraquat in Arabidopsis 
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resulted in upregulation of AtPARG2 expression (Ogawa et al., 2009). Li et al. (2011) described the 

role of PARG in drought, osmotic and oxidative stress tolerance in Arabidopsis indicating that parg1 

mutant plants showed reduced tolerance to drought (withholding water), osmotic (mannitol 

treatment), and oxidative stress (methyl viologen treatment). The plants had an increased level of 

cell damage under osmotic and oxidative stress and reduced survival under drought stress when 

compared with the wild type plants. Additionally, the germination rates of the parg1 mutant plants 

were reduced upon osmotic or oxidative stress compared with wildtype seeds indicating PARG’s 

important role in abiotic stress response in plants. Upon extensive biochemical assays Feng et al. 

(2015) concluded that AtPARG1 and not AtPARG2 possess detectable poly (ADP-ribose) 

glycohydrolase activity in vitro and in vivo. Another recent study on DNA repair of AtPARPs and 

AtPARGs, based on their mutant phenotypes under genotoxic stress, indicated that AtPARG1 is the 

key factor promoting cell survival among the enzymes regulating poly(ADP-ribosyl)ation. In the 

reporting, mutation of PARG1 resulted in increased DNA damage level and enhanced cell death in 

plants after bleomycin treatment indicating that PARG1 modulates the DNA repair process by 

preventing over-induction of DNA repair genes (Zhang et al., 2015).  

1.4 The Nudix hydrolase family 

Nudix hydrolases are a widely distributed family of protein present in viruses, archaea, bacteria and 

eukaryotes and characterized by a conserved Nudix motif GX5EX7REVXEEXGU, where U represents a 

bulky hydrophobic amino acid such as Ile, Leu, or Val and X is any amino acid (Bessman et al., 1996). 

Almost all of the major substrates for these enzymes are nucleoside diphosphates linked to a 

moiety, X, hence the acronym “Nudix”. These substrates include: dinucleoside polyphosphates, ADP-

ribose, NADH, nucleotide sugars, or ribo- and deoxyribonucleoside triphosphates, coenzymeA, 

mRNA cap and FAD (Bessman et al., 1996; Dunn et al., 1999; Ogawa et al., 2005, 2008). 

Accumulation of these substrates may be toxic to the cell thus their intracellular levels need to be 

precisely regulated. Bessman et al. (1996) suggested the role of Nudix hydrolases in sanitizing or 

modulating the accumulation of these metabolites. 

The earliest characterized Nudix hydrolase is the MutT protein of Escherichia coli which 

preferentially hydrolyses 8-oxo-deoxyguanosine 5’ -triphosphate (8-oxo-dGTP), a mutagenic 

nucleotide formed by activity of reactive oxygen species on free guanine molecule, thereby 

preventing misincorporation of 8-oxo-GTP into DNA. 8-oxo-dGTP can pair with cytosine and adenine 

nucleotide with almost equal efficiency resulting in a spontaneous transverse mutation in the DNA 

(Maki and Sekiguchi, 1992). The E. coli mutT gene (Treffers et al., 1954) codes for a protein 

nucleoside triphosphate pyrophosphohydrolase (MutT) that specifically degrades 8-oxo-dGTP to 8-

http://www.nature.com/onc/journal/v21/n58/full/1206023a.html#bib45
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oxo-dGMP preventing misincorporation of 8-oxo-GTP into DNA during DNA synthesis (Maki and 

Sekiguchi, 1992). This early study led to the name of enzymes bearing a conserved MutT signature 

sequence to be called “MutT family”. Bessman et al. (1996) proposed a change of the family name to 

“Nudix hydrolase “ because the initial classification was misleading since many of the proteins in the 

family are not directly involved in preventing mutations nor do they catalyze the nucleoside 

triphosphate pyrophosphohydrolysis reaction originally described for MutT. In addition, all the 

enzymes characterized from that family hydrolysed a nucleoside diphosphate linked to a moiety X.  

The acronym of the family name was thus modified to NUDT and later to NUDX and the MutT 

proteins are then a subgroup in the Nudix hydrolase family. Studies of the Nudix hydrolase family 

have been carried out in E. coli, S. cerevisiae, mouse and humans (McLennan et al., 2006). Table 1 

summarises the plant species in which NUDX genes have been reported and the particular number 

of NUDXs in each species. Nudix hydrolases from Arabidopsis thaliana were used as a reference in 

this work. 

Table 1: Plants species and NUDX gene number currently reported in literature  

Plant No of NUDX genes  Reference 

Arabidopsis (Arabidopsis thaliana) 28 Yoshimura and Shigeoka, 2015 

Rice (Oryza sativa) 20 Yoshimura and Shigeoka, 2015 

Tomato (Solanum lycopersicum) 32 Yoshimura and Shigeoka, 2015 

Poplar plant (Populus trichocarpa) 53 Kraszewska, 2008 

Grape vine (Vitis vinifera) 30 Kraszewska, 2008 

Chrysanthemum (Chrysanthemum lavandulifolium) 8 Huang et al.,2012 

Barley (Hordeum vulgare)  14 Tanaka et al., 2014 

 

1.4.1 Arabidopsis Nudix hydrolases 

The first plant Nudix protein was isolated from Lupinus angustifolius as a diadenosine 

tetraphosphate (Ap4A) hydrolase (Maksel et al., 1998). So far however, Nudix hydrolases from 

Arabidopsis thaliana are the most substantially characterized in higher plants. Ogawa et al. (2005) 

reported that 24 Nudix hydrolase genes exist in Arabidopsis thaliana and their proteins can be 

classified into three types based on their subcellular localization: the cytosol (AtNUDX1 to -11), 

mitochondria (AtNUDX12 to -18), and chloroplast (AtNUDX19 to -24). Later, Mun˜oz et al. (2006) 

reported seven additional genes encoding Nudix hydrolases in the Arabidopsis genome: AtDCP2 

which was characterised as a novel Nudix hydrolase having mRNA-decapping activity (Gunawardana 

et al., 2008), AtNUDX25 which showed hydrolysis activity toward Ap4A; AtNUDX26 and AtNUDX27 

whose proteins were predicted to be located in chloroplasts (Yoshimura et al., 2007) and three other 

genes (At2g04440, At3g02780, and At5g16440) in which the Nudix motif was hardly conserved in 

http://www.nature.com/onc/journal/v21/n58/full/1206023a.html#bib45
http://www.nature.com/onc/journal/v21/n58/full/1206023a.html#bib45


Chapter 1 

29 

their respective proteins.  Yoshimura and Shigeoka (2015) sort to clarify the differences in the 

number of NUDX genes in Arabidopsis, he indicated that three genes (At2g04440, At3g02780, and 

At5g16440) lacked the Nudix motif and also renamed AtNUDX26 to 28 enzymes concluding that 

Arabidopsis has 28 Nudix hydrolase proteins. Table 2 gives a summary of the AtNUDX genes 

subcellular localisation and preferential recombinant protein substrate that defines their subfamily 

(Yoshimura and Shigeoka, 2015). 

Table 2: Arabidopsis AtNUDX subfamilies and subcellular localisation (Yoshimura and Shigeoka, 2015) 

Preferential  recombinant 

protein substrate (Subfamily) 

Subcellular localization AtNUDX member 

8-oxo-(d)GTP  Cytosol AtNUDX1 

ADP-ribose/NAD(P)H 

Cytosol AtNUDX2,6,7 and 10  

Mitochondrion AtNUDX14 

Chloroplast AtNUDX19 

GDP-mannose Cytosol AtNUDX9  

CoA 

Cytosol AtNUDX11  

Mitochondrion AtNUDX15 

Mitochondrion or Peroxisome AtNUDX15a 

ApnA/ppGpp 

Mitochondrion AtNUDX13 

Cytosol AtNUDX25  

Chloroplast AtNUDX26 and 27  

Thiamin diphosphate Chloroplast AtNUDX20  

FAD Chloroplast AtNUDX23  

mRNA cap Cytosol AtDCP2 

Not identified  

Cytosol AtNUDX3, 4, 5 and 8 

Mitochondrion AtNUDX12, 16, 17 and 18 

Chloroplast AtNUDX21, 22 and 24 

 

1.4.2  Cytosolic Nudix hydrolases  

Cytosolic Nudix hydrolases are Arabidopsis Nudix hydrolases targeted to the cytosol and include 

AtNUDX1 to 11, 25 and AtDCP2. Ogawa et al. (2005) reported that AtNUDX1 is a functional 

homologue of E. coli MutT and is involved in prevention of spontaneous mutation. The group 

showed that AtNUDT1 protein has the ability to hydrolyze 8-oxo-dGTP with a high affinity and 

completely reduce the increased frequency of spontaneous mutations in the Escherichia coli mutT 

strain. Further studies indicate that AtNUDX1 plays an important role in protection against oxidative 

DNA and RNA damage in plant cells through sanitization of their precursor pool in the cytosol of 

Arabidopsis cell since the levels of 8-oxo-dGTP in knock out AtNUDX1 increased significantly 

compared with those in wildtype plants under normal and oxidative stress conditions (Yoshimura et 
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al., 2007). However, Kraszewska (2008) indicated that AtNUDX1 mutant plants did not exhibit any 

noticeable changes in their phenotype both under normal or stressful condition, hence it remains to 

be shown whether NUDX1 mutation have any physiological effects in Arabidopsis plants. Zhang et al. 

(2013) demonstrated that AtNUDX5 promoter is pathogen responsive activated by both avirulent 

and virulent Pseudomonas syringae pv. tomato strains while Ogawa et al. (2005) showed that 

AtNUDX11 had specific activity towards coenzyme A. AtNUDX2, 6, 7, and 10 have been shown to 

have pyrophosphohydrolase activity toward both ADP-Ribose and NADH (Ogawa et al., 2005). In Fig. 

7, the relationship of AtNUDX2, 6, 7 and 10 and their maize homologues (ZmNUDX2, ZmNUDX8 and 

ACN26985) is shown in a phylogenetic tree generated using MEGA6 software (Tamura et al., 2013). 

 

Fig. 7: Phylogenetic tree showing evolutionary relationship of ADP-ribose specific AtNUDX proteins with their 
maize homologues. Figure generated using MEGA6 software (Tamura et al., 2013). 

The free ADP-ribose, produced during the reverse degradation of protein bound mono- or poly-(ADP 

ribose), is highly reactive and can mono-(ADP-ribosyl)ate proteins non-enzymatically thereby altering 

or eliminating their function.  Thus, ADP-ribose phyrophosphohydrolase activity of the NUDX 

proteins is very important in regulating the levels of free ADP-ribose and maintaining protein 

integrity in the cell. In addition, NADH pyrophosphatase activity is reported to be involved in 

regulation of the cellular NADH/NAD ratio which is important in maintaining the balance between 

the anabolic and catabolic pathways in the cell (Frick et al., 2015). Ogawa et al. (2009) showed that 

overexpression of AtNUDX2 encoding  ADP-ribose pyrophosphatase, confers enhanced tolerance of 

oxidative stress on Arabidopsis plants which results from maintenance of NAD+ and ATP levels by 

nucleotide recycling from free ADP-ribose molecules under stress conditions. In addition Ishikawa et 

al., 2010 showed that AtNUDX6 is a modulator of NADH rather than ADP-Rib metabolism and it 

significantly impacts the plant immune response as a positive regulator of NPR1-dependent salicylic 

acid signalling pathways.  

AtNUDX7, an ADP-Ribose/NADH pyrophosphohydrolase has been extensively studied and identified 

as a multiple stress induced gene. It has been shown to have impacts on both biotic and abiotic 
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stress (oxidative stress) responses (Bartsch et al., 2006; Jambunathan and Mahalingam, 2006; Ge et 

al., 2007; Adams-Phillips et al., 2008; Ishikawa et al., 2009; Jambunathan et al., 2010). AtNUDX7 

showed preferential activity for ADP-ribose and NADH when expressed in E. coli cells (Ge et al., 

2007). It has been proposed as the predominant NADH and ADP-Ribose Pyrophosphatase in 

Arabidopsis cells (Ishikawa et al., 2009). AtNUDX7 has also been shown to play a role in seed 

germination (Zeng et al., 2014). 

1.4.3 Role of cytosolic Nudix hydrolases in stress response 

Just like PARP and PARG, a number of ADP-ribose/NADH pyrophosphohydrolase specific NUDX genes 

have been reported to play a vital role in biotic and abiotic stress response. Regulation of ADP-ribose 

and/or NADH levels through the hydrolysis activity of AtNUDX2, 6 and 7 have been shown to 

contribute to the modulation of defence responses to both biotic and abiotic stresses. The heatmap 

in Fig. 8 shows the gene expression of AtNUDX2, 6, 7 and 10 under different perturbation (biotic, 

chemical, hormone, drought stress, genotoxic stress, osmotic stress and oxidative stress) which we 

selected from a wide microarray database in Genevestigator (Zimmermann et al., 2004). The figure 

was generated using Genesis software (Sturn et al., 2002) and the expression level ranges from -3.0 

(light blue) to +3.0 fold expression (Red) compared to the expression in untreated controls. 

AtNUDX6 and 7 are the most highly upregulated under pathogenic attacks, chemical and hormonal 

treatments, drought and genotoxic stresses. 
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Fig. 8: Heatmap showing the gene expression pattern of ADP-ribose specific Arabidopsis NUDX  genes under 
biotic, chemical, hormonal, drought, genotoxic, osmotic and oxidative stress pertabations using 
Genevestigator microarray data analysis software (Zimmermann et al., 2004). Fold expression level ranges 
from -3.0 (light blue) to +3.0 (Red) compared to the expression in untreated controls (Sturn et al., 2002). 

Overexpression of AtNUDX2 conferred Arabidopsis plants with enhanced tolerance to oxidative 

stress due to maintenance of NAD+ and ATP levels by nucleotide recycling from free ADP-ribose 

molecules (Ogawa et al., 2009). In the study, overexpression of AtNUDX2 protein resulted in 1.2 to 2 

fold higher ADP-ribose pyrophosphatase activity than in control plants. Also, the overexpression 

AtNUDX2 lines showed significant suppression of root growth inhibition as opposed to control plants 

whose root growth was severely inhibited upon 0.3µM and 3µM paraquat treatment. However, only 

a slight reduction in ADP-ribose pyrophosphatase activity was observed in RNAi-AtNUDX2 plants and 

there was no significant difference in the degree of tolerance to oxidative stress caused by paraquat 

between the control plants and RNAi-AtNUDX2 plants. The endogenous expression of AtNUDX2 

protein was noted to be low and mentioned that it may not contribute substantially to cellular 

defense systems in nature even under stressful conditions (Ogawa et al., 2009). In a different study, 

Arabidopsis plants having high expression levels of AtNUDX7 showed enhanced tolerance to 

paraquat induced oxidative stress while KO-AtNUDX7 plants had a decreased tolerance as assessed 

by the leaf phenotype, survival rates and chlorophyll content as shown in Fig. 9. In this study, the 
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ADP-ribose pyrophosphatase activity was increased by 1.2 to 2.5 fold in OE AtNUDX7 lines and 

reduced significantly to 76.9% in mutant KO-nudx7 plant compared to the control plants under 

normal conditions. The amount of poly(ADP-ribose) in the control plants was increased under 3µM 

paraquat treatment. In OE AtNUDX7 and KO-nudx7, the amount of poly(ADP-ribose) was 

considerably larger or smaller, respectively, compared to the control plants both under normal and 

3µM paraquat treatment indicating a positive correlation between the AtNUDX7 expression levels 

and the levels of PAR reaction. In addition, depletion of NAD+ and ATP resulting from the activation 

of the PAR reaction under oxidative stress was completely suppressed in the overexpression 

AtNUDX7 plants while accumulation of NAD+ and ATP was observed in the KO-AtNUDX7 plants 

(Ishikawa et al., 2009). Experimental studies showed that the AtNUDX7 transcript levels were rapidly 

and transiently induced during both biotic stresses imposed by avirulent pathogens and abiotic 

stresses like ozone and osmoticum (Jambunathan and Mahalingam, 2006). AtNUDX7 gene has also 

been found in many stress-responsive Arabidopsis cDNA libraries (Jambunathan and Mahalingam, 

2006). 

 

Fig. 9: Effects of overexpression or disruption of AtNUDX7 on oxidative stress tolerance. A, Phenotypes of the 
control and Pro35S:AtNUDX7 plants after oxidative stress caused by PQ (paraquat) treatment. Seven-day-old 
seedlings were grown on MS medium containing 3 µM PQ for 7 days under long-day conditions. The seedlings 
were grown then on MS medium without PQ for an additional 7 days. B, Survival rates of the control and 
Pro35S:AtNUDX7 plants under the PQ treatment. C, Chlorophyll contents of the control and Pro35S:AtNUDX7 
plants under normal conditions and oxidative stress. Data are means +/-SD for three individual experiments (n 



Poly(ADP-ribosyl)ation Pathway in Plant Energy Homeostasis and Stress Response 

34 

= 3). Different letters indicate significant differences (P < 0.05). D, Phenotypes of the wild-type (WT) and KO-
nudx7 plants after oxidative stress caused by PQ treatment. Two-week-old Arabidopsis plants were grown on 
MS medium containing 2 µM PQ for 7 days under long-day conditions. The plants were grown then on MS 
medium without PQ for an additional 7 days. E, Survival rates of wild-type and KO-nudx7 plants under PQ 
treatment F, Chlorophyll contents of wild-type and KO-nudx7 plants under normal conditions and oxidative 
stress. Data are means +/- SD for three individual experiments (n = 3). Different letters indicate significant 
differences (P < 0.05). FW, Fresh weight (Ishikawa et al., 2009) 

In a molecular characterisation of barley (Hordeum vulgare ) Nudix hydrolases, Tanaka et al. (2015) 

reported that seven HvNUDXs (HvNUDX1, 2, 6, 7, 11, 12, and 13) were up-regulated significantly 

under drought stress (dehydration on paper towel) and four HvNUDXs (HvNUDX6, 7, 12, and 14) up-

regulated significantly UV-C stresses, respectively. HvNUDX1, the only one classified into ADP-ribose 

pyrophosphohydrolase subfamily gene of which the amino acid sequence shows 55% identity with 

that of AtNUDX2, was up-regulated 1.32-fold after 24 h of drought stress by dehydration on paper 

towel (Tanaka et al., 2015).  Similarly, characterisation of Chrysanthemum lavandulifoliua Nudix 

hydrolases showed that ClNUDX1, 2, 3, 7 and 8 were up-regulated under various abiotic stress 

treatments (Salt, drought, cold and heat). ClNUDX2 the only ADP-ribose pyrophosphohydrolase so 

far among Chrysanthemum lavandulifoliua Nudix hydrolases, was upregulated by drought and 

salinity stresses (Huang et al., 2012). 

The role of Nudix hydrolases in biotic stress response has been reported predominantly in AtNUDX7. 

Ge et al. (2008) identified AtNUDX7 as one of the early pathogen responsive genes that showed 

significant accumulation of its transcript within 30 minutes of infection by Pseudomonas syringae. 

AtNUDX7 was found to be a negative regulator of the basal defense response, and its loss of 

function mutation, KO-AtNUDX7, results in enhanced resistance to infection by Pseudomonas 

syringae. The KO-AtNUDX7 mutation does not cause a strong constitutive disease resistance 

phenotype, but it leads to a heightened defense response, including accelerated activation of 

defense-related genes that can be triggered by pathogenic and non-pathogenic microorganisms. The 

KO-AtNUDX7 mutation enhances two distinct defense response pathways: one independent of and 

the other dependent on NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) and Salicylic 

Acid (SA) accumulation (Ge et al., 2007). AtNUDX7 has also been defined as a negative regulator of 

salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) signalling required for basal 

resistance to invasive pathogens (Bartsch et al., 2006). Ishikawa et al. (2010) reported that AtNUDX6 

significantly impacts the plant immune response as a positive regulator of NPR1-dependent SA 

signalling pathways. The group showed that expression of SA-induced genes which depend on NPR1, 

a key component required for pathogen resistance, was significantly suppressed in the KO-AtNUDX6 

plants and enhanced in overexpression AtNUDX6 plants, under the treatment with SA. Expression of 

thioredoxin h5, which catalyzes SA-induced NPR1 activation, was suppressed and accelerated in the 
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KO-AtNUDX6 and overexpression AtNUDX6 plants, respectively (Ishikawa et al., 2010). In a recent 

study, AtNUDX7 is reported to be transcriptionally regulated and that the AtNUDX7 promoter is 

rapidly inducible by ozone and pathogens. The study further showed that an ethylene response 

motif called the GCC box is present in the AtNDUX7 promoter and plays a role in the ozone response 

of Arabidopsis ecotypes (Muthuramalingam et al., 2015).  Additionally, another study showed that 

Atnudx7 mutant, which has both constitutively expressed NPR1- dependent and NPR1-independent 

SA signalling pathways, was tolerant to salt and oxidative stress unlike npr1-5, which lacks NPR1-

dependent SA signalling thus showing the role of endogenous salicylic acid signalling cascades in 

plant responses to salt and oxidative stresses (Jayakannan et al., 2015). 

1.5 Perspectives  

Studies in Arabidopsis provide evidence of the involvement of plant PAR proteins in oxidative, 

drought, osmotic, genotoxic stress responses and in plant immune responses against pathogenic 

infection (Amor et al., 1998; Doucet-Chabeaud et al., 2001; De Block et al., 2005; Vanderauwera et 

al., 2007; Ogawa et al., 2009; Ishikawa et al., 2009; Adams-Phillips et al., 2010; Li et al., 2011; Feng et 

al., 2015; Song et al., 2015; Zhang et al., 2015). This milestone has mainly been achieved through 

biotechnological studies that involve modulating PAR genes by upregulation or downregulation of 

their expression level or complete gene knock-outs. There are still a number of outstanding 

questions in this subject which can be addressed via the biotechnological approach for instance, in 

each PAR pathway gene type only one or two representative family members have been reported to 

respond to biotic or abiotic stresses, are there similar responses in the other genes of the same 

family? How does modulation of one PAR pathway gene such as PARP affect PARG and NUDX gene 

expression and resultant response to biotic and abiotic stresses or vice versa? Similary only few 

reports in other plants apart from Arabidopsis have been reported so far. Transgenic or gene editing 

research offers a great potential to explore this field by enabling expression of Arabidopsis PAR 

genes with known functionality in other crops of interest, screening for Arabidopsis PAR gene 

homologous in these crops and modulating their function or carrying out a gene expression profiling 

through microarray or RNA-seq upon stress perturbation. In this work, we attempt to address some 

of these questions by modulating PARP gene expression in maize, introducing AtNUDX7 gene in 

maize and overexpressing AtNUDX7 maize homologues in maize and in Arabidopsis. 
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Abstract  

Genetic transformation that is part of the toolbox for the study of living organisms had been 

reported in higher plants only 30 years ago, boosting basic plant biology research, generating 

superior crops, and leading to the new discipline of plant biotechnology. Here, we review its 

principles and the molecular tools. In vitro regeneration through somatic embryogenesis or 

organogenesis, are discussed because they are prerequisites for the subsequent Agrobacterium 

tumefaciens-mediated transferred (T)-DNA or direct DNA transfer methods to generate transgenic 

plants. Important molecular components of the T-DNA are examined, such as selectable marker 

genes that allow the selection of transformed cells in tissue cultures and are used to follow the gene 

of interest in the next generations, and reporter genes that have been developed to visualize 

promoter activities, protein localizations, and protein-protein interactions. Genes of interest are 

assembled with promoters and termination signals in Escherichia coli by means of GATEWAY-derived 

binary vectors that represent the current versatile cloning tools. Finally, future promising 

developments in transgene technology are discussed. 

 

KEY WORDS: Agrobacterium tumefaciens, T-DNA, transgene, plant biotechnology, plant 

transformation, somatic embryogenesis, organogenesis 
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Shoot regeneration in tissue culture 

 Genetic transformation usually involves DNA delivery to explants and subsequent tissue 

culture in which transformed cells are selected and induced either to form transgenic callus, shoots, 

and roots or somatic embryos. Hence, the tissue culture-induced regeneration capacity of a plant 

genotype is crucial for a successful genetic transformation. Indeed, recalcitrance to in vitro 

regeneration prevents genetic transformation in a large number of plant species or varieties. The in 

vitro shoot regeneration capacity has a genetic basis because it can be introgressed from a highly 

regenerative into a recalcitrant genotype (Koornneef et al., 1993; Anami et al., 2010). Therefore, 

identification of genes promoting or inhibiting the tissue culture-induced regeneration capacity will 

help to broaden the range of plant species for genetic transformation. Tissue culture regeneration 

occurs through organogenesis or somatic embryogenesis, which are discussed below and are 

schematically presented in Fig. 1. 

Somatic embryogenesis 

 Somatic embryos develop from undifferentiated somatic cells in cultures, are 

morphologically and developmentally very similar to zygotic embryos that are formed upon 

fertilization, surrounded by maternal tissue. Somatic embryogenesis was first demonstrated in 

embryogenic carrot (Daucus carota) liquid cultures in 1958 that differentiated into somatic embryos 

at high frequency when diluted, sieved for the embryogenic subpopulation, and transferred to a 

medium lacking the synthetic hormone 2,4-dichloro-phenoxyacetic acid (2,4-D) (Steward et al., 

1958) (Fig. 1A). This embryogenic suspension culture system of carrot has been used as a model to 

study the regulatory genetic program of plant zygotic embryogenesis (Zimmerman, 1993). Indeed, all 

stages of the embryo formation, such as globular, heart, and torpedo, can be distinguished in the 

embryogenic cultures and, upon removal of the exogenous auxin, the induction of the gene 

expression programs is comparable to that of the zygotic embryogenesis (Borkird et al., 1986). The 

somatic embryogenesis receptor-like kinase SERK1 marks somatic plant cells that are competent to 

form somatic embryos in the carrot cultures (Schmidt et al., 1997). Endogenous abscisic acid 

signaling is essential for carrot cells to acquire the embryogenic competence and in zygotic 

embryogenesis (Parcy et al., 1994; Kikuchi et al., 2006). Transcription factors expressed during 

embryogenesis, such as the ABSCISIC ACID-INSENSITIVE3 (ABI3), LEAFY COTYLEDON1 (LEC1), FUSCA3 

(FUS3), are specific markers for embryogenesis that play a crucial role in the embryogenic process as 

demonstrated by knockout or overexpression lines (Lotan et al., 1998). 
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 Today, many plant species of agronomic and horticultural importance are regenerated in 

tissue cultures through somatic embryogenesis, among which the cereals (Shrawat and Lörz, 2006). 

Somatic embryogenesis in crop plants requires high concentrations of auxin, 2,4-D or dicamba to 

promote the vegetative-to-embryogenic transition in a small subset of cultured cells that are then 

committed to form somatic embryos. The somatic embryo is a bipolar structure with closed radicle 

in contrast to the monopolar shoot structure originating through organogenesis. The embryo arises 

from a single cell and has no vascular connection with the maternal callus tissue or the cultured 

explant. Hence, somatic embryos are clonal unlike shoots regenerated by organogenesis that usually 

arise from several individual cells and might be chimearic, i.e. consisting of a mixture of 

independently transformed cells. Furthermore, induction of somatic embryogenesis requires a single 

hormonal signal to trigger a bipolar structure capable of forming a complete plant consisting of root 

and shoot and resembling a “seedling” (Fig. 1B). In organogenesis, shoots induced from organogenic 

callus are removed from the callus to form roots on hormone-free or “rooting” medium (Fig. 1C). 

 

 

Fig. 1. Somatic embryogenesis versus shoot regeneration. (A) Somatic embryogenesis through embryogenic 

cell suspension cultures. (B) Somatic embryogenesis through embryogenic callus cultures. (C) Shoot 

regeneration through organogenesis 
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Organogenesis 

 According to the “classical theory”, in vitro organogenesis refers to organ formation of de 

novo origin, involving phytohormone perception, dedifferentiation of differentiated cells into callus, 

acquisition of organogenic competence, re-entry of quiescent cells into the cell cycle, and 

organization of cell division to form specific organ primordia and meristems (Sugiyama. 1999). The 

pioneering work of Skoog and Miller (1957) and Christianson and Warnick (1983) established that 

auxin and cytokinin are the predominant growth regulators of tissue culture organogenesis. Shoot 

regeneration in tissue cultures usually requires a two-step hormone treatment (Fig. 1C). A high 

auxin/cytokinin ratio in the medium induces organogenic callus from an explant and, subsequently, a 

high cytokinin/auxin ratio induces shoot formation. Such shoots originate typically from monopolar 

and callus-derived organ primordia and develop into shoots with leaves that form roots upon 

transfer to medium without hormones or containing the “rooting” auxin isobutyric acid. 

Organogenic callus cultures with subsequent shoot organogenesis have been established in many 

species by means of numerous types of explants, including tobacco (Nicotiana tabacum L.) 

protoplasts (Nagy and Maliga, 1976), Arabidopsis thaliana root explants (Valvekens et al., 1988) and 

leaf explants in various species. A number of gene regulatory circuits important for dedifferentiation, 

redifferentiation, and adventitious meristem organization during in vitro regeneration of plants have 

been identified of which their components might be developed into new tools to improve the plant 

regeneration efficiency (Duclercq et al., 2011). Organogenic callus induction on auxin-containing 

medium corresponds with the competence (cell dedifferentiation) acquisition by which tissues 

respond to hormonal signals and the upregulation of AUXIN/INDOLE-3-ACETIC ACID genes. Shoot 

induction on cytokinin-containing medium coincides with the upregulation of the shoot apical 

meristem genes WUSCHEL (WUS) and CLAVATA3 (CLV3) (Che et al., 2006; Bao et al., 2009), which 

might be applied in the future to enhance in vitro propagation as demonstrated by the 

overexpression of the SHOOTMERISTEMLESS (STM) and ZWILLE2 (ZLL2) genes in Brassica napus 

(canola) and Arabidopsis plants (Elhiti and Stasolla, 2012; Chatfield et al., 2013).  

In tomato (Solanum lycopersicum) and Brassica rapa (turnip), in which organogenic callus induction 

and plant regeneration are quantitatively controlled by several genes (Trujillo-Moya and Gisbert, 

2012; Seo et al., 2013), candidate genes in the genetic quantitative trait locus (QTL) intervals were 

APETALA2 (AP2)-containing ethylene response factors (ERFs), homologous to the Arabidopsis 

ENHANCER OF SHOOT REGENERATION1 (ESR1) that is a well-characterized gene for shoot 

regeneration (Banno et al., 2001), MADS box genes related to adventitious shoot regeneration 
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(Prakash and Kumar, 2002), and serine-threonine kinases of which the tomato shoot kinase1 LESK1 is 

an in vitro organogenesis competence marker (Torelli et al., 2004). 

 Recent literature on shoot regeneration in Arabidopsis shows the need to revisit the concept 

of cell dedifferentiation upon organogenic callus formation (Sugimoto et al., 2011). Shoots originate 

from organogenic callus derived from specific pericycle-like cells surrounding the vasculature in 

roots, hypocotyls, or cotyledon explants (Che et al., 2007; Atta et al., 2009). The transcript profile of 

organogenic callus is strikingly similar to that of lateral roots (Che et al., 2006), indicating that shoot 

regeneration occurs via a “root developmental pathway” (Sugimoto et al., 2010). As pericycle cells 

are the progenitors of lateral roots in primary roots, they might be considered as “adult meristem 

cells” that differentiate into organogenic callus from which shoots develop upon hormonal stimuli in 

tissue cultures (Sugimoto et al., 2011).  

 Inherent to tissue culture procedures is the so-called somaclonal variation that refers to 

mutations, chromosome rearrangements and multiplication in some of the regenerated shoots, 

hinting at induction of stress reactions and accumulation of genetic aberrations during the 

dedifferentiation/redifferentiation processes (Jiang et al., 2011). In order to restrict somaclonal 

variation, tissue culture duration should be kept as short as possible, tissue culture-related “stress” 

should be lowered by the addition of antioxidantia and organic buffer to the medium and lowering 

light intensity, and minimal concentrations of selectable agents and hormones should be used. 

Techniques for higher plant transformation 

 The role of transgenes in higher plants can be studied through both transient and stable 

transformation methods. Stable transformants are generated by means of Agrobacterium infection 

or particle bombardment and contain a stably integrated transgene in their plant genome that 

segregates as a Mendelian trait and is inherited in subsequent generations (Fig. 2). In contrast, 

transient transformants are obtained by biolistic treatment or agroinfection of explants, such as 

epidermis of onion (Allium cepa) or protoplats by which gene construct expression, subcellular 

localization, or protein targeting can be tested without integrating the transgene into the genome 

and circumventing in vitro shoot regeneration procedures (Sheen, 2001). Agroinfiltration of 

Nicotiana benthamiana leaves is the preferred method to investigate in-vivo protein-protein 

interactions by means of fluorescence resonance energy transfer and bimolecular fluorescence 

complementation technology in which proteins are tagged with a fluorescent protein and their 

interaction is visualized by confocal microscopy (Yang et al., 2000; Boruc et al., 2010). Recently, 

transient transformation assays have been developed in cereals, such as rice (Oryza sativa) and 
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maize (Zea mays). A high fluorescent marker gene expression has been demonstrated in bombarded 

leaf explants of maize that consisted of the basal-most 3 cm above the ligule of an approximately 50-

cm growing adult leaf using different fluorescent protein tags and correct localization to the 

endoplasmic reticulum, the Golgi apparatus, and the plasma membrane was demonstrated (Kirienko 

et al., 2012). 

 In stable transformants, transgenes are studied at the genetic, morphological, physiological, 

cell biological, and biochemical levels to gain insight into their function and might be the basis for 

translational or biotechnological research. Below, Agrobacterium-mediated transformation and 

direct gene transfer are discussed. 

Agrobacterium-mediated transformation 

 Agrobacterium-mediated transformation exploits the bacterium as the biological vehicle to 

transfer gene(s) of interest into the plant cell. The basic biology related to Agrobacterium 

tumefaciens-mediated genetic transformation involves a number of proteins derived from both the 

plant host and the bacterial pathogen (Gelvin, 2012). Naturally, the bacterium induces crown gall 

tumors on various plant species, including many agronomically important crops. During its infection, 

Agrobacterium replicates a single-stranded copy of the bacterial transferred (T)-DNA that is located 

on the tumor-inducing (Ti) plasmid and transfers it into the plant host cell where it subsequently 

integrates into the host genome. The wild-type T-DNA encodes several genes involved in auxin and 

cytokinin biosynthesis that are expressed in the infected plant cells, with cell proliferation and tumor 

formation as a consequence. With the help of other T-DNA-encoded genes, the tumors synthesize 

and secrete opines, amino acid derivatives that can be metabolized mainly by Agrobacterium. This 

unique infection strategy allows Agrobacterium to hijack the host cell machinery and turn it into its 

own “food factory”. Although Agrobacterium mainly infects dicotyledonous plants in nature (De 

Cleene and De Ley, 1976), it can genetically transform virtually any eukaryotic species under 

laboratory conditions and has become the transformation vehicle of choice for the genetic 

manipulation of most plant species (Tzfira and Citovsky, 2006). 
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Fig. 2. Techniques for genetic transformation. (A) Agrobacterium-mediated T-DNA transfer. (B) Direct DNA 

transfer through particle bombardment or biolistics. (C) Regeneration and selection of transformed callus and 

shoots. 

 

 The T-DNA was adapted for genetic engineering by removing the hormone and opine 

biosynthesis genes and by replacing them with a selectable marker gene and one or more genes of 

interest, flanked by the T-DNA left and right border sequences that delineate the transferred DNA. 
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The T-DNAs are engineered in Escherichia coli on a binary vector that is introduced into an 

Agrobacterium strain containing a T-DNA-less, so-called “helper”, Ti plasmid harboring the vir 

functions that are required for the bacterium-host recognition, the T-DNA replication in the 

bacterium, and the T-DNA transfer to and integration into the plant genome (Fig. 2A). Agrobacteria 

containing the engineered vectors are usually co-cultivated with specific explants from which 

transgenic shoots or somatic embryos are regenerated and selected in tissue cultures (Fig. 2C). In 

Arabidopsis, floral buds can be submerged in a liquid Agrobacterium culture and transgenic plants 

can be selected from the seeds (Clough and Bent, 1998), a method that avoids tissue culture 

procedures. 

 Upon Agrobacterium-mediated transformation, usually intact, single, or tandemly arranged 

T-DNA copies in one or two loci are stably integrated into AT-rich regions of the nuclear plant 

genome with minimal rearrangement of the target site (Gheysen et al., 1991). T-DNAs truncated at 

their left border do occur upon Agrobacterium transformation at low frequency as well as 

integration of vector backbone DNA (Tzfira and Citovsky, 2006). The selectable marker and the gene 

of interest, located on the T-DNA, are inherited in subsequent generations and segregate according 

to Mendelian genetics (De Block et al., 1984; Horsch et al., 1984). Agrobacterium-mediated 

transformation is the method of choice for overexpression or down-regulation of genes of interest in 

functional basic research or for generation and commercialization of superior crops thanks to its 

rather precise replication through the T-DNA border sequences upon infection and the low-copy T-

DNA insertion into the genome. The T-DNA has been used as mutagen itself or to introduce 

transposons for mutagenization in several plant species, resulting in mutagenized collections that 

are invaluable resources for gene identification and functional analysis (Alonso et al., 2003). 

Direct gene transfer 

 In nature, the host range of plant species and genotypes that are competent for 

Agrobacterium infection is limited, indeed, competence is determined by bacterial and plant host 

genes the study of which might help to enlarge the natural Agrobacterium host range. To overcome 

competence barriers, “direct” gene transfer methods have been developed in which genes of 

interest are delivered directly into regenerable plant tissues. Gene transfer by high-velocity 

microprojectiles (biolistic or particle bombardment) is widely used and has enlarged the range of 

species and genotypes for genetic engineering (O'Kennedy et al., 2011) (Fig. 2B). Metal particles 

coated with naked plasmid DNA containing the gene of interest are transported to the plant cells by 

means of an electric discharge or in a pressurized helium stream. Nearly all of the physical and 



 

52 

 

chemical parameters (rupture pressure, DNA concentration, particle travel distances, and vacuum 

degree) can be adjusted to different tissues and species. One of the first successes was the transfer 

of foreign genes into intact maize cells of a Black Mexican Sweet cultivar suspension culture (Klein et 

al., 1988). Particle bombardment is frequently used for the transformation of cereals with immature 

embryos as explants (Shrawat and Lörz, 2006) and is the only effective method to transform 

chloroplasts in plants. 

 However high-copy numbers and extensive rearrangements of the foreign DNA have 

frequently been reported in plants stably transformed with direct gene transfer methods. The 

integration of too many copies of the same gene within the genome normally results in gene 

silencing. In addition, sequences of the introduced gene have been found to be truncated, making 

the transgene analysis difficult and undesirable. Only DNA fragments of less than 10 kb in size can be 

transferred by the biolistic technology because large fragments get destroyed during the 

bombardment or adhere poorly to the metal particle, with messy DNA integration events as a 

consequence (Shou et al., 2004). 

Selectable marker genes 

 Selectable marker genes are used to identify and select cells that have incorporated the T-

DNA with the marker gene and the gene of interest upon genetic transformation of explants as well 

as to monitor and select the transformed individuals in subsequent generations. Upon infection or 

biolistic treatment of an explant, only a very small proportion of the cells is transformed; thus, the 

probability of recovering transformed lines without a selection system is very low. The most 

frequently used selectable markers include antibiotic resistance genes such as neomycin and 

hygromycin phosphotransferases, herbicide resistance genes such as phosphinothricin N-

acetyltransferase and aceto lactate synthase, and metabolism-related genes such as  

phosphomannose isomerase that have been adopted for widespread use because of their efficiency 

and general applicability to a wide range of species and tissue culture systems (Table 1). Additional 

selectable markers related to metabolism such as xylose isomerase, trehalose-6P-synthase, and 

protoporphyrinogen oxidase are less frequently used and have been discussed before (Miki and 

McHugh, 2004). To function in a variety of cell types, selectable marker genes are constructed as 

chimeric genes, including regulatory sequences that ensure constitutive expression throughout the 

plant (Miki and McHugh, 2004). 
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Table 1: Frequently used selectable marker and reporter genes in plant transgenic research  

Gene Substrate and Enzyme Origin Effect Reference 

NPT II Neomycin, kanamycin, 

geneticin (G418) and 

paramomycin neomycin 

phosphotransferases II 

Escherichia coli Inactivates a number of 

aminoglycoside antibiotics 

by phosphorylation 

Fraley et al. (1983) 

HPT Hygromycin and 

hygromycin 

phosphotransferase 

Escherichia coli Inhibitor of protein 

synthesis 

Waldron et al. (1985) 

BAR, 

PAT 

Phosphinothricin (PPT) and 

phosphinothricin 

acetyltransferase 

Streptomyces hygroscopicus, 

Streptomyces 

viridochromogenes 

Acetylation of PPT a 

competitive inhibitor of 

glutamine synthetase 

De Block et al. 

(1989), Wohlleben et 

al. (1988) 

ALS  Sulfonylureas and 

imidazolinones and 

acetolactate synthase 

Mutated form: Arabidopsis 

thaliana, Oryza sativa, Zea 

mays, Malus domestica  

Mutant ALS enzymes 

insensitive to herbicides 

Olszewski et al. 

(1988) 

manA D-mannose and 

phosphomannose 

isomerase 

Escherichia coli Mannose used as carbon 

source 

Joersbo et al. (1998) 

EGFP None and enhanced green 

fluorescent protein  

Victoria aequorea (modified 

from GFP) 

Fluorescence  Yang et al. (1996) 

GUS -glucuronides and -

glucuronidase 

Escherichia coli Hydrolyzation of -

glucuronides 

Jefferson et al. (1987) 

LUC Luciferin and luciferase Photinus pyralis Oxidative decarboxylation 

of luciferin 

Ow et al. (1986) 

R & Cl None, R and Cl Anthocyanin 

transcriptional regulators 

Zea mays Anthocyanin accumulation 

in cell vacuoles 

Ludwig et al. (1990); 

Lloyd et al. (1992) 

 

Neomycin phosphotransferase II gene 

 Neomycin phospotransferase II (NPTII), also known as bacterial amino-glycoside 3’-

phosphotransferease II (APH [3’]), is an enzyme encoded by the nptII or neo gene that had been 

isolated from the E. coli transposon Tn5. It confers resistance to its host cells against a wide range of 

amino-glycoside antibiotics, including kanamycin, neomycin, geneticin (G418), and paramomycin, by 

catalyzing the phosphorylation of the 3’-hydroxyl group of the amino-hexose portion of these 

aminoglycosides. In this manner, NPTII detoxifies the antibiotic, allowing transformed nptII-
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expressing plants to tolerate certain concentrations of the aminoglycoside antibiotics, unlike the 

nontransformed plants that undergo bleaching and growth inhibition at similar concentrations. The 

nptII gene has been used as a selection marker for vectors in prokaryotic and eukaryotic cells. It is 

the most widely used selectable marker system for generating transgenic plants, especially in 

dicotyledonous plants, such as Arabidopsis (Miki and McHugh, 2004). For constitutive expression in 

plants, the coding region of the nptII gene has been fused to the 5’- and 3’-regulatory sequences of 

the Agrobacterium T-DNA gene nopaline synthase (nos). This gene construct has been shown to be 

efficient in selection of tobacco cells on kanamycin or G418 (Herrera-Estrella et al., 1983). 

Transformants sensitive and resistant to kanamycin and their progenies can be distinguished 

through different techniques, including: seed germination assays on kanamycin-containing medium 

carried out to follow the nptII gene segregation in the progeny of primary transformants (De Block et 

al., 1984) and callus induction tests (Van Lijsebettens et al., 1991). Enzymatic in vitro assays that can 

detect the NPTII protein quantitatively or semiquantitatively are based on the transfer of the 32P-

labeled γ-phosphate group from ATP to kanamycin (Reiss et al., 1984), whereas an enzyme-linked 

immunoabsorbent assay has been developed as well (Nagel et al., 1992). 

Hygromycin phosphotransferase gene 

 The hygromycin phosphotransferase (hpt) gene, also designated aphIV, was isolated from E. 

coli and encoded the enzyme hygromycin B phosphotransferase that confers resistance to the 

antibiotic hygromycin B (Waldron et al., 1985), which is an aminocyclitol antibiotic that inhibits 

protein synthesis with a broad spectrum activity against prokaryotes and eukaryotes. The hpt gene 

had been modified for expression in plants cells by developing a chimeric gene consisting of the 

nopaline synthase regulatory elements and the E. coli-derived hpt gene (van den Elzen et al., 1985). 

Hygromycin is more toxic in plants than kanamycin; hence, the hpt selectable marker is used when 

nptII is not effective. Hygromycin resistance in transformed plants can be checked in several ways, 

including callus induction tests (Van Lijsebettens et al., 1991), seed germination assays that can be 

used to score the segregation of the hpt gene in the progenies of the transgenic plants, and 

enzymatic assays (Datta et al., 1990). 

Bialaphos-resistant and phosphinothricin N-acetyltransferase genes 

 The bialaphos-resistant (bar) gene, isolated from Streptomyces hygroscopicus (Murakami et 

al., 1986) and the pat gene, isolated from Streptomyces viridiochromogenes (Wohlleben et al., 

1988), are 87 % homologous and code for the enzyme phosphinothricin N-acetyltransferase (PAT) 

that catalyzes the conversion of phosphinothricin (PPT) into a nontoxic acetylated form (Thompson 
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et al., 1987). PPT, also designated glufosinate ammonium, is an active ingredient of several broad-

spectrum herbicide formulations, such as BastaTM, IgniteTM, and LibertyTM (BayerCrop Science) is an L-

glutamic acid analog and a competitive inhibitor of glutamine synthetase, the only enzyme that can 

catalyze ammonium assimilation into glutamic acid in plants. Inhibition of glutamine synthetase 

results in the rapid accumulation of ammonia and, eventually, plant cell death. The PAT enzyme 

catalyzes the acetylation of the free amino group of PPT, making it unable to bind to and inactivate 

glutamine synthetase. To engineer herbicide resistance in plants, the bar gene was placed under the 

control of a 35S cauliflower mosaic virus (CaMV) promoter and transgenic tobacco plants were 

resistant to high doses of PPT and bialaphos (De Block et al., 1987). Today, it is frequently used in 

cereals, such as maize, wheat (Triticum aestivum), rice, and barley (Hordeum vulgare) (Shrawat and 

Lörz, 2006). Several assays have been developed for the bar/pat marker gene activity in transgenic 

progenies, such as germination on PPT-containing medium, spraying plants, or painting leaves with 

the herbicide. Upon PPT treatment, ammonium accumulation in the medium can be determined 

with a colorimetric assay, specifically of nontransgenic seedlings that cannot assimilate ammonium 

due to glutamine synthase inhibition as opposed to transgenic seedlings that do assimilate 

ammonium (De Block et al., 1995). PAT proteins can be detected simply and quickly with the PAT 

assay kit (AgraStrip®LL Strip test kit; Romer Labs®, Union, MO, USA) that is based on a double-

antibody sandwich principle. 

Acetolactate synthase gene mutants 

 Acetolatate synthase (ALS) is the first common enzyme in the biosynthetic pathway of the 

branched-chain amino acids isoleucine, leucine, and valine. The plant ALS gene is a target for several 

classes of herbicides, including sulfonylurea, imidazolinone, and pyrimidinyl carboxyl. Naturally 

occurring mutations in ALS confer herbicide resistance to a number of plant species (Chang and 

Duggleby, 1998). Single or double amino acid substitutions can make ALS herbicide resistant and 

have been utilized as effective selectable markers in homologous or heterologous plant species. For 

instance, the Arabidopsis als mutant was applied in the selection of transgenic tobacco plants 

growing in a sulfonylurea herbicide-containing culture (Olszewski et al., 1988). Different point 

mutations in the ALS gene that alter conserved amino acids have been isolated in rice and 

introduced as selectable makers into rice, wheat, and soybean (Glycine max) transformations 

(Rosellini, 2011). The maize als mutant very efficiently selected transgenic maize in embryogenic 

cultures (Fromm et al., 1990); similarly, the apple (Malus domestica) als mutants generated by site-

specific mutagenesis were used successfully as selectable markers in tobacco and apple 

transformation (Yao et al., 2013). The use of mutant plant ALS genes as selectable markers for 
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transgenic plants is gaining importance because they occur in all plants and, thus, are expected to be 

publicly acceptable, not prompting food safety concerns as in the case of bacteria-derived selection 

genes. 

Phosphomannose isomerase gene 

 The phosphomannose isomerase gene (pmi) gene isolated from E. coli (also designated 

manA gene) encodes the enzyme phosphomannose isomerase (PMI) that catalyzes the reversible 

interconversion of mannose-6-phosphate and fructose-6-phosphate. Mannose-6-phosphate is 

obtained from mannose through a hexokinase phosphorylation activity; unlike fructose-6-

phosphate, most plants cannot use it as a natural carbon source. Transgenic PMI-producing plants 

have a metabolic advantage over the nontransformed plants, because they are able to utilize 

mannose as a carbon source by converting mannose-6-phosphate to fructose-6-phosphate and can 

survive on a mannose-containing medium as the only or major carbon source. In nontransformed 

plants, mannose-6-phosphate accumulation inhibits glycolysis and leads to an arrest in cell growth 

and development. Although PMI is widely distributed in nature and found across kingdoms, it is 

absent in many plants, with the exception of soybean and other leguminous plants (Goldsworthy 

and Street, 1965). The PMI selection system employing the E. coli manA gene under the control of 

the 35S promoter has been reported to be very efficient. Indeed, transformation frequencies in 

sugar beet (Beta vulgaris) increased 10-fold when compared to the kanamycin selection (Joersbo et 

al., 1998). Similarly, the E. coli manA gene under the control of the maize ubiquitin promoter was 

reported to perform well in dicotyledonous and monocotyledonous plants (Reed et al., 2001). PMI 

expression assays have been applied to identify transgenic events and to sort them through 

segregating populations, such as a modified chlorophenol red assay (Kramer et al., 1993), in which 

the medium changed from red to yellow in tissues that could not metabolize mannose, and a 

seedling germination assay, in which the germination of nontransgenic seedings was completely 

inhibited when mannose was introduced into the medium (Reed et al., 2001). 

Reporter genes 

 Reporter genes, also called screenable or scorable markers, are genes that code for proteins 

that can be detected directly or catalyze specific reactions with easily detectable products. They are 

particularly useful for the analysis of promoter activity, protein localization, and/or interaction 

studies. An ideal genetic reporter system should be in situ detectable, sensitive, quantitative, rapid, 

reproducible, safe, and with low or without endogenous background activity. The β-glucuronidase 
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(GUS), luciferase (LUC), enhanced green fluorescent protein (EGFP) and anthocyanin are the most 

commonly used reporter genes in plant research (Table 1). 

Green fluorescent protein 

 The green fluorescent protein (GFP) is a photoprotein cloned from the jelly fish Aequorea 

victoria (Shimomura et al., 1962; Prasher et al., 1992). It is a very stable protein that autofluoresces 

in the presence of UV or blue light illumination and does not require an external substrate. Niedz et 

al. (1995) were the first to show that the wild-type Aequorea GFP could be visualized in plant cells as 

an in vivo reporter of plant gene expression. Although wild type GFP was used successfully in plant 

cell and tissue expression studies, it had some disadvantages, such aberrant splicing in plants and 

formation of cytotoxic and nonfunctional aggregates. Effective expression in whole plants was 

achieved upon modification of the GFP-coding sequence (Haseloff et al., 1997) that improved 

fluorescence intensity and thermostability. GFP has a small molecular size, thus facilitating the 

construction of fusion proteins for subcellular protein localization or protein-protein interactions. 

GFP visualization is nondestructive and allows the direct imaging of gene products in living tissues in 

real time at the cellular level. GFP has an autofluorescence capacity and, therefore, does not require 

addition of cofactors or exogenous substrates to produce light; moreover, it is very stable to heat, 

extreme pH, and chemical denaturants. Several GFP mutants have been developed through amino 

acid substitution, resulting in variants with altered excitation and emission spectra, such as variants 

with shifts to cyan, red, and yellow that are used for colocalization of specific proteins; these are 

discussed in detail in this special issue by Voß et al. (2013). EGFP is one of these GFP variants that is 

commonly used because of its improved fluorescence intensity (Yang et al., 1996). 

β-Glucuronidase 

 β-Glucuronidase (GUS) is a bacterial enzyme encoded by the E. coli uidA (gusA) gene that 

occurs in microorganisms, vertebrates, and invertebrates, but not in most higher plants (Jefferson et 

al., 1987). It catalyzes the hydrolysis of a wide variety of β-glucuronides, such as the chromogenic 

histochemical 5-bromo-4-chloro-3-indolyl-β-D-glucuronide (X-gluc), a colorless compound that is 

converted by the β-glucuronidase enzyme to an insoluble indigo blue product. It is used for in situ 

histochemical localizations of the β-glucuronidase activity in cells and tissues. The fluorogenic assay, 

in which β-glucuronidase cleaves the 4-methly-umbelliferyl glucuronide (MUG) substrate into a blue 

fluorescent compound, is used to quantify promoter strength (Coussens et al., 2012). The GUS 

enzyme is very stable within plants and nontoxic when produced at high levels (Miki and McHugh, 

2004), but the assays are destructive. 
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Luciferase 

 The luciferase reporter gene (luc) originates from the firefly Photinus pyralis and encodes 

the enzyme luciferase (LUC) that catalyzes the ATP-dependent oxidative decarboxylation of luciferin, 

leading to an excited form of oxyluciferin and to light emission. The flash of light is captured with a 

luminometer that measures the integrated light output. The total amount of light measured during a 

given time interval is proportional to the amount of luciferase activity in the sample. Typically, the 

flash of light decays in seconds; enhanced light intensity and a more sustained light reaction were 

obtained when coenzyme A was provided to the reaction, thus increasing the sensitivity and 

reproducibility of the assay. Initially, the in vivo LUC activity was detected by spraying plant tissues 

with a luciferin substrate and squeezing it onto a film for exposure (Ow et al., 1986), currently, the 

faint light from the reporter can be detected with specialized cameras. An advantage of the LUC 

reporter system is that it permits the nondestructive monitoring of the gene expression patterns, 

including circadian rhythms, in real time and with great sensitivity (Millar et al., 1992; Xu et al., 

2010). In addition, the luciferase assay is highly sensitive and results can be obtained within minutes. 

The limitations of the in vivo applications were overcome by the development of soluble luciferin 

forms that allow cell penetrance. Thus, LUC has been used to study regulated reporter gene 

activities in vivo in whole organisms, such as plants, as well as in single cells. 

Anthocyanin 

 Anthocyanins are endogenous pigments responsible for the red, purple, and blue color in 

flowering plants, form a diverse family of aromatic flavonoid compounds, and play a role in 

protection against UV, defense response; and attraction of pollinators and seed dispersers. The 

biosynthesis of anthocyanins is controlled by a conserved triad of transcriptional regulators (an 

R2R3-MYB protein, a basic helix-loop-helix [bHLH], and a WD40 repeat protein) of which the 

overexpression results in increased accumulation of anthocyanin pigments that have been exploited 

to monitor both transient and stable gene expression in plants. Overexpression of one or more types 

of these regulatory genes led to cell autonomous pigmentation in maize, Arabidopsis, and tobacco 

(Ludwig et al., 1990; Lloyd et al., 1992; Chu et al., 2013). Anthocyanin accumulation is used as a 

visual marker in cereal transformation and transgenic seeds (Kawahigashi et al., 2007; Gao et al., 

2011). The anthocyanin reporter is nondestructive, requires no exogeneous substrate, and is not 

toxic; hence, there are no environmental and health concerns related to it. 
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Promoters for chimeric gene construction 

 A promoter refers to the region in the genome sequence upstream of a gene transcription 

start site that controls the gene expression level and the kind of specificity, i.e. constitutive, 

inducible, tissue-specific, or developmentally regulated. In transgenic research, promoters are used 

to drive the expression of the selectable marker to select transformed callus and shoots during the 

transformation procedure, to follow the T-DNA segregation with the gene of interest in subsequent 

progenies, and to determine the expression level and specificity of the gene of interest in the 

progeny. Promoters either originate from heterologous species, which avoids gene silencing, or are 

cisgenic, which is considered similar to plants bred through conventional breeding methods and, 

therefore, more acceptable to consumers. 

Constitutive promoters 

 Constitutive promoters direct high levels of gene expression in all cell types throughout the 

entire growth and development period and are used to overproduce proteins of interest to study 

their function in basic research or to generate superior plants or seeds for agronomical purposes. 

The 35S CaMV gene CaMV35S (Odell et al., 1985) confers a high transgenic expression in most cell 

types, except in pollen, is independent on environmental conditions, and is well characterized and 

active in various monocotyledonous and dicotyledonous plants (Benfey and Chua. 1990). The maize 

Ubi-1 promoter is derived from the constitutively expressed Ubi-1 ubiquitin gene (Christensen et al., 

1992) and is generally used in cereals (Shrawat and Lörz, 2006). Other strong constitutive promoters 

with a lot of potential in plant biotechnology have been identified in the rice actin genes, OsAct1 and 

OsAct2 (McElroy et al., 1990), in the Brachypodium distachyon elongation factor and ubiquitin genes, 

pBdEF1a and pBdUBI10 (Coussens et al., 2012; Karimi et al., 2013), and in the switchgrass (Panicum 

virgatum) ubiquitin genes, PvUbi1 and PvUbi2 (Mann et al., 2011). 

Organ, tissue, domain or cell type-specific promoters 

 Organ, tissue, domain or cell type-specific promoters are used when the transgene 

expression is preferred at a specific site and/or specific time in development to generate specific 

phenotypes and avoiding adverse effects on plant growth or yield. Several endosperm-specific 

promoters have been identified and are used to express single or, even, multiple enzymes of 

biochemical pathways either to dissect the metabolic pathway or to improve the nutritional seed 

quality (Naqvi et al., 2009; Coussens et al., 2012). Other promoters have been used for basic or 

biotechnological research, such as the TA29 tapetum-specific promoter that has been used 
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successfully for the generation of male sterility in canola (Mariani et al., 1990). The AP1 promoter of 

the A-type flower gene, AP1 that is active in floral whorl one and two- has been used to silence the 

AP3 gene in whorl two and create a doubled sepaloid flower in Arabidopsis and canola (Byzova et al., 

2004) in order to avoid reflection of the bright-yellow canopy, capture more sun light and increase 

yield.  

Inducible promoters 

 Inducible promoters are specifically activated in response to external stimuli. In contrast to 

constitutive promoters, the fused transgenes can be expressed at a distinct developmental stage for 

a certain duration or in a specific tissue. Additionally, the promoters are inactive in the absence of 

inducers and, therefore, have no negative impact on plant development. The promoter activity can 

be induced by chemical factors, such as tetracycline, ethanol, steroids, copper ions, and herbicides, 

or by physical factors, such as heat, cold, and light. Promoters that respond to specific chemical 

compounds, not found naturally in the organism of interest, are of particular interest in genetic 

engineering because of the manipulation ease. Some of the most commonly used chemically 

inducible promoters in plants (Padidam, 2003) are briefly described. Tetracyclines are particularly 

attractive as gene expression inducers, because they are small lipophilic compounds that enter easily 

into eukaryotic cells by passive diffusion and they have been routinely used in both human and 

veterinary medicine with negligible side effects. The tetracycline-inducible system consists of three 

main components: the transcriptional repressor, the tetracycline-responsive operator, and an 

antibiotic of the tetracycline family. The tetracycline-inducible system has been used successfully to 

produce valuable pharmaceutical or industrial proteins in plant cell suspension cultures (Bortesi et 

al., 2012). In the steroid-inducible systems, heterelogous proteins are fused to a receptor for 

glucocorticoid or estrogen and induced by steroids. The glucocorticoid receptor-based steroid-

inducible system has significantly advanced the insight into the function of plant transcription 

factors that control plant developmental pathways (Lloyd et al., 1994; Aoyama et al., 1995). The 

ethanol-inducible gene expression system is derived from the filamentous fungus Aspergillus 

nidulans and consists of two elements: the alcohol-regulated transcription factor (ALCR) that binds 

the alcA-derived promoter that regulates the expression of the transgene (Roslan et al., 2001). The 

ethanol-inducible system has been optimized for the production of proteins in plants (Dugdale et al., 

2013). 
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Databases for plant promoter sequences 

 Functional analysis of genes in transgenic plants often demands selection of promoters with 

appropriate activity patterns. Promoters commonly used in vectors are very limited and provide only 

little variation in gene expression patterns. Thus far, with an increasing number of plant genome 

sequences, it has become necessary to develop a robust computational method for detecting novel 

plant promoters in transgenic research. To date, a wide variety of programmes for predicting 

promoters are available, including PlantPAN (Chang et al., 2008), GRASSIUS (Yilmaz et al., 2008), 

PlantCARE (Lescot et al., 2002) and TransGene Promoters (TGP) database (Smirnova et al., 2012). 

However, promoters identified by prediction programs need to be tested by using reporter genes in 

plant development and under different stimuli in order to be applicable in transgenic research. 

Vectors for higher plant transformation 

Binary vectors 

 A binary vector system (Lee and Gelvin, 2008) consists of two plasmids: the helper plasmid 

that is constituted of the Agrobacterium Ti plasmid without T-DNA, but carries the vir genes that are 

necessary for the T-DNA transfer in the plant host genome and acts in trans, and the binary vector 

derived from the commonly used E. coli cloning vectors and carrying the gene of interest, flanked by 

25-bp terminal repeats, designated the right and left T-DNA border sequences. The binary cloning 

vector is a standard molecular tool in the Agrobacterium-mediated transformation of higher plants, 

because it is easy to manipulate in vitro by recombinant DNA methods (Bevan, 1984). Cloning 

vectors can be assembled to facilitate fusion, overexpression, or downregulation of a variety of 

genes in plant cells. Their basic skeleton includes a gene of interest under a specific promoter in 

addition to a selectable and/or reporter gene. Superbinary vectors have additionally the virB, virG, 

and virC virulence genes of the supervirulent pTiBo542 plasmid, requiring yet another intermediate 

cloning vector and cointegration step in Agrobacterium, complicating the cloning (Komori et al., 

2007). A good alternative strategy to the use of superbinary vectors is the use of the supervirulent 

Agrobacterium strain EHA101 that contains the supervirulent vir genes of pTiBo542 in the helper 

plasmid (Hood et al., 1986; Frame et al., 2002; Coussens et al., 2012). 

 GATEWAY vectors are a set of versatile and robust T-DNA binary vectors that enable rapid 

and efficient cloning and transfer of DNA fragments between vector backbones. The utilization of 

these vectors overcomes the cumbersome conventional cloning procedure, involving DNA restriction 

and ligation reactions, and the efforts to develop small vectors with unique restriction sites. The 
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GATEWAY cloning technology takes advantage of the site-specific reversible recombination system 

of phage λ that enables rapid and efficient cloning and transfer of PCR DNA fragments related to 

promoters, cDNA, or gDNA between different expression vectors (Hartley et al., 2000). The DNA 

fragment is first captured in a GATEWAY donor vector (pDONR) through a site-specific 

recombination reaction resulting in a GATEWAY entry clone (pENTR). Subsequently, the DNA 

fragment can be recombined into many different GATEWAY destination vectors (pDEST) depending 

on the necessity for overexpression, silencing, and promoter analysis, resulting in an expression 

clone (pEXPR). Several components are essential in the Gateway cloning procedure: the att sites, the 

ccdB gene, and clonase enzymes that recognize the att site, thus facilitating the recombination 

reaction. The GATEWAY att sites are phage-derived recombination sites that facilitate directional 

cloning and maintain orientations and reading frames of the DNA fragments. The attB sites that flank 

the DNA of interest recombine with attP sites in a donor vector yielding attL sites in a novel entry 

clone, a reaction catalyzed by the BP clonase enzyme. Similarly, the attL sites in the entry vector 

recombine with the attR sites of a destination vector to yield the attB sites in a novel expression 

clone. Directional cloning is enabled by ensuring that only specific sites recombine, for instance, 

attB1 with attP1 and not attP2 (Hartley et al., 2000). The BP clonase enzyme is composed of the 

phage integrase and the E. coli integration host factor, whereas the LR clonase consists of the phage 

integrase, the E. coli integration host factor, and the phage excisionase. GATEWAY vectors can be 

selected and maintained by the use of ccdB gene and antibiotic selection markers. The ccdB gene is a 

negative counterselection marker encoding a protein that interferes with the DNA gyrase, thus 

inhibiting the E. coli growth. ccdB is present in the pDONR or pDEST vectors and is replaced by the 

DNA of interest upon recombination; hence, E. coli cells with the correctly recombined plasmids will 

survive, whereas cells with unreacted vectors or byproduct-containing ccdB will fail to grow. 

Multisite GATEWAY is an extension of the GATEWAY technology, involving additional novel 

recombination sites with unique specificities to enable the simultaneous cloning of multiple 

fragments in a single highly efficient and specific in vitro LR clonase reaction. The fragments are 

cloned in an expression vector in a predefined order, orientation, and translation reading frame 

(Cheo et al., 2004). 

GATEWAY vectors for plant transformation 

 GATEWAY destination vectors have been developed to analyze the gene function through 

Agrobacterium-mediated transformation of dicotyledonous or monocotyledonous plants (Karimi et 

al., 2007, 2013; Himmelbach et al., 2007). A versatile set of GATEWAY-compatible destination 

vectors (termed pANIC) has been constructed to be used in monocotyledonous plants for 
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improvement of transgenic crops either through transgene overexpression or interference RNA 

(RNAi)-mediated gene suppression (Mann et al., 2012). Unique plant GATEWAY RNAi vectors for the 

functional analysis of the metabolic pathway in root tissues have been described (Muranaka, 2011). 

Functional elements built as GATEWAY entry clones, such as promoters, terminators, open reading 

frames, or diverse tags, can be recombined in a single step in the multisite GATEWAY cassettes, thus 

simplifying design and construction of the recombinant DNA molecules (Karimi et al., 2007). 

GATEWAY MultiSite entry clones are potentially adaptable to any model system and an inventory of 

the entry clones and destination vectors for the GATEWAY MultiSite cloning has been established 

(Petersen and Stowers. 2011). A new series of binary GATEWAY cloning vectors (pAUL1-20) has been 

generated for C-terminal and N-terminal proteins fused in-frame to four different tags: a single 

hemagglutinin epitope, a streptavidin-tagII, both epitopes combined to a double tag, and a triple tag 

consisting of the double tag extended by a Protein A tag possessing a 3C protease cleavage site 

(Lyska et al., 2013). GATEWAY-compatible cassettes have been assembled for the expression of 

multiple genes (Chung et al., 2005) in addition to a GATEWAY recycling system for linking multiple 

expression cassettes (Kimura et al., 2013) and a modified multisite hybrid vector for stacking genes 

in plants (Vemanna et al., 2013). 

Maize and Arabidopsis transformation platform at the Center for Plant System Biology (PSB), VIB-

UGent 

 At PSB, maize transformation is carried out via the Agrobacterium tumefaciens-mediated 

transformation of immature embryos from the maize B104 inbred line using a super-virulent EHA101 

Agrobacterium strain. Transformed embryogenic calli are selected using phosphinothricin or 

hygromycin and stable T0 transgenic shoots are generated through tissue culture regeneration then 

transferred to the green-house and backcrossed with wildtype B104. On average ten T1 transgenic 

seed events per construct are produced in a process that takes eight months from the 

Agrobacterium co-cultivation step (Coussens et al., 2012). Users of the platform benefit from the 

Multisite Gateway vectors optimized for monocots (Karimi et al., 2013), strong constitutive 

promoters derived from Brachypodium distachyon (Coussens et al., 2012) and the recent Golden 

Gateway collection tools available at the department. Currently fifty constructs per year are 

transformed into maize and further optimization is in progress to reduce tissue culture timelines, 

enhance tissue competence for Agrobacterium infection, to increase somatic embryogenesis and 

plantlet regeneration capacity. 
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Arabidopsis transformation at PSB is carried out via the Agrobacterium-mediated floral dip of 

Arabidopsis plants at early flowering stages (Clough and Bent, 1998). The dipped plants are allowed 

to grow to maturity and set seed, the whole process taking 6 weeks from the Agrobacterium 

infection step. The T0 seeds obtained are germinated in tissue culture on high density plates by the 

user, allowing for selection of transgenic progeny that will produce T1 seeds in fourteen weeks. T3 

homozygous seedlings are generated for functional analysis of the transgene activity. No tissue 

culture or regeneration steps are required and thus the method avoids somaclonal variations and 

can be carried out by non-specialists. A thousand constructs per year can be transformed in 

Arabidopsis through floral dipping method at PSB. 

Perspectives 

 Higher plant transformation technology has become an adaptable platform for cultivar 

improvement as well as for studying gene functions in plants. Plant DNA can be altered by 

introducing into a gene specific nucleotide substitution that change a protein's amino acid sequence, 

delete genes or chromosomal segments, and insert foreign DNA at precise genomic locations. Such 

targeted DNA sequence modifications are enabled by sequence-specific nucleases that create 

double-strand breaks in the genomic loci to be changed. The genomic alteration has recently been 

achieved through engineered zinc finger nucleases (ZFNs) (Hauschild-Quintern et al., 2012; Tzfira et 

al., 2012) and transcription activator-like effector nuclease (TALEN)-type transcription factors 

(Mussolino and Cathomen, 2012). Through an innovative method, designated directed nuclease 

editor (DNE), selected genes can be incorporated into the plant genome with an enhanced accuracy 

(http://www.research.bayer.com) 

 The engineering of a single gene to modify the plant metabolism has largely been promising, 

but many traits result from many interacting factors that need to be modulated. Such a modulation 

of complex pathways could be achieved through classical breeding or through the simultaneous 

engineering of multiple transgenes in nuclear and plastid genomes. It will be interesting to develop 

versatile molecular toolboxes for the engineering of multiple genes in organelles, such as 

mitochondria, that hitherto has not been successful. The choice of the preferred technology for 

multiple transgene engineering will be influenced by many factors, including the T-DNA transfer 

method, the targeted plant species, the cellular compartmentalization of the pathway of interest, 

the number of genes to be engineered into the plant, their desired expression levels as well as the 

available knowledge about metabolite pools, fluxes, and the biochemical regulation of the pathway 

(Bock, 2013). 
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 Although selectable marker genes are useful tools in the production of transgenic plants by 

selecting transformed cells from a matrix consisting of mostly untransformed cells, their presence in 

genetically modified plants and, subsequently, in food, feed, and the environment, are of concern 

and subject to special governmental regulations in many countries. In addition, they could result in a 

metabolic burden for the host plants and prevent the reuse of the same selectable markers when a 

second transformation scheme is needed on the transgenic host. Therefore, innovation in selectable 

marker removal is necessary to improve existing systems and to develop new technologies. Although 

the focus of the ZFN and TALEN technologies has been the introduction of local genomic 

modifications, the ZFN technology has been used for plant selection marker gene deletion. For 

instance, a preintegrated cassette containing the GUS reporter gene flanked by two ZFN cleavage 

sites was deleted from a stably transformed plant by crossing it with a second plant expressing a 

corresponding ZFN gene, a method that can also be applied for selectable marker removal (Petolino 

et al., 2010). Furthermore, two identical sets of TALEN-binding sequences can be designed to flank a 

selectable marker in a transformation vector whereby, after expression of TALEN, double-stranded 

breaks will be induced at both TALEN-binding sequences and remove the selectable marker (Yau and 

Stewart, 2013). 
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Abstract 

Gene functional analysis is a broad subject as various tools and techniques have been developed 

over time and are still being explored to accurately annotate gene function in an attempt to solve 

many biological questions. Success in whole genome sequencing of numerous organisms has 

resulted in many predicted gene sequences but their biological functions are still unknown. In this 

chapter a brief overview of the genetic techniques used in modulating the Arabidopsis and maize 

Poly(ADP-ribosyl)ation pathway to study the plant energy homeostasis and stress response are 

briefly discussed. 
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3.1 Forward and reverse genetics  

Genetics relies on the study of variants, either found in natural populations or induced by 

mutagenesis. Forward genetics is a scientific approach of determining the genetic basis of a 

phenotype; it seeks to identify genes involved in a biological pathway through the screening of 

populations that contain random modifications throughout the genome that can alter gene function.  

Populations that carry interesting modified alleles are identified by the observation of the 

phenotypes, and subsequent mapping of the allele within the genome to reveal genes that are 

associated with the observed biological process (Lawson et al., 2011). In forward genetics, chemicals 

like ethylmethanesulfonate, γ radiation or movable or heterologous DNA (transposons or T-DNA) are 

often used to generate mutations in model organisms, subsequent crossing is carried out, mutant 

individuals are isolated, and then the gene is mapped. 

Reverse genetics approach, on the other hand, seeks to find what phenotypes arise as a result of 

particular genetic sequences. It begins with a gene of interest and seeks to identify the phenotype of 

mutation of the gene. Success in the whole genome sequencing of many organisms has resulted in 

many predicted gene sequences but their biological functions are unknown. Thus reverse genetics is 

a powerful tool for assigning functions to predicted genes. The process of  DNA sequence alteration 

can either be targeted specifically as in the case of gene silencing or homologous recombination or 

can rely on non-targeted random disruptions (e.g. chemical mutagenesis, radiations, insertional 

mutagenesis) followed by screening a library of individuals for mutations at a specific location 

(Tierney and Lamour, 2005). 

3.2 Insertional mutagenesis 

A direct way to obtain information on the function of a gene is to create a loss of function mutation 

and study the phenotype of the resulting mutant.  One way of disrupting a gene function is by 

addition of a fragment of DNA into the pre-existing sequence called insertional mutagenesis. 

Insertion mutants can occur naturally as in the case of transposon or viral mediated DNA integration 

or can be created through introduction of foreign DNA into a gene sequence. DNA elements that are 

able to insert at random within chromosomes, such as transposons (Martienssen, 1998) or the T-

DNA of Agrobacterium tumefaciens (Van Lijsebettens et al., 1991; Krysan et al., 1999), can be used 

as mutagens to create loss of function mutations in plants. The foreign DNA not only disrupts the 

expression of the gene into which it is inserted but also acts as a marker for subsequent 

identification of the mutation. The mutants are then screened for unusual phenotypes, if any such 

phenotype is found, then it can be assumed that the insertion has caused the gene relating to the 

https://en.wikipedia.org/wiki/Gene_mapping
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unusual phenotype to be disrupted and the phenotype identifies the process in which the identified 

protein functions.  

However, insertion mutants do not always result in visible phenotypes due to gene functional 

redundancy, or they may result in early lethality that obscures late-acting functions when the same 

gene has multiple functions in development. To overcome this challenge, insertional elements are 

engineered with reporter cassettes that will report on the expression of the chromosomal gene at 

the site of insertion.  Two types of these reporter cassettes are commonly used: Enhancer trap 

which contains a reporter fused to a minimal / weak promoter that can respond to nearby 

endogenous enhancers when the cassette is inserted within or close to a gene and a Gene trap in 

which the reporter gene is fused to a splice acceptor so that integration within introns leads to read-

through transcription and splicing (Martienssen, 1998; Bouchez and Hofte, 1998; Ramachandran and 

Sundaresan, 2001). GUS gene (Jefferson et al., 1987) is the most frequently used reporter gene 

because of its accurate detection of the gene product and tolerance of N-terminal translation fusions 

in its enzyme activity (Jeon et al., 2000).  In addition, gene disruptions through insertional 

mutagenesis nearly always generate recessive loss of function mutations which do not always 

produce an obvious phenotype due to factors such as functional redundancy. In such cases, 

increasing the expression level or ectopically expressing a gene can provide dominant gain of 

function mutations that produce informative mutant phenotypes. This is achieved through activation 

tagging in which a strong enhancer or promoter is fused to the T-DNA or transposon insert resulting 

in over-expression of nearby genes through transcriptional activation (Ramachandran and 

Sundaresan, 2001). 

Various populations of mutagenized plants, either with heterologous transposons (mainly maize 

transposons such as Ac/Ds, En/Spm, or Mu) or the T-DNA of A. tumefaciens, have been produced in 

several plant species (Arabidopsis, tomato, maize, and rice) (Cooley et al., 1996; Azpiroz-Leehan and 

Feldmann, 1997; Jeon et al., 2000; Brutnell and Conrad, 2003). The use of T-DNA and transposon 

insertion mutagenesis for reverse genetics will be discussed further and their application in 

functional genomics of plants. 

3.2.1 T-DNA insertional mutagenesis 

The Transfer DNA (T-DNA) of Agrobacterium is a suitable mutagen for the generation of insertional 

mutant lines because it integrates randomly in the genome and the insertion alleles are stable 

through multiple generations.  Through polymerase chain reactions, it is possible to isolate the 

individual plants carrying a particular T-DNA mutation of interest. Unlike transposons, T-DNA 
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insertions will not transpose subsequent to integration within the genome and are therefore 

chemically and physically stable. In addition, since each transformant yields a stable insertion in the 

genome there is no need for additional steps to stabilise the insert as in transposon mutagenesis. 

Insertional mutagenesis using the Agrobacterium mediated T-DNA integration into plant genomes 

has proven to be very successful and has been used in Arabidospsis, rice and maize (Van Lijsebettens 

et al., 1994; ` Azpiroz-Leehan and Feldmann, 1997; Krysan et al., 1999; Jeon et al., 2000). Different 

groups have used this approach to generate population of T-DNA mutagenized Arabidopsis 

thaliana lines that can be used for reverse genetics including: SAIL (Sessions et al., 2002), SALK lines 

(Alonso et al., 2003), GABI-Kat (Rosso et al., 2003) and WISCDSLOX (Woody et al., 2007). Modified T-

DNA insertions have been used in A. thaliana as gene traps (Babiychuk et al., 1997), promoter traps 

(Lindsey et al., 1993) and in activation tagging (Weigel et al., 2000). T-DNA insertions have also been 

used for functional genomics in rice (Jeon et al., 2000). 

There are few drawbacks of T-DNA insertion mutagenesis despite the great success in its use.  The 

integration of T-DNA may result in tandem direct or inverted repeats and deletions in one or more 

border. These occurrences can make the subsequent molecular analysis difficult and affect the 

success of subsequent strategies such as development of flanking sequence databases. Secondly, 

complex and multiple insertions are more likely to lead to inaccurate patterns of reporter gene 

expression when using gene traps or enhancer traps. Finally, the T-DNA approach is very useful for 

plant species where quick and efficient methods of transformation are available but may not be 

feasible in plants species where transformation methods are slow or labour intensive 

(Ramachandran and Sundaresan, 2001). 

In Arabidopsis, the introns are small and there is very little intergenic material thus, insertion of a 

piece of T-DNA of approximately 5 to 25kb in length produces significant disruption of the gene 

function. Therefore, when a large population of T-DNA transformed lines is available, there is a good 

chance of finding a plant carrying a T-DNA insert within any gene or interest. Homozygous lethal 

mutations can be maintained in the population in the form of heterozygous plants. Alternative 

approaches in the Agrobacterium-mediated transformation techniques such as seed transformation, 

transformation of intact plants and floral dip method have made the T-DNA insertion a viable 

method for approaching genome-wide mutagenesis while minimizing the effects of somaclonal 

variations linked to in vitro culture and regeneration (Krysan et al., 1999). In this work, Arabidopsis T-

DNA insertion lines obtained from the SALK mutant collection were used in functional analysis of 

Nudix hydrolase gene.  
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3.2.2 Transposon mediated mutagenesis 

Transposable elements provide a convenient and flexible means to disrupt many genes generating a 

large population of insertions. Transposon mediated mutagenesis offers several advantages over T-

DNA mutagenesis. First, transposons are single intact elements which allow easy molecular analysis 

on insertion into a new region. The insertions are less likely to result in faulty patterns of expression 

if the transposon being used is a gene trap or enhancer trap as there are no direct or inverse repeats 

during DNA integration. Secondly, since many transposons can be excised from the disrupted gene in 

the presence of a transposase, phenotypic reversion to wildtype trait is possible. This phenotypic 

reversion provides ready confirmation that the mutation was caused by the transposon insertion. 

Thirdly, since several transposons preferentially integrate into genetically linked sites, this property 

can be used to perform local mutagenesis in particular regions of interest by remobilising the 

transposons. Finally, transposon mutagenesis is of great advantage in plant species where 

transformation is inefficient or laborious since new insertions are generated though crossing or 

selfing rather than through transformation (Ramachandran and Sundaresan, 2001). Maize has a rich 

collection of native transposon families utilized in large-scale mutagenesis experiments to produce 

genome-wide genetics resources. The two most popular, Activator/Dissociator (Ac/Ds) and Mutator 

(Mu) transposons will be further elaborated.  

3.2.2.1 Activator/Dissociator (Ac/Ds) transposons 

Ac/Ds were the first transposable elements discovered by Barbara McClintock (McClintock, 1956). 

The Ac element is autonomous whereas the Ds element requires an activator element to transpose. 

These elements share an 11bp terminal inverted repeat sequence and have sequence heterogeneity 

both in length and content. They have a tendency to preferentially transpose to genetically linked 

sites (Jones et al., 1990), a feature exploited for directed tagging of a specific gene or performing 

insertional mutagenesis within a targeted region of the chromosome (Brutnell and Conrad, 2003). 

Although native to maize, Ac/Ds elements have been shown to transpose actively in other species 

such as tobacco, Arabidopsis, rice, tomato and potatoes where they have been exploited for 

heterologous gene tagging studies (Nelissen et al., 2003). The primary limit of Ac as a tool for 

forward and reverse genetics in maize lies in its relatively low mutation rates. Ac populations are 

approximately 100-fold less mutagenic than Mutator populations (Walbot 2000) 
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3.2.2.2 Mutator transposons 

The Maize mutator (Mu) transposon is the most active plant DNA transposon discovered to date 

with approximately 50–100 copies transposing on average in each generation. It was first described 

by Donald Robertson (1978) thus commonly referred to as Robertson’s Mutator transposon. The Mu 

transposon family is a two component system consisting of the autonomous MuDR element that 

controls the transposition of itself and that of 12 non-autonomous Mu elements (Walbot and 

Rudenko, 2002). All maize Mu elements contain conserved approximately 215 bp terminal inverted 

repeats (TIRs) and upon insertion generate a 9 bp target site duplication directly flanking the Mu 

elements. However, each class of these elements contains a unique internal sequence.  Mu is also 

one of the most successfully used high-copy number transposon with a high rate of germinal 

transposition and unlike Ac; germinally transmitted excisions of Mu are rare (Walbot 2000). Mu 

elements do not exhibit a preference for transposition to a nearby site as in the case of Ac/Ds 

transposons and are therefore suitable for genome-wide mutagenesis screens.  Mu elements are 

also reported to have a pronounced preference for insertion at the 5’ ends of genes with the 

strongest preference near the transcription start site. Additionally, regions close to the ends of 

chromosomes experience more Mu insertions than do pericentromeric regions (Liu et al., 2009). 

Mu elements accumulate to a high copy number within maize lines harbouring active Mu due to 

their transposition properties. This allows for a relatively small population (~ 40,000 plants) to have a 

high chance of mutating most genes in the genome. Consequently, several groups have developed 

Mu transposon-tagging populations namely:  Trait utility system for corn (TUSC) (Bensen et al., 

1995), MuAFLP (Hanley et al., 2000), RescueMu (Raizada et al., 2001), Maize Targeted Mutagenesis 

(MTM) (May et al., 2003), Photosynthetic Mutant Library (Stern et al., 2004), UniformMu (McCarty 

et al., 2005). 

UniformMu population 

UniformMu is a large inbred maize population developed specifically for transposon mutagenesis of 

the maize genome. The population was developed by backcross introgression of an active, 

autonomous, MuDR transposon into colour converted, genetically uniform, W22 maize inbred 

(McCarty et al., 2005). Colour converted lines were developed through introgression of a mutable 

bronze-1 mu-mutable-9 (bz1-mum9) anthocyanin biosynthetic gene (Brown and Sundaresan., 1992) 

into the W22 genetic background. The bz1-mum9 allele contains a non-autonomous Mu1 

transposon insertion that disrupts the Bronze 1 (Bz1) gene. Bz1 gene encodes a UDP-glucose flavanol 

glucosyl transferase that catalyzes a key step in biosynthesis of purple anthocyanin pigment in the 
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seed aleurone. Thus, all UniformMu stock is bronze coloured as opposed to the purple colour of 

W22 inbred and homozygous for the bz1-mum9 mutation. Mu transposons were stabilized by 

selecting against somatic transposition based on reversion of the bz1-mum9 locus in the endosperm. 

A Mu-active plant shows sectors of purple spots on bronze-colored aleurone, an indicator of the 

presence of MuDR which induces transposition of the Mu1 element in bz1-mum9 locus. The spots 

are due to small, typically single-cell, revertant sectors that produce purple anthocyanin. In the 

absence of MuDR, the bz1-mum9 allele has a uniformly bronze-colored aleurone (Fig. 1). Analysis of 

the UniformMu transposon-inactive lines did not show reversion of the bz1-mum9 locus, and all 

lines segregated for independent seed mutant phenotypes (Settles et al., 2004; McCarty et al., 2005; 

Settles et al., 2007).  

 

Fig. 1: Color effects on the maize seed aleurone due to the presence or absence of the MuDR in the bronze 
locus. Figure adopted from UniformMu resource, 2011 

The UniformMu population was designed to address specific constraints of high copy transposon 

populations. Firstly, the heterogenous genetic background that limits detection of tagged mutation 

and phenotypic analysis of knockouts and secondly, the accumulation of parental mutations. Thus 

the key features of the UniformMu resource includes: highly mutagenic activity in a homogeneous 

inbred background, genetic control of Mu activity for suppression of Mu transposition prior to 

molecular analysis, eliminated parental seed mutations to maximise independence of seed 

mutations, mapped heritable insertions and a sustainable seed resource (McCarty et al., 2005). 

UniformMu genetic stocks that are freely distributed by the Maize Cooperation Stock Centre using 

online tools maintained at MaizeGDB.org. Genetic and molecular analyses of UniformMu insertion 

lines requires development of genotyping assays that use a gene-specific polymerase chain reaction 

to follow segregation of transposon insertions in genes of interest. In this work, UniformMu 

insertions in the Poly(ADP-ribose) Polymerase and Nudix hydrolase genes were screened and 

ordered for use in functional analysis. 
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3.3 Genome editing using CRISPR/Cas9 

Genome editing is a type of genetic engineering in which DNA is inserted, deleted or replaced at a 

specific site in the genome of a living organism or cell using engineered nucleases also known 

as “molecular scissors”. The nucleases create site-specific double stranded breaks (DSB) at desired 

locations in the genome which stimulates the DNA repair pathways within the cell to make 

modifications. The repairs occur via two possible pathways, non-homologous end joining (NHEJ) 

pathway or homologous recombination (HR) pathway (Symington and Gautier, 2011). Double 

stranded breaks are most frequently repaired by NHEJ pathway which is error prone and can result 

in the introduction of insertions or deletions resulting in frameshift mutations in the coding 

sequence of genes. On the other hand, if a double stranded break is introduced in the presence of a 

homologous donor sequence, then repair may occur via a homology-directed repair pathway. The 

HR pathway can be exploited by inserting an exogenous sequence that is homologous to the flanking 

sequences of a DSB which, when used as a template by HR system, would lead to the creation of the 

desired change within the genomic region of interest.  

Creation of site-specific DSB requires precise enzymes which are able to recognize and interact with 

DNA sequences only at the target site. Normal restriction enzymes, which recognize short sequences 

that often occur at several sites in the genome cannot be used as they are likely to cut the DNA 

molecule several times. Targeted genome engineering is performed using enzymes which are able to 

recognize and interact with DNA sequences that are sufficiently long so as to occur only once, with 

high probability, in any given genome. A number of commonly used Engineered Nucleases include: 

Meganucleases (Curtin et al., 2012), Zinc Finger Nucleases (ZFNs, Kim et al., 1996), Transcription 

Activator Like Effector Nucleases (TALENs, Christian et al., 2010) and CRISPR (Clustered Regularly 

Interspaced Short Palindromic Repeats).  In this work CRISPR nuclease was used in editing maize 

genome and will be discussed further. 

Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 

(Cas9) editing system is a recently developed tool for the introduction of site-specific double-

stranded DNA breaks based on RNA-guided engineered nucleases. The system is adapted from 

prokaryotic CRISPR/Cas immune system protecting them against invading nucleic acids such as 

viruses by cleaving the foreign DNA in a sequence specific manner. The most widely used system is 

the type II CRISPR/Cas9 system from Streptococcus pyogenes (Jinek et al., 2012)   which incorporates 

sequences from foreign DNA between CRISPR repeat sequences encoded as arrays within the 

bacterial host genome.  Transcripts resulting from the CRISPR repeat arrays are processed into 

https://www.horizondiscovery.com/gene-editing/zfns
https://www.horizondiscovery.com/gene-editing/crispr
https://www.horizondiscovery.com/gene-editing/crispr
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CRISPR RNAs (crRNAs), each containing a variable sequence transcribed from the foreign DNA, 

known as the protospacer sequence, and part of the CRISPR repeat sequence.  crRNA hybridizes with 

another RNA known as the transactivating CRISPR RNA (tracrRNA), and the two RNAs complex with 

the Cas9 nuclease. When the protospacer is adjacent to short sequences known as protospacer 

adjacent motifs (PAMs), it guides the Cas9 to cleave complementary target DNA sequences. 

Protospacer sequences incorporated into the CRISPR locus are not cleaved probably because they 

are not next to a PAM sequence (for reviews on CRISPR/Cas9 see Doudna and Charpentier, 2014; 

Hsu et al., 2014; Sander and Joung, 2014). 

CRISPR/Cas9 system became an important tool for genome engineering when it was shown that any 

target DNA sequence of interest could be modified by changing 20 nucleotides in the crRNA and that 

the targeting specificity of the crRNA could be combined with the structural properties of the 

tracrRNA in a chimeric guide RNA (gRNA), thus reducing the system from three to two components 

(Jinek et al., 2012). Fig.2 shows a comparison of the naturally occurring type II and engineered 

CRISPR/Cas9 systems. 

 

Fig. 2: DNA cleavage using (a) Naturally occurring type II CRISPR/Cas9 system composed of a three component 

system: crRNA, tracrRNA and Cas9 nuclease in comparison with (b) an engineered CRISPR/Cas9 system with a 

two component system: gRNA and Cas9 protein (Sander and Joung, 2014). 

 

The two components, Cas9 nuclease and a guide RNA, must be introduced into and/or expressed in 

cells or an organism to perform genome editing.  The 20 nucleotides at the 5’ end of the gRNA 
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directs Cas9 to a specific target DNA site using standard RNA-DNA complementarity base-pairing 

rules thus the 20 nucleotides of the gRNA always need to correspond to the target DNA sequence. 

Also importantly, the target sites must lie immediately 5’ of the PAM sequence (5’ NGG from S. 

pyogenes Cas9 is currently the most widely used in genome engineering. Other PAM sequence 

variants corresponding to Cas9 from different species are also available). It has also been shown that 

multiple gRNAs with different sequences can be used to achieve high-efficiency multiplex genome 

engineering at different loci simultaneously. 

The CRISPR/Cas9 system is the latest ground-breaking technology for genome editing and already 

holds a great promise due to its simplicity, efficiency and versatility. It has been used to precisely 

and efficiently target, edit, modify, regulate, and mark genomic loci of a wide array of cells and 

organisms from bacteria to humans and also is widely applied in plants. In this project we used 

CRISPR/Cas9 system to introduce indels at the maize PARP genes to study drought and oxidative 

stress tolerance in response to PARP gene mutation. 
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Abstract 

The role of Poly(ADP-ribose) polymerases  in DNA damage repair, chromatin modification, cell cycle, 

transcription regulation, telomere dynamics and cell death is well characterised in animal science 

but there are fewer reports in plant science. Significant work has been done in Arabidopsis showing 

the involvement of Poly(ADP-ribose) polymerases in DNA damage, biotic and abiotic tolerance.  In 

this work we attempt to contribute to the knowledge by studying the function of PARP genes in 

maize. The ZmPARP gene expression was perturbed using either RNAi hairpin silencing or 

CRISPR/Cas9 gene editing technology, transgenic lines were characterised and genotoxic stress 

tolerance evaluated. Analysis of the mild drought stress response of the CRISPR and RNAi maize 

PARP lines will be shown in chapter 5 together with the mild drought stress data of maize NUDX 

overexpression lines. 
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4.1  Introduction 

Poly(ADP-ribose) polymerases (PARPs) are a large family of proteins found in a wide variety of 

organisms from archaebacteria to mammals and plants but are absent in yeast. They display a 

conserved PARP catalytic domain and catalyze a covalent post-translational protein modification in 

eukaryotic cells via the polymerization of ADP-ribose units from donor NAD+ molecules onto nuclear 

target proteins such as histone and transcription factors, resulting in the attachment of linear or 

branched poly(ADP-ribose). PARP enzymes are well studied in mammals and reported to be involved 

in DNA damage repair, chromatin modification, cell cycle, transcription regulation, telomere 

dynamics and cell death (Ame et al., 2004; Burkle et al., 2005). In plants although not as extensively 

studied, PARPs are mostly reported in the context of biotic and abiotic stresses (De Block et al., 

2005; Vanderauwera et al., 2007; Adams-Phillips et al., 2010; Feng et al., 2015; Song et al.,2015). 

PARPS are also reported to be involved in DNA repair, cell cycle, genotoxic stress and recently in 

plant growth by promoting leaf cell number (Lamb et al., 2012; Doucet-Chabeaud et al., 2001; Schulz 

et al., 2014). 

Downregulation of PARP genes through overexpression of an RNAi hairpin construct containing 5‘-

end of the Arabidopsis AtPARP1 or AtPARP2 genes in Brassica napus and Arabidopsis thaliana 

enhanced the stress tolerance of the plants to a broad range of abiotic stresses such as high light, 

drought, and heat (De Block et al., 2005). The enhanced stress tolerance upon reduction of PARP 

activity was partly attributed to maintenance of energy homeostasis due to reduced NAD+ and ATP 

consumption and also to alteration in abscisic acid (ABA) levels leading to ABA-mediated stress 

response likely due to the preserved NAD+ levels (Vanderauwera et al., 2007).  

In a maize translational study, Anami (2010) used the AtPARP2 gene to screen for PARP homologues 

in maize genomic databases obtaining two maize genes: ZmPARP1 (GRMZM5G831712) and 

ZmPARP2 (GRMZM2G099231, GRMZM2G124718). Anami (2010) futher used the ZmPARP1 sequence 

to develop two RNAi hairpin constructs (hpPARP1-555 and hpPARP1-373) targeting the 5’ end of the 

ZmPARP1 gene that were driven by the maize ubiquitin promoter. However, the level of silencing of 

the endogenous ZmPARP1 gene expression was found to be insufficient probably due to the hairpin 

construct design or too few number of transgenic events analysed. De Block et al. (2005) showed 

that Arabidopsis lines carrying an RNAi hairpin construct targeting the AtPARP2 catalytic domain 

sequence allowed silencing of both AtPARP1 and AtPARP2 which resulted in tolerance to high light 

stress and was more efficient as compared to the RNAi PARP construct targeting the 5’ end of 

individual genes. This report was supported by a recent study by Song et al. (2015) which shows that 

PARP2 is the predominant Poly(ADP-Ribose) polymerase in Arabidopsis DNA damage and immune 
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responses. In this study we used the RNAi gene silencing approach and the revolutionary CRISPR 

gene editing techniques to develop maize lines with perturbed PARP gene expression by targeting 

the PARP catalytic domain and study their response to DNA damage and drought stresses. 

4.2 Results 

4.2.1 Cloning, transformation and characterization of the RNAi hpPARP1_Cat silencing construct 

A 650bp cDNA sequence fragment from the ZmPARP1 catalytic domain of B73 inbred maize line was 

amplified with gene specific primers carrying terminal enzyme restriction sites to introduce 

nucleotide overhangs on the amplified fragment. The PCR fragments were cloned into the 

StrataClone PCR cloning vector pSC-A-amp/kan and recloned into the pMCG1005 RNAi expression 

vector. AvrII and AscI enzymes were used to put the ZmPARP1_Cat fragment in the forward  

orientation between the ALCOHOL DEHYDROGENASE1  (ADHI) intron and rice Waxy-a intron, 

while XmaI and SpeI enzymes were used to put the ZmPARP1_Cat fragment in the reverse 

orientation between OCTOPINE SYNTHASE 3′  (OCS 3’) and the rice Waxy-a intron. The hairpin 

construct was driven by the maize ubiquitin promoter. A bar marker gene driven by the cauliflower 

mosaic virus p35S promoter was used for selection (Fig.1).  The expression vector was cloned into 

EHA101 super virulent Agrobacterium strain and transformed into the B104 maize genotype using 

the Agrobacterium-mediated transformation system. 
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Fig. 1: A) Schematic representation of the ZmPARP1 catalytic domain inverted repeat sequence in the RNAi 
expression vector and the position of enzymes restriction sites indicated (S. Anami, unpublished results). (B) 
pMCG1005 RNAi expression vector used to express the hpZmPARP1_Cat construct. The position of the rice 
waxy-a intron between the multiple cloning sites (MCS) where the sense and antisense PARP_Cat fragments 
are cloned, the Ubiquitin promoter (Ubi pro) used to drive the expression of the hpPARP_Cat construct and the 
Bar marker driven by the p35S promoter are shown. 
 

The cloning was carried out by Sylvester Anami at the Phil Becraft’s lab, IOWA and the maize 

transformation carried out at the IOWA Plant Transformation Facility. 19 T0 events were obtained 

and backcrossed with pollen from wildtype B104 genotype and the T1 progenies were sent to PSB-

VIB-UGent for further characterization and functional analysis. 

Bar gene segregation was tested using the ammonium-multiwell assay (De Block et al., 1995; Rasco-

Gaunt et al., 1999) in 24 T1 progeny individuals per line in order to determine the number of T-DNA 

loci. Four of the 19 T1 lines did not show clear bar activity and another four lines had very limited 

seed stocks thus not used.   T1 backcross ratio of 1 positive versus 1 negative indicates the presence 

of 1 T-DNA locus, of 3 positive versus 1 negative indicates the presence of 2 T-DNA loci.  The results 

for the 11 remaining T1 progenies are summarized in Table 1. 
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Table 1: Segregation analysis of T1 maize plants expressing the ZmPARP1_cat RNAi hairpin construct. Chi 
Square test used in predicting the number of T-DNA loci in each line 

T1 ID 
BAR Activity H0 hypothesis No. of       

T-DNA loci Positive  Negative 1:1 χ2 3:1 χ2 

ZmPARP1_HP-1 13 11 0,17 5,56 1 

ZmPARP1_HP-2 11 13 0,17 10,89 1 

ZmPARP1_HP-3 8 16 2,67 22,22 Silencing 

ZmPARP1_HP-4 17 7 4,17 0,22 2 

ZmPARP1_HP-5 10 14 0,67 14,22 1 

ZmPARP1_HP-6 12 11 0,04 6,39 1 

ZmPARP1_HP-7 19 5 8,17 0,22 2 

ZmPARP1_HP-8 15 9 1,50 2,00 1 or 2 

ZmPARP1_HP-9 14 10 0,67 3,56 1 

ZmPARP1_HP-10 17 7 4,17 0,22 2 

ZmPARP1_HP-11 12 12 0,00 8,00 1 

 

Six T1 lines had a 1:1 segregation ratio of the bar gene activity indicating the presence of one T-DNA 

locus insertion. Three T1 lines had a 3:1 segregation ratio indicating the presence of 2 T-DNA loci. 

The T-DNA loci number was confirmed using Chi square statistical testing. Line ZmPARP1_HP-3 had 

double the number of negative to the positive plants not fitting in the Mendelian segregation ratios, 

indicating a possibility of a chimeric T0 parent originating from multiple cells or a partial silencing of 

the hairpin construct.  

4.2.2 Expression analysis of RNAi ZmPARP1 lines and generation of T3 homozygous lines 

10 T1 hairpin PARP1_Cat lines containing one or two T-DNA loci were analysed for their expression 

level using the quantitative PCR (QPCR) technique. QPCR primers specific for the 3’ end of ZmPARP1 

and ZmPARP2 genes downstream of the PARP catalytic domain were designed using NCBI Primer 

BLAST program (Ye et al., 2012) as shown in Fig. 2. 

ZmPARP1 

  

 

QPCR Primers: qpcrZmPARP1a, qpcrZmPARP1b 

 

ZmPARP2 

 

 

QPCR Primers: qpcrZmPARP2a, qpcrZmPARP2b 

Forward strand 

Forward strand 

 
Fig. 2: QPCR primers position shown with arrows on 3’ end of ZmPARP1 (GRMZM5G831712) and ZmPARP2 
(GRMZM2G099231, GRMZM2G124718) gene models. The green boxes represent the exons, the lines 
represent the introns and the unshaded boxes represent the 5’ or 3’ untranslated region/ non-coding exon. 
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40 T1 plants per line were analysed for their bar gene activity using Pat assay test selecting 15 Pat 

positive plants containing the T-DNA ( 5 pools of 3 plants) and 15 Pat negative plants (5 pools of 3 

plants) per line for the QPCR expression analysis. 7 out of the 10 T1 hairpin PARP1_Cat lines showed 

significant downregulation of the ZmPARP1 gene expression relative to the Pat negative plants in 

their respective populations. The fold change reduction in expression level was determined for each 

line (Fig. 3).   ZmPARP1 gene expression was reduced in a range of 2.8 to 6 fold. For ZmPARP2 gene 

expression, no significant downregulation was observed in spite of using the PARP catalytic domain 

sequence, a region which is conserved in the PARP family showing 61% identity between ZmPARP1 

and ZmPARP2 catalytic domain. This indicates that almost high identity between the sequence used 

in designing an RNAi silencing construct and the target sequence is required to obtain suitable RNAi 

fragments for efficient silencing. The two primer pairs per gene used in the QPCR reaction gave 

relatively similar expression values thus a single graph is shown for each PARP gene and the fold 

change values per primer pair indicated in Table 2.  

 
Fig. 3a: Fold change in ZmPARP1 gene expression in T1 ZmPARP1_Cat hairpin silenced lines amplified using 
ZmPARP1b QPCR primer. Seven lines showed significant downregulation of the ZmPARP gene upon RNAi hp 
silencing. Error bars indicate standard deviation and asterisks indicate significant difference compared to the 
respective azygous pat negative line. 
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Fig. 3b: Fold change in ZmPARP2 gene expression in T1 ZmPARP1_Cat hairpin silenced lines amplified using 
ZmPARP2a QPCR primer. None of the lines showed downregulation of the ZmPARP2 gene. Error bars indicate 
starndard deviation. 
 

Table 2: Fold change in ZmPARP1 and ZmPARP2 gene expression level in T1 ZmPARP1_Cat hairpin silenced 

lines.  

T1 ID T-DNA 

Fold change per QPCR primer pair 

ZmPARP1a ZmPARP1b ZmPARP2a  ZmPARP2b 

ZmPARP1_HP-1 1 - 6.0 -5.8 -0.9 -0.9 

ZmPARP1_HP-2 1 -3.6 -3.3 -1.0 -1.0 

ZmPARP1_HP-4 2 -1.1 -1.2 -1.0 -1.0 

ZmPARP1_HP-5 1 -1.3 -1.2 -1.0 -1.0 

ZmPARP1_HP-6 1 -4.0 -3.6 -1.0 -1.0 

ZmPARP1_HP-7 2 -1.2 -1.2 -0.9 -1.0 

ZmPARP1_HP-8 1 or 2 -2.6 -3.0 -0.8 -0.8 

ZmPARP1_HP-9 1 -5.0 -4.3 -1.1 -1.1 

ZmPARP1_HP-10 2 -2.8 -2.3 -1.1 -1.1 

ZmPARP1_HP-11 1 -4.2 -4.0 -1.0 -1.0 

 

T1 lines ZmPARP1_HP-1, ZmPARP1_HP-6, ZmPARP1_HP-9 and ZmPARP1_HP-11 showing significant 

downregulation of ZmPARP1 gene expression were selected for upscaling to generate T3 

homozygous lines. The T1 and subsequent T2 progenies were selfed, Basta leaf painting assay was 

used for selection of transgenic lines and eventually a homozygous T3 population. The homozygous 

T3 lines were upscaled for production of sufficient seeds for functional analysis.  

4.2.3 Evaluation of DNA damage stress response in T2 RNAi hairpin silenced ZmPARP1 lines 

Two T2 RNAi hairpin silenced lines showing downregulation of ZmPARP1 gene were selected for 

determination of DNA damage stress response upon treatment with hydroxyurea. Lines PARP1_HP-
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1-1 and line PARP1_HP-9-1 heterozygous progenies of selfed T1 lines PARP1_HP-1 and PARP1_HP-9 

respectively (Table 2) were used in this experiment. Wildtype B104 was used as a control line lacking 

the RNAi construct and a  mutant control line developed using CRISPR editing on a gene that plays a 

key role in DNA replication (B104 background) was included in the assay for its hypersensitivity to 

hydroxyurea (Thomas Eekhout and Lieven De Veylder, unpublished results).  24 seeds per line 

(ZmPARP 1 RNAi lines) and 12 seeds per line (B104 and mutant control lines) per treatment were 

sown on filter paper rolls (12 seeds per roll), placed in Hoagland’s medium and grown in the 24oC 

maize growth room chamber. 7.5mM hydroxyurea was introduced into Hoagland’s medium of the 

treated plants 5 days after sowing (DAS) and pictures of all roots were taken daily (from 5 to 8 DAS) 

to determine the effect of hydroxyurea DNA damage perturbation on root growth of the RNAi 

ZmPARP1 hairpin silenced lines. Bar gene analysis was carried out for the segregating ZmPARP 1 

RNAi lines using pat assay and only pat positive lines were used in the analysis. Wt B104 plants grew 

homogenously both under hydroxyurea treatment and in control conditions. The increase in root 

length from 5 DAS to 8 DAS was determined daily for each plant and is described as root growth 

from time point 1 to 3. For example the root growth at time point 1 = (root length at day 6 – root 

length at day 5). The line graphs on Fig. 4a and 4b show the root growth of pat positive RNAi lines ( 

ZmPARP1_HP 1-1, ZmPARP1_HP 9-1), Wt B104 and a mutant control line without hydroxyurea (a) 

and with 7.5mM hydroxyurea treatment (b). In addition, Fig. 4c shows the total root length between 

day 5 and day 8 determined for comparison of the overall performance of the lines using percentage 

root length reduction calculated as follows: (Total root length without hydroxyurea – Total root 

length upon hydroxyurea) * 100 / Total root length without hydroxyurea    

 

Fig. 4a: Root growth of RNAi ZmPARP1 hairpin silenced lines, mutant control and Wt-B104 without 
hydroxyurea treatment from time point 1 to 3 (n=12).  
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Fig. 4b: Root growth of RNAi ZmPARP1 hairpin silenced lines, mutant control and Wt-B104 with 7.5mM 

hydroxyurea treatment from time point 1 to 3 (n=12).  

 

 
Fig. 4c: Total root length of RNAi ZmPARP1 hairpin silenced lines, mutant control and Wt-B104 without 
hydroxyurea (control) and with 7.5mM hydroxyurea (HU) treatment beween day 5 and 8. Percentages 
represent root length reduction under hydroxyurea treatment. Error bars indicate starndard deviation (n=12) 

The percentage reduction in root length of lines ZmPARP1_HP 1-1 and ZmPARP1_HP 9-1 was a 10% 

and 7% higher respectively than Wt B104 upon hydroxyurea treatment indicating a tendency to 

sensitivity to hydroxyurea-induced DNA damage stress. The mutant control line already known to be 

hypersensitive to hydroxyurea-induced DNA damage showed an even higher, 36%, reduction in root 

length in comparison to Wt B104 upon hydroxyurea treatment confirming its hypersensitivity to 

hydroxyurea. This experiment was exploratory and we could not carry out statistical analysis on the 

data to provide definite significance values due to a fault in the design of the experiment where only 

one genotype was used per paper roll instead of all the four genotypes on a single paper roll. In 

future experiments, several individual plants from all the test genotypes should be grown on one 

paper roll and also larger sample sizes should be used. Note also that the data presented in the 

experiment above is obtained from a single experiment. The RNAi ZmPARP1 hairpin silenced lines 
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were analysed for drought stress tolerance in an automated platform and the results are shown and 

discussed in Chapter 5 together with ZmNUDX over expression lines.  

4.2.4 Cloning and transformation of CRISPR/Cas9 ZmPARP1 & 2 Constructs 

Since different reports in plants indicate that downregulation of AtPARP2 was more effective than 

AtPARP1 (De Block et al., 2005; Song et al., 2015), we found it important to develop new constructs 

that would specifically target ZmPARP2 gene. The CRISPR/Cas9 gene editing system reported to be 

fast, simple, versatile and precise in gene editing, was the preferred system for ZmPARPs editing. 

To perform gene editing two components must be introduced into and/or expressed in cells or an 

organism: Cas9 nuclease and a guide RNA (gRNA). 20 nucleotides at the 5’ end of the gRNA direct 

Cas9 to a specific target DNA site using standard RNA-DNA complementarity base-pairing rules thus 

the 20 nucleotides of the gRNA always need to correspond to the target DNA sequence. The 

CRISPR/Cas9 gene editing technique is described in chapter 3 section 3.3. 

The PARP catalytic domain was the preferred target region due to its central role in PARP protein 

activity.  We designed 3 constructs to target (a) deletion within ZmPARP2 catalytic domain named 

ZmPARP2_CRISPR construct, (b) deletion within ZmPARP1 catalytic domain named ZmPARP1_CRISPR 

construct and (c) frameshift mutation in both ZmPARP2 and ZmPARP1 catalytic domains named 

ZmPARP1&2 construct. Two gRNAs, targeting different regions of the PARP catalytic domain or the 

catalytic domain of both ZmPARPs, were required for each construct design. The gRNAS were 

designed using CRISPR P (Lei et al., 2014) an online gRNA designing tool that allows users to search 

for highly specific Cas9 target site within a DNA sequence of interest. The tool also provides off-

target loci prediction for specificity analysis and marks restriction enzyme cutting site of every gRNA 

for downstream screening of knock-outs. (ZmPARP CRISPR cloning was done in collaboration with 

Thomas Eekhout and Lieven De Veylder, PSB-VIB-UGent). 

Guide RNAs were designed using the B73 reference genome but we checked for any nucleotide 

polymorphism between B73 and B104 PARP catalytic domain region by comparing the B73 genome 

against the B104 deep sequencing reads of an in-house database using Integrative Genomics Viewer 

(Robinson et al., 2011).  Fig. 5 shows the position of the gRNAs in the PARP catalytic domain for the 

respective constructs and the size of deletions expected if Cas9 protein cuts both guide RNAs at the 

precise cleavage site. 
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Fig 5: Position of gRNAs within the catalytic domain of (a) ZmPARP2, (b) ZmPARP1 and (c) Both ZmPARP2 & 1  

The gRNA pairs were cloned into the pCBC-MT1T2 vector introducing the Bsa1 restriction site and 

then recloned through golden gate cloning into pBUN411-Sp expression vector (Xing et al., 2014) 

which contains the Cas9 protein driven by the maize ubiquitin promoter, two gRNAs positions driven 

by rice ubiquitin promoter (OsU3p) and wheat ubiquitin promoter (TaU3p) respectively and a bar 

selection marker driven by the p35S promoter as shown in the T-DNA scheme in Fig. 6. The 

expression vectors were cloned into the EHA101 super virulent Agrobacterium strain (Hood et al., 

1986) and transformed into the B104 maize genotype using the Agrobacterium-mediated 

transformation procedure described by Coussens et al., (2012) by the PSB-VIB maize transformation 

platform. 

Cas 9barT35S p35S Tnos Ubi1p TaU3p

LB

OsU3p

RB
OsU3t OsU3t

gRNA2 gRNA1

Fig. 6: T-DNA region of pBUN411 vector used to express the ZmPARPs gene editing constructs. Position of two 
guide RNAs driven by rice ubiquitin promoter (OsU3p) and wheat ubiquitin promoter (TaU3p) is shown in red 
boxes. The Cas9 protein expression is driven by the Maize ubiquitin promoter and bar selection marker driven 
by p35s promoter.  

 

4.2.5 Genotyping of CRISPR/Cas9 gene edited ZmPARP lines 

20 transgenic T0 shoots carrying the ZmPARP2_CRISPR construct, 11 transgenic T0 shoots carrying 

the ZmPARP1_CRISPR construct and 9 transgenic T0 shoots carrying the ZmPARP1&2_CRISPR 

construct were obtained.  To determine the type of mutation resulting from the Cas9 activity, we 

extracted genomic DNA from 2 different leaf samples of each T0 shoot and amplified the ZmPARP 
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catalytic domain Cas9 target region using gene specific primers binding to sequences flanking the 

gRNA target sites. The PCR fragments were visualised on a 1% agarose gel, gel purified and 

sequenced. The sequencing reads were analysed using CLC Main Workbench 6 (Qiagen) and TIDE 

(Tracking of Indels by Decompositon- Brinkman et al., 2014) softwares.  8 out of the 20 T0 shoots 

carrying the ZmPARP2_CRISPR construct were found to have homozygous deletions of between 

201bp to 233bp in the ZmPARP2 catalytic domain indicating that the Cas9 protein cleaved both 

alleles of the ZmPARP2 DNA in the precise predicted site of both gRNAs in some but not all shoots 

(Table 3) The remaining 12 shoots had a wildtype genotype (data not shown). All the 11 T0 shoots 

carrying the ZmPARP1_CRISPR construct had either a homozygous single nucleotide insert or a 

homozygous 4bp deletion around the gRNA45 target site but no mutation on the gRNA105 target 

site indicating a possible failure of the gRNA105 in directing the Cas9 protein to the target site (Table 

3). Unexpectedly all the 9 T0 shoots carrying the ZmPARP1&2_CRISPR construct had wildtype 

genotype also indicating a failure in both gRNA72 and gRNA1 (data not shown). Table 3 shows the 

mutations obtained through sequence analysis on CLC Main Workbench and TIDE software in the T0 

shoots transformed with the ZmPARP2_CRISPR construct and the ZmPARP1_CRISPR construct 

respectively.  

Table 3: Mutations in Pat+ transgenic T0 maize lines carrying the ZmPARP2_CRISPR and ZmPARP1_CRISPR 

construct respectively. (Hm, homozygous; del, deletion) 

T0 Line Indel in ZmPARP2 

ZmPARP2_CR 1 233bp Hm del 

ZmPARP2_CR 2 Multiple del (1-4bp) & A  Insert 

ZmPARP2_CR 3 Multiple del (1-7 bp) & A  Insert 

ZmPARP2_CR 4 208bp Hm del 

ZmPARP2_CR 5 203bp Hm del 

ZmPARP2_CR 6 233bp Hm del 

ZmPARP2_CR 7 201bp Hm del 

ZmPARP2_CR 8 201bp Hm del 

ZmPARP2_CR 9 201bp Hm del 

ZmPARP2_CR 10 205bp Hm del 

T0 Line Indel in ZmPARP1 

ZmPARP1_CR 1 4bp Hm del 

ZmPARP1_CR 2 4bp Hm del 

ZmPARP1_CR 3 Hm A Insert 

ZmPARP1_CR 4 Hm A Insert 

ZmPARP1_CR 5 Ht T/A Insert 

ZmPARP1_CR 6 Hm A Insert 

ZmPARP1_CR 7 Hm A Insert 

ZmPARP1_CR 8 Hm A Insert 

ZmPARP1_CR 9 Hm T Insert 
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ZmPARP1_CR 10 Hm T Insert 

ZmPARP1_CR 11 4bp Hm Del 

 

We repeated the genotyping of a leaf sample from a different part of each T0 shoot obtained from 

the three different constructs to check if the genotype obtained was homogenous in each T0 plants. 

The genotyping results were identical to the first genotyping showing similar sizes of deletions, 

insertions or wildtype sequences which indicate no cases of chimerism and the plants were most 

likely clonal originating from a single transformed cell. The T0 shoots were allowed to grow to 

maturity and were all selfed to maintain the homozygosity of the CRISPR induced mutation. Pollen 

from the T0 shoots was also used to backcross wildtype B104 plants to obtain ears with higher seed 

number and segregated T-DNA. 

In this work, T1 genotyping was carried out in progenies of lines carrying ZmPARP2_CRISPR construct 

arising from selfed T0 shoots:  ZmPARP2_CR1, ZmPARP2_CR4, ZmPARP2_CR5 and ZmPARP2_CR8 

showing homozygous deletion of sizes 233bp, 208bp, 203bp and 201bp respectively in the ZmPARP2 

catalytic domain.  6 individuals arising from each T1 were genotyped and analysed as described 

above for T0 shoots. Pat assay was carried out to determine the T-DNA segregation in the T1 lines. 

Table 4 gives a summary of the mutations through sequence analysis on CLC Main Workbench and 

TIDE software and bar gene segregation in 6 T1 plants per line carrying ZmPARP2_CRISPR construct. 

Table 4: Mutations & Bar gene segregation in transgenic T1 maize lines carrying the ZmPARP2_CRISPR 

construct (Hm, homozygous; del, deletion) 

T1 Line  Plant Indel Bar gene  

ZmPARP2_CR1-1 

Plant 1 233bp Hm del Neg 

Plant 2 233bp Hm del Pos 

Plant 3 233bp Hm del Pos 

Plant 4 Multiple Hm del (1-6bp) Neg 

Plant 5 Hm T and A Insert Neg 

Plant 6 Hm T and A Insert Neg 

ZmPARP2_CR4-1 

Plant 1 208bp Hm del Pos 

Plant 2 208bp Hm del Pos 

Plant 3 Multiple Hm del (2 & 11bp) Pos 

Plant 4 208bp Hm del Pos 

Plant 5 Hm A del and Hm T insert Pos 

Plant 6 208bp Hm del Pos 

ZmPARP2_CR5-1 
 

Plant 1 203bp Hm del Pos 

Plant 2 203bp Hm del Pos 

Plant 3 203bp Hm del Pos 

Plant 4 Hm 7bp del & Hm T insert Pos 
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Plant 5 203bp Hm del Pos 

Plant 6 203bp Hm del Pos 

ZmPARP2_CR8-1 

Plant 1 201bp Hm del Pos 

Plant 2 201bp Hm del Pos 

Plant 3 201bp Hm del Neg 

Plant 4 201bp Hm del Pos 

Plant 5 201bp Hm del Pos 

Plant 6 201bp Hm del Pos 

 

 

Many T1 lines had mutations similar to their T0 parents maintaining the big deletion within the 

ZmPARP2 catalytic domain. However, a number of the T1 progenies had a different mutation, a 

single nucleotide insertion, several base pair (2-11bp) deletions or multiple deletions within the 

target catalytic domain. ZmPARP2_CR8-1 had a uniform 201bp confirming that the Cas9-induced 

deletion in the T0 plant was indeed homozygous. The other 3 lines ( ZmPARP2_CR1-1, 

ZmPARP2_CR4-1, ZmPARP2_CR 5-1) had segregating phenotypes of Cas9-induced deletions possibly 

indicating that the deletions observed in T0 plants were not actual homozygous deletion as observed 

in the CLC main workbench6 analysis software but a wildtype allele was masked. Cas9 activity on the 

wildtype allele might have resulted in new mutations upon selfing that were not observed in the T0 

plants .The T1 plants without T-DNA (negative for the bar gene) and thus with stabilised PARP 

mutation will be selfed for further testing.  

4.2.6 Evaluation of DNA damage stress response in T1 ZmPARP2_CRISPR maize lines  

Four selfed T1 ZmPARP2_CRISPR maize lines with big deletions or indels in the ZmPARP2 catalytic 

domain were evaluated for their DNA damage stress response upon treatment with hydroxyurea. 

Selfed T1 lines ZmPARP2_CR1-1, ZmPARP2_CR4-1, ZmPARP2_CR 5-1, ZmPARP2_CR8-1  (Table 4) 

were used in the hydroxyurea induced DNA damage experiment which was set up as described for 

RNAi hairpin silenced ZmPARP1 lines above. This is a preliminary test using T1 lines with segregating 

ZmPARP2 mutations which are all expected to result in inhibition of the ZmPARP2 catalytic activity 

through frameshift mutation in the gene or deletion of a significant part of the PARP catalytic 

domain sequence. B104 wildtype and a mutant control line hypersensitive to hydroxyurea treatment 

(described in section 4.2.3) were used as controls. 12 seeds per line per treatment were sown on 

filter paper rolls, placed in Hoagland’s medium and grown in the 24oC maize growth room chamber. 

7.5mM hydroxyurea was introduced into Hoagland’s medium of the treated plants 5 DAS and 

pictures of the roots were taken daily (from 5 to 9 DAS). The increase in root length from 5 DAS to 9 

DAS was determined daily for each plant and is described as root growth from time point (Tp) 1 to 4. 

The line graphs on Fig. 7a and b show the root growth of T1 ZmPARP2_CRISPR lines (ZmPARP2_CR1-
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1, ZmPARP2_CR4-1, ZmPARP2_CR 5-1, ZmPARP2_CR8-1), Wt B104 and a mutant control line in 

Hoagland’s medium without hydroxyurea (a) and with 7.5mM hydroxyurea treatment (b). The bar 

graph in Fig. 7c shows the total root length beween day 5 and day 9, percentage root length 

reduction values are shown for comparison of the overall performance of the lines. 

 

Fig. 7a: Root growth of T1 ZmPARP2_CRISPR lines, mutant control and Wt-B104 without hydroxyurea 

treatment from time point 1 to 4 (n=12).  

 

 

Fig. 7b: Root growth of T1 ZmPARP2_CRISPR lines, mutant control and Wt-B104 with hydroxyurea treatment 
from time point 1 to 4 (n=12).  
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Fig. 7c: Total root length of T1 ZmPARP2_CRISPR lines, mutant control and Wt-B104 without hydroxyurea 
(control) and with 7.5mM hydroxyurea (HU) treatment beween day 5 and 9. Percentages represent root length 
reduction under hydroxyurea treatment. Error bars indicate starndard deviation (n=12) 

Upon treatment with hydroxyurea, the percentage reduction in root length of lines ZmPARP2_CR1-1, 

ZmPARP2_CR4-1 and ZmPARP2_CR 5-1 was 15%, 8% and 6% lower than Wt B104 respectively 

indicating a tendency to tolerance to the hydroxyurea-induced DNA damage while line 

ZmPARP2_CR8-1 showed 5% more reduction in root length in comparison to Wt B104 upon 

hydroxyurea treatment indicating a tendency to sensitivity to hydroxyurea-induced DNA damage. 

The mutant control line known to be hypersensitive to hydroxyurea-induced DNA damage showed a 

13% reduction in root length in comparison to Wt B104 upon hydroxyurea treatment. A repeat of 

this experiment following a similar set up, the same T1 ZmPARP2_CRISPR lines and mutant control 

line but a different Wt B104 seed stock with more homogeneous germination is shown in Figure 8a, 

8b and 8c.  

 

Fig. 8a: Root growth of T1 ZmPARP2_CRISPR lines, mutant control and Wt-B104 without hydroxyurea 

treatment from time point 1 to 4 (n=12) (Expt.2).  
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Fig. 8b: Root growth of T1 ZmPARP2_CRISPR lines, mutant control and Wt-B104 with hydroxyurea treatment 

from time point 1 to 4 (n=12) (Expt. 2).  

 
Fig. 8c: Total root length of T1 ZmPARP2_CRISPR lines, mutant control and Wt-B104 without hydroxyurea 
(control) and with 7.5mM hydroxyurea (HU) treatment beween day 5 and 9 (Expt 2). Percentages represent 
root length reduction under hydroxyurea treatment. Error bars indicate starndard deviation (n=12) 

The percentage root length reduction in line ZmPARP2_CR1-1, ZmPARP2_CR 5-1 and ZmPARP2_CR8-

1 was 3%, 3% and 14% higher respectively than Wt B104 upon hydroxyurea treatment indicating a 

tendency to sensitivity to hydroxyurea-induced DNA damage while line ZmPARP2_CR4-1 had a 13% 

lower root growth reduction in comparison to Wt B104 upon hydroxyurea treatment indicating a 

tendency to tolerance. The mutant control line showed a 2% reduction in root length in comparison 

to Wt B104 upon hydroxyurea treatment. Similar to the hydroxyurea-induced DNA damage 

experiment in section 4.2.3, the data presented in this section is obtained from a single experiment. 

In addition, we could not carry out any statistical analysis on the data obtained due to a fault in the 

design of the experiment. Each genotype was grown on a separate paper roll instead of a single 

paper roll resulting on confounding genotype and treatment effects. To resolve the genotype 

confounding effect, each paper should contain all 4 genotypes, thus 4 paper rolls each with 3 
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seedlings of each genotype. The effect of treatment is also confounded with the paper, however, to 

this, there is no solution thus it would be important to randomize as much as possible (Véronique 

Storme, statistician, PSB-VIB-UGent). More DNA damage assays will be carried out in selfed T2 lines 

without T-DNA or back-crossed to B104 and selfed in T1 carrying more uniform and stable ZmPARP2 

mutations. Lines ZmPARP2_CR1-1, ZmPARP2_CR 4-1 and ZmPARP2_CR8-1 were selected for further 

analysis under water deficit stress in an automated platform (Chapter 5). 

4.3 Discussion 

We have been able to disrupt the ZmPARP1 and ZmPARP2 genes through the use of RNAi hairpin 

silencing and CRISPR gene editing technologies respectively in B104 maize. ZmPARP1 gene 

expression was downregulated in a range of 2.8 to 6 fold by overexpressing an RNAi hairpin silencing 

construct designed using a 650bp inverted repeat ZmPARP1 catalytic domain sequence separated by 

the rice waxy intron. The construct was expected to disrupt both ZmPARP genes since the catalytic 

domain used is the most conserved region of the ZmPARPs showing 61% identity, however, only 

ZmPARP1 was downregulated. This outcome can possibly be attributed to the lack of at least 21-

26bp sequence with 100% identity in the maize PARPs necessary for the formation of small 

interfering RNAs (siRNAs). In Arabidopsis, silencing of both AtPARP1 and AtPARP2 was achieved 

through the use of a hairpin construct that contains AtPARP2 catalytic domain sequence. The 

success can be attributed to a 24bp block in AtPARP1 and AtPARP2 catalytic domain showing 100% 

sequence identity (De Block et al., 2005). We later adopted the CRISPR/Cas9 gene editing system to 

develop new constructs for ZmPARPs gene disruption and successfully obtained 8 out of 20 T0 

shoots with a 201-233bp deletion in the ZmPARP2 catalytic domain and 11 T0 shoots with small 

insertion or deletions at one guide RNA target site (gRNA45) in ZmPARP1. Most of the mutations in 

both ZmPARP genes were identified as homozygous (Table 3) upon sequence analysis using CLC 

Main Workbench and TIDE software. However, sequence analysis of selfed T1 progenies carrying the 

ZmPARP2_CRISPR construct showed a segregation of the Cas9-induced deletion phenotypes in 3 out 

of 4 populations indicating that their T0 parents were not homozygous but a wildtype allele was 

masked. This phenomenon has been observed in T1 CRISPR edited maize lines by different groups at 

PSB (personal communications) thus one has to use T2 progenies of selfed T1 lines showing 

homozygous Cas9-induced mutation to be certain of the zygosity. No mutations were obtained in 

regions targeted by gRNA105 of ZmPARP1_CRISPR construct, gRNA72 and gRNA1 of 

ZmPARP1&2_CRISPR construct indicating possible failure of the gRNAs in directing the Cas9 protein 

to the target sites. Through the many studies undertaken using the CRISPR/Cas9 gene editing 

system, a few factors that affect its effectiveness have been identified: Cas9 activity, delivery 

methods, target site selection, gRNA design, off-target effects and the incidence of homology 
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directed repair (for review see Peng et al., 2015). In our case, the pBUN411-Sp expression vector 

carrying the Cas9 protein and Agrobacterium-mediated gene delivery system used was similar across 

all constructs thus eliminating the first two factors. Individual gRNAs are also reported to vary 

greatly in their efficacy to guide Cas9 for genome editing. Design of an ideal gRNA entails: 

determination of a target gene locus, finding suitable sequences within the gene for CAS9 targeting, 

checking for potential off-target binding and selecting the gRNA that lies in the preferred binding 

region. In addition, several criteria of nucleotides type, position, or percentage in a guideRNA are 

given. Fortunately, these criteria are now integrated in the growing number of computational tools 

that facilitate the design of highly efficient and specific gRNAs. In our study we used CRISPR P tool, a 

web application for single gRNA design in more than 20 plant species (Lei et al., 2014). It is however 

recommended to design and screen the activity of a pool of guide RNAs for better gene editing 

efficiency. In maize, a quick confirmation of the efficiency of guide RNAs can be accomplished by 

cloning the guide RNAs and CAS9 DNA in a suitable expression vector, transforming the construct 

into maize protoplast cells and screening for CAS9 mutations in the transformed cells. 

In both plants and animal, studies have shown that PARP protein is a key player in DNA damage 

response due to its active role in maintenance of genome integrity. Juarez-Salinas et al. (1979) 

reported that in the absence of DNA single and double strand breaks, poly(ADP-ribosyl)ation seems 

to be a very rare event in living cells, but it can increase over 100-fold upon DNA damage. In 

Arabidopsis, Doucet-Chabeaud et al. (2001) reported that ionising radiation-induced DNA damage 

triggers rapid and massive accumulation AtPARP1 and AtPARP2 transcripts. Also a recent study by 

Song et al. (2015) showed that more predominantly, mutant parp2 plants and to a lesser extent 

mutant parp1 are sensitive to DNA damage induced by bleomycin, mitomycin C or gamma 

radiations.  Having developed maize lines with reduced ZmPARP1 and ZmPARP2 expression, we were 

curious to find out if similar DNA damage responses can be observed in maize. We used the 

hydroxyurea induced DNA damage assay that is already optimised at PSB-VIB-UGent (Lieven De 

Veylder’s lab) and germinated the maize in a paper roll hydroponics system established at PSB-VIB-

UGent (Jansen et al., 2013). Since root tips have actively dividing cells, root growth was a suitable 

parameter to the plant’s response to hydroxyurea DNA damage. A T-DNA insertion mutant control 

line showing root growth inhibition upon hydroxyurea induced DNA damage stress was a suitable 

control for the assay. The RNAi ZmPARP1 hairpin silenced lines ZmPARP1_HP 1-1 and ZmPARP1_HP 

9-1  showed a 10% and 7% higher percentage reduction in root length thus more root growth 

inhibition upon hydroxyurea induced DNA damage stress compared to Wt B104 indicating a 

tendency to sensitivity to hydroxyurea-induced DNA damage stress. Evaluation of the DNA damage 

response in T1 ZmPARP2_CRISPR maize lines resulted in mixed phenotypes one line, ZmPARP2_CR4-
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1, showing tendency to tolerance and the other lines, ZmPARP2_CR1-1, ZmPARP2_CR 5-1 and 

ZmPARP2_CR8-1 , showing tendency to tolerance or sensitivity to hydroxyurea induced DNA damage 

depending on the experimental repeat. The data from the two experiments are difficult to give a 

clear interpretation and will thus be repeated using T2 lines having a stable and uniform ZmPARP2 

mutation. 

Hydroxyurea, used to induce DNA damage in this work, inhibits the activity of ribonucleotide 

reductase enzyme that catalyses the reduction of ribonucleotides to deoxyribonucleotides, 

consequently limiting dNTPs availability for the DNA polymerase and arresting the replication folk 

(Koç et al., 2004) resulting in site specific DNA damage and single stranded DNA break. Bleomycin on 

the other hand is an antibiotic compound whose mechanism of DNA strand scission is unresolved 

but has been shown to easily penetrate into the cells and induce double stranded breaks in DNA 

(Povirk, 1996). Amor et al. (1998) showed the role of PARP in regulating two opposing processes, 

DNA repair and programmed cell death depending on the severity of the DNA damage where minor 

DNA damage caused by mild oxidative stress would be repaired, while higher levels of DNA damage, 

resulting from severe environmental stresses or following attack by avirulent pathogens, could 

super-activate the PARP enzyme, resulting in NAD depletion and activation of programmed cell 

death. Additionally, Doucet-Chabeaud et al. (2001) noted that the quality of DNA damage is 

important for specific PARP gene induction in Arabidopsis. Since PARP is known to bind to both 

single and double stranded breaks (Puchta et al., 1995) we propose exploring the use of Bleomycin 

as a DNA damaging agent in further determination of DNA damage stress response of maize lines 

with reduced ZmPARP1 or ZmPARP2 gene expression levels.  

4.4 Materials and Methods 

4.4.1 Plant material and growth conditions 

B104 maize genotype used in this study was grown either in growth room or green-house 

conditions. The maize growth room conditions include: 24oC temperature, 55% relative humidity, 

230µE/m-2 sec-1 light intensity and 16hrs of lighting. The maize green-house conditions include: 22-

26oC temperature, 45% relative humidity, 300µE/m-2 sec-1 light intensity and 16hrs of lighting. 

Maize seeds were sown on trays containing jiffy soil (sphagnum peat moss) placed in the maize 

growth room where the seedlings were grown for 3 to four weeks then transferred to bigger soil 

pots (Saniflor beroepspotgrond met osmocote) and placed in the green-house where they grew to 

maturity.  
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4.4.2 CRISPR/Cas9 gene cloning 

Guide RNA pairs specific for the respective ZmPARP1 or 2 catalytic domains were designed using the 

CRISPR P tool (Table 5, Lei et al., 2014), cloned into the pCBC-MT1T2 vector (Xing et al., 2014) using 

forward and reverse PCR primers that incorporate the two guide RNAs and a BSA1 restriction site 

(Table 6) in a PCR reaction using iProof™ High Fidelity PCR Kit (Bio-Rad) following the manufacturer’s 

protocol.  The resulting PCR product was run on a 1% agarose gel, purified and recloned through 

golden gate cloning into pBUN411-Sp expression vector (Xing et al., 2014) and expressed in 

competent Dh5α E. coli cells. Colony PCR was carried out using Taq DNA polymerase Kit (Qiagen) 

following manufacture’s protocol and the plasmids sequenced before transformation into EHA101 

super virulent Agrobacterium strain (Hood et al., 1986) and into B104 maize genotype using the 

Agrobacterium-mediated transformation procedure described by Coussens et al., (2012) by the PSB-

VIB-UGent maize transformation platform. 

4.4.3 Maize transformation, bar gene selection and assays  

Immature embryos of the maize inbred line, B104, were transformed with the hpPARP construct at 

the IOWA transformation facility according to Frame et al. (2006). Immature embryos of the maize 

inbred line, B104, were transformed with the CRISPR/CAS9 PARP constructs at the PSB-VIB maize 

transformation platform according to the procedure described by Coussens et al. (2012), in which 

2,4-D was replaced by dicamba (3.32mg/l). Transgenic plant materials were selected using a bar 

marker gene whose activity was identified using either of three assays: Pat assay, Ammonium-

multiwell assay or Basta leaf painting assay. Pat assay test was carried using AgraStrip LL Strip test kit 

following manufacturer’s instructions, Ammonium-multiwell assay was carried out according to De 

Block et al. (1995) and Rasco-Gaunt et al. (1999) and Basta leaf painting was conducted as described 

in Rasco-Gaunt et al. (1999). 

4.4.4 RNA preparation, cDNA synthesis and QPCR expression analysis 

1cm leaf 4 meristematic tissue from approximately 12 days old maize seedlings were harvested for 

QPCR expression analysis. 5 pools each of 3 pat positive plants and 5 pools each of 3 pat negative 

plants per line were made. RNA was isolated using the RNeasy Plant Mini Kit (Qiagen) and cDNA 

prepared using SensiFAST cDNA Synthesis Kit (Bioline) following the manufacture’s protocols. QPCR 

experiments were performed in a LightCycler480 Real -Time SYBR Green PCR System (Roche) and all 

reactions were performed in three technical replicates. Expression levels were normalised to 

reference genes 18SrRNA and EF1α (Genebank accession X00794.1 and NM_001112117.1 

respectively).  
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4.4.5 DNA Isolation and PCR genotyping 

DNA was isolated from maize leaf tissue using the Genomic DNA purification kit (Promega) and PCR 

carried out using the iProof High-Fidelity PCR kit (Bio-Rad) following the manufacture’s protocol. The 

PCR products were run on a 1% agarose, gel purified and sequenced. The sequencing reads were 

analysed using CLC Main Workbench 6 (Qiagen) and TIDE (Tracking of Indels by Decompositon- 

Brinkman et al., 2014) softwares. 

4.4.6 Hydroxyurea DNA damage paper roll assay 

DNA damage is induced through the use of hydroxyurea, a chemical that inhibits the activity of 

ribonucleotide reductase enzyme that catalyses the reduction of ribonucleotides to 

deoxyribonucleotides, consequently limiting dNTPs availability for the DNA polymerase. The assay 

was set up in a paper roll hydroponics system using Hoagland’s medium solution (Jansen et al., 

2013). Maize seeds were germinated on a paper roll in which 12 seeds were sandwiched between 

two filter papers that were covered with paper towels then rolled into a cylindrical shape. The paper 

roll was placed in a 500 ml jar covered with foil paper and 150ml Hoagland’s solution added to the 

jar. Paper roll sets were prepared per maize genotype and per treatment. The maize seeds were pre-

germinated for 4 days at the 24oC maize growth room and on the 5th day 7.5mM hydroxyurea was 

added to the treatment jars. The medium was refreshed every two days and the plants allowed to 

grow till 9 days after sowing (DAS) .The paper rolls were unwrapped and pictures of the root growth 

taken daily from the 5th to the 9th DAS. Image analysis for root length measurement was carried out 

using Image J software (https://imagej.nih.gov/ij). Fig. 9 shows a picture of maize seedlings growing 

on an unwrapped paper roll.  

 
Fig.9: B104 maize seedling grown in paper rolls at 5 DAS, under Hydroxurea treatment 
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4.4.7 List of guide RNAs  

Table 5: Selected guide RNAs for ZmPARP1 and ZmPARP2 gene editing using CRISPR P (Lei et al., 2014)  

Gene/ 

construct 
gRNA Sequence Location 

Off targets 

No. Intron UTR Exon 

ZmPARP2 
Guide-69 AACACACTCTGGTTATACGGTGG Exon 6 104 - - 2 

Guide-67 TCTCGGTTGAGCAACTGGGCTGG Exon 7 42 - 1 1 

ZmPARP1 
Guide-45 GAGCGCACAATACTGTTATGTGG Exon 18 50 - - 1 

Guide-105 TTCAAGGTTGACGAATTTTGTGG Exon 17 88 - - 1 

ZmPARP2-1 
Guide-72 GATGCTAATAACCTGCCCAAAGG Exon 9 50 1 2 2 

Guide-1 TCACTGTGACATCACCCCGCTGG Exon 15 12 - 2 1 

 

4.4.8 List of primers  

Table 6: Primer sequences used in the study  

Primer  Sequence (5'->3') Remark 

18SrRNA_Q1 ACCTTACCAGCCCTTGACATATG 

RNAi hairpin 
PARP lines  
QPCR primers 

18SrRNA_Q2 GACTTGACCAAACATCTCACGAC 

EF1A_Q1 AGTCCGTTGAGATGCACCATG 

EF1A_Q2 CACATACCCACGCTTCAGATCC 

qPCRZmPARP1aF AGGCGATGCCTCTTTTGGTA 

qPCRZmPARP1aR GATTGGTGCTATTCGCGCTG 

qPCRZmPARP1bF GAAGCAGAGTTAGGCGATGC 

qPCRZmPARP1bR CTGATGCCCAAGCAACACTT 

qPCRZmPARP2aF ACGTAGACCAGATAAGAATGCGG 

qPCRZmPARP2aR TCTCAGCAACAGTTTCAGCTC 

qPCRZmPARP2bF AGAGCTGAAACTGTTGCTGAG 

qPCRZmPARP2bR GGGGCTAGAAGCCTGAAACC 

PRPF-AvrII  AGGCCTAGGTGAAACTTCACTGTGACATCACCC RNAi hairpin 
PARP lines 
cloning primers 
 

PRPR-AscI   TCAGGCGCGCCGTGATGGAAACGCACCTTCAGCAA 

PRPF-Xma1 TGCCCGGGTGAAACTTCACTGTGACATCACCC 

PRPR_SpeI AGGACTAGTGATGGAAACGCACCTTCAGCAA 

ZmPARP2_69-67aF GATCCGTTGTATGCTCGATA 

CRISPR PARP 

lines 

Genotyping 

primers 

ZmPARP2_69-67aR TAACCAGTAACAGGTGCTTC 

ZmPARP1_105-45aF CAAGATGCTATTATGGCACG 

ZmPARP1_105-45aR TTCACAAACTCTGACTCCAG 

ZmPARP2_72aF GAAGCACCTGTTACTGGTTA 

ZmPARP2_72aR CATGTTAGGTGCTGTTTGAC 

ZmPARP1_1aF CGGGATGAGGATGATTTGAT 

ZmPARP1_1aR TCCATCTCGATCAAGTGAAAA 

OsU3p-FW GACAGGCGTCTTCTACTGGTGCTAC 

CRISPR PARP 

lines cloning 

primers 

TaU3p-REV CTCACAAATTATCAGCACGCTAGTC 

TaU3p-FW TTGACTAGCGTGCTGATAATTTGTG 

MT1-BSF_G69 ATATATGGTCTCTGGCGAACACACTCTGGTTATACGGGTT 

MT1-F0_G69 TGAACACACTCTGGTTATACGGGTTTTAGAGCTAGAAATAGC 

MT2-R0_G67 AACGCCCAGTTGCTCAACCGAGACGCTTCTTGGTGCC 
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MT2-BSR_G67 ATTATTGGTCTCTAAACGCCCAGTTGCTCAACCGAGAC 

MT1-BSF_G105 ATATATGGTCTCTGGCGTTCAAGGTTGACGAATTTTGGTT 

MT1-F0_G105 TGTTCAAGGTTGACGAATTTTGGTTTTAGAGCTAGAAATAGC 

MT2-R0_G45 AACCATAACAGTATTGTGCGCTCGCTTCTTGGTGCC 

MT2-BSR_G45 ATTATTGGTCTCTAAACCATAACAGTATTGTGCGCTC 

MT1-BSF_G72 ATATATGGTCTCTGGCGATGCTAATAACCTGCCCAAGTT 

MT1-F0_G72 TGATGCTAATAACCTGCCCAAGTTTTAGAGCTAGAAATAGC 

MT2-R0_G1 AACGCGGGGTGATGTCACAGTGACGCTTCTTGGTGCC 

MT2-BSR_G1 ATTATTGGTCTCTAAACGCGGGGTGATGTCACAGTGAC 
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Contribution: E.N. carried out experiments (OE NUDX lines gene cloning & expression analysis, Mu 

transposon lines genotyping & expression analysis, paraquat oxidative stress assay, water deficit 

stress analysis on endogenous NUDX and on transgenic lines shrimpy experiment 1 and partly 

shrimpy experiment 2) and wrote the chapter.   



 

 

Abstract 

Nudix hydrolases catalyze the hydrolysis of intact and damaged oxidised nucleoside diphosphates 

and triphosphates, nucleotide sugars, coenzymes, dinucleoside polyphosphates, and RNA caps in 

various organisms such as bacteria, yeast, algae, nematodes, vertebrates, and plants. Regulation of 

ADP-ribose and/or NADH levels through the hydrolysis activity of ADP-ribose/NADH 

pyrophosphohydrolase-specific NUDX genes play a vital role in biotic and abiotic stress response in 

Arabidopsis. In this work, we altered the maize NUDX gene expression using overexpression 

constructs and screened for corresponding Mutator transposon knock out lines to study the role of 

Maize NUDX genes in water deficit and oxidative stresses. 
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5.1 Introduction 

NUDX is an acronym for the Nudix hydrolase family, a name given because all the enzymes 

characterized from that family hydrolyse a Nucleoside Diphosphate substrate linked to a moiety “X”.  

Nudix hydrolases catalyse a number of compounds with varying degree of substrate specificity 

including: dinucleoside polyphosphates, ADP-ribose, NADH, nucleotide sugars, or ribo- and 

deoxyribonucleoside triphosphates, coenzymeA, mRNA cap and FAD (chapter 1, table 2). 

Accumulation of these metabolites may be toxic to the cell thus Nudix hydrolases were postulated to 

play a role in modulating their intracellular levels (Bessman et al., 1996).  The Nudix hydrolase family 

is widely distributed in viruses, archaea, bacteria and eukaryotes and characterized by a conserved 

Nudix motif (Bessman et al., 1996). Studies of the Nudix hydrolase family have been carried out in E. 

coli, S. cerevisiae, mouse and humans confirming their housecleaning roles of eliminating toxic 

metabolites such as oxidised nucleotides and controlling the level of pathway metabolic 

intermediates and signalling compounds (Bessman et al., 1996; McLennan et al., 2006). In plants, 

Nudix hydrolase activity has been reported in Arabidopsis, rice, tomato, poplar and barley among 

others with varying number of NUDX genes up to over 50 (see Chapter 1 Table 1). Arabidopsis 

thaliana contains 28 Nudix hydrolase genes and their proteins are be classified into different 

subfamilies based on their preferred substrate (chapter 1, table 2). Regulation of ADP-ribose and/or 

NADH levels through the hydrolysis activity of ADP-ribose/NADH pyrophosphohydrolase specific 

NUDX genes, AtNUDX2, 6 and 7,  has been reported to play a vital role in biotic and abiotic stress 

response (Bartsch et al., 2006; Ge et al., 2007; Ogawa et al., 2009; Ishikawa et al., 2009 & 

2010, Adams-Phillips et al., 2010). Overexpression (OE) of AtNUDX2 in Arabidopsis thaliana 

enhanced tolerance to paraquat-induced oxidative stress resulting from maintenance of NAD+ and 

ATP levels by nucleotide recycling from free ADP-ribose molecules under stress conditions (Ogawa et 

al., 2009). Similary, Arabidopsis transgenic plants with high expression levels of AtNUDX7 showed 

enhanced tolerance to paraquat-induced oxidative stress while T-DNA mediated loss-of function 

AtNUDX7 Knock out (KO) plants showed decreased tolerance to paraquat-induced oxidative stress. 

The depletion of NAD+ and ATP resulting from the activation of the Poly(ADP-ribosyl)ation reaction 

under oxidative stress was completely suppressed in the OE-AtNUDX7 plants while accumulation of 

NAD+ and ATP was observed in the KO-AtNUDX7 plants (Ishikawa et al., 2009). Additionally, 

Genevestigator based metadata analysis indicate that gene expression of AtNUDX6 and 7 are 

upregulated under pathogenic attacks, chemical and hormonal treatments, drought and genotoxic 

stresses (Chapter 1, Fig. 8). 

We identified three maize homologs of Arabidopsis AtNUDX7 protein (AEE83169) through BLAST 

searches in maize protein databases: ZmNUDX2 (GRMZM2G101693), ACN26985 (GRMZM2G162605) 
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& ZmNUDX8 (GRMZM2G175816) with 49%, 49% and 47% amino acid sequence identity to AtNUDX7 

respectively. The ZmNUDX genes are highly similar with main differences seen in the 5’ end region 

(Fig. 1). In addition, ACN26985 is highly homologous to ZmNUDX2 (94%), the main difference being 

the additional 80 amino acids at the 5’ end thus we only used ZmNUDX2 for overexpression analysis. 

 

 

 

                                         

              

 

 

 

Scheme according to ClustalW2 multiple sequence alignment.                                 
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Fig. 1: Schematic representation of a multiple sequence alignment of NUDX amino acid sequences highlighting 
key differences and similarities in AtNUDX7 and its 3 maize homologues (ZmNUDX2, ACN26985 and 
ZmNUDX8). The similar red colour in ZmNUDX2 and Zm-ACN26985 indicates their high sequence similarity and 
the black colour of the Nudix box indicates a highly conserved region. 

AtNUDX7 and its two maize homologs ZmNUDX2 and ZmNUDX8 were overexpressed in B104 maize 

and knock out Mutator transposon insertion in ZmNUDX gene identified to investigate the role of 

NUDX in modulating water deficit and oxidative stress tolerance in maize. In this work the term T0 

refers to the primary transformant (initial transformed line) and T1, T2, T3… refers to the 

subsequent sexual generations from the primary transformant. 

5.2 Results 

5.2.1 Cloning, transformation and characterization of AtNUDX / ZmNUDX overexpression lines 

AtNUDX7 (AT4G12720) gene and its two maize homologs ZmNUDX2 (GRMZM2G101693) and 

ZmNUDX8 (GRMZM2G175816) were cloned into maize using the Gateway cloning system 

(Invitrogen). Two sets of constructs were developed driven either by the Brachypodium distachyon 

promoter, pBdEF1α, (Coussens et al., 2012) or by the maize ubiquitin promoter, pZmUBIL, 

(Christensen et al., 1992). The coding region of AtNUDX7, ZmNUDX2 and ZmNUDX8 was amplified 

from Arabidopsis cDNA or maize gDNA / cDNA using gene specific forward primers precisely starting 

at their respective 5’ start and reverse primers ending at their 3’stop sequences and each PCR 

fragment cloned into a pDONR221 donor vector. The inserts in the pDONR221 entry clones were 

then recloned into pBbm42GW7 monocot multisite gateway vectors (Karimi et al., 2013) including 

either the pEN-L4-BdEF1a-R1 or the pENTRY-L4-UBIL-R1 entry clones that provide the promoter 

(https://gateway.psb.ugent.be). The expression vectors developed were cloned into the EHA101 
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super virulent Agrobacterium strain (Hood et al., 1986) and transformed into the B104 maize 

genotype using the Agrobacterium-mediated transformation procedure described by Coussens et al. 

(2012) by the PSB-VIB maize transformation platform. Fig. 2 shows a general scheme of the T-DNA 

constructs developed for overexpression of AtNUDX7, ZmNUDX2 and ZmNUDX8 genes using either 

pBdEF1α or pZmUBIL promoters.  

 

Fig. 2: Schematic representation of the T-DNA constructs for overexpression of NUDX genes (AtNUDX7, 
ZmNUDX8, ZmNUDX2) using either pBdEF1a or pZmUBIL promoters and a bar gene selection marker   

The pBdEF1α-ZmNUDX constructs were designed using maize genomic DNA sequences, pZmUBIL-

ZmNUDX constructs designed using the maize cDNA sequences and all AtNUDX7 constructs designed 

using Arabidopsis cDNA sequence. Maize genomic DNA was used for cloning due to initial 

unsuccessful attempts in using maize cDNA for cloning. We noted that one has to use a high 

concentration of maize cDNA (above 500ng/ul) in the PCR amplification reaction to obtain high 

number of amplicons visible on the agarose gel. Thus the subsequent pZmUBIL-ZmNUDX constructs 

were developed using maize cDNA. Attempts to clone the third maize gene GRMZM2G162605 

(ACN26985) were unsuccessful, possibly due to its larger gDNA size, 3.4 Kbp as opposed to 

ZmNUDX2 and ZmNUDX8 with 2.5Kbp and 2.1Kbp gDNA sizes respectively. The transgenic T0 shoots 

obtained were backcrossed with wildtype B104 maize plants generating T1 lines with heterozygous 

T-DNA insertion. The T1 lines were analyzed for bar gene segregation using PAT assay or ammonium-

multiwell assay.  In addition, T-DNA intactness was determined in a representative number of lines 

per construct through PCR analysis using primers binding to the promoter and terminator region 

flanking the NUDX gene of interest in the respective constructs. Table 1 shows a summary of the 

segregation data obtained. 

Table 1: Segregation data of transgenic T1 maize lines carrying different NUDX OE constructs 

Construct 
DNA 
type 

Total T1 lines 
obtained 

No. of lines with 
1 T-DNA 

Lines checked for 
T-DNA intactness 

No. of lines 
used in QPCR 

pBdEF1α-AtNUDX7 cDNA 8 6 3 6 

pZmUBIL-AtNUDX7 cDNA 6 5 3 5 

pBdEF1α-ZmNUDX2 gDNA 23 10 7 6 

pZmUBIL-ZmNUDX2 cDNA 2 2 2 2 

pBdEF1α-ZmNUDX8 gDNA 15 6 6 5 
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Several lines per construct had 1 T-DNA locus insertion (Table 1). However, 4 out of 15 lines carrying 

pBdEF1α-ZmNUDX8 construct and 3 out of 23 lines carrying the pBdEF1α-ZmNUDX2 resulted in a 

silencing phenotype where all the 40 individual plants tested were pat negative probably due to use 

of the strong Brachypodium distachyon promoter. A few lines per construct contained 2 T-DNA loci 

or a chimera phenotype showing non-Mendelian segregation of the bar gene with more pat negative 

plants than pat positive plants (data not shown). We did not obtain any T0 shoots with the pUBIL-

ZmNUDX8 construct however this can not be considered as a phenotype of ZmNUDX8 gene since it 

was possible to amplyfiy the same gene using pBdEF1α promoter. The lines checked for presence of 

transgene using forward primers binding either to the pBdEF1α or pZmUBIL promoter and reverse 

primer binding to the T35S terminator confirmed that the complete gene of interest was inserted 

because of the positive bands of the correct sizes. A number of lines with 1 or 2 T-DNA locus 

insertions per construct were selected for QPCR expression analysis. 

5.2.2 Expression analysis of overexpression NUDX maize lines and generation of T3 homozygous 

lines 

40 T1 plants per line were analysed for bar gene activity using the Pat assay test in order to select 15 

Pat positive plants containing the T-DNA (5 pools of 3 plants) and 15 Pat negative plants (5 pools of 3 

plants) per line for the QPCR expression analysis. In maize lines carrying the pBdEF1α-ZmNUDX8 

construct, T2 plants, obtained from selfing of T1 parents, were used for QPCR analysis following the 

same set up. Primers specific for the 3’ end of each NUDX gene were designed using NCBI Primer 

BLAST program (Ye et al., 2012). In Fig. 3a, 4a and 5a the primer position for each gene is shown in a 

model on top of its respective gene expression graph (the green boxes represent the exons, the lines 

represent the introns and the unshaded boxes represent the untranslated 5’ or 3’ ends / non coding-

exon). Fig. 3b shows the relative expression level of AtNUDX7 gene and Fig. 4b & 5b show the fold 

expression of ZmNUDX2 and ZmNUDX8 genes. Each bar represents a mean value scoring of 15 

plants. 

 

  

  

  Forward strand 

 

Fig. 3a: Position of the QPCRAtNUDX7b primer pair shown with arrows at the 3’ end of the AtNUDX7 gene 
model. The green boxes represent the exons, the lines represent the introns and the unshaded boxes 
represent the 5’ or 3’ untranslated region / non-coding exon 
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Fig. 3b: Relative expression levels of AtNUDX7 gene in 6 T1 transgenic maize lines carrying the pZmUBIL-
AtNUDX7 or pBdEF1α-AtNUDX7 construct amplified using QPCRAtNUDX7b primer. Error bars indicate standard 
deviation (n=15). 

 

 

  

  

  
Forward strand 

   
Fig. 4a: Position of the qPCRZmNUDX2b (blue) and qPCRZmNUDX2c (orange) primer pairs shown with arrows 
at the 3’ end of the ZmNUDX2 gene model. The green boxes represent the exons, the lines represent the 
introns and the unshaded boxes represent the 5’ or 3’ untranslated region / non-coding exon 
 

 

Fig. 4b: Fold change in ZmNUDX2 gene expression in 7 T1 transgenic maize lines carrying the pZmUBIL-
ZmNUDX2 or pBdEF1α-ZmNUDX2 construct amplified using QPCRZmNUDX2b and QPCRZmNUDX2c primers. 
Error bars indicate standard deviation (n=15). 
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Reverse  strand 

 
Fig. 5a: Position of the qPCRZmNUDX8e (blue) and qPCRZmNUDX8f (orange) primer pairs shown with arrows 
in the ZmNUDX8 gene model. The green boxes represent the exons, the lines represent the introns and the 
unshaded boxes represent the 5’ or 3’ untranslated region. 
 

 
Fig. 5b: Fold change in ZmNUDX8 gene expression in 5 T2 transgenic maize lines carrying the pBdEF1α-
ZmNUDX8 construct amplified using QPCRZmNUDX8e and QPCRZmNUDX8f primers. Error bars indicate 
standard deviation (n=15). 

 

Table 2: Summary of the Pat+ T1 or T2 transgenic maize lines carrying the NUDX OE constructs used in QPCR 
analysis. Fold change in expression of ZmNUDX2/8 genes is shown. Highlighted lines were selected for 
generation of T3 seeds for functional analysis. Functional assays carried out in the different lines were water 
deficit (W.D) and Oxidative stress (O.S). 

OE construct ID Generation Parents 
T-DNA 

Loci 
Fold change   

Functional 
assay 

pBdEF1α-
AtNUDX7 

NUDX7_OE-Zm 1 T1 B104 X 193-83-B 1  W.D  & O.S 

NUDX7_OE-Zm 2 T1 B104x193-83-Bb 1  W.D 

NUDX7_OE-Zm 3 T1 B104 X 193-83-C 1  W.D  & O.S 

NUDX7_OE-Zm 4 T1 B104  X 195-83-Da 1   

NUDX7_OE-Zm 5 T1 B104  X 195-83-Db 1   

NUDX7_OE-Zm 6 T1 B104  X 195-83-Eb 1   

pZmUBIL-
AtNUDX7 

NUDX7_OE-Zm 7 T1 B104x281-114-Aa 1 or 2   

NUDX7_OE-Zm 8 T1 B104x281-114-Ab 1   

NUDX7_OE-Zm 9 T1 B104x281-114-Ac 1   

NUDX7_OE-Zm 10 T1 B104x281-114-Ba 1   

NUDX7_OE-Zm 11 T1 B104x281-114-Bb 1   

pBdEF1α-
ZmNUDX2 

NUDX2_OE-Zm 1 T1 B104 X 205-82-C 1 16,1 W.D  & O.S 

NUDX2_OE-Zm 2 T1 B104 X 205-82-E Chimera 1,3  

NUDX2_OE-Zm 3 T1 B104x240-82-Cc 1 8,5  

NUDX2_OE-Zm 4 T1 B104x240-82-Ge 2 7,1  
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NUDX2_OE-Zm 5 T1 B104x241-82-Bc 1 38,7 W.D 

NUDX2_OE-Zm 6 T1 B104x241-82-D 1 2,4  

pZmUBIL-
ZmNUDX2 

NUDX2_OE-Zm 7 T1 B104x268-107-Aa 1 1,2  

NUDX2_OE-Zm 8 T1 B104x268-107-Ab 1 1,5  

pBdEF1α-
ZmNUDX8 

NUDX8_OE-Zm 1-1 T2 T1 (2013-232-03) 1 or 2 2  

NUDX8_OE-Zm 2-1 T2 T1 (2013-232-07) 1 10,1 W.D 

NUDX8_OE-Zm 3-1 T2 T1 (2013-232-09) 1 28,8  

NUDX8_OE-Zm 4-1 T2 T1 (2013-232-12) 1 48 W.D 

NUDX8_OE-Zm 5-1 T2 T1 (2013-234-02) 1 41,5  

 

Comparison of the expression levels of AtNUDX7 gene in pBdEF1a-AtNUDX7 and pZmUBIL-AtNUDX7 

lines can be observed in Fig. 3b, since the gene does not exist endogenously, we could not calculate 

the fold expression for these lines. Lines carrying the pZmUBIL promoter in their constructs had 

generally much lower expression levels than lines carrying the pBdEF1α and thus were not used 

further in the functional analysis. The highlighted lines showing different overexpression levels of 

their respective NUDX genes were selected for upscaling to generate T3 homozygous lines. The T1 

and subsequent T2 progenies were selfed, Basta leaf painting assay was used for selection of 

transgenic lines and eventually a homozygous T3 population. The homozygous T3 lines were 

upscaled for production of sufficient seeds for functional analysis. 

5.2.3 Screening, genotyping and expression analysis of Mutator transposon insertion in 

ZmNUDX genes  

We screened for Mutator (Mu) transposon insertions in ZmNUDX genes to obtain lines with a 

disrupted ZmNUDX activity for functional study and for use as control lines in functional analysis of 

OE NUDX lines. Two mutator transposon insertions were identified in the ZmNUDX8 gene: 

Mu1055846 (Stock UFMu-07274) and Mu1047296 (stock UFMu-06482) in exon 1 and exon 8 

respectively, but no Mu insertion was found in the ZmNUDX2 gene. The Mu transposon insertions 

from the UniformMu collection (McCarty et al., 2005) were identified in the Maize Genomic 

Database (MaizeGDB) genome browser and ordered from the maize genetics cooperation stock 

center, 15 sib-pollinated F3 kernels per stock (http://www.maizegdb.org/uniformmu) both carrying 

a heterozygous Mu insertion were received. To confirm the presence of the Mu insert, PCR 

genotyping was carried out in 8 plants per line using gene-specific primers binding to regions 

flanking the Mu transposon insertion site (500bp upstream and downstream of the insertion site) in 

combination with transposon-specific primers (TIR6 / TIR8). Heterozygous insertion of the Mu 

transposons Mu1055846 and Mu1047296 were confirmed in exon 1 and exon 8 respectively of the 

ZmNUDX8 gene in the W22 maize inbred line background. F3 lines containing the Mu transposon 

inserts were selfed to generate F4 lines with homozygous Mu insertion. PCR genotyping of F4 plants 
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was carried out in a procedure identical to the F3 lines genotyping. We obtained 8 plants with 

homozygous Mu1055846 transposon insertion in ZmNUDX8 exon 1, PCR genotyping of 6 of these 

lines using gene-specific primers and also gene-specific primers in combination with transposon-

specific primer is shown in Table 3 and Fig. 6. Interestingly, no homozygous insertion was obtained 

from the progenies of selfed F3 lines carrying the Mu1047296 transposon in heterozygous condition, 

suggesting a lethal phenotype in homozygous status. Four F4 lines carrying the homozygous 

Mu1055846 insert (UFMu-07274 stock) in ZmNUDX8 were analysed for the ZmNUDX8 gene 

expression levels using QPCR (Mu-KD1, Mu-KD2, Mu-KD-3 and Mu-KD4).  An additional line showing 

wildtype segregation of the Mu1055846 insert (named Mu-Neg) and a wildtype W22 line were 

included in the QPCR analysis as controls. Fig. 7a shows the Mu transposon insertion in exon 1, QPCR 

primer positions in ZmNUDX8 and Fig. 7b, the gene expression level for each line where each bar 

represents a mean value scoring of 12 plants. 

Table 3: PCR genotyping of F4 ZmNUDX8 lines carrying the Mu1055846 insert (UFMu-07274 stock) 

Line ID Genotype DNA samples 
PCR prod. Gene 
specific primers 

PCR prod. Gene 
specific + TIR 6 

Mu-KD1 Homozygous 1-4 - + 

Mu-KD2 Homozygous 5-8 - + 

Mu-KD3 Homozygous 9-12 - + 

Mu-KD4 Homozygous 13-16 - + 

Mu-KD5 Homozygous 17-20 - + 

Mu-KD6 Homozygous 21-24 - + 

Mu-Neg Negative (Wt) 25-27 + - 

Wt-W22 Wt 29-31 + - 

 

A   B  

Fig. 6  Agarose gel images displaying the PCR products obtained using gene specific primers (A) or gene specific 
+ transposon specific, TIR6 primer (B) on genotyping Mu1055846 insert  in ZmNUDX8 F4 Mu lines 
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Fig. 7a: Mu transposon insertion in exon 1 of the ZmNUDX8 gene model and positions of QPCR primers pairs 
QPCRZmNUDX8e (blue) and QPCRZmNUDX8f (orange) shown with arrows. The green boxes represent the 
exons, the lines represent the introns and the unshaded boxes represent the 5’ or 3’ untranslated region. 

 

 
Fig. 7b: Fold change in ZmNUDX8 gene expression in homozygous Mu transposon insertion lines (Mu-KD1 to 
4), Wt segregating Mu line (Mu-Neg) and Wt-W22 line using primers QPCRZmNUDX8e and QPCRZmNUDX8f. 
Error bars indicate standard deviation (n=12) and significance difference in comparison to Wt-W22 (student’s 
t-test) is indicated in asterisk (p<0.05) 

The four F4 lines carrying the Mu1055846 insert (Mu-KD1, Mu-KD2, Mu-KD-3 and Mu-KD4) showed a 

range of 5 to 6 fold down regulation of the ZmNUDX8 gene expression levels in comparison to the 

Wt-W22 and will be used further in functional analysis assays. The negative segregating line, Mu-Neg 

showed a wild type expression level of ZmNUDX8 comparable to Wt-W22. 

5.2.4 Evaluation of the paraquat-induced oxidative stress response of T1 OE NUDX maize lines  

Paraquat (Methyl Viologen) is a phytotoxic chemical agent that induces oxidative stress in plants 

principally targeting the chloroplast membrane under normal light. The chemical interferes with 

photosynthesis by acting as an alternative electron acceptor, transferring electron from Fe-S 

proteins of photosystem I to molecular oxygen producing reactive oxygen species. Leaf explants 

placed in a solution containing paraquat leak ions into the solution. By measuring the conductivity of 

the floating solution it is possible to detect the level of ion leakage and membrane damage as a 

result of paraquat activity. Plants overexpressing the NUDX gene are expected to be more tolerant 

to the oxidative stress (Ishikawa et al., 2009) and therefore to have reduced electrolyte leakage 

compared to the azygous plants. The assay was first optimized for use in B104 maize by determining 
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suitable paraquat concentrations where the explants leaked ions into the floating solution but their 

cellular activity maintained. 1 cm2 leaf disks from leaf 7 division zone were used in the assay; 7 leaf 

explants per concentration were used. The explants were incubated in the dark for 20hrs, exposed 

to low light (30µMol m-2 s-1) for 2 hours then incubated for another 20hrs in the dark at 28oC. 

Electrolyte leakage was measured using a conductivity meter in Micro Siemens per centimeter 

(µS.cm -1). The graph in Fig 8 shows a steady increase in ion leakage upon increase in paraquat 

concentration in wildtype B104. Paraquat (PQ) concentrations 0 µM, 0.05µM, 0.07µM and 0.1µm 

were selected for further use. 

  
Fig 8: Optimisation of the paraquat concentration in WT B104 maize plants. Steady increase in ion leakage 
from Wt B104 leaf disks, of maize leaf 7 division zone, upon increase in paraquat concentration. Error bars 
indicate standard deviation (n=7) 

Transgenic T1 lines NUDX7_OE-Zm1 and NUDX7_OE-Zm3 expressing the pBdEF1α-AtNUDX7 

construct and T1 line NUDX2_OE-Zm1 expressing pBdEF1α-ZmNUDX2 (Table 2) were used for 

evaluation of oxidative stress response under paraquat treatment. 1cm2 leaf disk from leaf 5 division 

zone were placed in 0uM, 0.05µM, 0.07µM and 0.1µm paraquat. The graphs in Fig. 9 show a 

comparison of the electrolyte leakage in 20 pat positive plants (transgenic) and 20 pat negative 

plants (azygous) per line upon paraquat treatment. 
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Fig. 9a: Ion leakage in NUDX7_OE-Zm1 transgenic (pos) maize line carrying the pBdEF1α-AtNUDX7 construct 
and its non-transgenic (Neg) segregating line in different concentrations of paraquat. Error bars indicate 
standard deviation (n=20) and significance difference in comparison to Wt-W22 (student’s t-test) is indicated 
in asterisk (p<0.05) 

 

 

Fig. 9b: Ion leakage in NUDX7_OE-Zm3 transgenic (pos) maize line carrying the pBdEF1α-AtNUDX7 construct 
and its non-transgenic (Neg) segregating line in different concentrations of paraquat. Error bars indicate 
standard deviation (n=20) and significance difference in comparison to Wt-W22 (student’s t-test) is indicated 
in asterisk (p<0.05) 
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Fig. 9c: Ion leakage in NUDX2_OE-Zm1 transgenic (pos) maize line carrying the pBdEF1α-ZmNUDX2 construct 
and its non-transgenic (Neg) segregating line in different concentrations of paraquat. Error bars indicate 
standard deviation (n=20) and significance difference in comparison to Wt-W22 (student’s t-test) is indicated 
in asterisk (p<0.05) 

In the three lines tested, NUDX7_OE-Zm1 and NUDX7_OE-Zm3 overexpressing the pBdEF1α-

AtNUDX7 construct and NUDX2_OE-Zm1 overexpressing pBdEF1α-ZmNUDX2, we observed high 

standard deviation of the conductivity at higher paraquat concentrations. This is possibly due to the 

use of tissue from a division zone of the leaf with high cell division rate thus fluctuating ion 

concentration, tissue from mature zone of the leaf should be considered in a future experiment. The 

transgenic (pat positive) plants in all lines showed significantly higher ion leakage than azygous (pat 

negative) samples indicating sensitivity to paraquat induced oxidative stress.  

5.2.5 Analysis of endogenous WT B104 ZmNUDX gene expression under water deficit stress 

A water deficit experiment was carried out to determine the inducibility of ZmNUDX genes under 

different water deficit conditions. B104 WT maize plants were grown in an automated weighing, 

watering and imaging platform (SHRIMPY, PSB-VIB-UGent) under three conditions: well-watered, 

mild water deficit and severe water deficit. 75 wildtype B104 plants were grown in 500g of soil pot, 

25 plants per treatment, in a growth chamber at 25.5
o
C and 16hrs of light. The well-watered plants 

were watered daily while the mild water deficit plants were allowed to dry for 5-7 days until the pot 

weighed 419g and maintained at this weight by watering and the severe water deficit plants were 

not watered at all. After growing for 10 days in the SHRIMPY platform, 1 cm tissue was harvested 

from leaf 3 division, elongation and mature zones (21 plants per condition, 7 pools of 3 plants) for 

QPCR analysis.  In Fig. 10a, a schematic representation of a maize leaf with the different zones 

marked and in Fig. 10b, c & d the expression levels of three maize NUDX genes ZmNUDX2, ZmNUDX8 
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and Zm-ACN in division, elongation and mature zones under the 3 different water deficit conditions 

is shown. Each bar represents a mean value scoring of 21 plants. 

 

Fig. 10a:  Scheme of a maize leaf showing the mature, elongation and division zones (black lines) and 1 cm 
region of harvest (blue lines) 

 

 
Fig. 10b: Expression of ZmNUDX genes in leaf 3 division zone of WT B104 plants under well-watered, mild and 
severe water deficit conditions. Error bars indicate standard deviation (n=21) 

 
Fig. 10c: Expression of ZmNUDX genes in leaf 3 elongation zone of WT B104 plants under well-watered, mild 
and severe water deficit conditions. Error bars indicate standard deviation (n=21) 
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Fig. 10d: Expression of ZmNUDX genes in leaf 3 mature zone of WT B104 plants under well-watered, mild and 
severe water deficit conditions. Error bars indicate standard deviation (n=21) 

The gene expression graphs indicate that endogenous ZmNUDX genes were not induced under mild 

or severe water deficit conditions.  Genevestigator based metadata analysis of ZmNUDX8 and 

ACN26985 NUDX transcripts (Zimmermann et al., 2004) also showed that ZmNUDX genes are not 

induced under moderate or severe drought perturbations (Fig. 11).  

 

 

 8 A 

 8 A 

8 A 

 
Fig. 11: Heat map showing gene expression levels of ZmNUDX8 (8) and ACN26985 (A) under drought stress 
perturbations using Genevestigator based metadata analysis software (Zimmermann et al., 2004). Expression 
level ranges from -2.5 (light green) to +2.5 (Red) compared to the expression in untreated controls 

 

5.2.6 Evaluation of T3 OE NUDX, RNAi PARP1 & ZmNUDX8 Mu KO maize lines under water 

deficit in an automated platform (SHRIMPY experiment 1) 

A water deficit experiment was set up in SHRIMPY, an automated, high-throughput phenotyping 

platform for maize seedlings at PSB-VIB-UGENT, for which two conditions were selected, a well-

watered control and a soil water deficit treatment.  The irrigation of plants in SHRIMPY is based on 

the daily measurement of the gravimetric soil water content and its adjustment to preset values 

according to the requirements of the treatment. A soil water content of 2.40 and 1.00 g H2O * g dry 

soil-1 was chosen for the well-watered control and the soil water deficit treatment respectively. 
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These values correspond to a soil water potential of -0.01 MPa and -6 MPa, respectively. This 

experiment was carried out in collaboration with Kirin De Muynck and Hilde Nelissen of the Yield 

group, PSB-VIB. 10 genotypes including T3 homozygous transgenic lines (NUDX OE and RNAi PARP1) 

and F4 homozygous Mu transposon knockout (KO) lines (Table 4) were used in the experiment. 

Seeds of all genotypes were soaked in water overnight to enhance germination. 7 seedlings per 

genotype were grown in the well-watered treatment and 8 seedlings per genotype in the water 

deficit treatment. A fixed randomisation pattern was used taking into consideration wall effect 

(plants closer to the wall were noted to grow faster) and temperature gradient in the growth room. 

The plants were also watered at the same time daily to avoid biases. The plants were allowed to 

grow for approximately one month and each plant was harvested two days after attaining V-Stage 5 

(leaf 5 with a visible collar). Leaf 4 was selected for measurement of the yield parameters because it 

is the first leaf growing independent of the kernel. Plants with more than 5 days delay in 

apprearance of leaf 4 were not used further in the analysis apart from the Mutator transposon lines 

(W22 background) in which leaf 4 appeared about 10 days later. Several parameters of leaf 4 were 

measured: daily leaf length, final blade weight, final blade + sheath weight, final blade width and 

total leaf area. In addition the total biomass (wet weight) and total dry weight of each plant was 

determined. The leaf 4 length was measured daily from the base of the plant to the leaf tip and from 

appearance until the leaf 4 stops growing, and was used in determining the Leaf Elongation Ratio 

(LER). LER = (L2-L1) / (Tp2-Tp1) where L1 and L2 are the lengths of leaf 4 measured at time point 1 

(Tp1) and 2 (Tp2).  In Fig. 12, the LER per genotype and wildtype B104 line graphs under well-

watered control and water deficit treatment is shown from time points 1-14. 
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Fig. 12: Leaf 4 elongation rates from timepoint 1 to 14 of OE NUDX, RNAi PARP1 and ZmNUDX8 Mu KD lines in 
comparison with Wt B104 under well-watered (WW) and water deficit treatment (WD). (n=7 for WW and n=8 
for WD)  
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An increased or fluctuation of the LER from time point 1 to 5 was observed in both stressed and 

well-watered control lines with a peak at time point 5 then a gradual decrease of the LER to the last 

time point 14. Generally, the well-watered control plants had a higher LER than the water deficit 

plants. To compare the growth performance between the genotypes, percentage leaf 4 growth rate 

in water deficit condition was determined for each genotype as follows: (Average of Tp1 to Tp5 LER 

in water deficit)*100 / (Average of Tp1 to Tp5 LER in well-watered). 

Table 4: Genotypes in water deficit experiment 1 and their percentage leaf 4 growth in water deficit condition  

Construct  / Mutation Lines Fold change  
% L4 Growth 
in W. Deficit 

pBdEF1α-ZmNUDX8 
NUDX8_OE-Zm 2-1-1 10.1 77.3 

NUDX8_OE-Zm 4-1-1 48 68.0 

pBdEF1α-ZmNUDX2 
NUDX2_OE-Zm 1-1-1 16.1 71.7 

NUDX2_OE-Zm 5-1-1 38.7 65.1 

pBdEF1α- AtNUDX7 
NUDX7_OE-Zm 1-1-1  See Fig. 3b 83.2 

NUDX7_OE-Zm 3-1-1  See Fig. 3b 69.8 

RNAi PARP1 
PARP1_HP 1-1-1 -5.9 68.2 

PARP1_HP 6-1-1 -3.8 78.8 

ZmNUDX8 Mu KD  Mu-KD 2 -5.1 75.7 

Wildtype Wt-B104   75.0 

 

Leaf 4 growth rate in wildtype B104 was reduced by 25% upon water deficit treatment. Moderate OE 

line NUDX8_OE-Zm 2-1-1 and moderate downregulated line PARP1_HP 6-1-1 had a 2.3% and 3.8% 

higher leaf 4 growth rate upon water deficit treatment than WT B104. A high OE line NUDX7_OE-Zm 

1-1-1 carrying an OE construct pBdEF1α-AtNUDX7 had an interestingly higher leaf 4 growth rate of 

8.2% upon water deficit treatment than Wt B104 indicating a trend of tolerance to water deficit 

stress. This line will be included in a repeat of the water deficit experiment to confirm the results.  

Some end point parameters (Fig. 13) were measured to further determine the response of the 10 

genotypes to water deficit treatment including leaf 4 (blade weight, blade + sheath weight, blade 

width, length and total leaf area), total plant biomass (wet weight) and total plant dry weight. 
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Fig. 13: End point parameters measured to compare OE NUDX, RNAi PARP1, ZmNUDX8 Mu KD line and Wt 
B104 under well-watered (WW) and water deficit (WD) treatment. Percentages represent reductions upon 
water deficit treatment. The yellow arrow points to a high OE line NUDX7_OE-Zm 1-1-1 where a notable trend 
of lower percentage reduction compared to Wt-B104 was observed in several parameters upon water deficit 
treatment. Error bars indicate standard deviation, (n=7 for WW and n=8 for WD) 
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Upon water deficit treatment, the high OE AtNUDX7 line NUDX7_OE-Zm 1-1-1 had again notable 

phenotypes showing consistently a trend of better performance (lower reduction ratios) upon water 

deficit stress than Wt B104 in a number of leaf 4 parameters tested (blade weight, blade + sheath 

weight, blade width and total leaf area) and also in the total plant dry weight (Fig. 13). Furthermore, 

the leaf 4 blade width of line NUDX7_OE-Zm 1-1-1 was 11% higher than Wt B104 upon water deficit 

treatment, though not statistically significant, but indicating a trend towards water deficit stress 

tolerance (Fig. 13). RNAi PARP1 line, PARP1_HP 1-1-1, had an 8% lower leaf 4 blade weight, 7% lower 

blade + sheath weight, 11% lower total leaf 4 area and 10% lower leaf 4 length than wildtype B104 

upon water deficit stress indicating a trend to sensitivity to water deficit stress (Fig. 13). The 

ZmNUDX8 Mutator transposon insertion line (Mu-KD2) had generally bigger plants thus the higher 

values than all other lines in the all parameters measured both under well-watered control and 

water deficit stress conditions. However, a comparison between its well watered and water deficit 

treated plants showed no significant difference in the leaf 4 blade width, leaf 4 area and total plant 

dry weight indicating that the Mu transposon lines are possibly tolerant to water deficit stress. Since 

the Mutator transposon lines are developed in a W22 background, we could not compare its growth 

reduction to that of wildtype B104. In a repeat experiment, a wildtype W22 line will be included.  

5.2.7 Evaluation of T3 OE AtNUDX7, CRISPR PARP2 & ZmNUDX8 Mu KO maize lines under water 

deficit in an automated platform (SHRIMPY experiment 2) 

A water deficit experiment on SHRIMPY was carried out in the identical set up described above. The 

T3 high OE line NUDX7_OE-Zm 1-1-1 carrying the pBdEF1α-AtNUDX7 construct was repeated and 

another AtNUDX7 T3 high OE line, NUDX7_OE-Zm 2-1-1 added (Fig 3b). Also, in addition to the F4 

homozygous Mu-KD2, a ZmNUDX8 Mu KD line in W22 genotype background from the previous 

water deficit experiment, a wildtype W22 line was included as a control. We also tested three T1 

lines carrying ZmPARP2_CRISPR construct (ZmPARP2_CR 1-1, ZmPARP2_CR 4-1, and ZmPARP2_CR 8-

1- see chapter 4, Table 5 for CRISPR line details) and wildtype B104 control line.  In Fig. 14, the LER 

per genotype and its respective wildtype control line graph under well-watered control and water 

deficit treatment is shown from Time points (Tp) 1 to 13. In addition, Table 5 shows the percentage 

leaf 4 growth rate in water deficit condition. 
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Fig. 14: Leaf 4 elongation rates from timepoint 1 to 13 of OE NUDX7, ZmPARP2-CRISPR and ZmNUDX8 Mu KD 
lines in comparison with Wt B104 or UFMu-Wt controls under well-watered (WW) and water deficit treatment 
(WD). (n=7 for WW and n=8 for WD) 
 
 
Table 5: Genotypes in water deficit experiment 2 and their percentage leaf 4 growth in water deficit condition  

Construct / Mutation Lines % Growth in 
W. Deficit 

WT B104 Wt-B104 70.3 

pBdEF1α- AtNUDX7 
NUDX7_OE-Zm 1-1-1 86.8 

NUDX7_OE-Zm 2-1-1 74.3 

ZmPARP2_CRISPR 

PARP2_CR 1-1 72.5 

PARP2_CR 4-1 64.7 

PARP2_CR 8-1 74.5 

ZmNUDX8 Mu KD Mu-KD 2 61.6 

WT W22 Wt-W22 75.2 
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Similar to the first water deficit experiment, an increased or fluctuation of the LER from time point 1 

to 5 was observed in both stressed and well-watered control lines with a peak at time point 5 then a 

gradual decrease of the LER to the last time point.  The percentage leaf 4 grow rate in Table 5 above 

give an indication of the leaf 4 growth performance of these lines. Leaf 4 growth rate in Wt B104 was 

reduced by 30% upon water deficit treatment. Similar to the first water deficit experiment, high OE 

AtNUDX7 line NUDX7_OE-Zm 1-1-1 had again a notable phenotype with a 16.5% higher leaf 4 

growth rate upon water deficit treatment in comparison to Wt B104 indicating a trend of tolerance. 

High OE AtNUDX7 line NUDX7_OE-Zm 2-1-1 and ZmPARP2_CRISPR lines PARP2_CR 1-1 and 

PARP2_CR 8-1 had leaf 4 growth rates of 4%, 2.2% and 4.2% higher than Wt B104 respectively upon 

water deficit treatment. The Wt-W22 control line had poor growth of plants and thus it was difficult 

to compare it with the ZmNUDX8 Mu-KD2 line. End point parameters measured to further 

determine the response of the 8 genotypes to water deficit treatment include leaf 4 (blade weight, 

blade + sheath weight, blade width and total leaf area), total plant biomass (wet weight) and total 

plant dry weight (Fig. 15). 



Functional analysis of altered NUDX gene expression in maize for water deficit and oxidative stress tolerance 

140 

 
Fig. 15: End point parameters measured to compare OE NUDX7 and ZmPARP2-CRISPR, Wt B104, ZmNUDX8 Mu 
KO lines and UFmu-Wt under well watered (WW) and water deficit (WD) treatment. Percentages represent 
reductions upon water deficit treatment. The yellow arrow points to high overexpression lines, NUDX7_OE-Zm 
1-1-1and NUDX7_OE-Zm 2-1-1,  where a notable trend of lower percentage reduction compared to Wt-B104 
was seen in several parameters upon water deficit treatment. The red arrow points to NUDX7_OE-Zm 1-1-1 
with a 15% significantly higher leaf 4 blade width than Wt B104 upon water deficit stress (P = 0.0158, two-way 
analysis of variance with custom hypothesis Wald tests (corrected for multiple testing Sidak step-down)). Error 
bars indicate standard deviation, (n=7 for WW and n=8 for WD). 

 

The two high OE AtNUDX7 lines, NUDX7_OE-Zm 1-1-1and NUDX7_OE-Zm 2-1-1, had interesting 

phenotype showing a consistent trend of better performance (lower reduction ratios) than Wt-B104 

in most of the parameters tested upon water deficit stress apart from the total leaf 4 area of line 

NUDX7_OE-Zm 2-1-1 which was similar to that of the B104 control (Fig. 15). The leaf 4 blade width of 
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line NUDX7_OE-Zm 1-1-1 marked with a red arrow  in Fig. 13 was 15% significantly higher than Wt 

B104 upon water deficit stress (P = 0.0158, two-way analysis of variance with custom hypothesis 

Wald tests (corrected for multiple testing using Sidak step-down)) indicating tolerance to water 

deficit stress. The total biomass of high OE lines NUDX7_OE-Zm 1-1-1 and NUDX7_OE-Zm 2-1-1 was 

10% and 11% higher respectively and the total plant dry weight was 14% and 12% higher 

respectively than Wt B104 upon water deficit treatment though the differences are not statistically 

significant but indicating a trend towards water deficit stress tolerance. Notably also the 

ZmPARP2_CRISPR lines (ZmPARP2_CR1-1, ZmPARP2_CR4-1, and ZmPARP2_CR8-1) had a slightly 

better performance (lower reduction ratios) than Wt B104 in most of the parameters tested 

indicating slight tolerance though not statistically significant (Fig. 15). To determine the power of this 

experiement, we used leaf 4 blade width as an example. Based on the sample size, effect size and 

standard deviation, a statistical power of 0.46 was obtained indicating that the probability of 

obtaining a genotype showing statistically significant leaf 4 blade width in this experiment is 46%. To 

increase the power of the experiment, more samples than 7 or 8 plants per genotype should be 

considered in the future experiments. 

5.3 Discussion 

We have developed single locus T-DNA insertion maize lines showing high overexpression of  

AtNUDX7, ZmNUDX2 and ZmNUDX8 genes driven by a strong Brachypodium distachyon pBdEF1α 

promoter and also OE AtNUDX7 and ZmNUDX2 lines driven by maize Ubiquitin promoter. We also 

identified a homozygous Mutator transposon insertion in exon 1 of ZmNUDX8 gene showing 5 to 6 

fold down regulation of the ZmNUDX8 gene activity. 4 out of 15 T1 lines carrying pBdEF1α-ZmNUDX8 

construct and 3 out of 23 T1 lines carrying the pBdEF1α-ZmNUDX2 resulted in a silencing phenotype 

where all the 40 individual plants tested were pat negative.  The T0 parents of these plants were Pat 

positive and PCR genotyping of some the Pat negative T1 lines showed a segregation of the 

transgene. This indicates that the silencing is post transcriptional and may be as a result of the use of 

the strong Brachypodium distachyon pBdEF1α promoter (Coussens et al., 2012) that may have 

produced abnormally high transcript levels that triggered a feedback mechanism leading to RNA 

degredation, a phenomenon earlier described by Elmayan and vaucheret, (1996) where a strongly 

expressed bacterial UidA gene cloned between the 35S promoter with a double enhancer resulted in 

post transcription silencing in tobacco plants. Interestingly however, OE lines generated using the 

pZmUBIL promoter had persistently much lower fold expression levels in comparison to pBdEF1α 

lines (Fig. 3b, 4b and Table 2). We thus used the Pat positive pBdEF1α overexpression lines in the 

functional assays which did not result in further gene silencing events in T2 or T3 generations. 



Functional analysis of altered NUDX gene expression in maize for water deficit and oxidative stress tolerance 

142 

Two pBdEF1α-AtNUDX7 and one pBdEF1α-ZmNUDX2 maize lines evaluated for their oxidative stress 

response using paraquat treatment showed higher sensitivity in comparison to their respective 

azygous controls. This is in contrast to previous reports which indicate that modulation of AtNUDX2 

and AtNUDX7 conferred enhanced oxidative stress tolerance in Arabidopsis as assessed by plant 

physical phenotype, survival rates, chlorophyll content and root growth (Ogawa et al., 2009; 

Ishikawa et al., 2009). Indeed several factors may have contributed to this contrasting results, it is 

possible that the NUDX genes do not confer oxidative stress tolerance to maize plants or testing 

more transgenic lines per construct would result in a line showing tolerance to oxidative stress. In 

addition, the type of assay used to measure oxidative stress tolerance was different, we used leaf 

disk assay and measured the ion leakage in the floating solution, an assay confirmed for oxidative 

stress tolerance determination in transgenic maize (Van Breusegem et al., 1999). The concentrations 

of paraquat used are also quite different, we used a range of 0.03µM – 0.1µM while in the former 

report in Arabidopsis 0.3 µM and 3µM were used raising the question of dose-response effects 

(Claeys et al., 2014). The amount of light used during paraquat treatment also varied, we used 

30µMol m-2 s-1 while in the reports 100µMol m-2 s-1 and 1600µMol m-2 s-1 was used. We propose 

testing more transgenic lines using the leaf disk paraquat assay and development of new assays to 

counter check results in oxidative stress assays in maize. 

We report that overexpression of the Arabidopsis AtNUDX7 gene in maize using Brachypodium 

distachyon pBdEF1α promoter in a high overexpression line NUDX7_OE-Zm 1-1-1 resulted in 

significant tolerance to water deficit stress. The notable phenotypes of OE AtNUDX7 lines include: 

Lines NUDX7_OE-Zm 1-1-1 with a 15% significantly higher leaf 4 blade width than Wt B104 upon 

water deficit stress (P = 0.0158, two-way analysis of variance with custom hypothesis Wald tests 

(corrected for multiple testing using Sidak step-down)), High OE lines lines NUDX7_OE-Zm 1-1-1 and 

NUDX7_OE-Zm 2-1-1 with 10% and 11% higher total plant biomass respectively and 14% and 12% 

higher total plant dry weight respectively than Wt B104 upon water deficit treatment. Also line 

NUDX7_OE-Zm 1-1-1 showed an 8.2% higher leaf 4 growth rate than Wt B104 in the first experiment 

and 16.5% higher leaf 4 growth rate than Wt B104 upon water deficit treatment. These findings 

indicate that the ADP-ribose specific NUDX genes play a role in maize plant response to water deficit 

stress. ADP-ribose specific Nudix hydrolases are involved in nucleotide recycling in the PAR pathway 

by hydrolysing free ADP-Ribose molecules into ribose-5-phosphate and AMP, a ready precursor for 

ATP synthesis (Rossi et al., 2002; Ogawa et al., 2005; Ishikawa et al., 2009). Upon drought stress, 

there is an increased production of ROS (Cruz de Carvalho, 2008) which induce the PARP protein 

activity (Vira´g and Szabo´, 2002) and thus the PAR pathway. Activation of the PAR pathway will 

resultantly activate the nucleotide recycling action of ADP-ribose specific Nudix hydrolases and re-
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establishing the energy levels by supplying an ATP source. We thus propose that overexpression of 

AtNUDX7 in maize plants enhanced the water deficit stress tolerance through enhancing the 

recycling step of ADP-ribose in the PAR energy homeostasis pathway.  The ZmPARP2_CRISPR lines 

showed a trend of higher leaf 4 growth rates and also other leaf 4 parameters and biomass 

measurements relative to Wt B104 upon water deficit treatment. The marginal responses of the 

ZmPARP2-CRISPR lines could be due to the use of T1 lines with a segregation of the Cas9-induced 

deletion phenotypes (Chapter 4, Table 5). A repeat of this experiment with T2 lines without T-DNA or 

back-crossed to B104 and selfed in T1 carrying more uniform and stable ZmPARP2 mutations is 

proposed. 

5.4 Materials and methods 

5.4.1 Plant material and growth conditions 

The Uniform Mu Mutator lines UFMu-07274 and UFMu-06482 

(http://www.maizegdb.org/uniformmu) and B104 maize genotype (Hallauer et al., 1997) used in this 

study were grown either in growth room or green-house conditions. The maize growth room 

conditions include: 24oC temperature, 55% relative humidity, 230µE m-2 s-1 light intensity and 16hrs 

of lighting. The maize green-house conditions include: 22-26oC temperature, 45% relative humidity, 

300µE m-2 s-1 light intensity and 16hrs of lighting. Maize seeds were sown on trays containing jiffy 

soil (sphagnum peat moss) placed in the maize growth room where the seedlings were grown for 3 

to four weeks then transferred to bigger soil pots (Saniflor beroepspotgrond with osmocote) and 

placed in the green-house where they grew to maturity.  

5.4.2 NUDX OE constructs cloning 

cDNA/ gDNA sequence coding for AtNUDX7, ZmNUDX2 and ZmNUDX8 was cloned into pDONR221 

donor vector and then recloned into pBbm42GW7 monocot multisite gateway vector (Karimi et al., 

2013) including either the pEN-L4-BdEF1a-R1 or the pENTRY-L4-UBIL-R1 promoter entry clones 

following the Gateway Technology Manual (Invitrogen).  The expression vectors developed were 

cloned into the EHA101 super virulent Agrobacterium strain (Hood et al., 1986) and transformed into 

the B104 maize genotype using the Agrobacterium-mediated transformation. 

5.4.3 Maize transformation, bar gene selection and assays 

Immature embryos of the maize inbred line, B104, were transformed with the NUDX OE constructs 

at the PSB-VIB maize transformation platform according to the procedure described by Coussens et 

al. (2012), in which 2,4-D was replaced by dicamba (3.32mg/l). Transgenic plant materials were 

selected using a bar marker gene whose activity was identified using either of three assays: Pat 
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assay, Ammonium-multiwell assay or Basta leaf painting assay. Pat assay test was carried using 

AgraStrip LL Strip test kit following manufacturer’s instructions, Ammonium-multiwell assay was 

carried out according to De Block et al. (1995) and Rasco-Gaunt et al. (1999) and Basta leaf painting 

was conducted as described in Rasco-Gaunt et al. (1999). 

5.4.4 RNA preparation, cDNA synthesis and QPCR expression analysis 

1cm leaf tissue from approximately 10-12 days old maize seedlings were harvested for QPCR 

expression analysis and samples pooled as described in the results for each QPCR analysis. RNA was 

isolated using the RNeasy Plant Mini Kit (Qiagen) and cDNA prepared using SuperScript III First-

Strand Synthesis System for RT-PCR (Invitrogen) following the manufacture’s protocols. QPCR 

experiments were performed in a LightCycler480 Real -Time SYBR Green PCR System (Roche) and all 

reactions were performed in three technical replicates. Expression levels were normalised to 

reference genes 18SrRNA and EF1α (Genebank accession X00794.1 and NM_001112117.1 

respectively).  

5.4.5 PCR genotyping 

DNA was isolated from maize leaf tissue using the Genomic DNA purification kit (Promega) and PCR 

carried out using the Phusion Hot Start High-Fidelity DNA Polymerase (Finnzymes) or Taq DNA 

Polymerase (Invitrogen) following the manufacture’s protocol. Gene-specific primers alone or in 

combination with transposon-specific primers (TIR 6/ TIR 8) were used to amplify the Mu insert. The 

PCR products were run on a 1% agarose. PCR product obtained using gene-specific primers alone 

indicate the presence of a wildtype allele while PCR products obtained using transposon-specific + 

gene-specific primer indicates the presence of an insert. 

5.4.6 Paraquat induced ion leakage leaf disk assay 

1cm2 fresh leaf disks from division zone of leaf 5 or 7 were placed in 3ml of paraquat solution 

(concentrations 0µM, 0.03µM, 0.05µM, 0.07µM and 0.1µM) in 12 multiwell plates, all solutions 

prepared using Milli Q water.  20 pat positive leaf disks and 20 pat negative leaf disks per line per 

concentration were incubated in the dark for 20hrs, exposed to low light for 2 hours at 30µMol m-2 

s-1 then incubated for another 20hrs in the dark at 28oC as described by Van Breusegem et al. (1999). 

Ion leakage was measured as an increase in conductance of the floating solution using a K610 

Conductivity meter (Consort Turnhout, Belgium) in Micro Siemens per centimeter (µS.cm -1). 
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5.4.7 Water deficit assay in an automated platform 

In the first experiment Wt-B104 plants were grown on SHRIMPY under different water deficit 

conditions and gene expression levels of endogenous NUDX genes determined. The experimental 

designed is described in a scheme in Fig. 16. 

 

Water deficit on Wt-B104 in SHRIMPY automated platform 

75 seeds sown in 500g (soil + pot weight); 25 plants per condition 

 

  

                                                    

 

 

 

 

Well watered plants 
5-7 days drying 

 
Keep at  419g weight by watering 

No watering of plants 

Plants grown for 10 days 
 

Harvest leaf 3 Mature, elongation and division zones 
 

21 plants per condition; 7 pools of 3 plants each 
 

RNA extraction, cDNA synthesis and QPCR experiments 

Well-watered 

control  

Mild water 

deficit  

Severe water 

deficit      

 

Fig. 16: Experimental set-up to determine induction of endogenous NUDX genes under water deficit conditions  

Phenotyping of the OE NUDX, RNAi PARP1, CRISPR-PARP2 and Mutator insertion lines was carried 

out under water deficit conditions in SHRIMPY automated platform for which two conditions were 

selected, a well-watered control and a soil water deficit treatment. A soil water content of 2.40 and 

1.00 g H2O * g dry soil-1 was chosen for the well-watered control and the soil water deficit 

treatment, respectively. These values correspond to a soil water potential of -0.01 MPa and -6 MPa, 

respectively.  Seeds of all genotypes were soaked in water overnight to enhance germination. 7 

seedings per genotype were grown in the well-watered treatment and 8 seedlings per genotype in 

the water deficit treatment. A fixed randomisation pattern was used taking into consideration wall 

effect (plants closer to the wall were noted to grow faster) and temperature gradient in the growth 
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room. The plants were also watered at the same time daily to avoid biases. The plants were allowed 

to grow for approximately one month and each plant was harvested two days after attaining V-Stage 

5 (leaf 5 with a visible collar). Plants with more than 5 days delay in apprearance of leaf 4 were not 

used further in the analysis apart from the Mutator transposon lines (W22 background) in which leaf 

4 appeared about 10 days later. Several parameters of leaf 4 were measured: daily leaf length, final 

blade weight, final blade + sheath weight, final blade width and total leaf area. In addition the total 

biomass (wet weight) and total dry weight of each plant was determined. The leaf 4 length was 

measured daily from the base of the plant to the leaf tip and from appearance until the leaf 4 stops 

growing, and was used in determining the Leaf Elongation Ratio (LER).  

5.4.8 Data analysis on water deficit experiment  

Statistical data analysis was carried out for all the end point growth parameters measured in the 

water deficit experiments on SHRIMPY automated platform with an interest of determining the 

different effect upon water deficit of each transgenic line compared to the control line. A two-way 

analysis of variance was conducted for each end point parameter (dependent variables). The model 

included the factors genotype and treatment and the interaction term. When the interaction term 

was significant at the 5% significant level, Wald tests were performed to estimate the significance of 

the difference in effect upon water deficit of each genotype versus the control genotype. P-values 

were adjusted for multiple testing using Sidak step-down as implemented in SAS. The analysis was 

conducted with the glm procedure from SAS (Version 9.4 of the SAS System for windows 7 64bit 

Copyright 2002-2012 SAS Institute Inc. Cary, NC, USA, www.sas.com). Correction for multiple testing 

of the interaction effect was done with the multtest procedure. The statistical analysis was carried 

out by Véronique Storme, statistician, PSB-VIB-UGent.  
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5.4.9 List of primers 

Table 6: Primer sequences used in the study  

Primer  Sequence (5'->3') Experiment 

NUDX2F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAGGAGATAGAACCATGTCAAGTTCCATAATTTCAACAGT 

OE NUDX gene 

cloning + Att 

sites 

NUDX2R GGGGACCACTTTGTACAAGAAAGCTGGGTCTACCCTGAGGCCCTGTCCAG 

NUDX8F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAGGAGATAGAACCATGGAGAGCGGCTTGCTTGACACCG 

NUDX8R GGGGACCACTTTGTACAAGAAAGCTGGGTTCAGGCGGCGCTGCAGTTCAC 

AtNUDX7F GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAGGAGATAGAACCATGGGTACTAGAGCTCAGCAG  

AtNUDX7R GGGGACCACTTTGTACAAGAAAGCTGGGTTCAGAGAGAAGCAGAGGCTTG 

18SrRNA_Q1 ACCTTACCAGCCCTTGACATATG 

Housekeeping 

genes 

18SrRNA_Q2 GACTTGACCAAACATCTCACGAC 

EF1A_Q1 AGTCCGTTGAGATGCACCATG 

EF1A_Q2 CACATACCCACGCTTCAGATCC 

qpcrAtNUDX7bF CTTGGGATTCGCCATTGTG 

NUDX gene 

expression  

analysis 

qpcrAtNUDX7bR CATGATCCGCATTGCAGTAGAT 

qpcrZmNUDX2bF ATGCAGGCTTTTCGCCAATC 

qpcrZmNUDX2bR CAGATCCCTCCGGTTCATGT 

qpcrZmNUDX2cF GCAGGCTTTTCGCCAATCTC 

qpcrZmNUDX2cR GTCCAGATCCCTCCGGTTCA 

qPCRNUDX8eF GTGGATCTAGCCGAGTTCGT 

qPCRNUDX8eR GGGAGCATATTCGGTTCATC 

qpcrZmNUDX8fF CTGAGGCCTGTGTCGAGTG 

qpcrZmNUDX8fR GATGAAGGGCTGCTTCACGA 

pBdEF1α2 GATGCTGTCTGTGTACTG OE NUDX  

lines 

genotyping 

pZmUbi-L1 TGGTACTGTTTCTTTTGTCG 

T35S1 ACCCTAATTCCCTTATCTGG 

UFMu-07274_F3  ACGCATACGGCGTGTCCGGCCC 

Mu 

transposon 

insertion 

genotyping 

UFMu-07274_R3  CGCCGCCCGTCTCCGACCAGT 

TIR 6 AGAGAAGCCAACGCCAWCGCCTCYATTTCGTC 

Bc11R692 GTCTTGGCCGTGTACTGGAT 

TIR8.1 CGCCTCCATTTCGTCGAATCCCCTS 

TIR8.2 CGCCTCCATTTCGTCGAATCCSCTT 

TIR8.3 SGCCTCCATTTCGTCGAATCCCKT 

TIR8.4 CGCCTCCATTTCGTCGAATCACCTC 
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Abstract 

Arabidopsis NUDX7 gene has been extensively studied and identified as a multiple stress induced 

gene with an impact on both biotic and abiotic stress responses. The gene has also been proposed as 

the predominant ADP-ribose pyrophosphatase in Arabidopsis cells. In this study, new functional 

analysis approaches for testing oxidative and drought stress tolerance in Arabidopsis lines with 

altered NUDX gene expression is reported. Three AtNUDX7 overexpression Arabidopsis lines showed 

significant tolerance to paraquat induced oxidative stress. In addition an AtNUDX7 and two ZmNUDX 

Arabidopsis overexpression lines showed a tendency to mild drought stress tolerance. We also make 

a first reporting of altered seed yield and yield related parameters in lines with modulated AtNUDX7 

gene expression. Several lines overexpressing AtNUDX7 in Col-0 background showed a significant 

increase in total seed weight, seed number seed size and mass in addition to early flowering time 

and reduced rosette leaf number. 
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6.1 Introduction 

Nudix hydrolases (NUDX) from Arabidopsis thaliana are so far the most substantially characterized in 

higher plants. AtNUDX7 shows preferential activity for ADP-ribose and NADH when expressed in E. 

coli cells (Ge et al., 2007) and has been proposed as the predominant NADH and ADP-Ribose 

pyrophosphatase in Arabidopsis cells (Ishikawa et al., 2009). AtNUDX7 gene has been extensively 

studied and identified as a multiple stress induced gene with impact on both biotic and abiotic stress 

responses (Bartsch et al., 2006; Jambunathan and Mahalingam, 2006; Ge et al., 2007; Adams-Phillips 

et al., 2008; Ishikawa et al., 2009; Jambunathan et al., 2010). The gene also plays a role in seed 

germination as Atnudx7 mutants accumulated high levels of ABA resulting in reduced seed 

germination phenotype (Zeng et al., 2014). 

Crop yield is a complex trait determined by a combination of genetic, epigenetic, and environmental 

factors that interact in unpredictable ways resulting in non-linear relationships between genotypes 

and phenotypes. There have been joined efforts from various disciplines including plant breeding, 

genetics, molecular biology, plant physiology and agronomy to develop improved plant varieties 

with better adaptability and productivity under various environmental conditions. The maximum 

yield a crop variety can reach under optimal growth and harvest conditions, termed “potential 

yield”, is determined by genetic and epigenetic constitution of the crop thus a crop’s potential yield 

can be improved by genetic manipulations. Despite the known complexity of crop yield genetics, 

growing evidence shows that yield can be increased by genetic modification of single genes. Van 

Camp (2005) describes positive results that have been obtained by using single gene modification to 

target different yield constituents such as photosynthesis, starch biosynthesis, plant architecture and 

transcriptional networks controlling plant development thus indicating that there is ample room for 

further yield improvement by genetic means.  Another approach to improving crop yield is genetic 

engineering to produce higher seed yield. Seed size and number are described as the two main 

components contributing to seed yield. In this study, we analyzed seed yield parameters: seed size, 

seed number, total seed weight and mass per seed, and other yield-associated parameters 

(inflorescence height, rosette number and flowering time) according to Van Daele et al. (2012) in 

Arabidopsis lines, in which the activity of the AtNUDX7 gene has been overexpressed or knocked 

down. 

Reactive oxygen species (ROS) are formed by the inevitable leakage of electrons from the electron 

transport activities of chloroplasts, mitochondria, and plasma membranes or as a by-product of 

various metabolic pathways localized in different cellular compartments even under optimal 
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conditions, which reduce molecular oxygen. During biotic and abiotic stress conditions, the levels of 

ROS increase potentially resulting in oxidations of DNA, proteins and lipids. Modulation of AtNUDX2 

and AtNUDX7 has been reported to confer enhanced oxidative stress tolerance in Arabidopsis plants 

(Ogawa et al., 2009; Ishikawa et al., 2009). We explored these studies further by determining the 

rosette area under paraquat-induced oxidative stress of Arabidopsis plants whose AtNUDX7 gene 

activity has been overexpressed or knocked down.  

Modulation of the poly(ADP-ribosyl)ation (PAR) pathway via the down-regulation of the PARP gene 

in Arabidopsis and Brassica napus by RNAi gene silencing resulted in plants with reduced NAD+ 

depletion and ATP consumption and were tolerant to a broad range of abiotic stresses such as high 

light, drought, and heat (De Block et al., 2005). In this study the ADP-ribose specific NUDX protein, a 

downstream PAR pathway protein, was modulated through overexpression of Arabidopsis and maize 

NUDX genes in Arabidopsis and the plants were evaluated for mild drought stress response in an 

automated platform.  

6.2 Results 

6.2.1 Generation of overexpression NUDX transgenic lines and identification of a nudx7 mutant 

line 

6.2.1.1 OE of AtNUDX and ZmNUDX genes in the Arabidopsis Col-0 background 

The complete coding sequence of the AtNUDX7 (AT4G12720) gene and its two maize homologs 

ZmNUDX2 (GRMZM2G101693) and ZmNUDX8 (GRMZM2G175816) were transformed into 

Arabidopsis thaliana Col-0 ecotype using the Gateway cloning system (Invitrogen). The coding region 

of each gene was amplified from Arabidopsis or maize cDNA using gene specific primers and each 

PCR fragment cloned into a pDONR221 donor vector. The inserts in the pDONR221 entry clones 

were then recloned into the pK2GW7 Gateway expression vector driven by the cauliflower mosaic 

virus p35S promoter (Karimi et al., 2007), expressed in pMP90 Agrobacterium cells and further 

transformed into Arabidopsis using the floral dip system (Clough and Bent, 1998) at PSB-VIB. Fig. 1 

shows a general scheme of the T-DNA constructs developed for overexpression of AtNUDX7, 

ZmNUDX2 and ZmNUDX8 genes in the Col-0 background. 
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Fig. 1: General scheme of the T-DNA construct for overexpression of NUDX genes using the p35S promoter in 
the Arabidopsis Col-0 background.   

T1 seeds, obtained from the floral dipped T0 plants, were screened for the presence of the T-DNA 

through high density plating on selective medium containing kanamycin, resistant seedlings were 

transferred to soil for the generation of T2 seeds. Subsequent segregation analysis through selection 

on MS medium with kanamycin was performed to generate T3 homozygous lines with 1 T-DNA 

locus. 

6.2.1.2 Identification of a KO nudx7 mutant line 

We screened for lines with a T-DNA insertion in the AtNUDX7 gene in the Col-0 background 

(www.arabidopsis.org) and three seed stocks were obtained SALK-046441, SALK-046825 and SALK-

088538C with T-DNA insertion in exon1, exon 1 and the 5’ untranslated region, respectively from 

NASC (Nottingham Seed Stock Center). Upon PCR genotyping and screening for a homozygous T-

DNA insertion line on MS medium with Kanamycin, we obtained a T3 line, SALK-046441_1, with a 

single locus homozygous T-DNA insertion in exon 1. Expression analysis of the KO-nudx7 mutant line 

is described in section 6.2.2. The line was preferentially selected for use as a control line in 

functional analyses since a T-DNA insert in exon 1 is more likely to disrupt the gene activity than one 

in the untranslated region. The line was also used as a background for OE of ZmNUDX genes in 

Arabidopsis.  

6.2.1.3 OE of ZmNUDX in the Arabidopsis nudx7 SALK mutant background 

The OE constructs containing the ZmNUDX2 or the ZmNUDX8 genes and driven by the pBdEF1α or 

pZmUBIL promoters in the pBbm42GW7 gateway expression vector (Karimi et al., 2013), developed 

for maize transformation (Chapter 5), were expressed in EHA101 Agrobacterium cells and further 

transformed into the KO-nudx7 Arabidopsis mutant line (SALK-046441_1) using floral dip 

transformation. Transgenic seedlings were selected through high density plating on selective 

medium and subsequent segregation analysis through selection on phosphinothricin was performed 

to generate T3 homozygous lines with 1 T-DNA locus. Fig 2 is a general scheme of the T-DNA 

constructs developed for overexpression of ZmNUDX2 and ZmNUDX8 genes using pBdEF1α or 

pZmUBIL in the nudx7 mutant background. 
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Fig. 2: General scheme of the T-DNA construct for overexpression of the maize NUDX genes using pBdEF1α or 
pZmUBIL in the nudx7 mutant background  

6.2.1.4 pBdEF1α and pZmUBIL monocot promoters are active in Arabidopsis 

The pBdEF1α and pZmUBIL promoters were used to drive the expression of the GUS gene containing 

a PIV2 intron in Arabidopsis.  We transformed pBdEF1α-GUS and pZmUBIL-GUS constructs expressed 

in pBbm42GW7 and pXBb7-SI-UBIL Gateway vectors respectively into EHA101 Agrobacterium cells 

and further into Arabidopsis Col-0 using floral dip transformation.  T1 seed were germinated on high 

density plates with phosphinothricin selection and resistant seedlings transferred to soil. Leaves 

from 32 days old T1 seedlings were tested for GUS activity as shown in Fig. 3.  

 
Fig. 3: GUS activity in Arabidopsis leaves of T1 seedlings transformed with pBdEF1α-GUS (1-15) and pZmUBIL-
GUS (16-30). 

The GUS activity in leaves of Arabidopsis seedling from both constructs indicates that pBdEF1α and 

pZmUBIL monocot promoters are able to drive the expression of the GUS gene in dicots. This 

experiment was carried out to confirm that the pBdEF1α and pZmUBIL promoters can be used to 

drive the expression of the ZmNUDX2 and ZmNUDX8 maize genes in Arabidopsis.  

6.2.2 Expression analysis of NUDX overexpression and Knock-out lines 

2 week-old seedlings of T3 lines with a single locus homozygous T-DNA insertion, growing on MS 

medium were used in the QPCR expression analysis. 4 pools of 5 seedlings per line for the p35S-

AtNUDX7 line, nudx7 mutant line (SALK 046441_1) and Wt Col-0 control were made. For the p35S-

ZmNUDX2 and ZmNUDX8 lines and their Wt Col-0 control, 3 pools of 5 seedlings were made. RNA 

was isolated from each pool using the RNeasy Plant Mini Kit (Qiagen) and cDNA prepared using 

SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen) or SensiFAST cDNA Synthesis Kit 
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(Bioline). QPCR experiments were performed in a LightCycler480 Real -Time SYBR Green PCR System 

(Roche). Fig 4a, 5a and 6a show the position of gene specific primers used in the QPCR amplification. 

Fig. 4b, 5b and 6b show the relative expression levels of the NUDX genes in OE or KO Arabidopsis 

lines. Fig. 4c shows a different QPCR expression analysis using freshly prepared RNA (3 pools of 5 

seedlings per line) and similar set up as described above to confirm the knock out of AtNUDX7 gene 

in the nudx7 mutant line (SALK 046441_1) using gene specific primer pair shown in Fig 4a.   

 

  

  

  Forward strand 

 
Fig. 4a: Position of the QPCRAtNUDX7b primer pair shown with arrows at the 3’ end of the AtNUDX7 gene 
model. The green boxes represent the exons, the lines represent the introns and the unshaded boxes 
represent the 5’ or 3’ untranslated region / non-coding exon  

 

 
Fig. 4b: Relative expression levels of the AtNUDX7 gene in OE p35S-AtNUDX7 in Col-0 lines, Wt Col-0 and KO-
nudx7 (SALK-046441_1) lines amplified using QPCRAtNUDX7b primer. Error bars indicate standard deviation 
(n=20) 

 
Fig. 4c: Relative expression levels of the AtNUDX7 gene in Wt Col-0 and nudx7 mutant line (SALK-046441_1) 
amplified using QPCRAtNUDX7b primer. Error bars indicate standard deviation (n=15) 
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Forward strand 

   
Fig. 5a: Position of the qPCRZmNUDX2b (blue) and qPCRZmNUDX2c (orange) primer pairs shown with arrows 
at the 3’ end of the ZmNUDX2 gene model. The green boxes represent the exons, the lines represent the 
introns and the unshaded boxes represent the 5’ or 3’ untranslated region / non-coding exon 

 
Fig. 5b: Relative expression levels of the ZmNUDX2 gene in OE p35S-ZmNUDX2 in Col-0 and Wt_Col-0 lines 
amplified using qPCRZmNUDX2b and qPCRZmNUDX2c primers. Error bars indicate standard deviation (n=15) 

  
 

 

 

 
Reverse  strand 

 
Fig. 6a: Position of the qPCRZmNUDX8e (blue) and qPCRZmNUDX8f (orange) primer pairs shown with arrows 

in the ZmNUDX8 gene model. The green boxes represent the exons, the lines represent the introns and the 

unshaded boxes represent the 5’ or 3’ untranslated region 

 
Fig. 6b: Relative expression levels of the ZmNUDX8 gene in OE p35S-ZmNUDX8 in Col-0 and Wt_Col-0 lines 
amplified using QPCRZmNUDX8e and QPCRZmNUDX8f primers. Error bars indicate standard deviation (n=15). 
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Varying levels of overexpression of NUDX genes was observed in the p35S-AtNUDX7 in Col-0 and the 

p35S-ZmNUDX2 and ZmNUDX8 lines in Col-0. The p35S-AtNUDX7 line in Col-0, showing high, 

medium and low level of AtNUDX7 gene expression were used in paraquat-induced oxidative stress 

assay, a water deficit experiment and evaluated for seed yield and yield contributing parameters. 

The p35S-ZmNUDX2 and p35S-ZmNUDX8 lines in Col-0 were only used in the water deficit 

experiment in this work and will be considered for oxidative stress experiments in the future. T3 

lines carrying the pBdEF1α-ZmNUDX2, pBdEF1α-ZmNUDX8, pZmUBIL-ZmNUDX2 or pZmUBIL-

ZmNUDX8 in the KO-nudx7 Arabidopsis mutant background were recently generated and are 

currently being screened for homozygous lines carrying  1 T-DNA insertion. These lines will be 

suitable for studying the ZmNUDX gene activity in Arabidopsis as they should complement the 

knocked down AtNUDX7 gene activity.  

6.2.3 Evaluation of rosette area of OE and KO AtNUDX7 lines under paraquat-induced oxidative 

stress 

T3 lines carrying the p35S-AtNUDX7 construct in Col-0 background and the KO nudx7 SALK-046441_1 

mutant line were analysed for their response to paraquat (PQ) induced oxidative stress. The T3 

seeds were sterilised and sown on 0.5 MS medium containing 25nM PQ. 8 seeds per genotype and 4 

genotypes per plate (3 mutant lines and 1 wildtype) were sown and a duplicate of each plate made. 

Thus a total of 16 plants per genotype were tested. A control experiment was made in the identical 

set up but paraquat was not added to the medium.  The plates were placed at 4oC in the dark for 

two days for vernalisation and then in the Arabidopsis tissue culture room at  21°C with 16 hours of 

light/ 8 hours of dark and 60µmol m-2 s-1 . The first day in the tissue culture room is considered as the 

first day after stratification (DAS). Pictures of the plates are taken daily from 7 DAS to 17 DAS using 

the PRAC (Plant Rosette Area Calculator) set up in Frank Van Breusegem’s lab, PSB-VIB-UGent. The 

rosette area of each plant is determined daily using Image J software (https://imagej.nih.gov/ij) and 

a rosette area calculator macro designed by Davy Opdenacker, PSB-VIB-UGent. The average rosette 

area per day for each genotype and per PQ concentration is shown in the line graphs in Fig. 7a, 7b, 

7c and 7d. Fig. 7e shows pictures of the Arabidopsis seedlings grown in MS medium with 0nM or 

25nM PQ treatment at the last time point, 17 DAS. The overexpression p35S-AtNUDX7 lines used in 

the assay are described in Table 1. 

Table 1: T3 OE p35S-AtNUDX7 lines in Col-0 used in the paraquat-induced oxidative stress assay and seed yield 

parameter analysis 

Line Expression level 

p35S- AtNUDX7_B-3-3 High OE  

p35S-AtNUDX7_D-1-2 High OE  

p35S-AtNUDX7 _E-7-4 Moderate OE 

mailto:frbre@psb.vib-ugent.be
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p35S-AtNUDX7_E-3-3 Moderate OE 

p35S-AtNUDX7_A-2-2 Weak OE 

Salk 046441_1 (KO nudx7) Low 

Col-0 (Wt) Control 

 

 
Fig. 7a: Rosette area of three p35S-AtNUDX7 lines in Col-0 and Wt Col-0 at 0nM PQ treatment from 7-17 DAS. 
Error bars represent +/- StDev (n=16), significant differences compared to Wt Col-0 (Student’s t-test) are 
indicated in sign * = D-1-2 significance indicated with single sign, p < 0.05  

 

 
Fig. 7b: Rosette area of three p35S-AtNUDX7 lines in Col-0 and Wt Col-0 at 25nM PQ treatment from 7-17 DAS. 
Error bars represent +/- StDev (n=16), significant differences compared to Wt Col-0 (Student’s t-test) are 
indicated in signs * = D-1-2, ^ = A-2-2 and # = E-3-3 significance indicated with single sign (p<0.05) double 
(p<0.01) and triple (p<0.001). 
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Fig. 7c: Rosette area of two p35S-AtNUDX7 lines in Col-0, KO nudx7 Salk-046441_1 and Wt Col-0 at 0nM PQ 
treatment from 7-17 DAS. Error bars represent +/- StDev (n=16). No significant differences from Col-0 obtained 
for all genotypes at all time points. 

 

 
Fig. 7d: Rosette area of two p35S-AtNUDX7 lines in Col-0, KO nudx7 Salk-046441_1 and Wt Col-0 at 25nM PQ 
treatment from 7-17 DAS. Error bars represent +/- StDev (n=16), significant differences compared to Wt Col-0 
(Student’s t-test) are indicated in signs & = B-3-3, @ = Salk-046441_1, $ E-7-4 significance indicated with single 
sign (p<0.05) double (p<0.01) and triple (p<0.001). 
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0nM Paraquat 

  

25nM Paraquat 

  

 

 
Fig. 7e: Arabidopsis seedlings of OE p35S-AtNUDX7 lines in Col-0, KO nudx7 (SALK-046441_1) and Wt Col-0 

lines grown in MS medium containing 0nM or 25nM PQ treatment at 17 DAS 

The moderate OE lines p35S-AtNUDX7_E-7-4 and p35S-AtNUDX7_E-3-3 had significantly higher 

rosette area than Wt Col-0 at 25nm paraquat treatment at all time points. Although the high OE line 

p35S-AtNUDX7_D-1-2 showed a slightly higher rosette area than Col-0 line without paraquat 

induction, upon treatment with 25nM paraquat the significant difference in rosette area is much 

higher than Col-0 line. The significantly higher rosette area of the three OE lines than Wt Col-0 is an 

indication of tolerance to paraquat-induced oxidative stress upon overexpression of the AtNUDX7 

gene. The rosette growth of the KO nudx7 Salk 046441_1 was notably similar to Col-0 Wt line with 

and without paraquat treatment and only showed a slightly higher growth difference at 17 DAS. This 

possibly indicates that the KO of the AtNUDX7 gene may not have been sufficient to reduce its 

enzymatic activity because other endogenous AtNUDX genes may have complemented its function. 

Noteworthy: The data shown in the paraquat-induced oxidative stress assay was obtained from a 

single experiement. In addition, the statistical analysis on this assay using Student’s t-test assumed 
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independence of the time points. However, there is a correlation between observations done on the 

same plants at the different timepoints (longitudinal data) thus the data are no longer independent 

and cannot be sufficiently analysed with a Student’s t-test or an analysis of variance. The data is 

clustered since the genotypes were grown on 2 separate plates. There is also a need to consider 

correlations between observations on plants growing on the same plate. This is typically analysed 

with a mixed model (Verbeke and Molenberghs, 2009). The fixed effect part of the model will 

contain the main effects of genotype, treatment, time and all possible interaction terms. A random 

effect for plate is added to the model. Several structures for the variance-covariance matrix of the 

residuals can be tested based on a saturated mean model (i.e. considering all independent variables 

as categorical variables and including all interaction effects): unstructured, (heterogenous) 

compound symmetry, (heterogenous) autoregressive, and (heterogenous) banded toeplitz. The best 

structure can be chosen based on AIC values.  The Kenward-Roger approximation for computing the 

denominator degrees of freedom for the tests of fixed effects can be applied. Finally, user-defined 

contrasts can be estimated with Wald tests. Appropiate adjustment of p-values can be done with the 

MaxT method as implemented in SAS and residual diagnostics carefully examined (Westfall et al., 

2011). All longitudinal analyses can be performed with the mixed and plm procedure of SAS (Version 

9.4 of the SAS System for windows 7 64bit Copyright © 2002-2012 SAS Institute Inc. Cary, NC, USA 

(www.sas.com). (Future experimental set-up obtained on personal communication with Véronique 

Storme, statistician, PSB-VIB-UGent). 

6.2.4 Evaluation of seed yield and yield contributing parameters in OE and KO AtNUDX7 lines 

The seed yield parameters: total seed weight, seed number, seed size and mass per seed and other 

yield-associated parameters (flowering time, rosette leaves number and inflorescence height) were 

analysed according to Van Daele et al., 2012. T3 OE p35S-AtNUDX7 lines in Col-0, KO nudx7 Salk 

046441_1 line and a Wt-Col 0 described in Table 1 were used in the experiment (except p35S: 

AtNUDX7_E-3-3 in Col-0). Plants used for total seed weight and seed size determination were grown 

in the green-house for a period of 3.5 months. The seeds were harvested from each plant, cleaned 

and the total seed weight per plant determined by weighing all the seeds harvested from each plant 

(25 plants per genotype) and determing the mean seed weight per plant. For seed size 

determination, seed area was measured by analysis of images of 200-400 seeds per plant (10 plants 

per genotype) using Image J software and a macro developed by Hannes Van Haeren, PSB-VIB-

UGent. The mass of the 200-400 seeds per plant (10 plants per genotype) was obtained by weighing 

the seeds on a scale. The mass per seed parameter was then calculated by dividing this mass to the 

respective number of seeds that was counted through image analysis on Image J software.  

http://www.sas.com/
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Plants used for determination of inflorescent height and number of seeds per 10 silliques and were 

grown in the gree-house in separate pots harvested at approximately 2 months old when the plants 

reached maturity and no more increase in length was observed. Inflorescent height of 16 plants per 

genotype was determined by recording the length of a stretched primary inflorescent. The number 

of seeds per 10 silliques was determined by counting seeds from 10 yellow or brown unopened 

siliques from the middle of the inflorescence of each plant, 16 plants per genotype. The seed 

number parameter is described as average number of seeds per 10 siliques (Fig. 8). Similar to seed 

size, seed number counting was done through image analysis on Image J software 

(https://imagej.nih.gov/ij). Plants used in the determination of flowering time and rosette leaves 

number were grown in Arabidopsis growth room conditions. Flowering time was calculated as the 

difference between the first day of appearance of the flower bud and the day after sowing (DAS) for 

each of the 25 plants per genotype. Rosette leaf number (excluding cotyledons) was counted at the 

first day of flower bud appearance for each of the 25 plants per genotype. The graphs in Fig. 8 give 

an overview of the seed yield and yield related parameters determined of the OE p35S-AtNUDX7 

lines in Col-0, KO nudx7 and Wt Col-0 control line. 

 



Chapter 6 

165 

 
Fig. 8: Seed yield and yield contributing parameters of p35S-AtNUDX7 lines in Col-0 OE, KO nudx7 SALK-

046441_1 and Wt Col-0 control lines. Error bars indicate standard error of the mean. Significant difference 

compared to Wt Col-0 (Student’s t-test) is indicated in asterisks (p<0.05).   
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A heat map of the seed yield and yield contributing parameters was constructed to better visualise 

the differences in the performance of the overexpression and KO nudx7 lines in comparison to Wt 

Col-0 (Fig. 9). 

 

Fig. 9: Heat map of seed yield and yield-associated parameters in five Arabidopsis NUDX genotypes OE p35S-

AtNUDX7 lines in Col-0 and KO nudx7 Salk 046441_1 line. Significant differences determined using Student’s t-

test. 

High OE line p35S-AtNUDX7_D-1-2 and low OE line p35S-AtNUDX7_A-2-2 had a significantly higher 

total seed weight per plant in comparison to Wt Col-0.  The increase in total seed weight of line 

p35S-AtNUDX7_D-1-2 can be linked to its significant increase in seed number. Line p35S-

AtNUDX7_E-7-4 had remarkable consistence in the significant increase in three seed yield 

parameters: seed number, seed size and mass per seed in comparison to Wt Col-0 and a reduction in 

flowering time, rosette leaf number and inflorescent height. Early flowering time is often correlated 

with a reduced leaf number, which was confirmed in this experiment where high and moderate OE 

lines p35S-AtNUDX7_B-3-3, p35S-AtNUDX7_D-1-2 and p35S-AtNUDX7_E-7-4 flowered earlier and 

had fewer rosette leaves than Wt Col-0. All the genotypes analysed showed a significantly smaller 

inflorescent height compared to the Wt Col-0. 

6.2.5 Evaluation of OE AtNUDX7, ZmNUDX in Col-0, KO nudx7 and RNAi hpPARP2 lines under 

mild drought stress in an automated platform (WIWAM) 

To study the response of the transgenic OE or KO lines to water deficit conditions, a mild drought 

stress experiment was set up on an automated weighing, imaging and watering  (WIWAM) high-
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throughput  phenotyping platform at PSB-VIB-UGent according to established protocols (Skirycz et 

al., 2011; Clauw et al., 2015). The mild drought stress experiment was selected because it has been 

proposed to be a better test for superior growth performance thus, biomass yield gain, during water 

deficit conditions as opposed to severe drought stress treatment that activates plant survival 

mechanisms including redistribution and saving of resources leading to growth reduction to ensure 

reproduction even when the stress becomes extreme at the expense of yield (Skirycz et al., 2011). 

Two conditions were selected for the experiment, well-watered control for which the soil water 

content was maintained at a constant value of 2.19 g H2O/g dry soil during the entire experiment 

and mild drought stress for which the plants were grown for 9 days in well-watered conditions, then 

the daily target soil water content was lowered and maintained at 1.19 g H2O/g dry soil until the end 

of the experiment (21 DAS). 16 plants per genotype and 12 genotypes in total were used in the 

experiment as described in Table 2. Three Wt Col-0 lines were used corresponding with the age of 

three line sets: OE AtNUDX7 + Salk lines, OE ZmNUDX lines and hpPARP2 RNAi line. The final shoot 

area and stress sensitivity slopes were determined from the final shoot area are shown in Fig. 10-12. 

This experiment was carried out in collaboration with Stijn Dhondt of the Yield group, PSB-VIB-

UGent. 

Table 2: Lines used in the mild drought stress experiment 

Genotype Expression level 

AtNUDX7-OE B-3-3 High 

AtNUDX7-OE D-1-2 High 

AtNUDX7-OE E-7-4 Medium 

AtNUDX7-OE E-3-3 Medium 

AtNUDX7-OE A-2-2 Low 

Salk 046441_1  Knock-out 

Col-0  Wt (AtNUDX7  lines control) 

ZmNUDX2-OE A-9-1-2 High 

ZmNUDX8-OE A-4-2-2 High 

Col-0 Wt (ZmNUDX lines control) 

hpPARP2 427-26-43 Knock-down 

Col-O   Wt (hpPARP2  line control) 
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Fig. 10: Final shoot area and stress sensitivity slopes of p35S-AtNUDX7 lines in Col-0, K0 nudx7 and Wt Col-0 
under well-watered and mild drought stress treatments. Percentages represent reductions under mild drought 
relative to the control. Error bars indicate standard error of the mean (n=16). 

 

 
Fig. 11: Final shoot area and stress sensitivity slopes of p35S-ZmNUDX2 & p35S-ZmNUDX8 lines in Col-0 and Wt 
Col-0 under well-watered and mild drought stress treatments. Percentages represent reductions under mild 
drought relative to the control. Error bars indicate standard error of the mean (n=16).  

 

 
Fig. 12: Final shoot area and stress sensitivity of RNAi hpPARP2 line and Wt Col-0 under well-watered and mild 
drought stress treatments. Percentages represent reductions under mild drought relative to the control. Error 
bars indicate standard error of the mean (n=16). 
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Shoot growth has been described as a sensitive, relevant, and easily measured phenotype for 

assessing stress tolerance over a wide range of stress levels (Claeys et al., 2014). In this experiment 

the shoot area (rosette area) was used as an indicator of mild drought stress response. Stress 

sensitivity slopes were made using the final shoot areas measurement of each line under well-

watered (control) and mild drought (stress) treatments to visualise the performance differences of 

the lines. Lines with a steeper slope are more sensitive to stress while lines with a gentler slope are 

more stress tolerant. The final shoot area of plants under mild drought stress was observed to be 

generally lower than under well-watered condition with relatively 20-40% growth reduction. Among 

the Arabidopsis NUDX7 modulated lines, high OE AtNUDX7_D-1-2 in Col-0, moderate OE line 

AtNUDX7_E-3-3 and KO nudx7 Salk-046441_1 line had 8%, 2% and 10% increased shoot area 

respectively in comparison to the wildtype Col-0 under mild drought stress treatment though the 

differences are not statistically significant but indicating a trend towards tolerance to mild drought 

stress (Fig. 10). However the Salk-046441_1 mutant line had a 10% significantly larger shoot area in 

comparison to the wildtype Col-0 under mild drought stress treatment (P = 0.0244, two-way analysis 

of variance with custom hypothesis Wald tests (corrected for multiple testing using Sidak step-

down)) indicating tolerance to mild drought stress. However Salk-046441_1 mutant had generally 

smaller plants and consequently lower shoot areas which may cause a false stress tolerance 

impression. The two maize NUDX OE lines, ZmNUDX2_A-9-1-2 and ZmNUDX8_A-4-2-2 lines in Col-0 

had 13% and 8% larger shoot area respectively relative to their wildtype Col-0 under mild-drought 

stress though the differences are not statistically significant but indicating a trend towards tolerance 

to mild drought stress (Fig. 11). The AtPARP2 RNAi line had 16% reduced shoot area relative to 

wildtype Col-0 under mild drought stress though the difference is not statistically significant but 

indicating a trend towards sensitivity to mild drought stress (Fig. 12). Note that the data presented 

here is from a single experiment.   

6.3 Discussion 

In this study we overexpressed the AtNUDX7, ZmNUDX2 and ZmNUDX8 genes in Arabidopsis 

thaliana Col-0 ecotype using p35S promoter through Gateway cloning system and Agrobacterium 

floral dip transformation method and obtained varying levels of the NUDX gene expressions which 

were selected for functional analysis.  We identified a KO nudx7 mutant line with a single locus 

homozygous T-DNA insertion in Exon 1, SALK-046441_1, which was used as a control in the 

functional assays. In addition we developed new constructs for OE of ZmNUDX2 and ZmNUDX8 using 

the maize ubiquitin promoter, pZmUBIL, (Christensen et al., 1992) and a strong constitutive 

Brachypodium distachyon promoter, pBdEF1α, (Coussens et al., 2012) in KO-nudx7 Arabidopsis 

mutant line (SALK-046441_1). These lines will be suitable for studying the ZmNUDX gene activity in 
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Arabidopsis as they complement the knocked down AtNUDX7 gene activity. We confirmed through 

GUS gene expression that the heterologous monocot promoters, pZmUBIL and pBdEF1α, are active 

in Arabidopsis and propose that they can be used in other dicots as well.  Koyama et al. (2005) 

showed that a promoter of Arabidopsis phosphate transporter gene drives root-specific expression 

of a transgene in rice, indicating that dicots promoters can also function in monocots.  

We observed that moderate OE lines p35S-AtNUDX7_E-7-4 and p35S-AtNUDX7_E-3-3 and high OE 

line p35S-AtNUDX7_D-1-2 in Col-0 showed a significantly higher rosette area than Wt Col-0 upon 

treatment with 25nm paraquat indicating that overexpression of the AtNUDX7 gene confers 

significant tolerance to paraquat-induced oxidative stress. These results support previous studies in 

which modulation of AtNUDX7 or AtNUDX2 genes conferred enhanced tolerance to oxidative stress 

in Arabidopsis. Indeed, Arabidopsis plants having high expression levels of AtNUDX7 showed 

enhanced tolerance to 3µM paraquat-induced oxidative stress as assessed by the survival rates and 

chlorophyll content (Ishikawa et al., 2009). Similarly, overexpression of AtNUDX2 gene in Arabidopsis 

resulted in plants with suppressed root growth inhibition upon treatment with 0.3µM and 3µM 

paraquat in comparison to control plants that were severely inhibited. The OE AtNUDX2 plants also 

showed a higher survival rate and higher chlorophyll content compared to the control lines (Ogawa 

et al., 2009).  To the best of our knowledge, our study is the first reporting of paraquat-induced 

stress tolerance in OE AtNUDX7 lines as assessed by the rosette area parameter. Notably the rosette 

growth of the KO nudx7 Salk-046441_1 was similar to Col-0 Wt line with and without paraquat 

treatment possibly indicating that the KO of the AtNUDX7 gene may not have been sufficient to 

reduce its enzymatic activity because other endogenous AtNUDX genes might have complemented 

its function. 

In spite of its known complexity, modulation of single genes has been shown to play a role in crop 

yield increase for instance overexpression of DWARF4, a gene in the brassinosteroid biosynthetic 

pathway, resulted in increased vegetative growth and seed yield in Arabidopsis (Choe et al., 2001). In 

addition, modulating the expression of the maize PLASTOCHRON1 (ZmPLA1) gene, encoding a 

cytochrome P450, resulted in increased organ growth, seedling vigour, stover biomass and seed 

yield by extending cell division duration (Sun et al., 2017). We thus attempted to determine the yield 

performance of plants with a modulation of the AtNUDX7 gene expression, a gene involved in the 

poly(ADP-ribosyl)ation energy metabolic pathway. Interesting seed yield and yield-associated 

phenotypes were observed.  A high OE line p35S-AtNUDX7_D-1-2 and low OE line p35S-AtNUDX7_A-

2-2 had a significantly higher total seed weight per plant than the wildtype control. The increase in 

total seed weight of line p35S-AtNUDX7_D-1-2 could directly be attributed to the increased seed 
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number. A moderate AtNUDX7 OE line, p35S-AtNUDX7_E-7-4 in Col-0 had remarkable consistence in 

the significant increase in three seed yield parameters analyzed: seed number, seed size and mass 

per seed and a reduction in flowering time, rosette leaf number and inflorescent height in 

comparison to Wt Col-0. Based on these results, we hypothesize that increased total seed weight for 

the p35S-AtNUDX7_E-7-4 line was most likely not due to branching number or siliques number 

increase, though these parameters were not analyzed in this study. Reduced leaf number in the 4 

overexpression genotypes coincided with earlier flowering confirming the correlation of early 

flowering time and reduced leaf number (Alonso-Blanco et al., 1998). The early flowering going 

together with increased yield parameters is a remarkable combination of beneficial traits as 

observed in line p35S-AtNUDX7_D-1-2, p35S-AtNUDX7_E-7-4 that had either increased total seed 

weight, seed number, seed size or mass per seed and flowered early. This is the first report showing 

the involvement of the AtNUDX7 in seed yield and yield-contributing parameters in Arabidopsis. 

We also report that overexpression of Arabidopsis and maize NUDX genes in Arabidopsis Col-0 using 

the p35S promoter resulted in three lines showing a tendency to mild drought stress tolerance: 

p35S-AtNUDX7_D-1-2, p35S-ZmNUDX2_A-9-1-2 and p35S- ZmNUDX8_A-4-2-2 with 8%, 13% and 8% 

higher shoot area respectively relative to Wt Col-0 upon mild drought stress. These findings indicate 

that the ADP-ribose specific NUDX genes may play a role in Arabidopsis plant response to mild 

drought stress. ADP-ribose specific Nudix hydrolases are involved in nucleotide recycling in the PAR 

pathway by hydrolysing free ADP-Ribose molecules into ribose-5-phosphate and AMP, a ready 

precursor for ATP synthesis (Rossi et al., 2002; Ogawa et al., 2005; Ishikawa et al., 2009). Upon 

drought stress, there is an increased production of ROS (Cruz de Carvalho, 2008) which induce the 

PARP protein activity (Vira´g and Szabo´, 2002) and thus the PAR pathway. Activation of the PAR 

pathway will resultantly activate the nucleotide recycling action of ADP-ribose specific Nudix 

hydrolases and re-establishing the energy levels by supplying an ATP source. We thus propose that 

overexpression of AtNUDX7, ZmNUDX2 and ZmNUDX8 genes in Arabidopsis plants may enhance 

mild drought stress tolerance through enhancing the recycling step of ADP-ribose in the PAR energy 

homeostasis pathway. The KO nudx7 Salk 046441_1 had a significantly lower shoot area both under 

mild drought stress and under well-watered condition than Wt Col-0 indicating that the AtNUDX7 

may also play a direct or indirect role in Arabidopsis growth or growth regulation. Smaller size of 

mutant nudx7 plants grown under normal growth condition has previously been reported 

(Jambunathan and Mahalingam, 2006). This study is the first reporting of mild drought stress testing 

in Arabidopsis lines with an alteration of NUDX7 gene expression or expressing maize NUDX genes.  
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Several studies have shown a correlation of drought stress and oxidative stresses due to increased 

ROS accumulation (Moran et al., 1994; Sgherri et al., 1995; Loggini et al., 1999 and Boo et al., 1999). 

In our study, we observed that p35S-AtNUDX7_D-1-2, p35S-AtNUDX7_E-3-3 lines in Col-0 showed 

tolerance to paraquat induced oxidative stress and a tendency to mild drought stress tolerance. 

Additionally p35S-AtNUDX7_D-1-2 and p35S-AtNUDX7_E-7-4 lines in Col-0 had both oxidative stress 

tolerance and improved seed yield phenotypes.  The p35S-AtNUDX7_D-1-2 line in Col-0 remarkably 

showed tolerance to oxidative stress, a tendency to mild drought stress tolerance and increased 

total seed number and seed weight. These lines showing multiple phenotypic traits are interesting 

for repeat experiments in further investigation. 

6.4 Materials and methods 

6.4.1 Plant growth conditions 

Arabidopsis genotypes used in this study were grown either in tissue culture room, growth room or 

green-house conditions. Tissue culture room conditions are 21°C temperature, 16 hours of light/ 8 

hours darkness and 80µmol m-2 s-1 light intensity. Arabidopsis growth room conditions include: 220C 

temperature, 55% relative humidity, 100µmolm-2 s-1 light intensity and 16 hours of light.  Arabidopsis 

green-house conditions: 210C temperature, 55% -60% relative humidity and 16 hours light. In vitro 

plants in tissue culture room were grown in full strength or half strength Murashige and Skoog (MS) 

medium (Murashige and Skoog, 1962) supplemented with 1% (w/v) sucrose while plants in growth 

room and green-house condition were grown on jiffy soil (www.jiffygroup.com/jiffy). 

6.4.2 Transgenic lines generation and selection and expression analysis 

AtNUDX7 (AT4G12720), ZmNUDX2 (GRMZM2G101693) and ZmNUDX8 (GRMZM2G175816) cDNA/ 

gDNA were transformed into either Arabidopsis thaliana Col-0 ecotype or SALK-046441_1 using the 

Gateway cloning system (Invitrogen) and Agrobacterium floral dip transformation system as 

described for each construct in the results section. Selection of transgenic plants and T3 homozygous 

lines was carried out on kanamycin or phosphinothricin selective medium.  Histochemical GUS 

activity analysis on pBdEF1α-GUS and pZmUBIL-GUS T2 lines was carried out as described by 

Jefferson et al (1987) and De Block and Van Lijsebettens (1998). For QPCR expression analysis, RNA 

was isolated from two week-old Arabidopsis seedlings using the RNeasy Plant Mini Kit (Qiagen) and 

cDNA prepared using SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen) or 

SensiFAST cDNA Synthesis Kit (Bioline) following manufacture’s instruction. QPCR experiments were 

performed in a LightCycler480 Real -Time SYBR Green PCR System (Roche). All reactions were 
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performed in three technical replicates and expression levels were normalised to reference genes 

SAND (AT2G28390), PP2A (AT1G13320) and YLS8 (AT5G08290). 

6.4.3 Rosette area determination in paraquat-induced oxidative stressed plants 

Seeds were sterilised using 70% Ethanol and 5% bleach and sown on 0.5 MS medium supplemented 

with 25nM PQ. 8 seeds per genotype and 4 genotypes per plate (3 mutant lines and 1 wildtype) were 

sown and a duplicate of each plate made. A control experiment was made in the identical set up but 

paraquat was not added to the MS medium.  The plates were placed at 4oC in the dark for two days 

for vernalisation and then in the Arabidopsis tissue culture room at  21°C with 16 hours of light/ 8 

hours of dark and 60µmol m-2 s-1 light intensity. Pictures of the plates are taken daily from 7 DAS to 

17 DAS using PRAC (Plant Rosette Area Calculator) in Frank Van Breusegem’s lab, PSB-VIB. Rosette 

area was determined daily using Image J software (https://imagej.nih.gov/ij) and a rosette area 

calculator macro designed by Davy Opdenacker, PSB-VIB. 

6.4.4 Determination of seed yield and yield related parameters  

All the Arabidopsis genotypes used in determination of seed yield and yield related parameters were 

grown in Arabidopsis green-house conditions apart from plants used in determining flowering time 

and rosette leaves number that were grown in Arabidopsis growth room conditions. The seed yield 

parameters: total seed weight, seed number, seed size and mass per seed and other yield-associated 

parameters (flowering time, rosette leaves number and inflorescence height) were analysed as 

described in results section according to Van Daele et al., 2012. 

6.4.5 Mild drought stress on WIWAM 

The experiment was set up on an automated weighing, imaging and watering (WIWAM) high-

throughput phenotyping platform at PSB-VIB according to established protocols (Skirycz et al., 2011; 

Clauw et al., 2015). WIWAM is placed in an Arabidopsis growth room with 21°C Temp, 55% relative 

humidity, 16 hours of day and 8 hours of night and 100 μmol m−2 s−1 light intensity.  Seeds were 

stratified two days before sowing on 80-90 grams soil pots which were placed in randomised 

positions on WIWAM. Soil water content for the well-watered control plants was set at a constant 

value of 2.19 g H2O/ g dry soil during the entire experiment. For the mild drought stress treatment, 

plants were grown for 9 days in well-watered conditions and then the daily target soil water content 

was lowered and maintained at 1.19 g H2O/g dry soil until the end of the experiment (21 DAS). The 

final shoot area and stress sensitivity slopes were determined from images of the rosette of each 

plant taken. 
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6.4.6 Data analysis on mild drought stress experiment  

Statistical data analysis was carried out for the final shoot areas measured in the mild drought stress 

experiment on WIWAM automated platform with an interest of determining the different effect 

upon mild drought stress of each transgenic line compared to the respective control line. A two-way 

analysis of variance was conducted for the shoot area variable. The model included the factors 

genotype and treatment and the interaction term. When the interaction term was significant at the 

5% significant level, Wald tests were performed to estimate the significance of the difference in 

effect upon water deficit of each genotype versus the control genotype. P-values were adjusted for 

multiple testing using Sidak step-down as implemented in SAS. The analysis was conducted with the 

glm procedure from SAS (Version 9.4 of the SAS System for windows 7 64bit Copyright 2002-2012 

SAS Institute Inc. Cary, NC, USA, www.sas.com). Correction for multiple testing of the interaction 

effect was done with the multtest procedure. The statistical analysis was carried out by Véronique 

Storme, statistician, PSB-VIB-UGent.  
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6.4.7 List of primers 

Table 3: Primer sequences used in the study  
Primer Sequence (5'->3') Experiment 

NUDX2F 
GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAGGAGATAGAACCATGT

CAAGTTCCATAATTTCAACAGT 

OE NUDX gene 

cloning + Att 

sites 

NUDX2R GGGGACCACTTTGTACAAGAAAGCTGGGTCTACCCTGAGGCCCTGTCCAG 

NUDX8F 
GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAGGAGATAGAACCATG

GAGAGCGGCTTGCTTGACACCG 

NUDX8R GGGGACCACTTTGTACAAGAAAGCTGGGTTCAGGCGGCGCTGCAGTTCAC 

AtNUDX7F 
GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAGGAGATAGAACCATG

GGTACTAGAGCTCAGCAG  

AtNUDX7R GGGGACCACTTTGTACAAGAAAGCTGGGTTCAGAGAGAAGCAGAGGCTTG 

qpcrAtNUDX7bF CTTGGGATTCGCCATTGTG 

NUDX gene 

expression  

analysis 

qpcrAtNUDX7bR CATGATCCGCATTGCAGTAGAT 

qpcrZmNUDX2bF ATGCAGGCTTTTCGCCAATC 

qpcrZmNUDX2bR CAGATCCCTCCGGTTCATGT 

qpcrZmNUDX2cF GCAGGCTTTTCGCCAATCTC 

qpcrZmNUDX2cR GTCCAGATCCCTCCGGTTCA 

qPCRNUDX8eF GTGGATCTAGCCGAGTTCGT 

qPCRNUDX8eR GGGAGCATATTCGGTTCATC 

qpcrZmNUDX8fF CTGAGGCCTGTGTCGAGTG 

qpcrZmNUDX8fR GATGAAGGGCTGCTTCACGA 

SAND_F AACTCTATGCAGCATTTGATCCACT 

Housekeeping 

genes 

SAND_R TGATTGCATATCTTTATCGCCATC 

PP2A_F TAACGTGGCCAAAATGATGC 

PP2A_R GTTCTCCACAACCGCTTGGT 

YLS8_F TTACTGTTTCGGTTGTTCTCCATTT 

YLS8_R CACTGAATCATGTTCGAAGCAAGT 

SALK_046441_ Right TTCGTTCATCAAGATTGCCTC 

Salk lines 

genotyping 

SALK_046441_ Left TTTTGGTTTTTGGTTTTTCCC 

SALK_088538C_Right CTGCAGCCTCCACAAGATTAG 

SALK_088538C_Left TTAGGTTGTTCGTTTGATCGC 

SALK_046825_Right GAAAAACCCACTCCTCTCCTG 

SALK_046825_Left TCCATTTTGTTCTGACTTCCG 

LBb1.3 ATTTTGCCGATTTCGGAAC 

 

 

 

 



Functional analysis of Maize and Arabidopsis NUDX genes in Arabidopsis for seed yield, oxidative stress and mild drought 

stress responses using overexpression and KO lines 

176 

 

6.5 References 

Adams-Phillips, L., Wan, J., Tan, X., Dunning, F. M., Meyers, B. C., Michelmore, R. W., & Bent, A. F. (2008). 

Discovery of ADP-ribosylation and other plant defense pathway elements through expression profiling of four 

different Arabidopsis-Pseudomonas R-avr interactions. Molecular Plant-Microbe Interactions, 21(5), 646-657. 

Alonso-Blanco, C., El-Assal, S. E.-D., Coupland, G., & Koornneef, M. (1998). Analysis of natural allelic variation 

at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. 

Genetics, 149(2), 749-764. 

Bartsch, M., Gobbato, E., Bednarek, P., Debey, S., Schultze, J. L., Bautor, J., & Parker, J. E. (2006). Salicylic acid–

independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is 

regulated by the monooxygenase FMO1 and the nudix hydrolase NUDT7. The Plant Cell, 18(4), 1038-1051. 

Block, M. D., & Lijsebettens, M. V. (1998). β-Glucuronidase enzyme histochemistry on semithin sections of 

plastic-embedded Arabidopsis explants. In: Martínez-Zapater, J. M., & Salinas, J. (Eds.), Arabidopsis Protocols, 

Methods in Molecular Biology, Vol. 82 (p. 397-407). Totowa NJ: Humana Press. 

Boo, Y. C., & Jung, J. (1999). Water deficit-induced oxidative stress and antioxidative defenses in rice plants. 

Journal of Plant Physiology, 155(2), 255-261. 

Choe, S., Fujioka, S., Noguchi, T., Takatsuto, S., Yoshida, S., & Feldmann, K. A. (2001). Overexpression of 

DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in 

Arabidopsis. The Plant Journal, 26(6), 573-582. 

Christensen, A. H., Sharrock, R. A., & Quail, P. H. (1992). Maize polyubiquitin genes: structure, thermal 

perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by 

electroporation. Plant Molecular Biology, 18(4), 675-689. 

Claeys, H., Van Landeghem, S., Dubois, M., Maleux, K., & Inzé, D. (2014). What is stress? Dose-response effects 

in commonly used in vitro stress assays. Plant Physiology, 165(2), 519-527. 

Clauw, P., Coppens, F., De Beuf, K., Dhondt, S., Van Daele, T., Maleux, K., . . . Inzé, D. (2015). Leaf responses to 

mild drought stress in natural variants of Arabidopsis. Plant Physiology, 167(3), 800-816. 

Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium‐mediated transformation 

of Arabidopsis thaliana. The Plant Journal, 16(6), 735-743. 

Coussens, G., Aesaert, S., Verelst, W., Demeulenaere, M., De Buck, S., Njuguna, E., . . . Van Lijsebettens, M. 

(2012). Brachypodium distachyon promoters as efficient building blocks for transgenic research in maize. 

Journal of Experimental Botany, 63(11), 4263-4273. 

Cruz de Carvalho, M. H. (2008). Drought stress and reactive oxygen species: production, scavenging and 

signaling. Plant Signaling & Behavior, 3(3), 156-165. 

De Block, M., Verduyn, C., Brouwer, D. D., & Cornelissen, M. (2005). Poly (ADP‐ribose) polymerase in plants 

affects energy homeostasis, cell death and stress tolerance. The Plant Journal, 41(1), 95-106. 

Ge, X., Li, G.-J., Wang, S.-B., Zhu, H., Zhu, T., Wang, X., & Xia, Y. (2007). AtNUDT7, a negative regulator of basal 

immunity in Arabidopsis, modulates two distinct defense response pathways and is involved in maintaining 

redox homeostasis. Plant Physiology, 145(1), 204-215. 



Chapter 6 

177 

Ishikawa, K., Ogawa, T., Hirosue, E., Nakayama, Y., Harada, K., Fukusaki, E., . . . Shigeoka, S. (2009). Modulation 

of the poly (ADP-ribosyl)ation reaction via the Arabidopsis ADP-ribose/NADH pyrophosphohydrolase, 

AtNUDX7, is involved in the response to oxidative stress. Plant Physiology, 151(2), 741-754. 

Jambunathan, N., & Mahalingam, R. (2006). Analysis of Arabidopsis Growth Factor Gene 1 (GFG1) encoding a 

nudix hydrolase during oxidative signaling. Planta, 224(1), 1-11. 

Jambunathan, N., Penaganti, A., Tang, Y., & Mahalingam, R. (2010). Modulation of redox homeostasis under 

suboptimal conditions by Arabidopsis nudix hydrolase 7. BMC Plant Biology, 10(1), 173. 

Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: β-glucuronidase as a sensitive and 

versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. 

Karimi, M., Depicker, A., & Hilson, P. (2007). Recombinational cloning with plant Gateway vectors. Plant 

Physiology, 145(4), 1144-1154. 

Karimi, M., Inzé, D., Van Lijsebettens, M., & Hilson, P. (2013). Gateway vectors for transformation of cereals. 

Trends in Plant Science, 18(1), 1-4. 

Koyama, T., Ono, T., Shimizu, M., Jinbo, T., Mizuno, R., Tomita, K., . . . Sakka, K. (2005). Promoter of Arabidopsis 

thaliana phosphate transporter gene drives root-specific expression of transgene in rice. Journal of Bioscience 

and Bioengineering, 99(1), 38-42. 

Loggini, B., Scartazza, A., Brugnoli, E., & Navari-Izzo, F. (1999). Antioxidative defense system, pigment 

composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiology, 

119(3), 1091-1100. 

Moran, J. F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klucas, R. V., & Aparicio-Tejo, P. (1994). Drought 

induces oxidative stress in pea plants. Planta, 194(3), 346-352. 

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue 

cultures. Physiologia Plantarum, 15(3), 473-497. 

Ogawa, T., Ishikawa, K., Harada, K., Fukusaki, E., Yoshimura, K., & Shigeoka, S. (2009). Overexpression of an 

ADP‐ribose pyrophosphatase, AtNUDX2, confers enhanced tolerance to oxidative stress in Arabidopsis plants. 

The Plant Journal, 57(2), 289-301. 

Ogawa, T., Ueda, Y., Yoshimura, K., & Shigeoka, S. (2005). Comprehensive analysis of cytosolic Nudix 

hydrolases in Arabidopsis thaliana. Journal of Biological Chemistry, 280(26), 25277-25283. 

Rossi, L., Denegri, M., Torti, M., Poirier, G. G., & Scovassi, A. I. (2002). Poly (ADP-ribose) degradation by post-

nuclear extracts from human cells. Biochimie, 84(12), 1227-1233. 

Sgherri, C. L. M., & Navari‐Izzo, F. (1995). Sunflower seedlings subjected to increasing water deficit stress: 

oxidative stress and defence mechanisms. Physiologia Plantarum, 93(1), 25-30. 

Skirycz, A., Vandenbroucke, K., Clauw, P., Maleux, K., De Meyer, B., Dhondt, S., . . . Inzé, D. (2011). Survival and 

growth of Arabidopsis plants given limited water are not equal. Nature Biotechnology, 29(3), 212-214. 

Sun, X., Cahill, J., Van Hautegem, T., Feys, K., Whipple, C., Novák, O., . . . Nelissen, H. (2017). Altered expression 

of maize PLASTOCHRON1 enhances biomass and seed yield by extending cell division duration. Nature 

Communications, 8, 14752. 



Functional analysis of Maize and Arabidopsis NUDX genes in Arabidopsis for seed yield, oxidative stress and mild drought 

stress responses using overexpression and KO lines 

178 

 

Van Camp, W. (2005). Yield enhancement genes: seeds for growth. Current Opinion in Biotechnology, 16(2), 

147-153. 

Van Daele, I., Gonzalez, N., Vercauteren, I., de Smet, L., Inzé, D., Roldán‐Ruiz, I., & Vuylsteke, M. (2012). A 

comparative study of seed yield parameters in Arabidopsis thaliana mutants and transgenics. Plant 

Biotechnology Journal, 10(4), 488-500. 

Verbeke, G., Molenberghs, G., 2009. Linear mixed models for longitudinal data. Springer Science & Business 

Media. 

Virág, L., & Szabó, C. (2002). The therapeutic potential of poly (ADP-ribose) polymerase inhibitors. 

Pharmacological Reviews, 54(3), 375-429. 

Westfall, P.H., Tobias, R.D., Wolfinger, R.D., 2011. Multiple comparisons and multiple tests using SAS. SAS 

Institute. 

Zeng, X., Li, Y.-F., & Mahalingam, R. (2014). Arabidopsis nudix hydrolase 7 plays a role in seed germination. 

Planta, 239(5), 1015-1025. 



Chapter 7 

179 

 

CHAPTER 7  

General discussion and future perspectives 

7.1 Performance of NUDX and PARP genes in maize and Arabidopsis 

Poly(ADP-ribosyl)ation pathway (PAR) has been implicated in different physiological processes and 

described as an important regulatory mechanism modulating plant responses to DNA damage, 

abiotic and biotic stresses (Amor et al., 1998; Doucet-Chabeaud et al., 2001; De Block et al., 2005; 

Vanderauwera et al., 2007; Ogawa et al., 2009; Ishikawa et al., 2009; Adams-Phillips et al., 2010; Li et 

al., 2011; Feng et al., 2015; Song et al., 2015; Zhang et al., 2015). A study of the currently published 

morphological and stress phenotypes on different poly(ADP-ribosl)ation pathway genotypes is 

summarised in Table 1. In our study, the role of the Poly(ADP-ribosyl)ation pathway in plant energy 

homeostasis and response to abiotic stresses was explored through genetic engineering approaches. 

The main objective of the study was to generate maize and Arabidopsis lines with an altered energy 

homeostasis to improve tolerance to drought, oxidative and genotoxic stresses through 

manipulation of the levels of two PAR paththway proteins: PARP and NUDX. We used the RNAi 

hairpin silencing and CRISPR/CAS9 gene editing strategies to downregulate/ knock-down PARP 

expression in maize and overexpressed the AtNUDX7 gene and its two maize homologues in maize 

and Arabidopsis. Many transgenic lines showing different levels of PARP and NUDX expression have 

been generated in maize and Arabidopsis. In addition, ZmNUDX Mutator transposon insertion lines 

and AtNUDX7 T-DNA insertion lines were obtained from the Maize genetics cooperation stock center 

and the Nottingham seed stock center respectively, characterised and used in this study. Functional 

analysis using oxidative stress, DNA damage and drought stress assays in addition to yield 

phenotyping experiments have been carried out on a number of the lines generated.  

Overexpression of the AtNUDX7 gene in Arabidopsis using the Cauliflower mosaic virus promoter, 

p35S, conferred tolerance to paraquat-induced oxidative stress, showed a trend of tolerance to mild 

drought stress and resulted in improved seed yield phenotypes in addition to early flowering time 

(Table 2). In maize, overexpression of the AtNUDX7 gene using the strong constitutive Brachypodium 

distachyon promoter pBdEF1α, showed a strong tendency to water deficit stress tolerance but 

contrary to its phenotype in Arabidopsis resulted in lines showing sensitivity to paraquat-induced 

oxidative stress treatment (Table 2). Overexpression of the ZmNUDX2 and ZmNUDX8 genes in maize 

using the pBdEF1α promoter did not result in tolerance to water deficit nor paraquat-induced 

oxidative stress. However expressing these two maize genes, ZmNUDX2 and ZmNUDX8, in 
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Arabidopsis using the p35S promoter showed a trend of tolerance to mild drought stress (Table 2). 

The results raised interest why AtNUDX7 expression in maize would induce drought stress tolerance 

phenotype while the overexpression of its maize homologues ZmNUDX genes did not result in the 

same phenotype in maize but only in Arabidopsis.  One possible reason could be that the AtNUDX7 

gene is induced endogenously upon drought stress perturbation and thus active in response to 

drought (Fig. 1) implying that all molecular components for its enzymatic activity are available. In 

contrast, the ZmNUDX genes are not induced endogenously upon drought stress perturbations as 

shown by experimental gene expression data upon mild and severe drought stress in maize (Chapter 

5, Fig. 10 b-d) and also through Genevestigator metadata analysis (Fig. 1).  

 

AtNUDX7 

 

 

 

 8 A 

 8 A 

8 A 

 

Fig. 1: Gene expression of AtNUDX7, ZmNUDX8 (8) and ACN26985 (A) under drought stress perturbations 
using Genevestigator metadata analysis software. 

We investigated the divergence of the catalytic domain and N-terminal ends that might explain 

differences in the NUDX catalytic activity or substrate affinity as an alternative explanation for the 

difference in activity of the AtNUDX7 versus ZmNUDX transgenic lines. The AtNUDX7 and its 

ZmNUDXs homologues belong to the Nudix hydrolase superfamily and have a highly conserved 23 

residue Nudix motif represented by GX5EX7REVXEEXGU in which U depicts and aliphatic hydrophobic 

residue such as isoleucine, leucine or valine and X is any amino acid. The Nudix motif functions as 

the catalytic site and metal binding site (Mn2+ and Mg2+). Amino acid sequence alignment of the 

AtNUDX7, ZmNUDX2 and ZmNUDX8 shows that the key amino acids of the NUDX motif are 

conserved except for the last amino acid of ZmNUDX8 in which isoleucine is replaced with another 

hydrophobic amino acid, valine. Hence, the NUDX box is highly conserved between AtNUDX7, 
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ZmNUDX2 and ZmNUDX8 and will not account for the difference in water deficit tolerance. 

However, their N-terminal region is variable which may possibly account for differences in substrate 

specificity or affinity (Fig. 2). Thus the ZmNUDX genes with longer N-terminal extension may have 

high affinity for a different substrate more than ADP-ribose and overexpression of the ZmNUDX 

genes in maize may only result in enhancing the activity of pathways different from PAR. This would 

account for the non-response to water deficit perturbation by overexpression of ZmNUDX genes in 

maize but tolerance attained by overexpression of the AtNUDX7 gene in maize and Arabidopsis, 

proposed to be achieved via the PAR pathway.  

 

 

 

 
Fig. 2: Amino acid sequence alignment of ZmNUDX2 (ACG43116), ZmNUDX8 (ACG41054) and AtNUDX7 
(AEE83169) using COBALT softwarein NCBI. Red box indicates the conserved NUDX motif GX5EX7REVXEEXGU 
where U is Ile, Leu or Val and X is any amino acid. 

Overexpression of the AtNUDX7 gene in Arabidopsis using the p35S, resulted in lines showing 

significant increase in seed yield phenotypes such as total seed weight, seed number, seed size and 

mass per seed in addition to early flowering time, reduced rosette leaf number and inflorescent 

height in comparison to wildtype. One line showed a remarkable consistence in the significant 

increase in three seed yield parameters: seed number, seed size and mass per seed and a reduction 

in flowering time, rosette leaf number and inflorescent height in comparison to wildtype. The early 

flowering going together with increased yield parameters is a remarkable combination of beneficial 

traits. Our result, to the best of our knowledge, is the first report showing the involvement of the 

AtNUDX7 in seed yield and yield-contributing parameters in Arabidopsis and indicates a versatile 

function of NUDX beyond its reported role in abiotic and biotic stress responses as a candidate 

target for yield improvement. The improved seed yield phenotype in OE AtNUDX7 lines can be 

attributed to maintenance of high energy levels through enhancing the recycling step of ADP-ribose 
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and re-establishing the energy levels by supplying an ATP source in the PAR energy homeostasis 

pathway. Modulation of the PAR pathway through PARP inhibition has previously been reported in 

controlling plant growth by promoting leaf cell number under non-stress conditions (Schulz et al., 

2014) and in repressing the accumulation of stress protective agents such as anthocyanin, and of 

ascorbate under stress conditions that was correlated with enhanced biomass production and 

growth of Arabidopsis plants (Schulz et al., 2012). Hence, increased yield in the AtNUDX7 lines in our 

study could also be the result of yield stability under suboptimal green-house conditions. 

Two approaches were used to downregulate the PARP1 and PARP2 gene expression in maize, RNAi 

hairpin silencing and CRISPR gene editing technology.  RNAi hairpin silencing of the ZmPARP1 gene 

resulted in maize lines showing a tendency to sensitivity to hydroxyurea-induced DNA damage in 

spite of 5 to 6 fold down regulation levels of the endogenous ZmPARP1 gene expression possibly due 

to the residual activity of ZmPARP2 gene. Indeed Arabidopsis PARP1 and PARP2 have been reported 

to play an important role in DNA damage response by binding to nicked DNA and facilitating the DNA 

repair process (Doucet-Chabeaud et al., 2001; Jia et al., 2013). However, recent studies shows that in 

contrast to animals, PARP2 is the predominant poly(ADP-ribose) polymerase in Arabidopsis DNA 

damage in response to bleomycin, mitomycin C or gamma radiation (Song et al., 2015).  We thus 

changed approach and used CRISPR/ CAS9 gene editing system to develop lines with a mutation in 

the ZmPARP catalytic domain. We successfully developed ZmPARP2_CRISPR lines with more than 

200bp deletion in the catalytic domain, however, so far only T1 lines with segregating Cas9-induced 

deletion phenotypes have been generated. We also developed ZmPARP1_CRISPR lines with single 

nucleotide polymorphism or few base pair deletions. Owing to guide RNAs failure, we did not obtain 

CRISPR maize lines with mutation in both ZmPARP1 and ZmPARP2. Evaluation of the DNA damage 

response in the T1 ZmPARP2_CRISPR maize lines resulted in mixed phenotypes with some lines 

showing a trend of tolerance and others a trend of sensitivity to hydroxyurea-induced DNA damage. 

DNA damage analysis on T2 lines having a stable and uniform ZmPARP2 CRISPR-induced mutation 

are planned in the future experiments. In addition, for the purpose of studying PARP gene response 

to DNA damage, we propose the use of bleomycin which induced more severe double stranded 

breaks (Povirk, 1996) thus can trigger higher PARP enzyme activity resulting in NAD+ depletion and 

activation of programmed cell death. The use of hydroxyurea limits dNTPs availability for the DNA 

polymerase thus arresting the replication fork (Koç et al., 2004) resulting in site specific DNA damage 

and single stranded DNA breaks which may in turn result in activation of the DNA repair process. 

RNAi hairpin silencing of the ZmPARP1 gene resulted in maize lines showing a tendency to sensitivity 

to water deficit stress.  In addition, RNAi hairpin silencing of AtPARP2 gene resulted in Arabidopsis 
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lines showing a tendency to sensitivity to mild drought stress. These results are in contrast to a 

previous report in which RNAi silencing of the AtPARP1 or AtPARP2 genes enhanced drought stress 

tolerance in Arabidopsis thaliana (De Block et al., 2005). However the type of drought stress assays 

(water deficit) applied in our study was quite different from the one in the report and it is thus a 

challenge to compare the outcome. In our study, water deficit was fully conducted in automated 

platforms where the irrigation of plants was based on the daily measurement of the gravimetric soil 

water content and its adjustment to preset values according to the requirements of the well 

watered or water deficit treatment. The complete experiment took a period of 21 days and 

approximately one month for Arabidopsis and maize lines respectively. In De Block et al. (2005), the 

plants were grown for 7-8 days in vitro then transferred to soil and 8-9 days after transfer water was 

withheld for 6 days after which they were watered once and 7-10 days later scored when control 

plants turned yellow. Addtionally the contradictory observation could be caused by instability of 

RNAi due to environmental conditions such as temperatures. The RNAi instability can result in a loss 

of the silencing or complete silencing after some generation. Also noteworthy, the level of 

downregulation of the PARP gene expression is very important to give the desired phenotype: too 

much downregulation can be detrimental while too low down-regulation may result in no altered 

phenotype (Marc De Block, personal communication). Interestingly, the T1 ZmPARP2_CRISPR edited 

maize lines showed a tendency to water deficit stress tolerance and thus a repeat of this experiment 

with T2 lines having a stable and uniform ZmPARP2 CRISPR-induced mutation is anticipated.  

Tolerance to severe drought stress and the ability of plants to continue to grow under mild stress 

conditions are different traits. Under severe drought stress, plants respond by activating survival 

mechanisms such as stomatal closure to limit water loss, reduction of shoot growth, diversion of 

carbon and energy to storage and biosynthesis of protective compounds all of which lead to a 

penalty in plant growth and yield. These drought stress tolerance or avoidance mechanism are 

mostly attributed to increasing abscisic acid (ABA) levels that result in stomatal closure, induction of 

drought stress-responsive gene expression and metabolic changes (Seki et al., 2007). Plants in actual 

field conditions have to adapt to continuously fluctuating environmental conditions but rarely have 

to cope with extremes such as flooding or severe drought except in arid conditions.  Frequently, 

plants experience mild drought stress that depending on developmental stage causes yield losses to 

some degree. Unfortunately, the response to mild drought stress is poorly understood compared 

with severe water deficit. Imposing mild drought stress requires a precise and well-monitored 

experimental setup, including a tight control of the soil water content and defining the precise 

timing of the drought onset (Skirycz et al., 2010; Clauw et al., 2015).  Interestingly, most of the genes 
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identified with a role in stress tolerance in mature tissues under severe stress conditions seem to 

have little effect on growth inhibition in mild drought conditions (Skirycz et al., 2011). Superior 

growth performance and biomass yield gain is better determined under mild drought stress 

condition in which the plant through several adaptations such as reprogramming of energy 

metabolism and osmotic adjustment can balance survival and continued growth depending on the 

stress level (Skirycz et al., 2011; Claeys and Inzé, 2013). We thus speculate that the mild water deficit 

testing used in our study is testing a different trait as compared to the more severe drought stress 

testing reported in De Block et al., (2005) and thus explaining the differences in the results. 

An interesting consideration is the relationship between water deficit and oxidative stress, however 

both are broad topics and analyzed in very different ways, even when the study is on the 

relationship between reactive oxygen species and drought. Most studies come to the conclusion that 

drought induces accumulation of reactive oxygen species but the parameters analyzed, the intensity 

and duration of the treatment, the plant developmental stages or tissue material used is very 

diverse. In some experiment, water deficit is induced using polyethylene glycol (PEG) while others 

limit the water given to plants but the terms “moderate” and “severe stress” used are very 

subjective. Also when drought treatment is imposed on intact plants where different organs 

cooperate as a whole, the response obtained will be quite different if it is applied to cut leaves. 

Oxidative stress is determined in different ways with many studies assessing the accumulation of 

different antioxidants and others inducing oxidative stress using reagents such as paraquat. There is 

a great need to standardize drought and oxidative stress treatments in order to compare the 

responses. The seemingly contradictory results we obtained as compared to published work on 

NUDX in oxidative stress tolerance might be explained by different molecular pathways tested in the 

used assays despite an assumed common basis in ROS activation. 

 

http://www.plantcell.org/content/28/10/2417.full#ref-17
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 Table 1: Currently published morphological and stress phenotypes on different poly(ADP-ribosl)ation pathway genotypes. 

At Genotype Promoter /Mutant Morphology Abiotic Biotic Oxidative Genotoxic Osmotic References 

OE-AtNUDX2 CaMV 35S promoter Wt     √     Ogawa et al., 2009 

RNAi-AtNUDX2 CaMV 35S promoter Wt     Wt     Ogawa et al., 2009 

OE-AtNUDX6 CaMV 35S promoter Wt   √ Wt     Ishikawa et al., 2010 

KO-nudx6   Wt   √       Ishikawa et al., 2010; Wang et al., 2013 

OE-AtNUDX7 CaMV 35S promoter       √     Ishikawa et al., 2009 

KO-nudx7 Salk_046441 (nudt7-1) 
Stunted growth, differs per 

growing environments 
√ √ √     

Bartsch et al., 2006; Jambunathan and 
Mahalingam, 2006; Ge et al., 2007; Adams-
Phillips et al., 2008; Ishikawa et al., 2009; 
Straus et al.,2010; Jambunathan 
et al., 2010; Wang et al., 2013 

KO-nudx6 / nudx7 
SALK_084842 (nudt6-2) 
/ Salk_046441 (nudt7-1) 

Extremely stunted, curly & 
deformed leaves 

√ √       Wang et al., 2013 

hpAtparp1 CaMV 35S promoter   √   √     De Block et al., 2005 

hpAtparp2 CaMV 35S promoter   √   √     
De Block et al., 2005; Vanderauwera et al., 
2007 

hpAtparp2 
(signature) 

CaMV 35S promoter   √         De Block et al., 2005 

KO-parp1 GABI_380E06 (parp1-2)     Wt   √   Song et al., 2015 

KO-parp2 GABI_420G03 (PARP2-1)     √   √   Song et al., 2015 

KO-parp1 / parp2 
GABI_380E06 (parp1) / 
GABI_420G03 (parp2)/ 
SALK_ 140400 (parp2) 

Wt   √   √   
Song et al., 2015; Boltz et al., 2014; Feng et 
al., 2015 

KO-parp3 Salk_108092 Delayed germination           Rissel et al., 2014 

OE-AtPARG1 CaMV 35S promoter Wt Wt   Wt   Wt  Li et al., 2011 

KO-parg1 

SALK_147805 (parg1-1), 
SALK_116088 (parg1-2), 
FLAG315E11  (parg1-3), 
(parg1-4) 

Wt √ √ √ √ √ 
Adams-Phillips et al., 2010; Li et al., 2011;  
Zhang et al., 2015, Feng et al., 2015 

KO-parg2 GABI_072B04     √   √   
Adams-Phillips et al., 2008; Adams-Phillips 
et al.,2010; Zhang et al., 2015 
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 Table 2: Yield and stress phenotypes on different poly(ADP-ribosl)ation pathway genotypes obtained in our 

study. WW indicates Well watered, WIWAM and SHRIMPY are the automated robots in which water deficit 

experiment was performed) 

 

7.2 Next steps for NUDX / PARP Maize and Arabidopsis lines 

Overall, our study shows that overexpression of AtNUDX7 gene expression in Arabidopsis enhanced 

tolerance to paraquat induced-oxidative stress and resulted in a tendency to mild drought stress 

tolerance in addition to showing improved seed yield phenotypes pointing to a possible role of 

AtNUDX7 in crop yield improvement. Also overexpression of ZmNUDX2 and ZmNUDX8 gene in 

Arabidopsis showed a trend of tolerance to mild drought stress. It would be interesting to also test 

the OE ZmNUDX in Arabidopsis lines for their response to paraquat-induced oxidative stress and for 

seed yield and yield related parameters. In addition, our study shows that overexpression of 

AtNUDX7 gene in maize resulted in a line showing significant tolerance to water deficit stress in one 

experiment and a strong tendency towards water deficit stress tolerance in a second experiment 

carried out in an automated platform. We propose a larger scale and longer time span study of this 

AtNUDX7 line for water deficit tolerance and also yield parameters in the Phenovision platform at 

PSB-VIB-UGent. We noted the importance of developing or optimising other maize oxidative stress 

Arabidopsis  ID Promoter /Mutant Morphology / Yield Mild Drought PQ Oxidative DNA damage 

OE-AtNUDX7 CaMV p35S 

Increased total seed weight, 
seed number, seed size and 

mass per seed.                              
Reduced flowering time, 

rosette leaves number and 
inflorescent height 

Trend to 
tolerance  

Tolerant 
 

KO-nudx7 Salk_046441 
Reduced seed number and 

inflorescent height  
Wildtype 

 

OE-ZmNUDX2 CaMV p35S 
Normal in WW  WIWAM 

Trend to 
tolerance   

OE-ZmNUDX8 CaMV p35S Normal in WW  WIWAM 
Trend to 
tolerance 

  
RNAi hpAtparp2 CaMV p35S Normal in WW  WIWAM 

Trend to 
Sensitivity     

      
Maize  ID Promoter /Mutant Morphorlogy Water deficit PQ Oxidative DNA damage 

OE-AtNUDX7 pBdEF1α Normal in WW SHRIMPY Tolerant Sensitive 
 

OE ZmNUDX2 pBdEF1α Normal in WW SHRIMPY Wt Sensitive 
 

OE ZmNUDX8 pBdEF1α Normal in WW SHRIMPY Wt 
  

RNAi hpZmPARP1 pUBIL Normal in WW SHRIMPY 
Trend to 

sensitivity 

 

Trend to 
Sensitivity   

CRISPR_ZmPARP2 Cas9 del Normal in WW SHRIMPY 
Trend to 
tolerance  

Trend to 
Sensitivity or 

Tolerance  
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assays in addition to leaf disk assay for complementary testing and verifying the results with 

methods such as spraying the maize plants with paraquat reagent and quantifying the chlorophyll 

contents and the fresh weight. We propose further oxidative stress and water deficit stress analysis 

in T2 ZmPARP2_CRISPR maize lines having a stable and uniform mutation that also showed a trend 

of tolerance to water deficit treatment in their T1 generation. Similar to the ZmNUDX lines, it will be 

interesting to analyse the CRISPR edited ZmPARP lines for their yield related phenotype to establish 

if the yield phenotype obtained in OE AtNUDX7 Arabidopsis lines and attributed to PAR energy 

homeostasis pathway can be translated to maize. 

Analysis of the Poly(ADP-ribose) glycohydrolase (PARG), an enzyme that hydrolyses the poly(ADP-

ribose) polymer producing free ADP-ribose monomers and polymers, was not in the scope of this 

study. For a more complete study of the PAR pathway, we propose an OE of the PARG gene in maize 

and Arabidopsis and carrying out of similar functional analysis to confirm the role of PAR pathway in 

water deficit and oxidative stress response. We further propose carrying out enzymatic assays on 

the transgenic lines to see the effect of OE or downregulation of NUDX and PARP respectively on 

their substrate. Table 3 shows a summary of the currently published enzymatic assays in Arabidopsis 

NUDX and PARP mutants. 
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 Table 3: Currently published enzymatic assays for analysis of AtNUDX and AtPARP mutant lines.  A tick indicates positive phenotype and Wt represents wildtype phenotype 

NUDX Enzyme Assays KO-nudx7 OE-AtNUDX7 OE-AtNUDX2 RNAi-AtNUDX2 KO-nudx6 OE-AtNUDX6   

ATP determination √ √ √       

Ogawa et al., 2009;  
Ishikawa et al., 2010;  
Ishikawa et al., 2009 

NAD+/ NADH determination √ √ Wt Wt √ √ 

NADH pyrohposphatase √ √ Wt Wt √ √ 

ADP-ribose determination √ √ √ √ Wt Wt 

ADP-ribose pyrohposphatase √ √ √ √ Wt Wt 

        

PARP Enzyme Assays 
hpAtparp1 hpAtparp2 

hpAtparp2 
(signature) 

KO-parp1 KO-parp2 
KO-parp1 / 
parp2 

  

Poly(ADP-ribose activity/ light √ √ √       
De Block et al., 2005 

NAD+  - ATP content / light     √       

Bleomycin       √ √ √ Song et al., 2015 

Mitomycin C       √ √ √ Song et al., 2015 

Methly methane Sulphonate           √  Boltz et al., 2014 
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Several challenges were faced on using the Mu insertion lines from the Uniform Mu collection as 

control lines in the functional analysis of OE ZmNUDX lines in maize. First since the Uniform Mu 

collection is developed in W22 maize inbred background, it was difficult to compare its functional 

analysis results with transgenic lines developed in B104 background. In addition, Mu transposon 

insertions disrupts only one gene at a time, ZmNUDX8 in our study, we did not find a Mu insertion in 

the closely related ZmNUDX2 gene that could be used to generate double mutant. Thus ZmNUDX2 

remained active in the plant and would possibly compensate for the ZmNUDX8 knocked down 

activity. In addition, we had to screen a large number of samples and cross heterozygous lines to 

obtain homozygous Mu insertion, a process that is laborious and time consuming especially in maize. 

We propose developing KO ZmNUDX control lines using the CRISPR gene editing technology in the 

future targeting both ZmNUDX2 and ZmNUDX8 genes or targeting the conserved Nudix motif  in the 

B104 genotype in order to complete the functional analysis of these genes. Alternatively, 

overexpression trans-dominant negative mutants with mutations in the conserved Nudix motif 

would result in a stable downregulation of ZmNUDX enzymatic activity and suitable control lines for 

ZmNUDX functional analysis. 
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