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Abstract  

Achieving low cost, safe, reproducible and high performance superconducting thin films of 

YBa2Cu3O7-δ is essential to bring this material to the energy market. Here, we report on the 

chemical solution deposition of YBa2Cu3O7-δ nanocomposites from environmentally benign 

precursors with a low-fluorine content. Preformed ZrO2 nanocrystals (3.5 nm) were stabilized 

in a methanolic precursor solution via two strategies: charge stabilization and steric 

stabilization. Counter-intuitively, charge stabilization did not result in high quality 

superconducting layers, while the steric stabilization resulted in highly reproducible 

nanocomposite thin films with a self-field Jc of 4-5 MA cm-² (77 K) and a much smaller decay 

of Jc with magnetic field compared to YBa2Cu3O7-δ without nanocrystals. In addition, these 

nanocomposite films show a strong pinning force enhancement and a reduced Jc anisotropy 

compared to undoped YBa2Cu3O7-δ films. Given the relationship between the nanocrystal 

surface chemistry and final nanocomposite performance, we expect these results to be also 

relevant for other nanocomposite research. 
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Introduction 

Coated conductors based on high-temperature superconducting YBa2Cu3O7-δ (YBCO) films 

have the potential to change the paradigm in large-scale energy applications due to their 

moderate cooling requirements, unique efficiency and low weight/size.1 Electric power 

applications such as motors and generators, require engineering critical current densities of 30 

to 40 kA cm-² at 55 to 65 K in operating fields of 3 to 5 T.2 Unfortunately, YBCO films 

typically exhibit a strong reduction of the critical current density (Jc) with increasing magnetic 

field strength caused by vortex motion.3 The incorporation of nano-sized defects has proven 

to be an effective approach to achieve the immobilization of vortices, i.e. flux pinning. 

Besides rare-earth substitution4, irradiation5, template modification6 and optimizing natural 

growth defects7, the introduction of nanoparticles or even self-aligned nanocolumns was 

achieved via pulsed laser deposition and metal-organic chemical vapour deposition. These so-

called artificial pinning centres can be introduced in different dimensions and shapes, 

preventing the drastic decrease of Jc at moderate-to-high magnetic fields as well as its 

anisotropy with respect to the magnetic field direction.8 Nanocolumns for example effectively 

pin the vortices especially at the magnetic field parallel to the YBCO c-axis.9-13 

In recent years, significant advances in chemical solution deposition (CSD) of both buffer 

layer architecture and superconducting layer have shown the potential of CSD-based 

superconductors for a wide range of technological applications.14-16 Typically, a precursor 

solution, containing yttrium, barium and copper trifluoroacetates, is successively deposited, 

pyrolyzed and crystallized into YBa2Cu3O7-δ thin films (Figure 1). This solution approach 

offers a less expensive route to the coated conductors design, being more scalable and faster 

compared to vacuum deposition methods. CSD has explored the fabrication of nanocomposite 

thin films with the formation of effective artificial pinning centres by the addition of excess 

metal salts to the YBCO precursor solution, resulting in the spontaneous segregation of non-
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superconducting secondary phases such as Y2O3, BaSnO3, BaHfO3, BaZrO3 and Ba2YTaO6.
17-

22 However, this approach offers limited control on the formation and size distribution of the 

nanostructures and faces issues with reproducibility. To reproducibly gain control over the 

final microstructural properties of the nanocomposite thin films, we opted to synthesize 

colloidally stable nanocrystals in advance and add them to the YBCO precursor solution 

(Figure 1, stage I). Up to now, only a few attempts have been made at nanocomposites using 

preformed nanocrystals (Au, CeO2 and ZrO2)
23-25 and the success has been limited because 

the nanocrystals are either pushed to the YBCO surface or accumulated at the substrate 

interface. The latter hampers the epitaxial growth of YBCO, leading to poor superconducting 

properties.24 

 

Figure 1. Schematic illustration (not scaled) of the procedure for fabricating YBCO-nanocrystals nanocomposite. 

The process begins with (Stage I) the stabilization of nanocrystals with a steric dispersant or short carboxylate in 

the YBCO precursor solution. (Stage II) Deposition of YBCO precursor solution on a single crystalline or 

technical substrate and its thermal decomposition. (Stage III) The pyrolyzed layer is thermally treated to 

crystallize YBCO around the nanocrystals. 

In addition, YBCO CSD research should evolve towards the use of precursors with lower 

fluorine content – based on propionates instead of trifluoroacetates – to reduce the release of 

toxic fluorinated compounds during the thermal process.26, 27 As such, low-fluorine processes 

are more environmentally benign and less corrosive, thus better suited for industrial 

production. However, the corresponding formation of nanocomposites from preformed 

nanocrystals remains elusive since the developed nanocrystal surface chemistry for the 
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stabilization in trifluoroacetate-based precursor solutions (pH = 2) is incompatible with the 

higher pH of the low-fluorine (LF) solution (pH = 6).24 , 25, 28 Therefore, ligand exchange and 

the appropriate stabilization procedure are important aspects in nanocomposite research. Due 

to the delicate growth process of textured YBCO layers and poisoning of the superconductor 

by many chemical elements like metals, halides (except F), sulphur and phosphorus, the 

restrictions on the final ligand for the preformed nanocrystals are severe.28  

In this work, we successfully deposit a high quality nanocomposite thin film from low-

fluorine precursors and uncover important relations between nanocrystal stabilization and 

final performance.  

Monodisperse 3.5 nm ZrO2 nanocrystals are synthesized in tri-n-octylphosphine oxide and 

appear to be capped with hydrophobic ligands after synthesis.29 These nanocrystals are 

dispersed in LF-YBCO precursor solutions either with a large steric ligand or a short 

carboxylate. The nano-suspension precursors – up to 30 mol-% of nanocrystals – are highly 

stable and have a long shelf-life (>6 month). The 5 mol-% ZrO2 nano-suspension is spin-

coated on LaAlO3 single crystal substrates, pyrolyzed and crystallized. The final 

superconducting layers reach Jc values up to 5.2 MA cm-2 (at 77 K, self-field) with a strong 

pinning force enhancement due to the optimization of the chosen ligands. The 5 mol-% ZrO2 

nanocomposite is chosen as a model system to study the effect of ligands and preformed 

nanocrystals on the microstructure and physical properties of the nanocomposite thin films 

since a higher loading of nanocrystals leads to poor superconducting properties. This 

comprehensive study can initiate the improvement of many functional and structural 

properties of nanocomposite thin films in several material classes, including solar cells30, 

ferroelectrics31, multiferroics32, biosensors33 and metamaterials34, 35. Each of these materials 

have a huge potential to be refined through microstructure engineering36, 37.  
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Results and discussion 

ZrO2 nanocrystals. Spherical ZrO2 nanocrystals are obtained via the heating-up synthesis 

using ZrCl4, Zr(iPrO)4.iPrOH and tri-n-octylphosphine oxide, as described by Joo et al.29 The 

nanocrystals have a cubic crystal structure, confirmed by X-ray diffraction (XRD, Figure 2A). 

A crystallinity of 85 % was obtained via Rietveld quantitative analysis (Supporting 

information (SI) for more details). The ZrO2 nanocrystals are colloidally stable in nonpolar 

solvents (e.g. toluene), featuring a solvodynamic diameter of 5.9 nm in Dynamic Light 

Scattering measurements (DLS, Figure 2B). This is consistent with the nanocrystal core 

diameter of 3.5±0.4 nm (TEM, Figure 2C) and an organic ligand shell of 1.2 nm. The high 

crystallinity of the ZrO2 nanocrystals is further corroborated by high resolution (HR) TEM of 

a ZrO2 nanocrystal (inset of Figure 2C) where (111) lattice fringes are clearly visible. 

 

Figure 2. ZrO2 nanocrystals synthesized in tri-n-octylphosphine oxide: (A) XRD spectrum showing only 

reflections of the cubic phase. (B) DLS volume percent analysis of ZrO2 nanocrystals before (black line), after 

ligand exchange with citric acid (green dashed line) and after ligand exchange with the steric dispersant (blue 

dotted line). (C) TEM image of the ZrO2 nanocrystals after heating-up synthesis. The inset shows (111) lattice 

fringes. 
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Since the nanocrystals are capped with hydrophobic ligands, a ligand exchange is 

indispensable for stabilization in the methanol based LF-YBCO precursor solution (Figure 1, 

stage I).16, 28 We found that short carboxylic acids (citric acid or tartaric acid) as well as a 

steric dispersant (a polar copolymer containing a phosphate group, see Figure S2 for the 

structure) are able to stabilize the ZrO2 nanocrystals in methanol and in the LF-YBCO 

precursor solution. DLS analysis (Figure 2B and Table 1) confirms the successful ligand 

exchange and phase transfer to methanol with a solvodynamic diameter of 6.4 nm for the 

steric dispersant, 5.9 nm for tartaric acid (DLS, Figure S3 in SI) and 5.8 nm for citric acid. It 

is noteworthy that the colloidal integrity of the copolymer capped nanocrystals is maintained 

in the highly ionic LF-YBCO precursor solution even at high loadings (up to 30 mol-%), 

since the solution remains stable for more than six months and no precipitates are observed 

(Figure S4 in SI). In contrast, citric acid capped nanocrystals (5 mol-%) remain stable for only 

one week in the LF-YBCO precursor solution. 1H Nuclear Magnetic Resonance (NMR) 

measurements in methanol-d4 reveal that the copolymer effectively interacts with the 

nanocrystal surface as evidenced by negative nOe (nuclear Overhauser effect) cross peaks in 

the NOESY spectrum (Figure S5A).38 In DOSY (Diffusion Ordered Spectroscopy) we 

observe two sets of resonances for the copolymer (Figure S5B). The slowly diffusing species 

features a diffusion coefficient of 107 µm² s-1, corresponding to a solvodynamic diameter of 

7.5 nm. This is in agreement with the solvodynamic diameter from DLS and we conclude that 

the copolymer is tightly bound to the nanocrystal. The other set of resonances with a higher 

diffusion coefficient corresponds to free copolymer. The principle of coordination is the same 

as for the citric acid or tartaric acid stabilization; the acidic group coordinates to the surface. 

In comparison to the stabilization with short carboxylates, the steric bulk of the copolymer 

screens the interaction with other particles more effectively. This is also reflected in the 

polydispersity index (obtained via DLS analysis, Table 1) which is significantly smaller in the 
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copolymer stabilized dispersion, indicating a better stabilization. In addition, when the 

dispersions are drop casted onto TEM grids, the short carboxylate stabilization shows 

aggregates and individual particles whereas the copolymer stabilization features only 

individual particles (Figure S6 in SI). 

Table 1. Overview of the LF-YBCO nanocomposite precursors with different ligands, their solvodynamic 

diameter and polydispersity index in methanol and their decomposition temperature of pure ligands, indicating 

the different critical current densities (self-field, 77 K).  

Ligand ds 

nm 

Polydispersity 

index 

Tdecomp 

°C 

Jc,sf (77 K) 

MA cm-² 

Copolymer 6.4 0.32 340 5.1 

Citric acid 5.8 0.86 250 2.3 

Tartaric acid 5.9 0.91 265 1.6 

 

Nanocomposite formation and the influence of ligands. After spin-coating of undoped and 

ZrO2-doped YBCO precursors on LaAlO3 substrates, the layers were pyrolyzed in a wet O2 

atmosphere (Figure 1, stage II). Optically homogeneous layers were obtained without the 

formation of defects such as buckling or cracks (SI, Figure S7). In earlier attempts at 

nanocomposites, the nanocrystals were always stabilized with short ligands such as amino 

acid (e.g. glutamine), triethyleneglycol or a fatty acid (e.g. decanoic acid).24, 25 These types of 

ligands are of same length scale as the short carboxylic acids (citric and tartaric acid) in this 

work. From thermogravimetric analysis (TGA, Figure S8 in SI and Table 1), we conclude that 

the short carboxylates decompose at lower temperatures (250 °C for citric acid and 265 °C for 

tartaric acid) compared to the copolymer which decomposed around 340 °C. The fact that the 

copolymer is a more thermally stable ligand might prevent early coagulation of the 

nanocrystals in the pyrolyzing matrix and thus leading to a more homogeneous 

nanocomposite.  
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Apart from the stabilization of the nanocrystals, it is important that the ligands do not disturb 

the decomposition of LF-YBCO precursor itself. The temperature dependence of the 

decomposition was investigated by TGA analysis (Figure 3A and Figure S9 in SI). The 

weight loss starts earlier for 5 mol-% nanocrystal addition (at 150 °C) compared to undoped 

YBCO precursor (at 210 °C). In addition, the nanocomposite precursor with copolymer as 

ligand shows a slightly slower weight loss between 310 and 340 °C, consistent with the 

slower decomposition of the pure ligand (vide supra). Nevertheless, both undoped and 

nanocomposite precursors are fully decomposed at 400 °C, indicating the successful pyrolysis 

of YBCO precursors in the presence of nanocrystals and ligands (both short carboxylates and 

steric dispersant). The microstructure of the pyrolyzed layers consists of CuO nanoparticles 

embedded in a matrix of Ba1-xYxF2+x.
39  

 

Figure 3. (A) TGA curves of the LF-YBCO nanocomposite precursor with steric dispersant and with short 

carboxylate in comparison with an undoped LF-YBCO precursor (black line) dried in air atmosphere. More 
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details of red rectangle marked are shown in SI. (B) XRD scans of different crystallized YBCO films quenched 

at 790 °C, indicating the YBCO growth rate is different. 

After crystallization (Figure 1, stage III), epitaxial YBCO was obtained for all pyrolyzed 

layers. However, the critical current density of the citric acid and tartaric acid based 

nanocomposites are only in the range of 1.5-2.5 MA cm-² compared to 4.8 MA cm-² for 

undoped YBCO, while the copolymer based nanocomposite showed a critical current density 

of 5.1 MA cm-² (Table 1). Clearly, the nature of the ligands is crucial to the final 

superconducting performance of the nanocomposite. To study this effect in more detail, we 

analysed samples that were thermally quenched as soon as they reached the growth 

temperature of 790 °C. The XRD spectrum (Figure 3B) features crystalline BaF2 that is in the 

process of reacting towards epitaxial YBCO. Interestingly, the (005) reflection of YBCO is 

much lower for the citric acid based nanocomposite, indicating a slower growth rate. We infer 

that the slow growth rate is symptomatic for poor epitaxial growth, resulting in the lower 

critical current density. Indeed, the fast decomposition of citric acid can interfere with the 

drying and/or sintering process of the gel as described by Zalamova et al.40 In this regard, it is 

also worth noting that amino acid capped ZrO2 nanocrystals25 settle on the LaAlO3 interface 

during pyrolysis of the YBCO trifluoroacetate precursor, resulting in a disturbed epitaxial 

growth of YBCO. To investigate whether the same mechanism occurs here, X-ray 

photoelectron spectroscopy measurements were performed on the pyrolyzed films. 

Interestingly, the ZrO2 nanocrystals are spread throughout the amorphous matrix for both the 

copolymer and citric acid based LF-YBCO nanocomposites (SI, Figure S10). Clearly, the 

behaviour of nanocrystals during pyrolysis depends on their surface chemistry and the YBCO 

precursor solution. Given the high current density of the copolymer based nanocomposites, 

we examined the structural quality and superconducting performance of these materials in 

detail and compared with undoped films.  
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Optimized copolymer based nanocomposite, a structural investigation. The pyrolyzed 

layers of undoped YBCO and copolymer based nanocomposites are crystallized at 790 °C 

after a 1 hour dwell step at 640 °C. This two-step process is used to limit the particle size and 

therefore to control the microstructure.22 The surfaces of both undoped YBCO and 

nanocomposite films are dense and smooth without the presence of any a/b-oriented grains 

(Figure 4). Cross-sectional SEM analysis shows that the thickness of the YBCO film is 350-

375 nm (inset Figure 4) with minor secondary phases.  

 

Figure 4. Topographical top-view SEM image of (A) undoped and (B) 5 mol-% ZrO2 nanocrystals YBCO thin 

films with cross-sectional side-view as insets. 

The YBCO thin films with and without 5 mol-% ZrO2 nanocrystals exhibit an (00ℓ) texture, 

that unequivocally proves that the YBCO phase grows epitaxially on the LaAlO3 substrate for 

both precursors (Figure 5). Small amounts of secondary phases such as BaxCuyOz – mostly 

poorly ordered BaCu3O4 (2θ = 27.7° and 42°)41 – and Y2O3 ((220) at 29.9° and (004) at 34.2°) 

are detected. The BaxCuyOz content is reduced for 5 mol-% ZrO2 nanocrystals, most likely 

due to reaction of Ba2+ with ZrO2 nanocrystals during the crystallization, which results in a 

higher fraction of biaxially and randomly oriented Y2O3 particles. The latter has also been 

shown to contribute to vortex pinning.42, 43 Nanocomposite films show a reflection at 43.0° for 
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BaZrO3 (200), while ZrO2 reflections remain absent. This confirms the transformation of the 

ZrO2 nanocrystals into BaZrO3 nanocrystals during the heat treatment. The crystallite size of 

BaZrO3 (200) is 12 nm, calculated via the Scherrer equation. No reflection of YBCO (103) 

(2θ = 32.8°) can be observed, which would have represented a misoriented fraction. 

 

 

Figure 5. XRD analysis of undoped YBCO and the 5 mol-% ZrO2- copolymer based nanocomposite after 

crystallization. 

 The YBCO (103) pole figures of the samples with and without nanocrystals (Figure S11 in 

SI) show a fourfold symmetry, demonstrating that the films are biaxially oriented (cube-on-

cube relationship). The FWHM values of the YBCO (103) -scans (Figure S12 in SI) of 

undoped YBCO and nanocomposite are about 0.8°, indicating a sharp in-plane alignment. The 

out-of-plane crystallographic texture of YBCO is determined by measuring the FWHM values 

of the YBCO (006) XRD rocking curves (ω-scans) (Figure S13 in SI). Undoped samples give 

0.43° compared to 0.56° for a nanocomposite film. The widening of the rocking curve can 

indicate a small increase of microstrain in the nanocomposite.44 We conclude that the 

structural integrity of the nanocomposite films is comparable to the undoped YBCO layers.  

The fully biaxial (00ℓ) texture of the YBCO layer with cube-on-cube orientation between 

YBCO and LaAlO3 is further corroborated by the HR-TEM image of the LaAlO3/YBCO 

interface (Figure 6A) with the electron diffraction pattern as inset. There are no defect 
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structures in the YBCO matrix around randomly oriented BaxCuyOz particles visible in the 

HR-TEM image (Figure 6B) and the FFT pattern (Figure S14A in SI). Figure 6C shows a 

cross-sectional STEM image of undoped YBCO with BaxCuyOz and Y2O3 particles embedded 

in the YBCO layer, which is in agreement with the XRD analysis (Figure 5). In the 

nanocomposite, BaZrO3 particles are mainly homogenously dispersed throughout the film, 

although some are present at the interface (black dots in Figure 6D). An isolated, randomly 

oriented BaZrO3 particle is shown in Figure 6E (FFT pattern in Figure S14B). The size 

distribution of BaZrO3 particles (determined on two different TEM cross sections of 

nanocomposite, Figure S15 in SI) shows a mean diameter of 13.0±0.5 nm, which indicates 

that the initial (3.5±0.4 nm) ZrO2 nanocrystals have coarsened during the thermal process. 

The growth can be attributed to both their reactivity with Ba2+ and a slight degree of 

agglomeration in the film (Figure 6F). The latter is driven by (i) aggregation in solution (see 

polydispersity index, Table 1), (ii) aggregation upon deposition and drying (Figure S6) and 

(iii) aggregation during the thermal process. Given the large polydispersity index for short 

carboxylates and the observed aggregates in TEM, this is another reason for the worse 

performance of the short carboxylate based nanocomposites. Regarding the final BaZrO3 

nanoparticle size, our results obtained with copolymer stabilized nanocrystals compare 

favorably with literature reports using zirconium salts in YBCO solution as nanocomposite 

precursors. In the latter case, the final BaZrO3 particles were in the order of 30 nm in 

diameter,45 which is a 12 fold volume difference compared to the 13 nm particles described 

here. 
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Figure 6. Undoped YBCO film: (A) HR-TEM images of the YBCO/LaAlO3 interface and its diffraction pattern 

(inset), (B) BaxCuyOz particles in the YBCO matrix and (C) High angle annular dark field (HAADF)-STEM 

cross sectional image. Nanocomposite film: (D) Cross-section bright field-TEM image taken with a diffraction 

vector 𝒈⃗⃗  = (003). (E) HR-TEM image of randomly oriented BaZrO3 particles embedded in the YBCO matrix. (F-

G) HAADF-STEM Z-contrast image of YBCO-5 mol-% ZrO2 nanocomposite. Black dots correspond to BaZrO3 

particles. 

The BaZrO3 particles are mostly randomly oriented, while YBCO remains epitaxial, thus 

generating incoherent interfaces which can act as nucleation centers for Y124-type 

intergrowths, and short Y124-type stacking faults are thought to be contributing for pinning.46 

We observed some local Y124 regions (Figure 6G) in the YBCO matrix which are possibly 

induced by the high amount of Y2O3 and non-stoichiometric amount of Ba2+
. The strain ε of 

the YBCO matrix calculated via a Williamson-Hall plot slightly increases for the 

nanocomposite (0.135%) compared to the undoped YBCO films (0.125%), indicating some 

nanostrained regions in nanocomposite matrix. Indeed, some strain is visible (black zone) in 

the YBCO/LaAlO3 interface region. (Bright field TEM image, Figure 6D).  
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Optimized copolymer based nanocomposite, superconducting properties. The excellent 

structural properties are in accordance with high critical temperatures (Tc) of 90.5 K with a 

transition width ΔTc of 1.2 K for undoped YBCO and Tc of 91.0 K with ΔTc = 0.9 K for the 

nanocomposite. It is clear that the nanocrystal addition does not reduce Tc which is often 

observed in nanocomposite films probably due to the strain effects at the particles’ interface 

or due to the structural defects in YBCO matrix.47 The inductive critical current densities Jc in 

self-field at 77 K (voltage criterion of 50 µV) are 4.8±0.5 MA cm-² for undoped YBCO 

(average of 6 samples) and 5.1±0.4 MA cm-² for the nanocomposite (9 samples). This 

enhancement of Jc in self-field for the nanocomposite is probably explained by the contracted 

Cu-O bonds, resulting in the increase of the pair breaking energy.48, 49 To determine the extent 

of vortex pinning, the magnetic field dependences of Jc were measured at 77 K with an 

electric field criterion of 215 µV cm-1 and fitted as Jc (T,B) =A(T)B-α in the appropriate region 

(Table 2). The averaged Jc value in self-field (0 T, 77 K) for undoped YBCO is 

3.3±0.3 MA cm-² and decreases to 16.8±5.1 kA cm-² at 1 T. The incorporation of ZrO2 

nanocrystals resulted in an increase of Jc to about 4.0±0.4 MA cm-² in self-field which is a 

1.2 times improvement. However, the true potential of the nanocomposite is revealed at 1 T, 

having a critical current of 231.1±15.6 kA cm-² which is a 14 times improvement. The 

excellent performance of the nanocomposite is underscored by the averaged power-law 

exponent α at 77 K, which is about 0.74±0.03 for undoped YBCO and about 0.44±0.06 for 

YBCO-5 mol-% ZrO2 nanocrystals. The smaller power law exponent for the nanocomposite 

indicates a less steep decay of the critical current with an increasing magnetic field and thus a 

better performance at high fields. From the obtained results and their low standard deviations, 

we conclude our approach to be highly reproducible. Often in the literature, a single champion 

value is reported without information on the reproducibility and we would like to present our 

averaging of samples as a best practice.  
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Table 2. The averaged critical current density in self-field and 1 T as determined from magnetic measurements, 

the power-law exponent α at 77 K, the critical current density (self-field) as determined from transport 

measurements at 77 K, the irreversibility field and maximum pinning force for undoped YBCO and YBCO-

5 mol-% ZrO2 nanocrystals. 

ZrO2 Jc,mag (0 T), 

MA cm-² 

Jc,mag (1 T), 

kA cm-² 

α Jc,trans (0 T), 

MA cm-² 

Hirr , 

T 

FP
max, 

GN m-³ 

0 mol-%  3.3±0.3 16.8±5.1 0.74±0.03 4.65 7.5±0.1 1.6 

5 mol-%  4.0±0.4 231.1±15.6 0.44±0.06 5.20 8.4±0.1 5.5 

 

Transport current measurements of undoped YBCO and YBCO-5 mol-% ZrO2 show a similar 

trend as the magnetic measurements (Table 2 and Figure 7A). The Jc(B||c) curves for three 

different temperatures show clearly a higher performance (higher current) for the 

nanocomposite compared to undoped YBCO for all temperatures and all magnetic field 

values (Figure 7A).  

 

Figure 7. Jc(B) for undoped and 5 mol-% ZrO2 nanocrystals doped YBCO films at 77 K, 65 K and 30 K (A) and 

according pinning force curves at 30 K (B), 65 K (C) and 77 K (D). 
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The irreversibility field Hirr at 77 K increased from 7.5 T to 8.4 T by the introduction of 

5 mol-% nanocrystal, and the maximum pinning force density FP,max more than tripled from 

1.6 to 5.5 GN m-³ at 77 K (Table 2 and Figure 7D). This is a record pinning force value for 

LF-YBCO films.50 At lower temperatures, the increase of FP is similar but somewhat lower 

(Figure 7B and C). These values are slightly lower than the champion value (10-22 GN m-³, 

77 K) reported from the spontaneous segregation of BaZrO3 particles in CSD-YBCO films21 

but improved compared to earlier reports on BaZrO3 particles in LF-YBCO (3.8 GN m-³)50,  

and our results have the additional advantage of being highly reproducible. The self-field Jc is 

still high for doped YBCO, so we believe that the FP,max can be increased by the addition of 

more ZrO2 nanocrystals in the YBCO matrix if they remain small in the order of 

superconducting coherence length (2-4 nm for YBCO at 77 K) and agglomeration-free (to 

reach a higher number density of defects in YBCO matrix) without affecting the YBCO 

microstructure.9 

The anisotropy of the critical current density Jc(B,) was measured for a similar batch of 

samples at 77 K / 1 T and 30 K / 3 T (Figure 8), two typical regimes for high temperature 

superconductor applications, e.g. superconducting transmission cables (high temperature/low 

field) or  motors/generators (medium temperature/medium field).39 In both regimes, the 

maximum Jc at magnetic field parallel to the YBCO ab-plane ( = 90°) is approximately the 

same (2.1 MA cm-² at 77 K / 1 T, 17 MA cm-² at 30 K / 3 T, Table 3), but the overall 

performance is increased by nanocrystal addition in a wide angular range aside B||ab, and the 

anisotropy, i.e. the ratio of highest Jc to lowest Jc in the full Jc(B,), is lowered by the 

nanocrystal addition. 
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Figure 8. Anisotropy Jc() for undoped (open symbols) and 5 mol-% nanocrystal doped (closed symbols) 

YBCO films at 77 K / 1 T (black) and 30 K / 3 T (blue) 

Table 3. Jc
max, Jc

min and Anisotropy A = Jc
max / Jc

min of undoped and 5 mol-% nanocrystal doped YBCO at 

different temperatures and fields.   

ZrO2 

nanocrystals 

undoped YBCO 5 mol-% nanocrystal 

Jc
max Jc

min A Jc
max Jc

min A 

 MA cm-2 - MA cm-² - 

77 K / 1T 2.1 0.1  25.6 2.1 0.2 10.1 

30 K / 3 T 18.0 1.4 13.4 17.1  1.9 9.0 

Conclusion 

Highly crystalline ZrO2 nanocrystals were stabilized by a steric polar ligand or short 

carboxylates in a low-fluorine YBCO precursor solutions. From the resulting suspension, by a 

single coating step, we synthesized superconducting nanocomposites in a reproducible, 

environmentally benign way. Interestingly, nanocrystals stabilized by short carboxylate 

ligands resulted in poorly superconducting nanocomposites while the steric ligands lead to 

excellent superconductors. This is a counter-intuitive result as one would expect that the more 

carbon is introduced in the layer, the worse the superconductor would be. The present work 

has shown how to control and improve the performance of YBCO nanocomposites by 

understanding the stabilization and the growth of pinning-active nanocrystals in the YBCO 
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matrix. This approach results in a high maximum pinning force density of 5.5 GN m-3, which 

more than tripled compared to undoped YBCO thin films. The Jc in moderate-to-high 

magnetic field is increased and its anisotropy is lowered by the addition of nanocrystals. 

Given the counter-intuitive relation between the nanocrystal surface chemistry and the final 

nanocomposites performance, we expect these results to be relevant for other areas of 

nanocomposite research as well.  

Material and methods 

Nanocrystal synthesis: The ZrO2 nanocrystals are synthesized via a heating-up solvothermal 

method with 5 mmol ZrCl4, 4 mmol Zr(OiPr) and 20 g trioctylphosphine oxide.29 The 

temperature of this mixture is carefully raised until trioctylphosphine oxide is melted under Ar 

atmosphere. The temperature of the homogenous solution is increased to 340 °C under 

vigorous stirring and kept at this temperature for 2 hours. After the heating-up synthesis, the 

reaction mixture is cooled to 80 °C (TOPO becomes solid below 60 °C). Toluene (4:1 by 

volume) and acetone (1:5 by volume) is added to precipitate the nanocrystals. The 

precipitation is redispersed in toluene, yielding a clear suspension.  In a ligand exchange step, 

the 1 mL ZrO2 nanocrystal dispersion (concentration of 0.3 M) is firstly precipitated by 

addition of acetone (1:3 by volume). In a second step, the precipitate (obtained after 

centrifugation at 5000 rpm for two min) is transferred to 1 mL methanol via the addition of a 

35 mg steric dispersant (a commercially available polar copolymer with phosphate groups 

which may be given in the form of its alkylolammonium salt, see Figure S2 for the structure) 

or 15 mg short carboxylate (citric acid or tartaric acid), leading to a transparent and stable 

nano-suspension after an ultrasonic treatment of 30-60 minutes. 

Thin film deposition: The low-fluorine YBCO precursor solutions were prepared by 

dissolving Y-propionate, Ba-TFA and Cu-propionate in an Y:Ba:Cu ratio of 1:2:3 plus 

additives in methanol (CHROMASOLV®, ≥99.9% - Sigma-Aldrich). The reaction mixture is 
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heated to 60 °C for 30 min. Subsequently, the total metal concentration is adjusted to 1.08 M 

by adding methanol for undoped YBCO solutions. For 5 mol-% ZrO2 nanocrystals doped 

YBCO solutions, 1 mL YBCO solution with the total metal concentration of 1.20 M is diluted 

by adding of 33.3 µL ZrO2 nanocrystals (0.3 M) and further diluted with methanol to 1.08 M. 

Those solutions were deposited on (001)-oriented LaAlO3 single crystal substrates (Crystec 

GmbH) by spin-coating using a spincoater model CHEMAT with a spin rate of 2000 rpm 

for 1 min. The substrates were ultrasonically cleaned with isopropanol followed by a heat 

treatment at 400 °C on a hot-plate before deposition to remove adsorbed organics prior to 

deposition. The deposited layers were heated at 65 °C for 3 min in order to evaporate the 

solvent. 

The as-deposited gel films were pyrolyzed in a humidified O2 atmosphere with the heating 

ramps of 3 K min-1 from 25 to 195 °C, 0.1 K min-1 to 240 °C and 5 K min-1 to the final 

temperature of 400 °C. The pyrolyzed thin films were subsequently processed to an 

intermediate dwell step at 640 °C for 60 min and then to 790 °C for 70 min in a flowing 

nitrogen atmosphere containing 100 ppm oxygen, followed by an oxygenation treatment at 

450 °C in flowing dry oxygen for 2 h to convert the tetragonal YBCO phase to the 

superconducting orthorhombic phase. 

Nanocrystal characterization: The dried metal oxide nanocrystal powders were characterized 

via X-ray diffraction (XRD) at a Thermo Scientific ARL X'tra X-ray diffractometer (Cu-Kα 

radiation) with Rietveld quantitative refinement to determine the crystal phase and its 

crystallinity degree. Dynamic light scattering analysis was performed on a Malvern Nano ZS 

in backscattering mode (173°). High-resolution TEM images were taken on a JEOL JEM-

2200FS TEM equipped with an objective lens Cs corrector. To evaluate the temperature 

dependency of the decomposition of pure ligands and ligands capped nanocrystals in the LF-

YBCO precursor during the pyrolysis, thermogravimetrical analysis with differential thermal 
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analysis were carried out using a Netzsch Model STA 449 F3 Jupiter. X-ray photoelectron 

spectroscopy measurements were carried out using an S-Probe monochromatized 

spectrometer from Surface Science Instruments with an Al-Kα X-ray monochromatic source 

(1486.6 eV, more details in SI). NMR measurements were recorded on a Bruker Avance III 

Spectrometer operating at a 1H frequency of 500.13 MHz and equipped with a BBI-Z probe. 

The sample temperature was set to 298.2 K. One dimensional (1D) 1H and 2D NOESY 

spectra were acquired using standard pulse sequences from the Bruker library. NOESY 

mixing time was set to 300 ms and 2048 data points in the direct dimension for 512 data 

points in the indirect dimension were typically sampled, with the spectral width set to 

11.5 ppm. For 2D processing, the spectra were zero filled until a 4096⨯2048 real data matrix. 

Before Fourier transformation, the 2D spectra were multiplied with a squared cosine bell 

function in both dimensions. Diffusion measurements (2D DOSY) were performed using a 

double stimulated echo sequence for convection compensation and with monopolar gradient 

pulses. Smoothed rectangle gradient pulse shapes were used throughout. The gradient strength 

was varied linearly from 2-95 % of the probe’s maximum value (calibrated at 50.2 G cm-1) in 

64 steps, with the gradient pulse duration and diffusion delay optimized to ensure a final 

attenuation of the signal in the final increment of less than 10 % relative to the first increment. 

Texture characterization: Texture and phase composition of the YBCO thin films were 

characterized by means of XRD on a Bruker D8 diffractometer (Cu-Kα). θ-2θ scans were 

measured between 2θ = 25° and 46° with a step width of 0.05° to analyse the purity of the thin 

films. In addition, θ-2θ with a finer step width of 0.02° and rocking curve scans on the 

YBCO (006) (2θ = 46.5°) peak were performed. The full width at half maximum (FWHM) 

values are determined by fitting a Gaussian to the experimental data. The (biaxial) crystal 

growth direction was determined by pole figure scans for YBCO (103) (2θ = 32.6°, 

 = 45.0°). 
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Microstructural characterization: Structural properties were characterized with an FEI Nova 

600 Nanolab Dual Beam FIB-SEM and a JEOL JEM 2200-FS TEM. For the TEM 

measurements, a cross-sectional lamella was cut via the FIB in-situ lift out procedure with an 

Omniprobe™ extraction needle and top cleaning. Crystallographic information was obtained 

by high-resolution TEM and high-angle annular dark field (HAADF) STEM. Foreign phases 

in the YBCO matrix were determined via energy dispersive X-ray spectroscopy in HAADF-

STEM. The image processing software ImageJ was used for the statistical measurement of 

nanocrystals in cross-sectional areas.  

Electrical characterization: The self-field critical current density Jc was evaluated inductively 

with a THEVA Cryoscan at 77 K with a voltage criterion of 50 µV (corresponding to an 

electric field criterion (Ec) of 1 µV cm-1 in transport measurements). The field dependence of 

Jc was determined in magnetization and transport measurements. Magnetic Jc was calculated 

from DC magnetization curves at 10 K and 77 K (µ0B = -8 … +8 T, Ec = 215 µV cm-1) on a 

Quantum Design Magnetic Property Measurement System using the Bean critical state 

model.51 The critical temperature Tc was defined as the onset temperature of the in-phase 

component of the AC-magnetization at zero-field in the range of 10-100 K. The width of the 

magnetic transition was calculated as ΔTc = Tc,90 - Tc,10.Transport critical current densities 

were measured in maximum Lorentz force configuration on laser-cut bridges (l = 800 µm, 

w ~ 15-20 µm, Ec = 1 µV cm-1) at magnetic fields up to 9 T in a Quantum Design Physical 

Property Measurements System. The irreversibility field Hirr was estimated with constant Jc 

criterion (50 A/cm2) and cross-checked by the condition n → 1 for H → Hirr (n being the 

exponent in E(J) ~ Jn near Jc). Angular-dependent Jc(B,ϴ) measurements were performed by 

rotating the sample with steps of 2° between 0° and 240° (with B||cYBCO at ϴ = 0° and B||ab at 

90°) at 77 K/1 T and 30 K/3 T. 
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