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Abstract 

Symmetry refers to the observation that subjects will derive B-A (e.g., in the presence 

of B, select A) after being trained on A-B (e.g., in the presence of A, select B). Whereas 

symmetry is readily shown by most humans, it has been difficult to demonstrate in nonhuman 

animals. This difficulty, at least in pigeons, might result from responding to specific stimulus 

properties that change when sample and comparison stimuli switch roles between training and 

testing. In three experiments, we investigated to what extent human responding is influenced 

by the temporal location of stimuli using a successive MTS procedure. Our results indicate 

that temporal location does not spontaneously control responding in humans, while it does in 

pigeons. Therefore, the number of functional stimuli that humans respond to in this procedure 

might be half of the number of functional stimuli that the pigeons respond to. In a fourth 

experiment, we tested this assumption by doubling the number of functional stimuli 

controlling responding in human participants in an attempt to make the test more comparable 

to symmetry tests with pigeons. Here, we found that humans responded according to indirect 

class formation in the same manner as pigeons did. In sum, our results indicate that functional 

symmetry is readily observed in humans, even in cases where the temporal features of the 

stimuli prevent functional symmetry in pigeons. We argue that this difference in behavior 

between the two species does not necessarily reflect a difference in capacity to show 

functional symmetry between both species, but could also reflect a difference in the functional 

stimuli each species responds to.  

Keywords: stimulus equivalence, associative symmetry, successive matching-to-

sample, stimulus class formation, stimulus control, antisymmetry, functional stimulus 
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Symmetry and Stimulus Class Formation in Humans: Control by Temporal Location in a 

Successive Matching Task 

Stimulus equivalence is an empirical phenomenon that was formally conceptualized 

by Sidman (1990) and has been described as a set of three characteristics that are assumed to 

play a critical role in language and cognition (Horowitz & Gordon, 1972; Kahana, 2002). 

Symmetry is one of those characteristics (alongside of reflexivity and transitivity); it entails 

that a subject can match stimulus A to B after successfully learning to match B to A. This thus 

implies a bidirectional relation between two stimuli, such that the two stimuli can be used 

interchangeably. In contrast to reflexivity and transitivity, symmetry has proven difficult to 

obtain in nonhuman animals (Lionello-DeNolf, 2009), in apparent violation of the assumption 

that there is continuity in behavior between humans and nonhuman species (Greenwood, 

2016). 

It has been argued that the difficulty of obtaining symmetry in nonhuman animals 

might be related to the typical use of a two-choice matching-to-sample (MTS) procedure 

(Zentall, Wasserman, & Urcuioli, 2014). In this procedure, first a sample is presented, 

typically in the middle of the apparatus, followed by two comparison stimuli, typically 

presented at the sides. The subject learns to respond to particular comparison stimuli in the 

presence of specific sample stimuli via reinforcement contingencies. During the symmetry 

test, the role of the stimuli as samples or comparisons is reversed. Symmetry is demonstrated 

if the subject chooses the comparison that was previously a sample in the presence of a 

sample that was previously the correct comparison. Crucially, in the two-choice MTS 

procedure, the sample and comparison stimuli are presented at different locations during 

acquisition, and these locations change during the symmetry test. Because the spatial location 

of a stimulus exerts strong control over the behavior of nonhumans (Iversen, 1997; Iversen, 

Sidman, & Carrigan, 1986; Lionello & Urcuioli, 1998), the shift in location when 
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comparisons become samples and samples become comparisons might have precluded the 

observation of symmetry.  

More recently, a successive go/no-go MTS procedure has been used to avoid problems 

associated with control by the spatial location of stimuli in nonhuman animals. In this 

procedure, a sample is followed by only one comparison, presented in the same spatial 

location as the sample. The subject can either respond (go) or not respond (no-go) to the 

comparison stimulus. When the two stimuli are defined as a match (i.e., a positive trial), 

responding to the comparison is reinforced. When the two stimuli are defined as a non-match 

(i.e., a negative trial), responding to the comparison stimulus is not reinforced (i.e., all non-

match trials end in extinction). For example, subjects are trained to respond when A is 

followed by B (i.e., A-B), but to withhold responding when A is followed by C (i.e., A-C). To 

test for symmetry, B and C are presented as samples and A is presented as a comparison. 

Symmetry is demonstrated if the subjects respond similarly to the symmetrical relations as to 

the trained relations (i.e., there is more responding on B-A than C-A trials). With this 

procedure, evidence for symmetry was obtained in pigeons by Frank and Wasserman (2005) 

and Urcuioli (2008, Experiment 3). Importantly, to observe symmetry it was necessary to 

intermix reinforced identity matching trials (e.g., A-A; B-B) with training of the arbitrary 

relations (e.g., A-B; Frank & Wasserman, 2005; but see Campos, Urcuioli, & Swisher, 2014). 

In contrast to nonhuman animals, human adults readily exhibit symmetry in the two-

choice MTS procedure, even without explicit training on identity relations (e.g., Vervoort, 

Vervliet, Bennett, & Baeyens, 2014). Successive go/no-go MTS procedures can also establish 

symmetry in humans (Cullinan, Barnes, & Smeets, 1998; Debert, Matos, & McIlvane, 2007), 

although it seems that stimulus equivalence is obtained less readily in those procedures than 

in the two-choice MTS procedure (Smeets, van Wijngaarden, Barnes-Holmes, & Cullinan, 

2004).  
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A critical difference between humans and nonhuman animals might be the functional 

stimulus to which the subjects respond (Zentall et al., 2014). The functional stimulus is 

defined by the characteristics of the stimulus that control the subject’s behavior (Underwood, 

1963). Whereas the functional stimulus might be determined purely by its physical 

characteristics (e.g., color or shape) for humans, it seems to be determined by a combination 

of the physical properties of that stimulus and its spatial and temporal location for nonhuman 

animals (Lionello & Urcuioli, 1998; Urcuioli, 2015). In particular, Urcuioli (2008) proposed 

that for pigeons the functional stimuli in a successive MTS task are compounds of the 

physical properties of the stimuli and their temporal location (i.e., the presentation order). 

This means that the animals respond differently to the same physical stimulus depending on 

when it is presented in the stimulus sequence. For example, stimulus A when presented as a 

sample (temporal location 1) or as a comparison (temporal location 2) would be treated by the 

pigeons as two different stimuli, denoted as A1 and A2. Table 1 shows the probable 

functional relations in Frank and Wasserman (2005, Experiment 1) according to this view.  

 

Table 1 

 

Positive training trials in Frank and Wasserman (2005, Experiment 1) 
Training trials Reinforced relation 

A1–B2 
D1–C2 

 

Arbitrary training 

A1–A2 
B1–B2 
C1–C2 
D1–D2 

 
Identity training 

Note. Each stimulus is denoted by reference to 

its physical identity (denoted with a letter) and 

its temporal position (denoted with digits 1 

and 2).  

 

Importantly, if for pigeons the functional stimuli in a successive MTS task are 

compounds of both the physical properties and the temporal location of the stimulus, then at a 

functional level, any observed behavior that looks like symmetry is not an instance of 
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symmetry between sample and comparison stimuli as defined by Sidman (1990). Despite 

looking like functional symmetry to a human observer, the functional stimuli involved in 

training (e.g., A1-B2) are different from those involved in testing (e.g., B1-A2). To test for 

functional symmetry between the sample and comparison, the symmetry test should consist of 

B2-A1. This is physically impossible because the temporal feature of B2 mandates that it is 

presented as the second stimulus in a trial, whereas the temporal feature of A1 mandates that 

it is presented as the first stimulus in a trial (Urcuioli, 2008, p. 278). 

Urcuioli (2008) explained how reinforced identity trials can allow for the indirect 

formation of stimulus classes and how this can result in apparent symmetry (as in Frank & 

Wasserman, 2005). Urcuioli (2008) argued that functional stimuli that are presented together 

within a reinforced trial become members of the same stimulus class. The top part of Figure 1 

depicts the stimulus classes predicted to emerge according to this hypothesis based on the 

relations trained in Frank and Wasserman (2005). In addition, Urcuioli (2008) assumed that 

elements that appear in multiple stimulus classes will cause class merger (cf. Sidman, 1994). 

As a result, stimulus classes should emerge as depicted at the bottom of Figure 1. Crucially, 

the application of these hypothesis to the procedure in Frank and Wasserman (2005) results in 

stimulus classes in which physically identical stimuli presented at the two temporal locations 

are contained within the same class, due to class merger. According to Urcuioli (2008), this is 

exactly why apparent symmetry emerged in Frank and Wasserman (2005). 

 

 

C1  C2D1  D2B1  B2A1  A2

D1  C2A1  B2

Merged classes

Identity classes

Arbitrary classes

D1       D2

C1       C2

A1       A2

B1 B2
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Figure 1. The circles depict the stimulus classes predicted to emerge in Frank and Wasserman 

(2005) according to Urcuioli’s (2008) theory of indirect stimulus class formation. The top 

panel shows the stimulus classes predicted to form based on reinforced sample-comparison 

pairs. Dashed lines connect elements common to different classes. The bottom panel shows 

the resulting merged stimulus classes.  

 

To provide support for his theory, Urcuioli (2008, Experiment 4) conducted a 

particularly elegant experiment that evaluated a strong and counterintuitive prediction. By 

changing the reinforcement contingencies described above such that half of the trained 

relations were identity (i.e., B1-B2 and C1-C2) and the remaining half were oddity (i.e., A1-

D2 and D1-A2), different stimulus classes should arise (see the bottom panel of Figure 2). On 

the basis of Urcuioli’s theory, class merger between these elements and the reinforced 

arbitrary relations A1-B2 and D1-C2, would result in two stimulus classes: one containing B1, 

B2, A1, and D2, and the other one containing C1, C2, D1, and A2. During the test phase, one 

should expect the subjects to respond more on B1-D2 than B1-A2 trials and to respond more 

on C1-A2 than C1-D2 trials (as depicted in the bottom panel of Figure 2). This is exactly what 

was observed (Urcuioli, 2008, Experiment 4). Urcuioli termed this emergent effect 

antisymmetry because at the surface level the observed response is the opposite of what would 

be expected based on functional symmetry (i.e., symmetry between sample and comparison 

stimuli when the functional stimuli do not alter based on the temporal location of the stimuli; 

Urcuioli, 2015). 
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Figure 2. The top panel depicts a schematic overview of the positive training trials in Frank 

and Wasserman (2005, Experiment 1). The bottom panel depicts the positive training trials in 

Urcuioli (2008, Experiment 4). Solid black arrows denote all explicitly trained relations. 

Dashed arrows indicate observable emergent relations.  

 

 Because the functional stimuli are not the same for humans and nonhuman animals 

given a similar learning experience, one should not expect that the same relations would 

emerge. Therefore, the question arises whether the difficulty to observe functional symmetry 

in nonhuman animals (Lionello-DeNolf, 2009) reflects a fundamental limitation in the 

capacity to show functional symmetry or whether nonhumans respond to different functional 

stimuli than humans (McIlvane, 2014). The present paper explored this issue. In the first three 

experiments, we assessed the extent to which human responding is controlled by the temporal 

location of stimuli in successive MTS procedures similar to those used by Urcuioli (2008) 

with pigeons. We found that the functional stimuli for humans did not include the temporal 

location of the stimulus. Moreover, we argue that the number of functional stimuli that the 

pigeons respond to doubles when a stimulus is both presented first and second in a trial 

sequence within the same experiment, but that the number of functional stimuli does not 

D1       D2

C1       C2

Symmetry

D1       A2

C1       C2

A1       D2

B1       B2

Antisymmetry

A1       A2

B1       B2
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change in humans trained on the same procedure. In a fourth experiment, we tested this 

hypothesis by replacing every stimulus with two different stimuli, one for each temporal 

location (i.e., either first or second in the trial sequence). For example, in Experiment 1-3, 

stimulus A could appear at both temporal locations (i.e., A1 or A2), whereas in Experiment 4 

each stimulus could only appear at one temporal location (i.e., A1 and A2 were replaced by A 

and E, see Table 2). Hence, this increased the number of functional stimuli controlling 

responding in humans by a factor of two. Apart from that, all other design aspects were kept 

the same. We believe that this change made the task more comparable to symmetry tests with 

pigeons because the number of functional stimuli that each species responded to was equated. 

With this modification, we found that humans responded according to indirect class 

formation, which is equivalent to the results obtained in pigeons.  

Experiment 1 

In the current study, we conducted a successive MTS procedure with humans as 

subjects that replicated the pigeon procedure of Urcuioli (2008, Experiment 3) as closely as 

possible in order to ascertain that the procedure is suitable for investigating apparent 

symmetry in humans. In the original procedure, pigeons were tested in an experimental 

chamber containing a single response key. On this response key, four different stimuli could 

be projected. These stimuli could be divided into two categories: hue and form. The hue 

category consisted of a green (G) and a red (R) hue, and the form category consisted of an 

inverted white triangle (T) and three white horizontal lines (H) on a black background. During 

training, each trial began with the onset of a sample stimulus. A peck on this sample stimulus 

initiated a 5000-ms interval after which the stimulus disappeared. This was followed by a 

500-ms blank interval, after which a comparison stimulus was presented. On positive trials, 

pecking the comparison resulted in the offset of that comparison and food delivery. On 

negative trials, the comparison disappeared after 5000 ms, and no food was delivered. During 
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training, hue identity (i.e., R-R, and G-G), form identity (i.e., T-T, and H-H) and arbitrary 

relations (i.e., R-T, and G-H) were established. When the pigeons reached a discrimination 

ratio of .80 or higher on five consecutive training sessions, they proceeded to the test phase. 

During the test phase, in which no food was delivered, the pigeons were presented with trials 

that were the reverse of the arbitrary training trials (i.e., the sample and comparison stimuli 

switched roles). Pigeons pecked more on test trials that were the reverse of positive arbitrary 

training trials (i.e., T-R, and H-G) than on the reverse of negative arbitrary training trials (i.e., 

H-R, and T-G), indicating apparent symmetry.  

Method 

Participants. Twenty-four undergraduate students (Mage = 19.21 years, SD = 3.77), of 

which seven were men, participated in exchange for course credit and a chance to win two 

film vouchers. All participants had normal or corrected-to-normal vision.  

Apparatus and stimuli. The participants worked in soundproof rooms on a personal 

computer with a keyboard. The experiment was programmed in PsychoPy 1.81.00 (Peirce, 

2007). Figure 3 shows the four stimuli that were used in the experiment. Like Urcuioli (2008), 

we divided the stimuli into two categories (checkerboards and Gabor patches), and we chose 

stimuli/categories that were unlikely to be part of pre-experimental categories and were not 

easily nameable. Stimuli were always presented in the center of the screen with a surface of 

144 cm2 on a black background. 

 

 
Figure 3. Stimuli used in Experiments 1, 2 and 3. Stimuli A and D were checkerboards, 

stimuli B and C were Gabor patches. 
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Design. We used a within-subjects design in which the specific sample-comparison 

combinations were counterbalanced across participants. The task consisted of a training phase 

and a test phase.  

In the training phase, two arbitrary relations and four identity relations were trained. 

To this aim, 12 different trials were presented (see Table 2, Experiment 1): four identity, four 

oddity, and four arbitrary. On identity trials, the same stimulus was presented twice, as both a 

sample and a comparison. Oddity trials consisted of two different stimuli from the same 

category (i.e., checkerboards or Gabor patches), one presented as a sample and the other as a 

comparison. On arbitrary trials, two stimuli from different stimulus categories (i.e., 

checkerboards and Gabor patches) were presented. Whether the samples were checkerboards 

and the Gabor patches comparisons or vice versa was counterbalanced across participants. 

The four identity trials and two of the four arbitrary trials served as positive trials: a response 

to the comparison was reinforced. The four oddity trials and the two remaining arbitrary trials 

served as negative trials: a response to the comparison was punished (as described below).  

In the test phase, four arbitrary trials were presented: two symmetry trials, in which the 

samples and comparisons from the two positive arbitrary training trials switched roles, and 

two non-symmetry trials, in which the samples and comparisons from the two negative 

arbitrary training trials switched roles.  

Procedure. The ethical review board of KU Leuven approved all the procedures used 

in this and the following experiments. Upon arrival in the laboratory, participants gave their 

written informed consent to perform a computerized task with different visual stimuli, with 

the possibility of winning two film vouchers.  

Training phase. The experiment began with on-screen instructions (translated from 

Dutch): “In this experiment, you will be presented with images. When you see the first image, 

you need to press ENTER. If you press ENTER, the image will stay on the screen for one 
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second. Then it will disappear and you will see a second image. Upon presentation of this 

second image, you must choose whether to press the SPACE BAR or WAIT until the image 

disappears. Depending on your response, you will earn or lose points. On some trials, you 

will HAVE TO press in order to earn points, whereas on other trials you CANNOT press in 

order to not lose any points. Try to use this feedback (points) to make the right choice the next 

time.” Thereafter, two example trials, with stimuli other than those used in the actual 

experiment, were shown in order to familiarize the participants with the task. 

On every training trial, a sample stimulus appeared in the center of the screen. 

Participants were required to press the “return” key on the keyboard, and the sample remained 

on the screen for 1000 ms after the return key was pressed in order to increase the chance that 

the participants actually observed it. Sample offset was followed by an inter-stimulus interval 

of 500 ms and, subsequently, by a comparison stimulus that was presented in the same spatial 

location. From the onset of the comparison, participants had 5000 ms to either press the 

“spacebar” key or wait. When the spacebar was pressed, the stimulus disappeared 

immediately and feedback was presented. When the spacebar was not pressed within 5000 

ms, the stimulus disappeared automatically and was followed by feedback. The feedback 

consisted of the number of points gained or lost. On positive trials, the participants earned 100 

points by pressing the spacebar during the comparison presentation and 0 points when 

refraining from pressing the spacebar. On negative trials, they lost 100 points by pressing the 

spacebar during the comparison presentation and 0 points when refraining from pressing the 

spacebar. The feedback remained on the screen for 2000 ms and was then immediately 

followed by the next trial. One block consisted of the presentation of all 12 possible trials in 

random order.  

When a block was finished, the participant’s score for that block was presented. This 

score could vary from -600 (everything wrong) to +600 (everything correct). Moreover, the 
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participants were informed that they could proceed to the next phase when they reached the 

maximum score on two consecutive blocks. This instruction was presented with the general 

instructions on how to perform the task. When participants pressed the return key to indicate 

they had read the feedback, the next block started. As soon a participant reached the training 

criterion or completed a maximum of 11 blocks, they proceeded to the test phase.  

Test phase. The test phase started with the following on-screen instructions (translated 

from Dutch): “We now proceed to the final stage. At this stage you will see new 

combinations. Despite the fact that these will be new combinations, try to press if you think 

you have to press and wait if you think that you have to wait. If you do this correctly, you can 

earn bonus points. These points will NOT be displayed on the screen. Try definitely to do your 

best because you are more likely to win cinema tickets if you press correctly in this round. 

This phase will not take long so just try to stay motivated! Good luck!” 

During the test phase, only the four remaining combinations were presented: two 

symmetry trials (i.e., B1-A2 and C1-D2), which were the reverse of the positive arbitrary 

relations, and two non-symmetry trials (i.e., B1-D2 and C1-A2), which were the reverse of the 

negative arbitrary relations. Participants were instructed that no feedback would be provided 

during this phase. On every trial, the message “earned points are hidden” appeared on the 

screen instead of the former feedback.  

Each participant completed four blocks of four test trials, such that they each 

encountered eight symmetry and eight non-symmetry trials. If participants were responding 

according to symmetry on the test trials, they should press the spacebar on symmetry test 

trials but not press the spacebar on the non-symmetry test trials. 

 

Table 2 

 

Trials presented in Experiments 1-4 
 Exp 1 Exp 2 Exp 3 Exp 4 
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Note. Responding on training trials denoted with a + was reinforced, 

whereas responding on trials denoted with a – was punished. Not 

responding was neither reinforced nor punished. Test trials were also 

neither reinforced nor punished.  

 

Results 

All the analyses were conducted in R (R Core Team, 2013). All Bayes factors were 

computed using the default settings in version 0.9.9 of the R package BayesFactor (Rouder, 

Morey, Speckman, & Province, 2012; Rouder, Speckman, Sun, Morey, & Iverson, 2009). 

Training phase. Twenty of the 24 participants reached the training criterion (scoring 

the maximum on two consecutive blocks) in an average of six training blocks (SD = 2.03). 

The remaining four participants proceeded to the test phase after 11 blocks of training without 

reaching criterion. In the two last blocks, these participants responded correctly on 20, 22, 15, 

and 20 out of 24 trials. 

Test phase. Figure 4 shows the responses (y-axis) made by each participant (x-axis) 

during the test phase. Black lines denote the number of symmetry trials on which the 

participant responded. Gray lines denote the number of non-symmetry trials on which the 

participant responded.  

 

Arbitrary 

training trials 

 

A1–B2 + 

D1–C2 +  

A1–C2 - 

D1–B2 - 

A1–B2 + 

D1–C2 + 

A1–C2 - 

D1–B2 - 

A1–B2 + 

D1–C2 +  

A1–C2 - 

D1–B2 - 

A–G + 

B–H + 

A–H - 

B–G - 

 

Identity/Oddity 

training trials 

 

A1–A2 +  

D1–D2 + 

A1–D2 - 

D1–A2 - 

A1–A2 +  

D1–D2 + 

A1–D2 - 

D1–A2 - 

A1–A2 -  

D1–D2 - 

A1–D2 + 

D1–A2 + 

A–E +  

B–F + 

A–F - 

B–E - 

 

Identity/Oddity 

training trials 

B1–B2 + 

C1–C2 + 

B1–C2 - 

C1–B2 - 

B1–B2 - 

C1–C2 - 

B1–C2 + 

C1–B2 + 

B1–B2 + 

C1–C2 + 

B1–C2 - 

C1–B2 - 

D–H - 

C–G - 

D–G + 

C–H + 

 
Test trials 

B1–A2 

C1–D2 

C1–A2 

B1–D2 

D–E 

C–F 

C–E 

D–F 
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The number of symmetry trials on which participants responded was compared to the 

number of non-symmetry trials on which they responded. A paired-samples t-test revealed a 

significant difference, t(23) = 8.37, p < .001, indicating that participants responded more on 

symmetry (M = 6.04, SD = 2.90) than on non-symmetry trials (M = 0.50, SD = 1.02). The 

corresponding Bayes factor decisively supported the presence of a difference in responding 

between symmetry and non-symmetry trials, BF10 = 686536.  

Of the 20 participants who reached the training criterion, 19 responded in line with 

symmetry, and one did not respond at all during the test phase (participant 20). Of the four 

participants who did not reach criterion in the training phase, two responded equally often on 

symmetry and non-symmetry trials (participants 21 and 22), and the other two did not respond 

at all (participants 23 and 24). That the participants who did not reach criterion in the training 

phase responded indifferently or not at all during the test phase probably reflects that they did 

not learn to do the task within the limited number of training trials. In general, we can 

conclude that participants responded significantly more on symmetry than on non-symmetry 

test trials, and, thus, that apparent symmetry emerged.  

  

Figure 4. Experiment 1: Number of responses on test trials by participant, ordered from 

responding most to least in accordance with symmetry. The shaded area displays participants 

who did not achieve the training criterion. Black lines indicate the number of responses on 
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symmetry trials (i.e., the reverse of reinforced training trials), and gray lines indicate the 

number of responses on non-symmetry trials (i.e., the reverse of punished training trials). 

Note that it was possible to respond on both symmetry and non-symmetry trials. 

 

Experiment 2 

Experiment 2 assessed the prediction that apparent antisymmetry would emerge when 

both identity relations and oddity relations are reinforced in training. Here, we attempted to 

replicate Experiment 4 from Urcuioli (2008) in humans. In the original experiment, pigeons 

were trained in the same way as in Experiment 3 of Urcuioli (2008, which was replicated in 

our Experiment 1), except that they were trained to respond on hue oddity relations (i.e., R1-

G2, and G1-R2, in which R stands for the red stimulus and G stands for the green stimulus) 

instead of hue identity relations. Pigeons were also trained on form identity matching (T1-T2 

and H1-H2, in which T stands for the triangle shape and H stands for the horizontal lines) and 

the arbitrary training (R1-T2 and G1-H2), which leads to the counter-intuitive prediction that, 

during the test phase, pigeons would respond more on T1-G2 than T1-R2 trials (even though 

G1-T2 was not reinforced during training and R1-T2 was). The same applies for the second 

stimulus class, for which responding was expected to be stronger on H1-R2 than H1-G2 trials, 

even though responding on G1-H2 trials had been reinforced, and responding on R1-H2 had 

not been. This prediction was confirmed (Urcuioli, 2008, Experiment 4) and runs counter to 

what is expected if the functional stimulus were based solely on the physical identity of the 

stimuli (in which case, functional symmetry is expected).These findings indicate that T1 and 

T2 are functionally different stimuli for the pigeons, as are G1 and G2, and support the idea 

that both the apparent symmetry and the apparent antisymmetry effects observed by Urcuioli 

(2008) emerged through indirect stimulus class formation. 
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In order to make the Urcuioli (2008, Experiment 4) procedure suitable for humans, we 

adopted the procedure from Experiment 1 but replaced identity training with oddity training 

for one of the two categories (i.e., B1-C2 and C1-B2 rather than B1-B2 and C1-C2). Table 2 

(Experiment 2) depicts all the training trials, including the reinforced arbitrary trials A1-B2 

and D1-C2. If the basis of apparent symmetry in humans is the same as in pigeons (i.e., 

indirect stimulus class formation), we should expect apparent antisymmetry to emerge here 

(see the top panel of Figure 5). This would result in participants pressing the space bar on B1-

D2 and C1-A2 test trials but not responding on B1-A2 and C1-D2 trials. On the other hand, if 

human participants’ responding is not controlled by the temporal location of the stimuli, we 

should expect functional symmetry to emerge; participants should press the spacebar on B1-

A2 and C1-D2 test trials, but not on B1-D2 and C1-A2 trials.  

Figure 5. Trained (black arrows) and possible emergent (dashed arrows) relations in 

Experiments 2 and 3.  

 

Figure 5. Trained (black arrows) and possible emergent (dashed arrows) relations in 

Experiments 2 and 3.  
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Method 

Participants. Twenty-four undergraduate students (Mage = 21.13 years, SD = 5.39), of 

which seven were men, participated in exchange for course credit and a chance to win two 

film vouchers. All participants had normal or corrected-to-normal vision.  

Apparatus and stimuli. The same four stimuli were used as in Experiment 1 (see 

Figure 3). 

Design. The design of Experiment 2 was the same as the design of Experiment 1, 

except that for one of the two stimulus categories responding to oddity relations rather than 

identity relations was reinforced.  

Procedure. The procedure was the same as in Experiment 1, except that after training 

four participants, we increased the maximum number of training blocks to 14 because only 

one of the four reached criterion within the maximum 11 training blocks. The remaining 

participants proceeded to the test phase after meeting the training phase criterion or 

completing 14 blocks. 

Results  

Training phase. Sixteen participants reached criterion, in an average of 8.63 training 

blocks (SD = 2.83). Eight participants proceeded to the next phase without achieving 

criterion, three after 11 blocks of training and five after 14 blocks of training. The 

performance in the last two blocks for these participants was respectively 22, 12, and 18 

correct out of 24 trials (for the participants who completed 11 training blocks) and 17, 23, 19, 

23, and 21 correct out of 24 trials (for the participants who completed 14 training blocks). 

Test phase. Figure 6 depicts the number of responses (y-axis) for each participant (x-

axis) during the test phase in Experiment 2. Black lines indicate the number of symmetry 
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trials on which a response was made, and gray lines indicate the number of antisymmetry 

trials on which a response was made. 

A paired-samples t-test revealed a significantly larger number of responses on 

symmetry trials (M = 6.75, SD = 1.75) than antisymmetry trials (M = 0.83, SD = 1.83), t(23) = 

8.49, p < .001. The corresponding Bayes factor provided decisive support for a difference in 

response levels on symmetry and antisymmetry trials, BF10 = 873567. Of the 16 participants 

who reached criterion, 15 responded in accordance with symmetry, and one responded in 

accordance with antisymmetry (participant 16). Of the eight participants who did not reach 

criterion, seven responded in accordance with symmetry (participants 17-23) and one 

responded more in accordance with apparent antisymmetry (participant 24). Overall, the 

human participants in our experiment exhibited apparent symmetry, in contrast to Urcuioli’s 

(2008, Experiment 4) pigeons that displayed apparent antisymmetry. The presence of apparent 

symmetry and the absence of apparent antisymmetry is indicative of functional symmetry. 

This indicates that temporal location is not part of the functional stimulus for human 

participants and that the apparent symmetry observed here and in the previous experiment 

does not result from indirect stimulus class formation.  
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Figure 6. Experiment 2: Number of responses on test trials by participant, ordered from 

responding most in accordance with symmetry to responding most in accordance with 

antisymmetry. The shaded area displays participants who did not achieve the training 

criterion. Black lines indicate the number of responses on symmetry trials, and gray lines 

indicate the number of responses on antisymmetry trials. Note that it was possible to respond 

on both symmetry and antisymmetry trials. 

 

Experiment 3 

In the previous experiment, we attempted to replicate the conditions under which 

Urcuioli (2008, Experiment 4) observed apparent antisymmetry in pigeons. In contrast to his 

results, we observed apparent symmetry in our participants. This indicates that our 

participants’ behavior, in contrast to that of pigeons, was not mediated by indirect class 

formation and represents functional symmetry.  

There was, however, a difference between our procedure and the one in Urcuioli 

(2008, Experiment 4). In Urcuioli (2008), the samples from the trained arbitrary relations (i.e., 

the hue stimuli R and G) were also presented on oddity training trials, which means that 

responding on R1-G2 and G1-R2 trials was reinforced, and responding on R1-R2 and G1-G2 
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trials was not. The comparisons from the trained arbitrary relations (i.e., the form stimuli T 

and H), however, were reinforced for identity matching. In the current Experiment 2, we did 

the reverse; that is, the samples included in the arbitrary relations (i.e., A1, and B1) were also 

presented on the identity trials and the comparisons were presented on the oddity relations 

(see Figure 5). Although this difference had no effect in pigeons (Urcuioli & Swisher, 2012), 

we believe that this subtle difference may have affected the formation of stimulus classes in 

humans. As a matter of fact, it is conceivable that what is learned about the arbitrary relations 

is dependent on what is learned about the sample stimuli. For example, if the sample stimuli 

of the arbitrary relations are also trained on identity, the participants might learn that the 

comparison stimuli that follow those sample stimuli are equivalent to them. If this assumption 

generalizes to the arbitrary relations, it could encourage treating the arbitrary relations as 

identity relations. As a consequence, indirect stimulus class formation as proposed by 

Urcuioli (2008) would perhaps be prevented. Experiment 3 evaluated this possibility by using 

the comparison stimuli from the reinforced arbitrary relations for identity training and the 

sample stimuli for oddity training (see Figure 5), as was done by Urcuioli (2008, Experiment 

4). 

Method  

Participants. Of the 24 participants (Mage = 22.92 years, SD = 5.74), 11 were 

undergraduate students, seven were graduate students, and five were employed. Nine were 

men. The undergraduate students participated in exchange for course credit and the others on 

a voluntary basis. Each participant had a chance to win two film vouchers. All participants 

had normal or corrected-to-normal vision. 

Apparatus and stimuli. The apparatus and the stimuli were the same as in the two 

previous experiments.  
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Design and Procedure. Table 2 (Experiment 3) shows the reinforcement 

contingencies for this experiment. A first difference from Experiment 2 was that the samples 

from the arbitrary relations were used in oddity instead of identity training and the 

comparisons from the arbitrary relations were used in identity instead of oddity training. 

Because only 16 participants reached criterion in the previous experiment, a second difference 

in this experiment was that we increased the maximum number of training blocks to 17.  

Results 

Training phase. Nineteen participants reached criterion in an average of 11 training 

blocks (SD = 3.46). Five participants proceeded to the test phase without reaching criterion 

after 17 blocks of training. In the last two blocks, the participants who did not reach criterion 

responded correctly on 15, 15, 16, 19 and 12 out of 24 trials.  

Test phase. Figure 7 depicts the number of responses on test trials for each participant 

separately. Black lines indicate the number of symmetry trials on which a response was made, 

and gray lines indicate the number of antisymmetry trials on which a response was made. 

 A paired-samples t-test revealed a significant difference between the number of 

responses on symmetry (M = 6.25, SD = 2.19) and antisymmetry trials (M = 1.33, SD = 2.21), 

t(23) = 7.08, p < .001. The corresponding Bayes factor yielded decisive evidence in support of 

a difference in the number of responses to symmetry and antisymmetry trials, BF10 = 50818. 

The degree of symmetric responding (rate of symmetric versus antisymmetric responses) did 

not differ from that in Experiment 2, t(46) = 1.017, p = 0.31 (BF10 = 0.44).  

Of the 19 participants who reached criterion, 18 responded in accordance with 

symmetry and one did not respond at all (participant 19) during the test phase. Of the five 

participants who did not reach criterion, none responded in accordance with symmetry; four 

responded equally on symmetry and antisymmetry trials (participants 20, 21, 22 and 23) and 

one (participant 24) responded more in accordance with antisymmetry. In sum, our results 
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show that despite using the samples from the arbitrary trials in oddity training, humans 

display apparent symmetry rather than apparent antisymmetry, unlike pigeons. This suggests 

that the emergent behavior displayed by humans in this task likely represents functional 

symmetry rather than indirect stimulus class formation.  

 

Figure 7. Experiment 3: Number of responses on test trials by participant, ordered from 

responding most in accordance with symmetry to responding most in accordance with 

antisymmetry. The shaded area displays participants who did not achieve the training 

criterion. Black lines indicate the number of responses on symmetry trials, and gray lines 

indicate the number of responses on antisymmetry trials. Note that it was possible to respond 

on both symmetry and non-symmetry trials. 

 

Experiment 4 

The previous three experiments assessed the similarity in behavior between pigeons 

and humans in relational responding in a successive MTS task. In two experiments that 

replicated conditions under which pigeons exhibit apparent antisymmetry (Urcuioli, 2008, 

Experiment 4), we found that humans exhibit apparent symmetry. We propose that the 

participants were not responding according to apparent antisymmetry in Experiments 2 and 3 

because the relative temporal location of a stimulus in the trial sequence is not part of the 
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functional stimulus for humans. If so, the number of functional stimuli the pigeons respond to 

doubles when a stimulus is presented both first and second in a trial sequence within an 

experiment. This would mean that in Urcuioli (2008) and in Urcuioli and Swisher (2012), 

there were eight functional stimuli, whereas in our experiments, there were only four. The 

goal of Experiment 4 was to investigate the occurrence of behavior indicative of indirect 

stimulus class formation in humans when the number of functional stimuli is increased to 

eight. To that end, we replicated our Experiment 2 with eight rather than four physical stimuli, 

thus substituting one physically unique stimulus for each of the eight functional stimuli that 

the pigeons allegedly responded to (see Figure 8). This resulted in four stimuli that were only 

presented as sample stimuli (i.e., A, B, C and D) and another four that were only presented as 

comparison stimuli (i.e., E, F, G and H). By using this procedure, we evaluated whether 

humans would form stimulus classes in a similar way as pigeons when the number of 

functional stimuli is equated.  

 

 
Figure 8. The merged stimulus classes formed by reinforced training trials (solid black 

arrows) and possible emergent relations (dashed arrows) in Experiment 4. Each character 

denotes a unique physical stimulus. 

  

Method  

Participants. Twenty-four undergraduate students (Mage = 18.75 years, SD = 1.26), of 

which three were men, participated in exchange for course credit and a chance to win two film 

vouchers. All participants had normal or corrected-to-normal vision.  
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 Apparatus and stimuli. Eight symbols from the font style “wingdings” were used as 

stimuli, shown in white on a black background (see Figure 9). We abandoned the use of 

categories (i.e., checkerboards and Gabor patches) because the use of categories could make 

the task unnecessarily complex and was not included in Urcuioli’s (2008) theory; moreover, 

in Frank and Wasserman (2005), categories were not used.  

 
Figure 9. The stimuli used in Experiment 4. 

 

Design. The design was the same as in Experiment 2, except for the use of eight, 

instead of four, physically different stimuli. Table 2 (Experiment 4) denotes all the trained 

relations in this experiment, which were six positive arbitrary relations and six negative 

arbitrary relations. There were four random assignments of stimuli to letters, and participants 

were randomly assigned to one of those four stimulus assignment groups. 

Procedure. The computer task remained the same as in the previous experiments. 

Because we expected the task to be more difficult than in previous experiments as a result of 

the increased number of stimuli, we observed whether the first three participants reached 

criterion within a maximum of 17 training blocks. Because one of the three did not, we 

increased the maximum number of training blocks to 25 for the remaining participants.  

Results 

Training phase. Twenty-two participants reached criterion in an average of 11.14 

training blocks (SD = 4.19). Two participants proceeded to the test phase without achieving 

criterion, one after 17 blocks (participant 23) and one after 25 blocks (participant 24). In the 
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last two blocks, the participants who did not reach criterion responded correctly on 20 and 19 

out of 24 trials.  

Test phase. Figure 10 depicts the number of responses on test trials by each 

participant. Black lines indicate the number of class-consistent trials on which a response was 

made, and gray lines indicate the number of class-inconsistent trials on which a response was 

made.  

 A paired-samples t-test revealed a significant difference between the number of 

responses on consistent (M = 5.63, SD = 2.92) and inconsistent trials (M = 2.46, SD = 2.81), 

t(23) = -3.03, p = .006. The Bayes factor supported this difference in responding across trial 

types, BF10 = 7.49. Of the 22 participants who reached criterion, 14 responded in accordance 

with indirect stimulus class formation (participants 9-22), one participant did not respond at 

all during the test phase (participant 8), and the remaining seven participants responded more 

on trials inconsistent with the indirectly established classes than on consistent trials 

(participants 1-7). Of note, all the latter participants belonged to two of the four 

counterbalancing groups. It may be that in those groups, the stimulus classes that were 

predicted via indirect class formation were counterintuitive to prior beliefs the participants 

may have held, for example that stimuli with similar shapes belong together. Of the two 

participants who did not reach criterion, one participant showed more class-consistent 

responding (participant 24) and the other showed more class-inconsistent responding 

(participant 23).  
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Figure 10. Experiment 4: Number of responses on test trials by participant, ordered from 

responding least to most class consistent. The shaded area displays participants who did not 

achieve the training criterion. Black lines indicate the number of responses on trials 

containing stimuli from different stimulus classes (class inconsistent). Gray lines indicate the 

number of responses on trials containing stimuli from the same merged class (class 

consistent).  

 

General discussion 

In four experiments, we assessed symmetry and antisymmetry in human participants 

using a successive MTS procedure that was modeled after previous experiments conducted in 

pigeons (Urcuioli, 2008). In Experiment 1, we investigated whether humans would show 

apparent symmetry using this procedure and found evidence for apparent symmetry, 

indicating that our procedural adaptations were successful. In Experiments 2 and 3, the 

reinforcement contingencies were altered such that apparent antisymmetry was predicted (cf. 

Urcuioli, 2008). In contrast to what was observed in pigeons, our human participants 

exhibited apparent symmetry, just as in Experiment 1. This suggests that the two species 

respond to different functional stimuli. For pigeons, the relative temporal location of the 

stimuli seems to be part of the functional stimulus (Urcuioli, 2015), effectively precluding the 



SYMMETRY IN HUMANS  28 

 

   

 

possibility of observing functional symmetry but allowing apparent symmetry via indirect 

stimulus class formation. For humans, the functional stimulus in the present procedure 

appears to be the physical identity of the stimuli, which allows for the observation of 

functional symmetry without the mediating role of indirect stimulus class formation.  

Because the temporal component of stimuli is part of the functional stimulus for 

pigeons, there are twice as many functional stimuli in the successive MTS task for pigeons 

than there are for humans. This means that all the trained relations are functionally arbitrary 

for pigeons, which is not the case for humans (cf. Experiment 2 and 3). Experiment 4 

increased the number of functional stimuli for humans by conducting MTS training with eight 

unique stimuli. With this procedure, humans showed the same response patterns as the 

pigeons (equivalent to the apparent symmetry and antisymmetry effects obtained in the 

pigeons), which is consistent with predictions of Urcuioli’s (2008) theory of indirect stimulus 

class formation.  

The current results indicate that both humans (see Experiment 4) and pigeons (Campos 

et al., 2014; Urcuioli, 2008; Urcuioli & Swisher, 2012) can form associative classes via 

indirect class formation as described in Urcuioli (2008), but whether this also holds for other 

nonhuman animals remains to be determined (see Prichard, Panoz-Brown, Bruce, & Galizio, 

2015). Humans, however, seem to be unique in demonstrating functional symmetry in 

successive MTS procedures without additional training (see Experiments 2 and 3). 

Additionally, the observed variability between participants’ scores in Experiments 1-3 was 

much lower than the variability in Experiment 4, indicating that functional symmetry (as 

observed in Experiments 1-3) is less complex for humans than indirect class formation (as 

observed in Experiment 4). This indicates that the functional stimulus for humans coincides 

with the physical identity of the stimulus, whereas for pigeons, and probably for other 

nonhuman animals as well, non-physical attributes such as spatial and temporal location are 
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part of the functional stimulus (Swisher & Urcuioli, 2015). This analysis implies that it is 

impossible to present the same functional stimulus as both a sample and a comparison to 

nonhuman animals. Therefore, symmetry at the functional level is very hard to demonstrate in 

nonhuman animals. Moreover, it also implies that the absence of evidence for symmetry in 

nonhumans may not reflect a principled inability of nonhuman animals to exhibit symmetry, 

but merely a mismatch between the functional stimuli that actually control behavior and the 

functional stimuli intended by the experimenter (Zentall et al., 2014).  

Humans seem to be able to respond solely to the physical attributes of a stimulus in 

this task. For humans, functional stimuli can thus contain only the physical characteristics 

(i.e., form or shape) independent of the spatial or temporal location at which they are 

presented. This ability might be beneficial for the development of verbal language, which 

emphasizes bidirectionality between two stimuli independent of spatial and temporal features 

(Horne & Lowe, 1996). Nonhumans, on the other hand, more readily display transitivity than 

symmetry (Lionello-DeNolf, 2009). This might be due to the control that the temporal and 

spatial features of the stimuli have over nonhumans’ behavior in those sort of tasks. The 

antisymmetry paradigm developed by Urcuioli (2008) allows for responding based on the 

spatial and temporal location of stimuli and might therefore provide a fairer test of emergent 

relations, such as stimulus equivalence, in pigeons.  

In order to further investigate the differences and similarities between humans and 

nonhuman animals regarding stimulus class formation, it would be interesting to train humans 

to respond based on the combination of both physical and temporal features. One possible 

way to do that is to use a set of stimuli that share some physical properties but vary on another 

relevant dimension, such as the same stimulus on different background colors. Based on the 

results of Experiment 4, we expect that humans would respond based on indirect class 

formation and consequently show antisymmetry when trained on procedures like those in our 
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Experiments 2 and 3, which would replicate the results of Urcuioli (2008, Experiment 4). 

Conversely, it would be interesting to see if nonhuman animals that are trained to disregard 

the relative temporal location of stimuli eventually come to respond in the same way as 

humans in the present procedure. One way to do this is to use multiple-exemplar training in 

which different exemplars of symmetrical relations are explicitly trained before the actual 

symmetry test (see Schusterman & Kastak, 1993 for the observation of functional symmetry 

in a sea lion after an extensive history of multiple-exemplar training).  

To draw conclusions about the differences in behavior between humans and 

nonhuman animals on this task, we must be able to show that the differences are not due to 

differences in procedures. Although we based the current experiments on Urcuioli and 

colleagues’ procedures (Urcuioli, 2008; Urcuioli & Swisher, 2012), some procedural 

modifications were necessary. However, these procedural differences do not prevent us from 

making comparisons between species for several reasons. First, the stimuli were different. In 

order to ensure that the participants did not have a pre-experimental history with the stimuli 

and that the stimuli were not easily nameable, we used checkerboards and Gabor patches 

rather than hues and forms. As in Urcuioli (2008), these stimuli belonged to two categories, 

although we do not think that this is a critical variable (as mentioned in Experiment 4, in 

which we abandoned the use of two categories). Second, both the sample and comparison 

durations could vary in our procedure, whereas they remained constant in the pigeon studies. 

Because we observed both functional symmetry (Experiments 1, 2 and 3) and behavior 

consistent with indirect stimulus class formation (Experiment 4), it seems likely that stimulus 

duration was not part of the functional stimulus for our participants. Third, we altered the 

reinforcement schedule. The pigeons in Urcuioli and colleagues’ experiments experienced 

non-reinforcement (no food) on half of all the training trials independently of the accuracy of 

their responses because all negative trials (no match) ended in non-reinforcement, regardless 
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of whether the birds pecked the comparison stimulus. In contrast, the feedback in our 

experiments consisted of three possibilities: a gain of points, a loss of points, or no change in 

points. On positive trials, responding resulted in a gain of points and not responding did not 

result in a gain or loss. On negative trials, responding resulted in a loss of points and not 

responding did not result in a gain or loss. We chose these contingencies because we expected 

that if responding on negative trials was not punished (i.e., response cost) participants would 

respond on every trial during testing. In addition, we choose to use different types of 

reinforcement on positive trials (gaining 100 points) and negative trials (avoiding a loss of 

100 points) in order to prevent possible class merger based on the inclusion of a common 

reinforcer across classes.  

In sum, our experiments suggest that both humans and pigeons can both respond based 

on indirect stimulus class formation, but only humans can readily show functional symmetry 

in a MTS procedure. The latter difference could be due to the fact that for pigeons but not 

humans, spatial and temporal features are automatically part of the functional stimuli they 

respond to. Future studies on stimulus equivalence in nonhuman animals should further focus 

on finding ways of minimizing control by the spatial and temporal properties of stimuli so that 

functional symmetry can be tested.  



SYMMETRY IN HUMANS  32 

 

   

 

Acknowledgements 

This study was funded by Interuniversity Attraction Poles Programme grant P7/33 of 

the Belgian Science Policy Office and Research Grant G.0766.11N of the Research 

Foundation – Flanders (FWO), with additional support from a Medium-Size Infrastructure 

Grant of the Hercules Foundation and Program Funding grant PF/10/005 of KU Leuven. 

Sarah Beurms was supported by a PhD fellowship from the Research Foundation – Flanders 

(FWO, grant number 11N8115N). Jan De Houwer was supported by Ghent University 

Methusalem Grant BOF16/MET_V/002. The funding agencies had no role in the design of 

the study, collection of the data, analysis and interpretation of the data, or writing and 

submission of the manuscript. 

  



SYMMETRY IN HUMANS  33 

 

   

 

References 

Campos, H. C., Urcuioli, P. J., & Swisher, M. (2014). Concurrent identity training is not 

necessary for associative symmetry in successive matching. Journal of the Experimental 

Analysis of Behavior, 101, 10–25. http://doi.org/10.1002/jeab.51 

Cullinan, V. A., Barnes, D., & Smeets, P. M. (1998). A precursor to the relational evaluation 

procedure: Analyzing stimulus equivalence. The Psychological Record, 48, 121–145. 

Retrieved from http://opensiuc.lib.siu.edu/tpr/vol48/iss1/8 

Debert, P., Matos, M. A., & McIlvane, W. J. (2007). Conditional relations with compound 

abstract stimuli using a go/no-go procedure. Journal of the Experimental Analysis of 

Behavior, 87, 89–96. http://doi.org/10.1901/jeab.2007.46-05 

Frank, A. J., & Wasserman, E. A. (2005). Associative symmetry in the pigeon after 

successive matching-to-sample training. Journal of the Experimental Analysis of 

Behavior, 84, 147–65. http://doi.org/10.1901/jeab.2005.115-04 

Greenwood, J. D. (2016). All the way up or all the way down?: Some historical reflections on 

theories of psychological continuity. Journal of Comparative Psychology, 130, 205–214. 

http://doi.org/http://dx.doi.org/10.1037/a0039916 

Horne, P. J., & Lowe, C. F. (1996). On the origins of naming and other symbolic behavior. 

Journal of the Experimental Analysis of Behavior, 65, 185–242. 

http://doi.org/10.1901/jeab.1996.65-185 

Horowitz, L. M., & Gordon, A. M. (1972). Associative symmetry and second-language 

learning. Journal of Educational Psychology, 63, 287–294. 

http://doi.org/10.1037/h0032643 

Iversen, I. H. (1997). Matching-to-sample performance in rats: A case of mistaken identity? 

Journal of the Experimental Analysis of Behavior, 68, 27–45. 



SYMMETRY IN HUMANS  34 

 

   

 

http://doi.org/10.1901/jeab.1997.68-27 

Iversen, I. H., Sidman, M., & Carrigan, P. (1986). Stimulus definition in conditional 

discriminations. Journal of the Experimental Analysis of Behavior, 45, 297–304. 

http://doi.org/10.1901/jeab.1986.45-297 

Kahana, M. J. (2002). Associative symmetry and memory theory. Memory & Cognition, 30, 

823–840. http://doi.org/10.3758/BF03195769 

Lionello-DeNolf, K. M. (2009). The search for symmetry: 25 years in review. Learning & 

Behavior, 37, 188–203. http://doi.org/10.3758/LB.37.2.188 

Lionello, K. M., & Urcuioli, P. J. (1998). Control by sample location in pigeons’ matching to 

sample. Journal of the Experimental Analysis of Behavior, 70, 235–251. 

http://doi.org/10.1901/jeab.1998.70-235 

McIlvane, W. J. (2014). “Associative concept learning in animals” by Zentall, Wasserman, 

and Urcuioli: A commentary. Journal of the Experimental Analysis of Behavior, 101, 

161–164. http://doi.org/10.1002/jeab.59 

Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience 

Methods, 162, 8–13. http://doi.org/10.1016/j.jneumeth.2006.11.017 

Prichard, A., Panoz-Brown, D., Bruce, K., & Galizio, M. (2015). Emergent identity but not 

symmetry following successive olfactory discrimination training in rats. Journal of the 

Experimental Analysis of Behavior, 104, 133–145. http://doi.org/10.1002/jeab.169 

R Core Team. (2013). R : A language and environment for statistical computing. Vienna, 

Austria: R Foundation for Statistical Computing. Retrieved from http://www.r-

project.org/ 

Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes 



SYMMETRY IN HUMANS  35 

 

   

 

factors for ANOVA designs. Journal of Mathematical Psychology, 56, 356–374. 

http://doi.org/10.1016/j.jmp.2012.08.001 

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests 

for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 

225–237. http://doi.org/10.3758/PBR.16.2.225 

Schusterman, R. J., & Kastak, D. (1993). A California sea lion (Zalophus californianus) is 

capable of forming equivalence relations. The Psychological Record, 43, 823–839. 

Retrieved from http://conductual.com/content/successful-search-symmetry 

Sidman, M. (1990). Equivalence relations: Where do they come from? In D. E. Blackman & 

H. Lejeune (Eds.), Behaviour analysis in theory and practice: Contributions and 

controversies (pp. 93–114). Hillsdale: NJ: Erlbaum. 

Sidman, M. (1994). Equivalence relations and behavior: A research story. Boston: Authors 

Cooperative. 

Smeets, P. M., van Wijngaarden, M., Barnes-Holmes, D., & Cullinan, V. A. (2004). 

Assessing stimulus equivalence with a precursor to the relational evaluation procedure. 

Behavioural Processes, 65, 241–251. http://doi.org/10.1016/j.beproc.2003.10.004 

Swisher, M., & Urcuioli, P. J. (2015). Symmetry in the pigeon with sample and comparison 

stimuli in different locations. II. Journal of the Experimental Analysis of Behavior, 104, 

119–132. http://doi.org/10.1002/jeab.162 

Underwood, B. J. (1963). Stimulus selection in verbal learning. In C. N. Cofer & B. S. 

Musgrave (Eds.), Verbal Behavior and Learning: Problems and Processes. (pp. 33–75). 

New York: McGraw-Hill Book Company. http://doi.org/10.1037/11178-003 

Urcuioli, P. J. (2008). Associative symmetry, antisymmetry, and a theory of pigeons’ 



SYMMETRY IN HUMANS  36 

 

   

 

equivalence-class formation. Journal of the Experimental Analysis of Behavior, 90, 257–

282. http://doi.org/10.1901/jeab.2008.90-257 

Urcuioli, P. J. (2015). A successful search for symmetry (and other derived relations) in the 

conditional discriminations of. Conductual, 3, 4–25. Retrieved from 

http://conductual.com/content/successful-search-symmetry 

Urcuioli, P. J., & Swisher, M. (2012). A replication and extension of the antisymmetry effect 

in pigeons. Journal of the Experimental Analysis of Behavior, 98, 283–93. 

http://doi.org/10.1901/jeab.2012.98-283 

Vervoort, E., Vervliet, B., Bennett, M., & Baeyens, F. (2014). Generalization of human fear 

acquisition and extinction within a novel arbitrary stimulus category. PLoS ONE, 9, 

e96569. http://doi.org/10.1371/journal.pone.0096569 

Zentall, T. R., Wasserman, E. A., & Urcuioli, P. J. (2014). Associative concept learning in 

animals. Journal of the Experimental Analysis of Behavior, 101, 130–51. 

http://doi.org/10.1002/jeab.55 

 

 




