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Abstract

Behavior of concentration interfaces, which are apparent interfaces between

a suspension and pure liquid, was studied using numerical techniques. Two

types of numerical simulations were used to classify whether collective or indi-

vidual behavior occurred in the ratio of the average particle separation to the

wavelength of the fastest growing perturbation. The first is Lagrangian track-

ing of individual particles in fluid, and the second type is interface tracking of

two immiscible continuum phases. These two extremely different approaches

represent the dual nature of the concentration interface: immiscible with no

interfacial tension and miscible with no diffusion. These results reflect the

experimentally-observed behavior of particles, which is both collective and

individual. Sealing of the concentration interface by particle-induced flow

is crucial to collective motion of suspended particles. A proposed dimen-

sionless parameter describes quantitatively the transition from collective to
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individual settling of suspended particles.

Keywords: Stratified suspension, Concentration interface, Numerical

simulation, Fingering instability

1. Introduction

Collective motion of fine particles suspended in a liquid is important not

only for engineering disciplines such as mechanical, chemical, civil or environ-

mental ones, but also for other scientific fields as biomechanics or geophysics.

Collective motion is observed in various processes and phenomena such as

solid–liquid separation (Kynch, 1952), magma flow (Michioka and Sumita,

2005), sea sediment layers, (Carey, 1997), sediment transport in river and

ocean (Warrick et al., 2008), and bioconvection (Pedley and Kessler, 1992).

The collective nature of suspended particles is frequently revealed in the

mode of gravitational settling of inhomogeneously dispersed suspensions, i.e.,

the particles are locally suspended in a liquid. Such systems are classified

in the following three cases according to the orientation of the boundary

between the suspended and nonsuspended regions (this is called the “con-

centration interface”): (1) the normal vector to the concentration interface

(from suspended to nonsuspended region) points up in the vessel, (2) the nor-

mal vector points down, and (3) the concentration interface forms a closed

surface. The first case corresponds to the well-known case of hindered set-

tling in a vessel, and the concentration interface is called the “sedimentation

front.” Many studies have focused on the behavior of the sedimentation

front from both a macroscopic [i.e., trajectory of the sedimentation front,

e.g., (Kynch, 1952)] and a microscopic viewpoint [i.e., hydrodynamic diffu-
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sion near the sedimentation front (Mucha and Brenner, 2003; Bergougnoux

et al., 2003), etc. ]. The collective nature of the suspended particles is man-

ifested as a variance in the hindered settling velocity or as self-diffusion due

to hydrodynamic interactions in such systems.

The second case is the main subject of the present research wherein the

normal to the concentration interface points down. In such a system, the mo-

tion of suspended particles is critically influenced by the macroscopic nature

of the concentration interface. In other words, the settling velocity of par-

ticles is greatly enhanced by the gravitational instability (Rayleigh–Taylor

instability) at the concentration interface. Such instabilities and resultant

convection caused by particle settling have been studied experimentally (Kue-

nen, 1968; Hoyal et al., 1999; Parsons et al., 2001; Völtz et al., 2001; Völtz,

2003; McCool et al., 2004; Blanchette and Bush, 2005), theoretically (Burns

and Meiburg, 2012; Yu et al., 2013) and numerically (Pan et al., 2001; Chou

et al., 2014) in many engineering and science fields.

A similar instability also occurs in the third system, but in a different

form. The third system, in which the concentration interface is closed, is

called a “suspension droplet.” Many studies on suspension droplets have

elucidated the collective motion of suspensions (Nitsche and Batchelor, 1997;

Machu et al., 2001; Metzger et al., 2007). In these studies, the interfacial

instability is found to lead to a characteristic behavior of suspended particles,

such as the breakup of droplets in a manner reminiscent of fireworks.

The collective nature of suspended particles is closely associated with the

concentration of particles in suspended regions. The suspension droplet is

known to essentially maintain a spherical shape for low Reynolds number.
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Previous studies have claimed that this behavior results from the disturbance

flow generated by each particle (Stokeslet) sealing the concentration interface,

thereby preventing invasion by outside flow. Some researchers have pointed

that the sealing ability at the concentration interface of a suspension droplet

is determined by the number density in the suspended region (Nitsche and

Batchelor, 1997; Metzger et al., 2007). If the number density is small and the

Stokeslet does not fully discretize the suspended region, the concentration

interface allows penetration by the outside fluid; therefore, some particles

may escape from the droplet.

For the second case in which the concentration interface points down,

Harada et al. (2012) have experimentally examined the collectivity of set-

tling particles caused by the Rayleigh–Taylor instability. They found that

the transition from individual to collective settling of suspended particles is

determined by a dimensionless parameter given by the ratio of the interpar-

ticle separation to the dominant wavelength of the instability; this ratio is

related to the number density of the suspended particles.

Comparing the concentration interface with an ordinary interface reveals

the former’s peculiar aspects. The concentration interface of a suspension of

micron-sized particles is essentially a miscible interface. However, in contrast

with a density interface such as a salt-water/fresh-water interface, thermal

diffusion is less significant because the particle size is much larger than the

size of molecules in the solvent. Conversely, in contrast with an immiscible

interface, the interfacial tension of a concentration interface is almost zero,

provided the interparticle force is not too large. Therefore, the concentration

interface of a suspension with micron-sized particles can be interpreted as an
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ambiguous interface at which the suspended particles are not constrained and

are not pushed away from the interface. Fernandez et al. (2001) investigated

theoretically the wavelength of the Rayleigh–Taylor instability for both mis-

cible and immiscible interfaces between two fluids. Their results indicate that

the dominant wavelength of the instability depends on whether the interface

is miscible or immiscible; however, the wavelength of a miscible interface

with an infinite Péclet number (i.e., no diffusion) coincides with that of an

immiscible interface with infinite capillary number (i.e., no interfacial ten-

sion). Therefore, a concentration interface with micron-sized particles can be

interpreted as an interface that connects miscible and immiscible interfaces.

However, the dual nature of the concentration interface has not been fully

explained from the microscopic viewpoint, i.e., how particles which form the

interface settle relative to surrounding fluid (as miscible interface) and how

the disturbance flow created by each particle prevents the invasion of flow

(as immiscible interface).

The present study investigates the Rayleigh–Taylor instability at the con-

centration interface of a particulate suspension by numerically simulating the

resultant collective motion of particles. To examine the dual nature of the

concentration interface (i.e., immiscible with no interfacial tension or mis-

cible with no diffusion), we used two contrasting numerical models for the

simulations. The first model is of an immiscible interface with no interfacial

tension and with the suspended region assumed to be a continuous fluid with

apparent properties. The second is a point-force model that corresponds to

a miscible interface with no diffusion. In this model, we assume each par-

ticle has no volume and we calculate the motion of the particles relative to
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the surrounding fluid. The results of both simulations are compared with

previous experimental results. The role of the concentration interface on the

collectivity of suspended particles is discussed from various viewpoints.

2. Numerical simulations

We treat a stratified suspension system in which a particle suspension is

set on a pure fluid, as shown in Fig. 1. However, the liquid in the suspension

is the same as pure fluid, so the system has no distinct interface. The concen-

tration of particles, however, has a steep gradient at the apparent interface.

We made the following two simulations: (1) a Lagrangian tracking of individ-

ual particles with two-way coupling to represent a miscible interface with no

diffusion, and (2) an interface tracking of two immiscible continuum phases

with no interfacial tension to verify whether the concentration interface be-

haves like a two-fluid interface by comparing the results with those of the

Lagrangian-tracking simulation. Pan et al. (2001) simulated the Rayleigh–

Taylor instability of a suspension for two-dimensional cylindrical particles.

Chou et al. (2014) also simulated the Rayleigh–Taylor instability of a sus-

pension by using a two-fluid model based on complex constitutive equations.

In this study, we treat the fully three-dimensional case and our simulations

use a simple point-force model and a simple interface tracking model. The

particle tracking approach treats particles in suspension individually. On

the other hand, the interface tracking is an Euler-Euler approach with no

diffusion. Our objective is to understand microscopically the dual nature of

the concentration interface. To tackle this issue, we used both the particle

tracking and the interface-tracking approaches.
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2.1. Lagrangian tracking

Consider particle motion with very low particle Reynolds number Re ≡

dpUrelρ/µ (where dp is the particle diameter, Urel is the particle velocity

relative to fluid, ρ is the fluid density, and µ is the fluid viscosity). As

outlined by Bosse et al. (2005), we represent this scenario by using Stokes

drag and gravity as:

mp
dv

dt
= −3πµdp(v − u(y)) +mpg

(
1− ρ

ρp

)
, (1)

where v and u are the particle velocity and fluid velocity, respectively, at

particle position y, g is the acceleration due to gravity, mp is the particle

mass [mp = Vpρp, Vp = (π/6)d3p], and ρp is the particle mass density. For a

particle response time τp that is much less than the characteristic timescale

of the fluid,

τp =
mp

3πµdp
=

d2pρp

18µ
, (2)

the particle inertia can be neglected. By neglecting the inertia in Eq. (1),

the instantaneous particle velocity is obtained from the fluid velocity at the

particle position as

v = u(y) + τpg

(
1− ρ

ρp

)
. (3)

In this case, the single-particle terminal velocity U0 (i.e., the Stokes settling

velocity) is U0 = τpg(1− ρ/ρp).

In this study, the particle volumetric concentration ϕ is as small as 0.02 or

less. As done by Bosse et al. (2005), we treat the particle with the point-force

model and consider the particle to have no volume. The fluid is assumed to

be incompressible and its motion is described by the continuity equation

∇ · u = 0, (4)
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and the two-way-coupled Navier–Stokes equation

∂u

∂t
+∇ · uu = −1

ρ
∇p+

µ

ρ
∇2u+

1

ρ
f , (5)

where f is the feedback force per unit volume as given by

f(x) = −3πµdp
∆3

∑
y

(u(y)− v)wdst(x− y), (6)

where x is the grid-position and ∆ is the grid spacing. The quantity wdst

is a nondimensional weighting function, and the trilinear distribution to

eight neighboring points is given by wdst as outlined in Bosse et al. (2005).

The fluid-flow field is obtained by solving Eqs. (4) and (5) with Eq. (6).

Equations (4) and (5) are discretized in space by a second-order central

finite-difference method on a staggered-grid system. A second-order Adams–

Bashforth method is applied to advance the advection term in time, and a

second-order Crank–Nicolson scheme is used for the viscous term. Pressure

is linked to Eq. (4) by the simplified marker and cell (SMAC) algorithm

(Amsden and Harlow, 1970) and the Poisson equation for pressure correc-

tion is solved by using a biconjugate gradient stabilized method (Ferziger and

Perić, 1996). Fluid velocity at the particle position is interpolated from the

surrounding grid points, and the particle position is updated by integrating

Eq. (3) by using the second-order Adams–Bashforth method. In this study,

the fluid velocity is interpolated based on a weighted average as follows:

u(y) =

∑
x u(x)wint(x− y)∑

xwint(x− y)
. (7)

For the weight function wint, we use the approximate delta function, which

is similar to the approach of the immersed boundary method (Peskin, 2002):

wint(r) = wint1D(rx)wint1D(ry)wint1D(rz), (8)
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where

wint1D(r) =

 1 + cos
πr

lint
, |r| < lint

0, |r| ≥ lint

. (9)

In Section 3.2, the region size lint is verified and discussed.

2.2. Interface tracking

To simulate the immiscible suspension and pure fluid, the front-tracking

method (Shin and Juric, 2002; Yamamoto and Uemura, 2011) is used as

interface-tracking method. In the front-tracking method, the interface be-

tween two fluids is tracked by marker points. The unit normal of the in-

terface is calculated based on the triangle element connecting the marker

points. By integrating the unit normals distributed over the grid points near

the interface, we obtain the indicator function I, where I=0 represents the

pure fluid phase and I=1 represents the suspension phase. Density and vis-

cosity can be expressed by using the indicator function and the properties

of each phase. With this information, we solve the continuity equation and

the Navier–Stokes equation with variable density and viscosity by using the

finite-difference method. The same scheme is used to solve the fluid equation

as is used to solve the aforementioned Lagrangian tracking. The apparent

density and viscosity of the suspension phase are given using volume fraction

ϕ as,

ρsus = ϕρp + (1− ϕ)ρ, (10)

µsus = (1 + 2.5ϕ)µ. (11)

In the present study, we do not consider the interfacial tension force. In

addition, density and viscosity is given by the inverse average and considering
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the distance from the interface, as proposed by Ferziger (2003) when the

control volume or finite-difference points exist across the interface represented

by I = 0.5.

3. Results and discussion

3.1. Simulation conditions

The configuration of the present simulation is shown in Fig. 1. A no-

slip condition is imposed for each outer boundary. The height of the vessel

L=120 mm, the width W=100 mm, the depth D=8 mm, and the suspen-

sion height Lsus=19.5 mm; these dimensions are similar to those of the ex-

periments by Harada et al. (2012). According to Harada et al. (2013), the

wavelength λ of the fastest-growing perturbation (i.e., “finger”) is estimated

by using the channel depth D for a large-aspect-ratio vessel according to

λ = 2πD/
√

6(
√
5− 1) ≃ 2.3D. Thus, about five fingers are assumed to

grow under the present conditions. According to Harada et al. (2012), col-

lective or individual settling is regularized by the ratio H of the average

particles separation l to the finger wavelength λ: H = l/λ. Thus, we run

simulations for several different values of H. The physical properties of the

particles and liquid are given in Table 1. We used solid particles which

have a diameter in the range of tens of microns to millimeters with various

densities in viscous liquid. For such conditions, the diffusivity (including hy-

drodynamic diffusion) of particles is obviously less significant compared to

the settling convection as observed in previous studies (Blanchette and Bush,

2005). The values of H in Table 1 are computed by using the numerically

determined wavelength λ from the linear-stability analysis for an immiscible
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two-fluid Rayleigh–Taylor problem with a narrow channel, as described in

Harada et al. (2012). The growth rate of the fastest growing perturbation

ntheo is also obtained from the linear-stability analysis.

The Lagrangian tracking model following the equilibrium approximation

(3) requires the Stokes number to be much smaller than 1 (Balachandar and

Eaton, 2010). In the present study, the flow field is laminar and the fluid

time scale used in the Stokes number is determined by particle settling, then

we defined the Stokes number as τp/(dp/U0). In the larger diameter cases,

we set the particle mass density close to the fluid density, so Stokes number

is kept much smaller than 1. The maximum Stokes number is O(10−3) in

case F.

The interface-tracking simulation uses neither the particle diameter dp

nor the number of particles np. Thus, the average particle interval l is not

defined, nor H. In this study, the particle mass density for interface-tracking

simulations is the same as used for cases A02 and A001 in Table 1. The ratio

H is given in terms of the unknown dp as

H =

(
π

6ϕ

) 1
3 dp
λ
, (12)

where λ can be calculated without knowing dp or np because of the continuum

assumption. Thus, H is proportional to dp under the conditions of constant

ϕ, ρp, and fluid properties.

Because of the nature of the diffusion equation, a larger viscosity leads to

a smaller time step. To shorten the simulation time, the viscosity is set to

two orders of magnitude less than that used in experiments. However, the

Reynolds number used in the simulation is still sufficiently small < O(10−1),

so only the timescale differs from experiments.
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The initial fluid and particle velocities are set to zero. For Lagrangian

tracking, the initial particle positions are random. For interface tracking, the

initial interface position is perturbed by a random amplitude akx,ky for each

integer wave numbers (kx, ky) in the width (x) and depth (y) according to

h(x, y) =
∑
kx

∑
ky

akx,ky sin
πkxx

W
sin

πkyy

D
. (13)

The sums run from −Nx+1 to Nx−1 for kx and from −Ny +1 to Ny −1 for

ky, where Nx and Ny are the number of grid points in the x and y directions,

respectively. The root mean square of the initial perturbation h is set to

2∆. For simplicity, interface tracking just treats the lower interface of the

suspension, so the upper half of the computational domain is simply filled

with suspension.

3.2. Verify region size used in weight function for Lagrangian simulation

Several detailed studies referenced in Bosse et al. (2005) discuss how to

interpolate the fluid velocity at the particle position, and an accurate inter-

polation scheme is given for the case in which particles experience turbulence

or undergo many-particle interactions. However, for the low number density

considered in the present study, only few-particle interactions are relevant, so

reference grid points are more important than the computational accuracy.

Simply speaking, the relative velocity used to compute the Stokes drag for a

single particle falling in a stationary liquid is not the velocity field dragged

by the target particle but the far field. Therefore, the fluid velocity at the

particle position should be determined by the velocity field not including

the effect of the target particle. However, taking only the far field is not

suitable for the case in which other particles are present close to the target
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particle. Thus, we use the velocity averaged over a wide region that contains

the target particle. To verify this approach, we simulate free-fall conditions

for single particles in a square region with same depth D=8 mm as used in

the final simulations. Three-diameter particles (0.05, 0.5, and 2.5 mm) are

tested with grid width ∆ = D/16=0.5 mm. We test two initial positions

for the particle center: one in which the particle falls through the cell center

and one in which the particle falls along the cell ridge. Figure 2 shows the

settling velocity error as a function of the size lint of the interpolation region.

The results show that a small region leads to a large error and a large region

leads to a small error. As seen in Fig. 2, the region size 2lint normalized

by the gird size ∆ and particle diameter dp [2lint/(∆dp)
1/2 > 10] reduces the

relative error to less than 10% regardless of the particle size and of the posi-

tion relative to computational cell. Thus, for all results reported hereafter,

lint = 5(∆dp)
1/2.

In the point force model, particle volume is not considered and its diam-

eter is presented only in the fluid resistance force. In the present condition,

particle Reynolds number is very low, so the point force model can approxi-

mately represent the Stokes flow around the sphere with considered diameter.

We confirmed that the flow field around the sphere can be approximately rep-

resented even with 5 times larger diameter than the grid size.

3.3. Dynamics and classification of concentration interface

Figures 3 and 4 show the dynamics of the concentration interface obtained

by Lagrangian tracking (interface tracking) for several different values of H

with ϕ = 0.02. For Lagrangian tracking, finger-shaped apparent interfaces

appear from A02 to D02, as is the case for interface tracking. The shapes
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of A02 in Figs. 3(a)–3(d) and Figs.4(a)–4(d) are very similar. The width

of the each figure corresponds to the vessel width W=100 mm. About five

fingers are found in W , so that the estimate λ ≃ 2.3D is almost realized. For

E02 and F02 in particular, individual motion of particles is superior to the

motion as continuum because of low number density, so the concentration

interface is not distinct. Each particle has a velocity relative to the local fluid

velocity so, without the fingering instability, the suspensions settle. Because

the present simulations use a viscosity two orders of magnitude less than

that used in experiments, entire suspension blocks unrelated to the fingering

instability can settle. For interface tracking, the pure fluid cannot penetrate

the suspension so such settling without volume exchange by interface wave

propagation is not reproduced. For ϕ=0.001 (results not shown), the results

follow a similar tendency as for ϕ=0.02.

With these visual results, the fingertips (local under most points) may

be tracked, so we can examine the dynamics of the average finger length

zf for several fingers under a single set of conditions. As examples, the

results for A02, F02 and interface tracking are shown in Fig.5. As seen in

Fig.5(a), the fingers grow exponentially during the initial stage and attain a

constant velocity in the later stage. We fit an exponential zf = z0 expnt to

the results in the region where the finger length is less than 2mm [as done by

Harada et al. (2012)] to obtain the growth rate n. Next, the linear function

zf = Ut + z1 is fit in the later stage to obtain the finger settling velocity U .

We can confirm that the finger growth rates and the finger settling speeds of

A02 and interface tracking are almost the same.

Following Harada et al. (2012), we use U and n to classify the results.
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The case of individual particle settling corresponds to U/U0 → 1 and fluid-

like settling does U/U0 ≫ 1. For fluid-like settling, the ratio of n to the

growth rate of the fastest growing perturbation ntheo (derived from the linear-

stability analysis for immiscible two-phase flow) goes to unity (i.e., n/ntheo →

1). For individual-particle settling, however, n/ntheo ̸= 1.

Figure 6(a) shows n/ntheo and U/U0 obtained by Lagrangian tracking

as a function of H, which is the average particle separation normalized by

the theoretical fastest-growing wavelength. For both ϕ=0.02 and ϕ=0.001,

the results for n/ntheo are close to unity for H . 0.03, whereas n/ntheo

grows exponentially as H increases for H > 0.03. The ratio U/U0 grows

exponentially with decreasing H for H . 0.1 and is near unity for H > 0.1.

For example, the settling velocity for a finger is 100 times larger than the

single-particle settling velocity for A02 (H=0.014).

In Fig. 6(b), n/ntheo and U/U0 obtained by interface tracking are shown as

lines for various values of the parameter dp. For constant ϕ, H is proportional

to dp as mentioned before and U0 is proportional to d2p, as found by using

Eq.(2) with constant density. Thus, U/U0 is assumed to be proportional

to H−2. In addition, ntheo is also independent of dp, so n/ntheo is constant

independent of H. By comparing Fig. 6(b) with Fig. 6(a), the tendencies

U/U0 ∝ H−2 and n/ntheo → 1 obtained by the continuum approach well

describe the data obtained by Lagrangian tracking for H . 0.03.

Figure 6(c) shows n/ntheo and U/U0 obtained by experimentally, which

is to be compared to the results for Lagrangian tracking [Fig. 6(a)] and

interface tracking [Fig. 6(b)]. The results for n/ntheo tend to unity for

H . 0.03 and grow exponentially with increasing H for H > 0.03. The
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results for U/U0 grow exponentially with decreasing H for H . 0.1 and

are near unity for H > 0.1. Thus, the Lagrangian-tracking simulations are

consistent with the experimental results. Note that these tendencies depend

on the volume fraction ϕ. The volume fraction used in the experiments range

from 0.01 to 0.05, so the present results for ϕ = 0.02 are in better agreement.

This agreement confirms that the present Lagrangian-tracking simulation,

which neglects particle volume and considers the feedback force only from

neighboring grid points, can reproduce the flow field produced by a swarm

of particles. The results obtained by interface tracking are consistent with

those obtained by Lagrangian tracking and by experiment for H . 0.03. As

is obvious, interface tracking, which is based on the continuum assumption,

cannot reproduce particle-like behavior for H > 0.03.

As discussed by Harada et al. (2013), when approximating fingers as disk-

shaped blobs, the settling velocity is calculated by balancing gravity and

drag forces according to U ∼ (ρsus − ρ)gλD/µ ∼ ϕ(ρp − ρ)gλ2/µ. Thus, by

considering U0 ∼ (ρp − ρ)gd2p/µ, we obtain the relation U/U0 ∼ ϕλ2/d2p =

(ϕ1/2dp/λ)
−2. The factor in brackets depends on the volume fraction ϕ and

corresponds to H multiplied by ϕ1/6. We then rearrange the results by us-

ing the modified dimensionless number Hmod = H/ϕ1/6, as shown in Fig.7.

We find that almost all results, regardless of whether they come from exper-

iments, Lagrangian-tracking simulations, or interface-tracking simulations,

give similar relationships for n/ntheo and U/U0 with respect to Hmod and

predict fluid-like settling for Hmod . 0.1. Finger speed cannot be obtained

before performing experiments or simulations, however, H can be estimated

in advance. The finger width needs to be determined for H, but in principle
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it can be estimated theoretically (Harada et al., 2012, 2013).

3.4. Stream envelope near concentration interface

Figure 8 shows the Lagrangian-tracking results for instantaneous stream-

lines on the channel center plane relative to the lower-most particle for

ϕ=0.02, which corresponds to the third column of Fig.3 (partially magni-

fied image near the lower-most particle). For A02 to C02 (corresponding to

H . 0.05, Hmod . 0.1), streamlines are found to perfectly avoid the particle

cloud that constitutes the fingertip. In such cases, the apparent concentra-

tion interface seals the surrounding fluid, so the suspension and the pure

fluid behaves like an immiscible two-phase flow. However, for E02 and F02

(corresponding to H & 0.3, Hmod & 0.5), fluid streams penetrate the particle

clouds, resulting in no distinct interface. For D02 (corresponding to H ∼ 0.1,

Hmod ∼ 0.2), fluid streams avoid the tip of the cloud, but penetrate a part

of the cloud, so the concentration interface is not distinct.

Nitsche and Batchelor (1997), Machu et al. (2001), and Metzger et al.

(2007) discussed the stream envelope around a suspension droplet (particle

cloud). For a low-Reynolds-number suspension droplet, the surrounding fluid

does not penetrate the particle cloud, and the could behaves like a droplet

of immiscible fluid with no interfacial tension. Such collective behavior of

particles and sealing of fluid can be expressed by swarms of Stokeslets as

discussed in Nitsche and Batchelor (1997), Machu et al. (2001), and Metzger

et al. (2007). Stokeslets represent the flow field induced by each particle, so

sealing by a concentration interface may be maintained by a sufficient number

of Stokeslets. However, a small number of Stokeslets cannot maintain sealing

because particles have a velocity relative to the border of the cloud. Thus,
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the resolution of the concentration interface discretized by point forces does

determine whether the behavior of particles is collective or individual. The

dimensionless number H or Hmod expresses the resolution of point forces

for the spatial-perturbation scale λ. In other words, the resolution of the

concentration interface expresses the important characteristics that can seal

the surrounding fluid by particle-induced flow, and Hmod can predict the

transition from particle-like to fluid-like behavior.

4. Conclusion

Lagrangian particle tracking and interface tracking models were used to

numerically simulate the collective and individual settling of particles sus-

pended in a liquid under gravitational instabilities. The numerical results

obtained from the two models are consistent with experimental results. Our

numerical results also reveal the sealing behavior of a concentration inter-

face that is due to flow generated by each particle. Finally, we propose a

modified dimensionless parameter to describe the transition from collective

to individual settling of suspended particles.
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Table 1: Physical properties of particles and fluid for Lagrangian-tracking simulations.

(a) ϕ=0.02 (ρ=972kg/m3, µ=19.44mPa s).

Case dp ρp np U0 λ ntheo H

[µm] [kg/m3] [-] [µm/s] [mm] [s−1] [-]

(A02) 50 2500 4767009 107 13.1 3.71 0.0140

(B02) 150 1050 176556 49.2 17.9 0.258 0.0309

(C02) 250 1050 38136 137 17.9 0.258 0.0515

(D02) 500 1050 4767 547 17.9 0.258 0.103

(E02) 1500 975 177 189 18.4 0.0102 0.299

(F02) 2500 973 38 175 18.5 0.00341 0.499

(b) ϕ=0.001 (fluid density and viscosity are same as (a)).

Case dp ρp np U0 λ ntheo H

[µm] [kg/m3] [-] [µm/s] [mm] [s−1] [-]

(A001) 20 6000 3724226 56.4 16.8 0.798 0.0119

(B001) 55 2000 179076 87.2 18.0 0.176 0.0305

(C001) 90 2000 40869 233 18.0 0.176 0.0499

(D001) 200 2000 3724 1150 18.0 0.176 0.111

(E001) 550 1050 179 661 18.4 0.0136 0.299

(F001) 900 1050 41 1780 18.4 0.0136 0.489
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Figure 1: Configuration of simulations. Upper part is filled with suspension for interface

tracking and pure fluid for Lagrangian particle tracking.
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Figure 2: Effect of region size lint used in weight function wint. U is the computed settling

velocity, U0 is the Stokes settling velocity of a single particle, ∆ is the grid width, and dp

is the particle diameter.
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(a) A02, t=1s (b) A02, t=2s (c) A02, t=3s (d) A02, t=4s

(e) B02, t=10s (f) B02, t=20s (g) B02, t=30s (h) B02, t=40s

(i) C02, t=10s (j) C02, t=20s (k) C02, t=30s (l) C02, t=40s

(m) D02, t=8s (n) D02, t=16s (o) D02, t=24s (p) D02, t=32s

(q) E02, t=40s (r) E02, t=80s (s) E02, t=120s (t) E02, t=160s

(u) F02, t=50s (v) F02, t=100s (w) F02, t=150s (x) F02, t=200s

Figure 3: Snapshots of fingertip instability or particle-like settling obtained by Lagrangian

tracking for ϕ=0.02. 26



(a) t=1s (b) t=2s (c) t=3s (d) t=4s

Figure 4: Snapshots of fingertip instability obtained by interface tracking for ϕ=0.02.
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Figure 5: Temporal evolution of average finger length. (a) A02 (ϕ = 0.02, H = 0.014), (b)

F02 (ϕ = 0.02, H = 0.5), (c) interface tracking (ϕ = 0.02).

28



0.1

1

10

100

1000

0.1

1

10

100

1000

0.001 0.01 0.1 1

U
/U

0

n/
n t

he
o

H

φ =0.02
φ =0.001

n/ntheo U/U0(a)

0.1

1

10

100

1000

0.1

1

10

100

1000

0.001 0.01 0.1 1

U
/U

0

n/
n t

he
o

H

n/ntheo

U/U0

φ =0.02
φ =0.001

Interface-track

(b)

0.1

1

10

100

1000

0.1

1

10

100

1000

0.001 0.01 0.1 1

U
/U

0

n/
n t

he
o

H

φ =0.02
φ =0.001
Exp.

n/ntheoU/U0

φ =0.02
φ =0.001

Interface-track

(c)

Figure 6: Classification of collective (n/ntheo → 1) or particle-like (U/U0 → 1) settling by

dimensionless parameter H. (a) Results of Lagrangian tracking, (b) results of interface-

tracking, and (c) results of both Lagrangian and interface tracking compared with exper-

imental results taken from Harada et al. (2012).

29



0.1

1

10

100

1000

0.1

1

10

100

1000

0.01 0.1 1

U
/U

0

n/
n t

he
o

Hmod=H/φ1/6

φ =0.02
φ =0.001
Exp.

n/ntheo U/U0

φ =0.02
φ =0.001

Interface-track

Figure 7: Classification of particle behavior as collective or individual settling based on

modified dimensionless parameterHmod. Experimental data taken were from Harada et al.

(2012).
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(a) A02, t=3s (b) B02, t=30s (c) C02, t=30s

(d) D02, t=24s (e) E02, t=120s (f) F02, t=150s

Figure 8: Instantaneous streamlines at the channel center plane relative to the lower-most

particle obtained by Lagrangian tracking for ϕ=0.02. Partly magnified images correspond

to third columns in Fig. 3.
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