

Low nitrous oxide production through nitrifier-denitrification in intermittent-feed highrate nitritation reactors

Su, Qingxian; Ma, Chun; Domingo-Felez, Carlos; Kiil, Anne Sofie; Thamdrup, Bo; Jensen, Marlene Mark; Smets, Barth F.

Published in: Water Research

Link to article, DOI: 10.1016/j.watres.2017.06.067

Publication date: 2017

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Su, Q., Ma, C., Domingo-Felez, C., Kiil, A. S., Thamdrup, B., Jensen, M. M., & Smets, B. F. (2017). Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors. *Water Research*, 123, 429-438. https://doi.org/10.1016/j.watres.2017.06.067

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Accepted Manuscript

Low nitrous oxide production through nitrifier-denitrification in intermittent-feed highrate nitritation reactors

Qingxian Su, Chun Ma, Carlos Domingo-Félez, Anne Sofie Kiil, Bo Thamdrup, Marlene Mark Jensen, Barth F. Smets

PII: S0043-1354(17)30528-6

DOI: 10.1016/j.watres.2017.06.067

Reference: WR 13022

To appear in: Water Research

Received Date: 7 February 2017

Revised Date: 24 May 2017

Accepted Date: 19 June 2017

Please cite this article as: Su, Q., Ma, C., Domingo-Félez, C., Kiil, A.S., Thamdrup, B., Jensen, M.M., Smets, B.F., Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors, *Water Research* (2017), doi: 10.1016/j.watres.2017.06.067.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Low nitrous oxide production through nitrifier-denitrification in

2 intermittent-feed high-rate nitritation reactors

- 3
- 4 Qingxian Su^a, Chun Ma^b, Carlos Domingo-Félez^a, Anne Sofie Kiil^a, Bo Thamdrup^b, Marlene
- 5 Mark Jensen^{a*}, Barth F. Smets^a
- 6 ^a Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby,
- 7 Denmark
- 8 ^bNordic Center for Earth Evolution and Institute of Biology, University of Southern Denmark, 5230
- 9 Odense M, Denmark
- 10 ** Corresponding author.*
- 11 E-mail address: <u>mmaj@env.dtu.dk</u>

12 Abstract

13 Nitrous oxide (N₂O) production from autotrophic nitrogen conversion processes, especially nitritation systems, can be significant, requires understanding and calls for mitigation. In this study, 14 15 the rates and pathways of N₂O production were quantified in two lab-scale sequencing batch 16 reactors operated with intermittent feeding and demonstrating long-term and high-rate nitritation. 17 The resulting reactor biomass was highly enriched in ammonia-oxidizing bacteria, and converted \sim 93 ± 14% of the oxidized ammonium to nitrite. The low DO set-point combined with intermittent 18 19 feeding was sufficient to maintain high nitritation efficiency and high nitritation rates at 20-26 °C over a period of ~300 days. Even at the high nitritation efficiencies, net N₂O production was low 20 (~2% of the oxidized ammonium). Net N₂O production rates transiently increased with a rise in pH 21 after each feeding, suggesting a potential effect of pH on N₂O production. In situ application of ¹⁵N 22 labeled substrates revealed nitrifier denitrification as the dominant pathway of N₂O production. Our 23 study highlights operational conditions that minimize N₂O emission from two-stage autotrophic 24 25 nitrogen removal systems. 26 27 28 29

30 Keywords: Nitrous oxide; Nitritation; Ammonia-oxidizing bacteria; Intermittent feeding; pH;
 31 Nitrifier denitrification

32 **1. Introduction**

Autotrophic nitrogen removal by combined partial nitritation (PN, aerobic ammonium (NH_4^+)) 33 oxidation to nitrite (NO₂⁻)) and anammox (anaerobic NH_4^+ oxidation with NO₂⁻ to dinitrogen gas 34 (N₂)) is being implemented as an energy and resource-efficient process compared to traditional 35 nitrification and heterotrophic denitrification process (Siegrist et al., 2008; Wett et al., 2013). 36 37 Autotrophic nitrogen removal can be achieved either in one- or two-stage systems. Although the two-stage process requires higher investment costs related to the construction, this configuration 38 39 allows for coordination and optimization of the individual conversion stages (Desloover et al., 2011). The PN-anammox process offers a promising alternative for nitrogen removal that meets 40 both lower energy consumption, mainly due to lower aeration need, and lower carbon footprint 41 42 emission without requirement for external carbon addition (Kartal et al., 2010). Nitritation can be achieved by manipulating operation parameters, such as low dissolved oxygen (DO) and high NH₄⁺ 43 44 loadings, that are favorable for ammonia-oxidizing bacteria (AOB) over nitrite-oxidizing bacteria (NOB) (Blackburne et al., 2008; Vadivelu et al., 2007). However, low DO and high NH_4^+ as well as 45 high accumulation of NO₂⁻ produced by AOB in two-stage systems may promote accumulation and 46 47 emission of nitrous oxide (N₂O) (Kampschreur et al., 2008; Kim et al., 2010; Mampaey et al., 2016; Peng et al., 2015, 2014; Tallec et al., 2006). 48

The ongoing accumulation of N_2O in the atmosphere (~0.3% per year) is of great concern because it contributes to global warming (N_2O has a ca. 300 times higher global warming potential than CO_2) and the destruction of stratospheric ozone (IPCC, 2013; Strokal and Kroeze, 2014). Indeed,

52 documented N₂O emissions of up to 17% of the NH_4^+ oxidized from both lab-scale and full-scale

53 PN reactors have been higher compared to measurements from conventional nitrification-

denitrification processes (Desloover et al., 2011; Gao et al., 2016; Kong et al., 2013; Lv et al., 2016;

55 Mampaey et al., 2016). The variation in N_2O emissions might be explained by the different

56	responses of N ₂ O production and consumption pathways to different operation strategies (e.g.
57	feeding and aeration pattern) and parameters (e.g. NH_4^+ , NO_2^- , DO and pH) (Burgess et al., 2002;
58	Domingo-Félez et al., 2014; Law et al., 2011; Rathnayake et al., 2015; Schneider et al., 2014).
59	There are two main pathways involved in N ₂ O produced by AOB: (a) the reduction of NO_2^- to N ₂ O
60	via nitric oxide (NO), known as nitrifier denitrification (ND) (Ishii et al., 2014; Kim et al., 2010;
61	Wrage et al., 2001) and (b) N_2O as a side product during incomplete oxidation of hydroxylamine
62	(NH ₂ OH) to NO ₂ ⁻ (Law et al., 2012; Poughon et al., 2001; Tallec et al., 2006), known as
63	hydroxylamine oxidation. Furthermore, denitrifying bacteria can be as important as AOB in the
64	production of N ₂ O under very low C/N conditions (Domingo-Félez et al., 2017). During
65	heterotrophic denitrification (HD), N_2O is an obligate intermediate and is produced during
66	incomplete denitrification. The exact biological pathways and environmental controls of N_2O
67	production in two-staged autotrophic nitrogen removal systems still remains to be quantified (Ishii
68	et al., 2014; Law et al., 2012; Terada et al., 2017). A better quantitative understanding of the
69	mechanisms for N ₂ O production is crucial to develop novel strategies or new designs to mitigate
70	N ₂ O.
71	The principle goal of this study was to investigate N ₂ O dynamics and determine N ₂ O production

72 pathways in two intermittently-fed lab-scale sequencing batch reactors (SBRs) with high nitritation

73 performance. This was achieved by N_2O online measurements and *in situ* applications of ¹⁵N

⁷⁴ labeled NH_4^+ or NO_2^- followed by monitoring of ¹⁵N labeled and unlabeled products. In addition,

the nitritation performance was assessed during the ~300 days of operation.

4

76 2. Materials and methods

77 **2.1. Setup and operation of sequencing batch reactors (SBRs)**

78 2.1.1 Reactor description and operation

Two SBRs (R1 and R2) with a working volume of 5L were used (Fig. S1, Support information). Air
supply was introduced by a bubble air diffuser and continuous mixing was provided with a
magnetic stirrer during the reaction and feeding phase. Air supply, mixing, and actuation of pumps
for fill and discharge were controlled by a programmable power strip EG-PM2-LAN (Gembird
Software Ltd., Almere, Netherlands).

R1and R2 were operated as duplicates for 121 days, stopped for 170 days, where the biomass was stored separately at 4 °C, and restarted for another 172 days. The operation period can be divided into two phases: phase 1 (day 0–121) and phase 2 (day 291–463). The NH₄⁺ and oxygen loading were the two manipulative variables to sustain a low NOB/AOB activity. To recover biomass activity after storage and maintain high NO₂⁻ accumulation, excess NH₄⁺ and oxygen limitation were set by stepwise increasing the ammonium loading rate (ALR) and air flow rate from 0.29 to 0.79 g N/L/d and 0.2 to 0.55 L/min, respectively (Table S1).

A 6-h working cycle was applied over the entire experiment. One cycle consisted of 320 min
reaction phase including five consecutive intervals of 1 minute feeding followed by a 63 minutes
inter-feed period, 30 min settling phase, 5 min decanting phase and 5 min idle phase. The
volumetric exchange ratio (VER) was 50%, resulting in a hydraulic retention time (HRT) of 12h.
The sludge retention time (SRT) was controlled at 20 days by wasting sludge at the end of reaction
phase. The reactors were operated at room temperature (20–26 °C) and without pH control.

5

97 2.1.2. Seed sludge and synthetic wastewater

- 98 The seeding sludge, originated from the return activated sludge stream at Mølleåværket WWTP
- 99 (Lyngby, Denmark), was pre-cultivated and then inoculated into two SBRs.
- 100 Ammonium bicarbonate (NH₄HCO₃) was the only nitrogen source in the synthetic wastewater
- 101 while NH₄HCO₃ and sodium bicarbonate (NaHCO₃) provided the inorganic carbon. The
- 102 composition of trace chemicals (van de Graaf et al., 1996) was: 169.7 mg/L KH₂PO4, 751.1 mg/L
- 103 MgSO4·7H₂O, 451.6 mg/L CaCl₂·2H₂O, 5 mg/L EDTA, 5 mg/L FeSO₄·7H₂O and trace element
- 104 solution of 1mL/L. The trace element solution contained 0.43 mg/L ZnSO₄·7 H₂O, 0.24mg/L
- 105 CoCl₂·6H₂O, 0.99mg/L MnCl₂·4H₂O, 0.25mg/L CuSO₄·5H₂O, 0.22mg/L NaMoO₄·2H₂O, 0.19mg/L
- 106 NiCl₂· $6H_2O$ and 0.21mg/L NaSeO₄· $10H_2O$.

107 **2.2.** N₂O measurement

- 108 Liquid phase N₂O was analyzed by a N₂O-R Clark-type microsensor (UNISENSE A/S, Århus,
- 109 Denmark) and data was logged every 30s. Off-gas N₂O concentration was measured during phase 2
- and logged on a minute basis (Teledyne API, San Diego, USA) to compare liquid and off-gas N₂O
- 111 dynamics. As the reactors were not completely gas-tight during the periodic off-gas N₂O
- 112 measurements, the liquid phase N_2O concentrations were used for the quantification of N_2O
- 113 emission rates.
- 114 Net N₂O production and emission rates were calculated from the following equations:
- 115 Instantaneous net N₂O production rate , $r_{N_2O_i} = \frac{\Delta N_2O_i}{\Delta t} + k_L a_{N_2O_i} \cdot N_2O_i$ Eq. 1
- 116 Daily averaged net N₂O production rate, $R_{N_2O} = \sum (r_{N_2O_i} \cdot \Delta t) \times 4 \frac{cycle}{day}$ Eq. 2
- 117 Where $r_{N_2O_i}$ is the instantaneous net N₂O production rate at time i, $\frac{\Delta N_2O_i}{\Delta t}$ is the differential term of 118 liquid concentration at time i, and $k_L a_{N_2O_i} \cdot N_2O_i$ is the stripping rate at time i, which equals the

119 emission rate. The N₂O volumetric mass transfer coefficient ($k_L a_{N_2O}$) was determined

120 experimentally at different volume/flow rates scenarios (Domingo-Félez et al., 2014) (Table S2).

121 The net N₂O produced per NH₄⁺oxidized ($\Delta N_2O/\Delta NH_4^+$, %) and the specific net N₂O production

122 rate (N₂OR, mg N/g VSS/d) were calculated from the daily averaged net N₂O production rate (Eq.

123 2).

124 **2.3. DNA extraction and qPCR**

Biomass samples were collected periodically from SBRs and centrifuged at 10,000 rpm for 5 min. 125 Pellets were stored at -80 °C until DNA extraction. DNA was extracted by FastDNA[™] SPIN Kit 126 127 for Soil (MP Biomedicals, Solon, OH, USA), according to the manufacturer's instructions. The quantity and quality of the extracted DNA was measured and checked by its 260/280 ratio with a 128 NanoDrop (ThermoFisher Scientific, Rockwood, TN, USA), and was stored at -20 °C until further 129 130 processing within a couple of weeks. qPCR was carried out on all the extracted DNA samples to determine the relative abundance of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria 131 (Nitrobacter NOB, Nitrospira NOB), anammox (AnAOB) and denitrifying bacteria, based on 132 appropriate 16S rRNA targets and functional genes. Details on the procedure can be found in 133 Terada et al. (2010). Primers and conditions used in various genes detection are listed in Table S3. 134 135 All samples, including control reactions without template DNAs, were measured in duplicates.

136 **2.4.** ¹⁵N additions and analysis

137 A ¹⁵N experiment was designed to identify the microbial sources of N_2O production during

operation of the nitritation SBRs (day 106 to 111). The ¹⁵N-labeled nitrogen compounds (>98% ¹⁵N;
Sigma-Aldrich) were added together with the second feed during the same cycle on different days
(Table S4).

7

The resulting ¹⁵N mole fractions of the nitrogen pools was 17-18% for ¹⁵NH₄⁺ and 11-13 % for 141 $^{15}NO_2$, as determined from the isotopic ^{15}N and total concentrations after additions. Reactor liquid 142 143 (12 ml) was sampled every 10 minutes after tracer additions until the fourth feed of the cycle. For isotopic analysis of N₂O and N₂, 3-mL and 6-ml Exetainer vials, respectively, prefilled with 100 µL 144 of 50% (w/v) ZnCl₂ to stop microbial activity, were filled completely and immediately screw-145 capped with butyl rubber septa. Previous experiments had shown that ZnCl₂ efficiently quenched N 146 transformations in this biomass (data not shown). The rest of the sample was filtered (0.22 µm) and 147 frozen immediately for later analyses of nutrients and isotopic composition of NH₄⁺, NO₂⁻ and 148 nitrate (NO_3^{-}). 149

Just before isotopic analysis of N₂O and N₂, 1 and 1.5 ml of water was removed with a syringe and 150 needle through the septum of the 3-mL and 6-mL Exetainer vials, respectively, while replacing the 151 volumes with helium. The isotopic composition and concentration of N₂O and N₂ were determined 152 using a gas chromatograph-isotope ratio mass spectrometer (Thermo Electron, Delta V advantage 153 system) by injecting 1-mL and 200-µL samples of headspace directly from the Exetainer vials 154 (Dalsgaard et al., 2012). The N-isotopic composition of NH_4^+ was analyzed after conversion to N_2 155 with hypobromite (Warembourg, 1993). $^{15}NO_2^{-1}$ was converted to N₂ with sulfamic acid (Füssel et 156 al., 2012), while ¹⁵NO₃⁻ was analyzed, after removal of any ¹⁵NO₂⁻ with sulfamic acid, by cadmium 157 reduction followed by conversion of the NO_2^- product to N_2 with sulfamic acid (McIlvin and 158 Altabet, 2005). 159

160 Rates of 15 N-labeled N₂O and N₂ production were calculated from the measured excess

161 concentrations of ${}^{14}N^{15}NO$, ${}^{15}N^{15}NO$, ${}^{14}N^{15}N$, and ${}^{15}N^{15}N$ and the k_La for N₂O and N₂, respectively, 162 similar to the calculations for bulk net N₂O production rate described above.

163 The total conversion of NH_4^+ and NO_2^- to the gaseous products, irrespective of the pathway, was

determined by division of the rate of ¹⁵N-labeled gas production ($^{15}N-N_2O = {}^{14}N^{15}NO + 2 x$

165 ¹⁵N¹⁵NO; ¹⁵N-N₂ = ¹⁴N¹⁵N + 2 x ¹⁵N¹⁵N) by the labeling fraction *F* of the substrate (
$$F_A = [^{15}NH_4^+]$$
 x
166 $[NH_4^+]^{-1}$ and $F_N = [^{15}NO_2^-]$ x $[NO_2^-]^{-1}$, e.g.:
167 Rate($NH_4^+ \rightarrow N_2O$) = Rate($^{15}NH_4^+ \rightarrow ^{15}N-N_2O$) × F_A^{-1} Eq. 3
168 Production of N₂O through denitrification in the ¹⁵NO₂⁻ experiments was calculated in two ways
169 (Eq. 4 and 5), both based on the principle of random nitrogen isotope pairing (Nielsen, 1992) and
170 resting on the assumption that denitrification is the only source of double-labeled products with
171 ¹⁵NO₂⁻. Here, Eq. 4 represents a rate based on NO₂⁻ in the bulk liquid only, with a known F_N , and
172 Eq.5 represents a situation where F_N at the site of reaction may differ from that in the bulk liquid
173 and is instead estimated from the ratio of ¹⁵N¹⁵NO production to ¹⁴N¹⁵NO production, R₄₆:
174 Denitrification_{N2O, bulk}= Rate(¹⁵N ¹⁵NO) × F_A^{-2} Eq. 4
175 Denitrification_{N2O, coupled}= Rate(¹⁵N ¹⁵NO) ×(2R₄₆×[1+2R₄₆]⁻¹)⁻² Eq. 5

176 2.5. Analytical methods

165

Liquid effluent samples were filtered through 0.45 µm pore size filters before nitrogen species 177 analysis. NH₄⁺ and NO₂⁻ were measured colorimetrically according to Bower and Holm-Hansen 178 179 (1980) and Grasshoff (1999) respectively, while NO₃⁻ was analyzed by autoanalyzer (AutoAnalyzer 3, SEAL Analytical) with the cadmium-reduction method (Armstrong et al., 1967; Grasshoff, 1999). 180 Reactor performance was described by computing the observed ammonium oxidizing rate (AOR, 181 182 mg N/L/d), nitrite accumulation rate (NiAR, mg N/L/d), nitrate accumulation rate (NaAR, mg N/L/d) (Eq. S2-4). Free ammonia (FA) and free nitrous acid (FNA) concentration were calculated 183 following Anthonisen et al. (1976) (Eq. S5-6). Mixed liquid suspended solids (MLSS) and mixed 184 185 liquor volatile suspended solids (MLVSS) were measured following standard methods (APHA, 1998). DO and pH were monitored continuously (WTW GmbH, Weilheim, Germany). 186

187 **3. Results**

188 **3.1. Reactor performance**

189 3.1.1. Nitritation performance

Both reactors were operated towards high nitritation performance, and displayed stable NH₄⁺ 190 191 removal at the end of phase 1 (day 78–121) and phase 2 (day 291–463) (Fig. 1). At the loading of 192 0.57 g N/L/d at the end of phase 1, the average ammonium oxidizing efficiency (AOR/ALR) was 83 \pm 12% (average \pm standard deviation) and 90 \pm 11% for R1 and R2, respectively. With stepwise 193 194 increases in loading from 0.29 to 0.79 g N/L/d during phase 2, the average AOR/ALR remained relatively stable at $86 \pm 11\%$ (R1) and $88 \pm 8\%$ (R2) during phase 2, except for a ~19% decline in 195 the final days of the reactors (Fig. 1). There was high NO_2^- accumulation at the end of phase 1 and 196 throughout phase 2, maintaining average nitrite accumulation efficiency (NiAR/AOR) of $92 \pm 17\%$ 197 and 93 \pm 14% in R1 and R2, respectively. NO₃⁻ accumulated at low concentrations throughout the 198 199 whole operation period (Fig. 1). Nitrate accumulation efficiency (NaAR/AOR) in R1 and R2 was maintained at $11 \pm 9\%$ and $14 \pm 8\%$ respectively, indicating low NOB activity. 200

201 3.1.2. In-cycle dynamics of nitrogen species, DO and pH

The reactors were operated with five intermittent feedings, without on-line pH control, and pH 202 slightly decreased from 7.85 to 7.55 within a cycle (Fig. 2). pH transiently increased after each 203 204 feeding due to the bicarbonate and phosphate content of the influent. During the inter-feed periods, pH decreased due to proton release during nitritation. DO concentrations were close to the limit of 205 quantification of 0.1 mg/L during the reaction phase (Fig. 2). NH_4^+ concentration increased at each 206 feeding while NO2⁻ concentration decreased due to dilution. Concentrations of FA and FNA varied 207 between 1.39 to 4.79 mg N/L and 0.005 to 0.013 mg N/L, respectively, reflecting the changes in 208 NH₄⁺ and NO₂⁻ concentrations at different pH (Fig. 2). During the inter-feed periods, AOR was 209 relatively constant with an average value of 0.49 ± 0.04 mg N/L/min (Fig. 2). 210

211 **3.2.** N₂O production

- 212 3.2.1. Overall N₂O production
- 213 During the end of phase 1, the average net N_2O produced per NH_4^+ oxidized ($\Delta N_2O/\Delta NH_4^+$) in R1
- and R2 was $0.6 \pm 0.2\%$ and $0.8 \pm 0.3\%$ respectively; while it was $2.0 \pm 1.0\%$ and $2.1 \pm 0.7\%$ during
- 215 phase 2 (Table 1). The liquid N₂O concentrations as well as $\Delta N_2O/\Delta NH_4^+$ increased during phase 2
- (Fig. 3 and Table 1) in two reactors. The differences in the specific net N_2O production rate (N_2OR)
- 217 between the two reactors were likely due to the differences in MLVSS concentrations. Furthermore,
- 218 each inter-feed period did not contribute equally to the total N₂O production of a cycle. N₂O gas
- escaping after feed 1, ranging between 23 to 41% in both reactors during two phases, was
- 220 considerable higher compared to the emissions following the other feeds (Table 1).

221 3.2.2. N₂O dynamics during intermittent feedings

222 The patterns of liquid N₂O concentration profiles over the reaction phase were very reproducible 223 during the whole period for both reactors (Fig. 2 and 3). In-cycle N₂O profiles had the following pattern: after the settling phase from the previous cycle, an initial maximum in N₂O concentration 224 occurred when the first feed initiated, after which the concentration declined until the next feeding; 225 another four smaller peaks in N₂O concentration were observed in the subsequent feedings. N₂O 226 concentration reached minimum values in the inter-feed periods but with concentrations higher than 227 the detection limit of the sensor. Thus, based on liquid N₂O concentrations there was always a 228 positive net production of N_2O in both reactors, with rates $(r_{N_2O_i})$ increasing after each feeding and 229 decreasing during inter-feed periods (Fig. 3). Off-gas N₂O profiles followed the same trends during 230 231 the reaction phase.

232 **3.3. Microbial community composition dynamics**

The optimization of the reactor operation during phase 1 caused clear shifts in the microbial 233 234 community, as indicated by qPCR analysis using relevant primers (Fig. 4). The microbial community composition was similar between the two reactors. The relative abundance of 235 Nitrobacter spp. decreased at the end of phase 1, where Nitrobacter spp. was 2–3 orders of 236 magnitude higher than *Nitrospira* spp. Both *Nitrobacter* spp. and *Nitrospira* spp remained very low 237 throughout phase 2. Both 16S rRNA gene and nxrA targeted NOB quantifications were consistent in 238 239 phase 2 (Fig. 4 and S2). The overall reduction in NOB relative abundance was mirrored by a significant increase in AOB numbers, as reflected by both the 16S rRNA gene and *amoA* targeted 240 quantifications (Fig. 4 and S2). AOB remained dominant in both reactors throughout the operation 241 242 period. The relative abundance of AnAOB, based on 16S rRNA gene quantification, was low but existent (0.96 \pm 0.01% and 1.94 \pm 0.01% in R1 and R2, respectively). The ratio of *nirS* plus *nirK* 243 over nosZ-targeted quantifications was far above 1 (Fig. S2). 244

245 **3.4.** N₂O production pathway

In incubations with ¹⁵N-labeled substrates, the label was transferred to both N₂O and N₂ within 2–3 246 minutes of addition, irrespective of whether ${}^{15}N$ was added as ${}^{15}NO_2^-$ or ${}^{15}NH_4^+$ (Fig. 5). The 247 dynamics of ¹⁵N-N₂O mirrored those of bulk N₂O, and N₂O was the dominating product in ¹⁵NO₂⁻ 248 incubations accounting for 57–58% of the labeled $N_2O + N_2$ in both feedings, while it only 249 accounted for 17–23% with ¹⁵NH₄⁺. The production of N₂ was also highly dynamic, showing an 250 even steeper rise after feeding than for N₂O. The production of ¹⁵N-N₂O from ¹⁵NO₂⁻ corresponded 251 to a total conversion of NO₂⁻ to N₂O of 5.7–9.9 μ g N/g VSS/min, which was not significantly 252 different from the total net N_2O production (Table 2), implying that NO_2^- was the main source of 253 N₂O in the incubations. 254

255	There was no detectable production of ${}^{15}\text{NH}_4^+$ in the incubations with ${}^{15}\text{NO}_2^-$ (data not shown),
256	which implies that all 15 N-N ₂ O and 15 N-N ₂ in these incubations was formed exclusively through
257	reductive pathways, i.e., not via dissimilatory nitrate/nitrite reduction to ammonium (DNRA) and
258	subsequent oxidation of NH_4^+ .
259	Indeed, the relative production of ${}^{14}N^{15}NO$ and ${}^{15}N^{15}NO$ from ${}^{15}NO_2^-$ (Fig. 5) was close to that
260	expected from denitrification with random isotope pairing (either heterotrophic or nitrifier
261	denitrification). Thus, the production of N_2O through denitrification (calculated by Eq. 4)
262	corresponded to 80% and 77% of total net N_2O production from NO_2^- (the NO_2^- -to- N_2O conversion
263	rates calculated by Eq. 3) on average for feed 2 and 3, respectively (Table 2). The remaining 20-
264	23% of NO ₂ ⁻ -derived N ₂ O corresponds to a surplus of ${}^{14}N^{15}NO$ relative to the prediction from
265	random isotope pairing from the bulk NO ₂ ⁻ pool, and therefore indicates pairing of N from this pool
266	with N from a second source of unlabeled N. The surplus of ¹⁴ N ¹⁵ NO may arise if the labeling
267	fraction of NO ₂ , F_N , in the immediate vicinity of the nitrite reductase enzymes is lower than the
268	bulk F_N value used for the calculations (Eq. 4), e.g., because of dilution with unlabeled NO ₂ ⁻ from
269	nitritation maintained by diffusional gradients either intracellularly or within microaggregates. This
270	is reflected in the N ₂ O production calculated by Eq. 5, which derives F_N at the site of NO ₂ ⁻
271	reduction from the relative production of ¹⁴ N ¹⁵ NO and ¹⁵ N ¹⁵ NO. Thus, assuming that all conversion
272	of NO_2^- to N_2O occurred through a denitrification pathway, total N_2O production was calculated
273	based on the relative production of ${}^{14}N{}^{15}NO$ and ${}^{15}N{}^{15}NO$ (Nielsen, 1992), yielding rates that
274	exceeded the NO_2^- -to- N_2O conversion rates by 24–31% (Table 2).
275	The production of N ₂ O from NH_4^+ , determined in incubations with ¹⁵ NH ₄ ⁺ showed very similar

The production of N₂O from NH₄⁺, determined in incubations with ¹³NH₄⁺ showed very similar temporal dynamics as N₂O production from NO₂⁻ (Fig. 5). After the 2nd feed, the production from NH₄⁺ corresponded, on average, to 42% of the production from NO₂⁻ (Table 2). This fraction increased to 58% after the 3rd feed, which is explained by the accumulation of ¹⁵NO₂⁻ and the

13

resulting increasing contribution of ¹⁵N₂O from denitrification, as also reflected in the higher 279 concentrations of ¹⁵N-N₂O reached after the 3rd feed relative to the 2nd (Fig. 5). The amount of ¹⁵N-280 N_2O produced from ${}^{15}NH_4^+$ via nitritation, mixing of the formed ${}^{15}NO_2^-$ with the bulk NO_2^- pool, 281 and subsequent denitrification, was estimated for each reactor based on the rates of N₂O production 282 determined in the ¹⁵NO₂⁻ incubations in the same reactor and the F_N values (data not shown) from 283 the ${}^{15}NH_4^+$ incubations (Eq. 3). These calculations indicated that 25% and 49% of N₂O production 284 determined with ¹⁵NH₄⁺ occurred via bulk NO₂⁻ after feed 2 and 3, respectively. The ¹⁵NH₄⁺-based 285 N₂O production that was not attributable to this route averaged 2.6 µg N/g VSS/min after both 286 feedings, corresponding to 25% of the combined N₂O production detected with ¹⁵NO₂⁻ and ¹⁵NH₄⁺ 287 (Table 2), and the sum of this rate and the production of N_2O from NO_2^- matched the estimated N_2O 288 production from denitrification closely (7.7 vs. 7.3 µg N/g VSS/min and 12.1 vs. 12.5 µg N/g 289 VSS/min for R1 and R2, respectively). The contribution of the hydroxylamine oxidation pathway to 290 N₂O production did *not* increase immediately after the addition of NH₄⁺, as the production ratio 291 between ¹⁵N¹⁵NO and ¹⁵N¹⁴NO did not change significantly over time after feed 2 and 3. Thus, the 292 $^{15}NO_2^{-1}$ and $^{15}NH_4^{+1}$ in combination support a denitrification pathway as the main and possibly sole 293 source of N₂O in this SBR system. 294

In the ¹⁵NO₂⁻ incubations, the relative abundance of single and double-labeled N₂ (¹⁴N¹⁵N and ¹⁵N¹⁵N) differed markedly from that of N₂O, with ¹⁵N¹⁵N accounting for $\leq 0.5\%$ of the labeled N₂ compared a contribution of ~5% from ¹⁵N¹⁵NO to labeled N₂O (Fig. 5). This pointed towards another N₂ source than denitrification. The total N₂ production rate from NO₂⁻ (Eq. 3) was 4.4 ± 0.9 and 6.4 ± 0.8 µg N/g VSS/min for R1 and R2, respectively. Substantially higher N₂ production rates were obtained for the ¹⁵NH₄⁺ than with ¹⁵NO₂⁻: 10.2 ± 3.5 and 21 ± 0.8 µg N/g VSS/min for R1 and R2, respectively. Correction of these rates for ¹⁵N-N₂ produced from the accumulating ¹⁵NO₂⁻

14

302 (performed similarly as for the N₂O production rates from ¹⁵NH₄⁺) only reduced these rates slightly 303 to 9.4 ± 3.5 and $19.7 \pm 1.5 \ \mu g N/g VSS/min$, respectively.

304

305 4. Discussion

4.1. Mechanisms to achieve high and stable nitritation performance

Two SBRs were operated for approximately 300 days with high NO₂⁻ accumulation and no significant production of NO₃⁻, which indicates that NOB were successfully outcompeted by AOB (Fig. 1). The suppression of NOB and enrichment of AOB was verified by an average AOB/NOB ratio of >200 at the end of phase 1 and during phase 2 (Fig. 4). Various parameters such as DO, FA, FNA, temperature and feeding strategy have been reported to affect the selective enrichment of AOB over NOB (Blackburne et al., 2008; Hellinga et al., 1998; Liu and Wang, 2014; Vadivelu et al., 2007; Yang et al., 2013).

Oxygen limitation is a critical factor to achieve and maintain high nitritation performance. AOB are 314 postulated to outcompete NOB at low DO concentrations due to the higher oxygen affinity of AOB 315 than NOB (Blackburne et al., 2008; Wiesmann, 1994). DO below 1.0 mg/L was previously reported 316 to inhibit the growth of NOB and instead enhance the growth of AOB, resulting nitrite 317 318 accumulation (Sinha and Annachhatre, 2007; Tokutomi, 2004). For instance, stable nitrite accumulation efficiency (NiAR/AOR) of 70% and 85% is achieved at DO of 0.1 mg/L and 0.5-1.0 319 mg/L, respectively (Gao et al., 2016; Guo et al., 2013). As the DO level in our two nitritation SBRs 320 321 was ≤ 0.1 mg/L, oxygen limitation is an important factor for NOB inhibition at the end of phase 1

- and throughout phase 2, where high nitritation efficiencies of $92 \pm 17\%$ (R1) and $93 \pm 14\%$ (R2)
- 323 were maintained (Fig. 1).

324 Among other factors, FA and FNA are commonly selected as the key parameters to achieve high nitritation because of the different impacts on AOB and NOB (Anthonisen et al., 1976; Brockmann 325 326 and Morgenroth, 2010; Vadivelu et al., 2007; Yamamoto et al., 2008). Many studies have reported FA and FNA concentrations that might inhibit NOB growth and trigger AOB proliferation; however, 327 the critical values reported in these studies were variable (Anthonisen et al., 1976; Bae et al., 2001; 328 Vadivelu et al., 2007). Regarding FA, NOB has been found to be inhibited at concentrations 329 ranging from 0.1 to 1 mg N/L, while AOB was inhibited at 10-150 mg N/L (Anthonisen et al., 330 331 1976). This agrees with a recent study by Vadivelu and coworkers (2007), where NOB activity was totally inhibited by 6.0 mg N/L and AOB activity was unaffected at up to 16 mg N/L. The increase 332 in FA concentration by a factor of ~5 from phase 1 I to phase 1 II and 2, where the FA 333 334 concentration was 3.1 ± 0.8 mg N/L, could be the reason for a decrease in nitrate accumulation, especially in R1 (Fig. 1 and 2). However, FA did not fully inhibit the activity of NOB at any time in 335 our study. Also, within the observed FA concentration, FA likely had no effect on the activity of 336 AOB. 337 It has been reported that NOB activity was inhibited by FNA at concentrations between 0.02 and 338 0.2 mg N/L (Hellinga et al., 1998; Vadivelu et al., 2007). Compared to these studies, FNA at 0.008 339

 $\pm 0.002 \text{ mg NO}_2^{-}\text{N/L}$ was too low to have a negative effect on NOB activity (Fig. 2). Throughout

the whole SBR operation period, AOR correlated positively with NO₂⁻ concentrations, reaching the

maximum (0.8 g N/L/d) at 323 mg N/L (Fig. S3). Hence, no evidence of NO_2^- inhibition was

343 obtained. The observed increase in AOR with increasing NO₂⁻ concentration agrees with a previous

study with mixed microbial communities, showing high ammonium oxidation to NO_2^- (150–160 mg

 $NO_2^{-}N/h/g VSS$) at NO_2^{-} concentrations up to 1000 mg N/L (Law et al., 2013). Nevertheless, the

346 calculated FNA concentrations in this study (ca. 0.008 mg HNO₂⁻-N/L) remain much below

reported inhibitor concentrations (FNA of 0.1 mg/L) (Hiatt and Grady, 2008).

Temperature is another parameter that can affect the relative competitiveness of AOB over NOB. NOB were outcompeted by AOB at moderate temperatures (20-26 °C), resulting in high nitritation efficiency from day 78 onwards (Fig. 1). This finding contrasts with the general assumption of high temperatures (30-35 °C) are needed for selective removal of NOB over AOB (Hellinga et al., 1998; Yang et al., 2007).

It is often difficult to maintain stable nitritation over the long-term period even in successfully 353 established nitritation systems (Bernet et al., 2001; Fux et al., 2004; Villaverde et al., 2000; Yang et 354 al., 2013). For instance, Villaverde and coworkers (2000) obtained high NiAR/AOR of 65% in 355 356 submerged nitrifying biofilters, however, after 6 months NOB became acclimated to high FA and NiAR/AOR decreased to 30%. Moreover, Bernet and coworkers (2001) observed a transition from 357 stable nitritation in a two-stage PN-anammox process for more than 100 days to complete 358 359 nitrification within 2 days caused by a transient increase of DO. Here, SBRs were operated for ~300 days with high nitritation efficiency and high AOB abundance accompanied by low NO₃⁻ 360 accumulation and low NOB abundance. We speculate that using intermittent feeding together with 361 low DO set-points successfully enabled long-term high nitritation performance in the two SBR 362 reactors. While long-term high-rate nitritation has not been reported yet in intermittently fed SBRs, 363 364 high nitrite accumulation (NiAR/AOR) of 85% and >95% was previously reported for 150 and 174 days, respectively, in step-feed A/O SBRs (Lemaire et al., 2008; Yang et al., 2007). Hence, low DO 365 control and intermittent feeding appear key operational strategies to obtain continuous NOB 366 suppression at suboptimal temperatures. 367

368 4.2. Low N₂O production

The net N₂O produced per NH₄⁺ oxidized (Δ N₂O/ Δ NH₄⁺) and the specific net N₂O production rate (N₂OR) of the two nitritation SBRs were compared to previously reported values together with the identification of reactor types, operation strategies, performance and AOB presence (Table S5). The

372 average net N₂O production in phase 2 increased to $2.0 \pm 1.0\%$ and $2.1 \pm 0.7\%$ of the NH₄⁺ oxidized in R1 and R2, respectively, while the average specific net N₂O production rate was 8.4 ± 3.5 and 373 374 10.2 ± 3.5 mg N/g VSS/d in R1 and R2, respectively (Table 1 and S5). The net N₂O production in both reactors corresponded well with the genetic potential for N₂O production, as the ratio of nirS 375 plus nirK over nosZ-targeted genes was far above 1 (Fig. S2). The higher N₂O production in phase 376 377 2 compared to phase 1 is puzzling as it cannot be explained by higher AOR (Table 1). We speculate 378 that the long-term operation under elevated NO_2^- may have selected for new microbes with higher 379 expression of the nitrifier-denitrification pathway or the cultured microbes adapted to higher NO₂, resulting in higher expression of the pathway, and with that higher N₂O production. This theory, 380 however, calls for deeper analysis of the microbial community than obtained with qPCR. 381 The N₂O production factors of ~2% are in the low range of previous reports for both lab-scale and 382 383 full-scale PN systems, ranging between 1–17% (Table S5). Our study is the first study to measure low N₂O emissions at very high nitritation efficiencies. Low DO (0.35 mg/L) and high NO₂⁻¹ 384 conditions (10 – 50 mg N/L) boost N₂O production (Peng et al., 2015, 2014). Measured N₂O 385 emissions are lower compared to other lab-scale PN SBRs operated under low DO and high NO₂⁻ 386 conditions (N₂O emissions of 17%) (Gao et al., 2016; Lv et al., 2016). With the intermittent feeding 387 388 strategy at low DO, we force relatively low ammonia oxidation rates (Fig. 2, Table 1), which has previously been shown to decrease N₂O emissions from autotrophic nitrogen removal systems 389 (Domingo-Félez et al., 2014; Law et al., 2011). Law and coworkers (2011) found that a decline in 390 feeding rate from 1 L/2.5 min to 1 L/25 min during the reaction phase lead to a substantial reduction 391 392 in N₂O production without affecting the nitritation performance. Instead of reducing the feeding rate, our nitritation reactors were operated with five intermittent feedings within a cycle. This step-feed 393 394 strategy has previously been suggested as an effective optimization approach to reduce N₂O

emissions from SBRs (Mavrovas, 2014; Yang et al., 2009, 2013). Therefore, we postulate that
 intermittent feeding is the cause for the low N₂O emission from high-performance nitritation system.

397 **4.3. Potential pH effect on in-cycle N₂O production dynamics**

Distinctive N₂O production profiles were observed within the representative cycles (Fig. 2 and 3). 398 399 The maximum net N₂O production and the subsequent decrease after the first feed has also been described in various studies (Ali et al., 2016; Itokawa et al., 2001; Kampschreur et al., 2008; 400 Mampaey et al., 2016; Rodriguez-Caballero and Pijuan, 2013). Rodriguez-Caballero and Pijuan 401 (2013) showed that 60% of the total N₂O production occurred during the settling phase in their lab-402 scale PN SBR, while 70% of the quantified N₂O emission was attributed to the anoxic N₂O 403 formation in a full-scale PN SHARON reactor (Mampaey et al., 2016). Tentative liquid N₂O 404 measurements indicated that N₂O accumulated during the non-aerated settling phase (data not 405 shown). Denitrification might be responsible for this N₂O accumulation during the settling phase, 406 407 which is then released at the onset of aeration (Itokawa et al., 2001). The genetic potential for N_2O production by denitrifiers was present through the high relative abundance of *nirS* (Fig. S2). 408 A potential effect of pH on N₂O production during the reaction phase was indicated by the 409 transiently increase in net N₂O production rates with the rise in pH after each feeding pulse (Fig. 2 410 411 and 3). There was no obvious changes in DO, and although NH_4^+ and FA increased transiently after each feeding, FA was always in excess compared to the K_m value of 0.0075 mg/L for AOB, and 412 413 therefore AOR remained unaffected (Fig. 2) (Hiatt and Grady, 2008). Thus, pH appears the only potential variable affecting in-cycle N₂O dynamics. Only few studies have been able to isolate the 414 effect of pH on N₂O production from the variations in FA and FNA, and the reported effect of pH 415 416 on N₂O production differ. In contrast to our results, Law and coworkers (2011) obtained highest 417 N₂OR and AOR at pH 8 in the investigated pH range of 6.0–8.5, independently from FA and FNA concentrations, suggesting that an increase in ammonium oxidation activity might promote N₂O 418

- 419 production. Oppositely, Rathnayake et al. (2015) observed highest N_2O emission at pH 7.5 in PN 420 granules, although AOR was unchanged between pH 6.5 and 8.5. Further research is needed to 421 resolve whether the pH effect on N_2O production is direct or indirect.
- 422 **4.4.** N₂O production pathway

The experiments with ¹⁵N labeled substrates point to nitrifier denitrification as the dominant source 423 of N₂O in the SBR nitritation systems. A denitrification-type process rather than a direct production 424 of N₂O from ammonium oxidation via hydroxylamine was demonstrated by more than 3 times 425 higher rates of N₂O production from NO₂⁻ than from NH₄⁺, when 15 NH₄⁺-derived rates were 426 corrected for accumulation of ${}^{15}NO_2^{-}$ (Table 2). Moreover, isotope pairing calculations showed that 427 NO_2^- during its reduction to N_2O was mixed with nitrogen from an unlabeled source. In the 428 nitritation-dominated system, NH_4^+ is the most obvious candidate, and indeed, the production rate 429 of N₂O from NH₄⁺ that did not go via bulk NO₂⁻ closely matched the difference between total and 430 431 bulk NO₂⁻-dependent denitrification. We therefore hypothesize that essentially all N₂O was produced through nitrifier-denitrification with part of the newly-formed NO₂⁻ shunted directly to 432 reduction either intracellullarly or within cellular aggregates before it could mix completely with 433 NO_2^- in the bulk liquid. Alternatively, the combination of N from NH_4^+ and NO_2^- could occur at the 434 level of NO if this compound is a free intermediate during ammonium oxidation (Stein, 2011). 435 The ¹⁵N-labeling technique in itself cannot distinguish nitrifier denitrification from heterotrophic 436 denitrification. However, several pieces of evidence point to the former process. Firstly, the 437 stimulation of N₂O production by each NH_4^+ feeding points to NH_4^+ dependence rather than 438 heterotrophy. Secondly, there is no convincing evidence for heterotrophic N_2 production: (a) The 439 440 rate of N₂O production exceeds the rate of N₂ production from NO₂⁻ whereas N₂O is generally a minor byproduct of heterotrophic denitrification (Betlach and Tiedje, 1981); (b) the dynamics of N₂ 441 and N₂O production are out of phase with the peak in N₂ preceding that of N₂O, where the opposite 442

would be expected during heterotrophic denitrification (e.g., Jensen et al., 2009), and (c) the very low ratio of ${}^{15}N{}^{15}N$ to ${}^{14}N{}^{15}N$, differing markedly from the ${}^{15}N{}^{15}NO{}^{14}N{}^{15}NO$ ratio in N₂O, suggests that N₂ production from NO₂⁻ is mainly due to another process, possibly anammox.

446 The complete dominance of nitrifier-denitrification as source of N_2O is in general agreement with

448 Stephenson, 2000; Kampschreur et al., 2008; Peng et al., 2015; Tallec et al., 2006). The high rates

the understanding that this process is favored by low DO and high NO₂⁻ levels (e.g., Colliver and

of N₂ production observed in the ${}^{15}NH_4^+$ incubations, relative to both N₂O production in the same

450 experiment and to N_2 production with ${}^{15}NO_2$, suggests an involvement of anammox. Only a small

451 part of the N₂ produced with ${}^{15}NH_4^+$ could be explained with oxidation to NO₂⁻ and subsequent

452 reduction, which means that NH_4^+ appeared to be converted directly from NH_4^+ to N_2 . As N_2

production has not been documented in aerobic ammonium oxidizers, this suggests the involvement 453 454 of anammox bacteria, which were indeed detected in the biomass (Fig. 4) in low abundance. As anammox represents a 1:1 pairing of N from NH₄⁺ and NO₂⁻, similar rates of N₂ production should, 455 however, be obtained with additions of ${}^{15}NH_4^+$ and ${}^{15}NO_2^-$ (van de Graaf et al., 1995), whereas we 456 observed ~2.5-fold higher production from ${}^{15}NH_4^+$ than from ${}^{15}NO_2^-$. Potential explanations for the 457 imbalance in rates are either a close coupling of nitritation and anammox, which would require a 458 physical association of anammox bacteria and ammonium oxidizers, or variation in anammox rates 459 between the two series of experiments, which were conducted 5 days apart. The resolution of these 460 issues is, however, beyond the scope of this study. 461

462 **5. Conclusion**

447

463 Two lab-scale intermittently-fed nitritation SBRs were operated to investigate N_2O dynamics and 464 identify N_2O production pathways.

465	• High nitritation performance with ~93 \pm 14% of the oxidized NH ₄ ⁺ converted to NO ₂ ⁻ was
466	achieved in intermittently-fed SBRs at 20-26°C for ~300 days.
467	• The averaged net N ₂ O production factor of 2.1 \pm 0.7% is in the low range: Operation with
468	intermittent feeding may be an effective approach to minimize N ₂ O emissions from nitritation
469	systems.
470	• Increased net N_2O production rate was observed with pH increase after each feeding. Further
471	investigations are required to identify the exact mechanisms of the pH effect on enzymes,
472	pathways and bacteria involved in N ₂ O production.
473	• Nitrifier denitrification was the dominant source of N_2O .
474	This study has demonstrated operational conditions (low dissolved oxygen and intermittent feeding)
475	that achieve high-rate and long-term nitritation under normal temperature, which could enlarge the
476	applicability of the nitritation process in WWTPs. The relatively low N ₂ O production at high
477	nitritation efficiencies reduces the growing concern of N2O production from autotrophic nitrogen
478	processes in WWTPs. The identification of nitrifier denitrification as the main pathway of N_2O
479	emissions will open up for more focused strategies to lower the N2O footprint even more in
480	nitritation systems.

481 Acknowledgements

The work has been funded in part by the China Scholarship Council, the Innovation Fund Denmark
(IFD) (Project LaGas, File No. 0603-00523B) and The Danish Council for Independent Research
Technology and Production Sciences (FTP) (Project N₂Oman, File No. 1335-00100B). The authors
thank Lene Kirstejn Jensen for the assistance during qPCR measurements.

486 **References**

487 Ali, M., Rathnayake, R.M.L.D., Zhang, L., Ishii, S., Kindaichi, T., Satoh, H., Toyoda, S., Yoshida, N., Okabe, S., 2016.

- 488 Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor. 489 Water Res. 102, 147-157. 490 Anthonisen, A., Loehr, R., Prakasam, T., Srinath, E., 1976. Inhibition of Nitrification by Ammonia and Nitrous Acid. J. 491 Water Pollut. Control Fed. 48, 835-852. 492 APHA, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health 493 Association, Washington, DC. 494 Armstrong, F.A.J., Stearns, C.R., Strickland, J.D.H., 1967. The measurement of upwelling and subsequent biological 495 process by means of the Technicon Autoanalyzer® and associated equipment. Deep Sea Res. Oceanogr. Abstr. 14, 496 381-389. 497 Bae, W., Baek, S., Chung, J., Lee, Y., 2001. Optimal operational factors for nitrite accumulation in batch reactors. 498 Biodegradation 12, 359-66. 499 Bernet, N., Dangcong, P., Delgenès, J.-P., Moletta, R., 2001. Nitrification at Low Oxygen Concentration in Biofilm 500 Reactor. J. Environ. Eng. 127, 266-271. 501 Betlach, M.R., Tiedje, J.M., 1981. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during 502 bacterial denitrification. Appl. Environ. Microbiol. 42, 1074–1084. 503 Blackburne, R., Yuan, Z., Keller, J., 2008. Partial nitrification to nitrite using low dissolved oxygen concentration as the 504 main selection factor. Biodegradation 19, 303-312. 505 Bower, C.E., Holm-Hansen, T., 1980. A Salicylate-Hypochlorite Method for Determining Ammonia in Seawater. Can. 506 J. Fish. Aquat. Sci. 37, 794–798. 507 Brockmann, D., Morgenroth, E., 2010. Evaluating operating conditions for outcompeting nitrite oxidizers and 508 maintaining partial nitrification in biofilm systems using biofilm modeling and Monte Carlo filtering. Water Res. 509 44, 1995-2009. 510 Burgess, J.E., Colliver, B.B., Stuetz, R.M., Stephenson, T., 2002. Dinitrogen oxide production by a mixed culture of 511 nitrifying bacteria during ammonia shock loading and aeration failure. J. Ind. Microbiol. Biotechnol. 29, 309-313. 512 Colliver, B.B., Stephenson, T., 2000. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. 513 Biotechnol. Adv. 18, 219-232.
- 514 Dalsgaard, T., Thamdrup, B., Farías, L., Revsbech, N.P., 2012. Anammox and denitrification in the oxygen minimum
 515 zone of the eastern South Pacific, Limnol. Oceanogr. 57, 1331–1346.
- 516 Desloover, J., De Clippeleir, H., Boeckx, P., Du Laing, G., Colsen, J., Verstraete, W., Vlaeminck, S.E., 2011. Floc517 based sequential partial nitritation and anammox at full scale with contrasting N2O emissions. Water Res. 45,
 518 2811–2821.
- Domingo-Félez, C., Mutlu, A.G., Jensen, M.M., Smets, B.F., 2014. Aeration strategies to mitigate nitrous oxide
 emissions from single-stage nitritation/anammox reactors. Environ. Sci. Technol. 48, 8679–8687.
- Domingo-Félez, C., Pellicer-Nàcher, C., Petersen, M.S., Jensen, M.M., Plósz, B.G., Smets, B.F., 2017. Heterotrophs are
 key contributors to nitrous oxide production in activated sludge under low C-to-N ratios during nitrification-Batch
 experiments and modeling. Biotechnol. Bioeng. 114, 132–140.
- Fux, C., Huang, D., Monti, A., Siegrist, H., 2004. Difficulties in maintaining long-term partial nitritation of ammonium rich sludge digester liquids in a moving-bed biofilm reactor (MBBR). Water Sci. Technol. 49, 53–60.
- 526 Füssel, J., Lam, P., Lavik, G., Jensen, M.M., Holtappels, M., Günter, M., Kuypers, M.M., 2012. Nitrite oxidation in the

- 527 Namibian oxygen minimum zone. ISME J. 6, 1200–1209.
- Gao, K., Zhao, J., Ge, G., Ding, X., Wang, S., Li, X., Yu, Y., 2016. Effect of Ammonium Concentration on N2O
 Emission During Autotrophic Nitritation Under Oxygen-Limited Conditions. Environ. Eng. Sci. 0, 1–7.
- 530 Grasshoff, K., 1999. Methods of Seawater Analysis, 3rd ed. Wiley-VCH Verlag GmbH, Weinheim.
- Guo, J., Peng, Y., Yang, X., Gao, C., Wang, S., 2013. Combination process of limited filamentous bulking and nitrogen
 removal via nitrite for enhancing nitrogen removal and reducing aeration requirements. Chemosphere 91, 68–75.
- Hellinga, C., Schellen, A.A.J.C., Mulder, J.W., Van Loosdrecht, M.C.M., Heijnen, J.J., 1998. The SHARON process:
 An innovative method for nitrogen removal from ammonium-rich waste water. Water Sci. Technol. 37, 135–142.
- Hiatt, W.C., Grady, C.P.L., 2008. An Updated Process Model for Carbon Oxidation, Nitrification, and Denitrification.
 Water Environ. Res. 80, 2145–2156.
- 537 IPCC, 2013. Climate Change 2013: The Physical Science Basis, Cambridge University Press. Cambridge, United
 538 Kingdom and New York, NY, USA.
- 539 Ishii, S., Song, Y., Rathnayake, L., Tumendelger, A., Satoh, H., Toyoda, S., Yoshida, N., Okabe, S., 2014.
- 540 Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules. Environ. Microbiol.
 541 16, 3168–3180.
- Itokawa, H., Hanaki, K., Matsuo, T., 2001. Nitrous oxide production in high-loading biological nitrogen removal
 process under low COD/N ratio condition. Water Res. 35, 657–664.
- Jensen, M.M., Petersen, J., Dalsgaard, T., Thamdrup, B., 2009. Pathways, rates, and regulation of N2 production in the
 chemocline of an anoxic basin, Mariager Fjord, Denmark. Mar. Chem. 113, 102–113.
- Kampschreur, M.J., Tan, N.C.G., Kleerebezem, R., Picioreanu, C., Jetten, M.S.M., Van Loosdrecht, M.C.M., 2008.
 Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture. Environ. Sci. Technol.
 42, 429–435.
- Kartal, B., Kuenen, J.G., van Loosdrecht, M.C.M., 2010. Sewage Treatment with Anammox. Science (80-.). 328, 702–
 703.
- Kim, S.W., Miyahara, M., Fushinobu, S., Wakagi, T., Shoun, H., 2010. Nitrous oxide emission from nitrifying activated
 sludge dependent on denitrification by ammonia-oxidizing bacteria. Bioresour. Technol. 101, 3958–3963.
- Kong, Q., Liang, S., Zhang, J., Xie, H., Miao, M., Tian, L., 2013. N2O emission in a partial nitrification system:
 Dynamic emission characteristics and the ammonium-oxidizing bacteria community. Bioresour. Technol. 127,
 400–406.
- Law, Y., Lant, P., Yuan, Z., 2013. The confounding effect of nitrite on N2O production by an enriched ammonia oxidizing culture. Environ. Sci. Technol. 47, 7186–7194.
- Law, Y., Lant, P., Yuan, Z., 2011. The effect of pH on N2O production under aerobic conditions in a partial nitritation
 system. Water Res. 45, 5934–5944.
- Law, Y., Ye, L., Pan, Y., Yuan, Z., 2012. Nitrous oxide emissions from wastewater treatment processes. Philos. Trans.
 R. Soc. B Biol. Sci. 367, 1265–1277.
- Lemaire, R., Marcelino, M., Yuan, Z., 2008. Achieving the nitrite pathway using aeration phase length control and step feed in an SBR removing nutrients from abattoir wastewater. Biotechnol. Bioeng. 100, 1228–1236.
- 564 Liu, G., Wang, J., 2014. Role of Solids Retention Time on Complete Nitrification: Mechanistic Understanding and
- 565 Modeling. J. Environ. Eng. 140, 48–56.

- Lv, Y., Ju, K., Wang, L., Chen, X., Miao, R., Zhang, X., 2016. Effect of pH on nitrous oxide production and emissions
 from a partial nitritation reactor under oxygen-limited conditions. Process Biochem. 51, 765–771.
- Mampaey, K.E., De Kreuk, M.K., van Dongen, U.G.J.M., van Loosdrecht, M.C.M., Volcke, E.I.P., 2016. Identifying
 N2O formation and emissions from a full-scale partial nitritation reactor. Water Res. 88, 575–585.
- Mavrovas, I., 2014. "GraNiti SBR" Start-up and Operation of a Granular Nitritatiing Sequencing Batch Reactor.
 Technical University of Denmark.
- McIlvin, M.R., Altabet, M.A., 2005. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen
 isotopic analysis in freshwater and seawater. Anal Chem 77, 5589–5595.
- 574 Nielsen, L., 1992. Denitrification in sediment deermined from nitrogen isotope pairing technique. FEMS Microbiol.
 575 Lett. 86, 357–362.
- Peng, L., Ni, B.-J., Ye, L., Yuan, Z., 2015. The combined effect of dissolved oxygen and nitrite on N2O production by
 ammonia oxidizing bacteria in an enriched nitrifying sludge. Water Res. 73, 29–36.
- Peng, L., Ni, B.J., Erler, D., Ye, L., Yuan, Z., 2014. The effect of dissolved oxygen on N2O production by ammoniaoxidizing bacteria in an enriched nitrifying sludge. Water Res. 66, 12–21.
- Poughon, L., Dussap, C.-G., Gros, J.-B., 2001. Energy model and metabolic flux analysis for autotrophic nitrifiers.
 Biotechnol. Bioeng. 72, 416–433.
- Rathnayake, R.M.L.D., Oshiki, M., Ishii, S., Segawa, T., Satoh, H., Okabe, S., 2015. Effects of dissolved oxygen and
 pH on nitrous oxide production rates in autotrophic partial nitrification granules. Bioresour. Technol. 197, 15–22.
- Rodriguez-Caballero, A., Pijuan, M., 2013. N2O and NO emissions from a partial nitrification sequencing batch reactor:
 Exploring dynamics, sources and minimization mechanisms. Water Res. 47, 3131–3140.
- Schneider, Y., Beier, M., Rosenwinkel, K.-H., 2014. Influence of operating conditions on nitrous oxide formation
 during nitritation and nitrification. Environ. Sci. Pollut. Res. Int. 21, 12099–12108.
- Siegrist, H., Salzgeber, D., Eugster, J., Joss, A., 2008. Anammox brings WWTP closer to energy autarky due to
 increased biogas production and reduced aeration energy for N-removal. Water Sci. Technol. 57, 383.
- Sinha, B., Annachhatre, A., 2007. Assessment of partial nitrification reactor performance through microbial population
 shift using quinone profile, FISH and SEM. Bioresour. Technol. 98, 3602–3610.
- 592 Stein, L.Y., 2011. Surveying N2O-Producing Pathways in Bacteria. Methods Enzymol. 486, 131–152.
- Strokal, M., Kroeze, C., 2014. Nitrous oxide (N2O) emissions from human waste in 1970-2050. Curr. Opin. Environ.
 Sustain. 9–10, 108–121.
- Tallec, G., Garnier, J., Billen, G., Gousailles, M., 2006. Nitrous oxide emissions from secondary activated sludge in
 nitrifying conditions of urban wastewater treatment plants: Effect of oxygenation level. Water Res. 40, 2972–
 2980.
- Terada, A., Lackner, S., Kristensen, K., Smets, B.F., 2010. Inoculum effects on community composition and nitritation
 performance of autotrophic nitrifying biofilm reactors with counter-diffusion geometry. Environ. Microbiol. 12,
 2858–2872.
- Terada, A., Sugawara, S., Hojo, K., Takeuchi, Y., Riya, S., Harper, W.F., Yamamoto, T., Kuroiwa, M., Isobe, K.,
- 602Katsuyama, C., Suwa, Y., Koba, K., Hosomi, M., 2017. Hybrid Nitrous Oxide Production from a Partial
- Nitrifying Bioreactor: Hydroxylamine Interactions with Nitrite. Environ. Sci. Technol. 51, 2748–2756.
- Tokutomi, T., 2004. Operation of a nitrite-type airlift reactor at low DO concentration. Water Sci. Technol. 49, 81–88.

- Vadivelu, V.M., Keller, J., Yuan, Z., 2007. Free ammonia and free nitrous acid inhibition on the anabolic and catabolic
 processes of Nitrosomonas and Nitrobacter. Water Sci. Technol. 56, 89–97.
- van de Graaf, A.A., Bruijn, P. de, Robertson, L.A., Jetten, M.S.M., Kuenen, J.G., 1996. Autotrophic growth of
 anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142, 2187–2196.
- van de Graaf, A.A. van de, Mulder, A., Bruijn, P. de, Jetten, M.S.M., Robertson, L.A., Kuenen, J.G., 1995. Anaerobic
 oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol. 61, 1246–1251.
- Villaverde, S., Fdz-Polanco, F., García, P.A., 2000. Nitrifying biofilm acclimation to free ammonia in submerged
 biofilters. Start-up influence. Water Res. 34, 602–610.
- Wang, X.-H., Jiang, L.-X., Shi, Y.-J., Gao, M.-M., Yang, S., Wang, S.-G., 2012. Effects of step-feed on granulation
 processes and nitrogen removal performances of partial nitrifying granules. Bioresour. Technol. 123, 375–381.
- Warembourg, F.R., 1993. Nitrogen Fixation in Soil and Plant Systems, in: Knowles, R., Henry, B. (Eds.), Nitrogen
 Isotope Techniques. Academic Press, New York, pp. 127–155.
- Wett, B., Omari, A., Podmirseg, S.M., Han, M., Akintayo, O., Gómez Brandón, M., Murthy, S., Bott, C., Hell, M.,
 Takács, I., Nyhuis, G., O'Shaughnessy, M., 2013. Going for mainstream deammonification from bench to full
 scale for maximized resource efficiency. Water Sci. Technol. 68, 283.
- 620 Wiesmann, U., 1994. Biological nitrogen removal from wastewater. Adv. Biochem. Eng. Biotechnol. 51, 113–154.
- Wrage, N., Velthof, G.L., Van Beusichem, M.L., Oenema, O., 2001. Role of nitrifier denitrification in the production of
 nitrous oxide. Soil Biol. Biochem. 33, 1723–1732.
- Yamamoto, T., Takaki, K., Koyama, T., Furukawa, K., 2008. Long-term stability of partial nitritation of swine
 wastewater digester liquor and its subsequent treatment by Anammox. Bioresour. Technol. 99, 6419–6425.
- Yang, Q., Liu, X., Peng, C., Wang, S., Sun, H., Peng, Y., 2009. N2O production during nitrogen removal via nitrite
 from domestic wastewater: Main sources and control method. Environ. Sci. Technol. 43, 9400–9406.
- Yang, Q., Peng, Y., Liu, X., Zeng, W., Mino, T., Satoh, H., 2007. Nitrogen Removal via Nitrite from Municipal
 Wastewater at Low Temperatures using Real-Time Control to Optimize Nitrifying Communities. Environ. Sci.
 Technol. 41, 8159–8164.
- Yang, S., Gao, M.M., Liang, S., Wang, S.G., Wang, X.H., 2013. Effects of step-feed on long-term performances and
 N2O emissions of partial nitrifying granules. Bioresour. Technol. 143, 682–685.
- 632

Table 1. Overview of AOR, N₂OR and $\Delta N_2O/\Delta NH_4^+$ in R1 and R2 during phase 1 and 2. The net N₂O produced during each feed is stated as the percentage of total net N₂O production during the entire cycle.

		R1		R2			
	Phase 1	Phase 2	Phase 1	Phase 2			
	(Day 106–112)	(Day 395–451)	(Day 106–112)	(Day 397–463)			
AOR (g N/L/d)	0.5 ± 0.05	0.60 ± 0.05	0.5 ± 0.02	0.76 ± 0.06			
AOR (g N/g VSS/d)	1.04 ± 0.11	0.46 ± 0.09	1.78 ± 0.08	0.5 ± 0.02			
N ₂ OR (mg N/g VSS/d)	5.9 ± 1.8	8.4 ± 3.5	16.0 ± 5.9	10.2 ± 3.5			
$\Delta N_2 O / \Delta N H_4^+ (\%)$	0.6 ± 0.2	2.0 ± 1.0	0.8 ± 0.3	2.1 ± 0.7			
Feed 1 (%)	23 ± 5	41 ± 9	30 ± 5	27 ± 5			
Feed 2 (%)	22 ± 1	14 ± 2	21 ± 2	17 ± 2			
Feed 3 (%)	19 ± 1	15 ± 2	18 ± 2	18 ± 2			
Feed 4 (%)	17 ± 2	16 ± 2	16 ± 2	19 ± 1			
Feed 5 (%)	18 ± 3	15 ± 4	15 ± 2	21 ± 5			
# cycles	n=22	n=23	n=22	n=20			

Table 2. Summary of net N₂O production rates during the 15 N experiment (µg N/g VSS/min). Bulk N₂O production was based on liquid N₂O concentrations, measured with microsensors, while N₂O source partitioning is based on isotope additions

R1			R2					
	¹⁵ NO ₂ ⁻ additions				¹⁵ NO ₂ ⁻ additions			
Days of operation	1	10	11	11 11		0	1	11
	Feed 2	Feed 3	Feed 2	Feed 3	Feed 2	Feed 3	Feed 2	Feed 3
Bulk N2O production rate	4.7	4.7	6.9	7.1	12	13	10	9.3
N_2O production rate from NO_2^- (Eq. 3)	5.7	6.9	6.8	5.8	9.4	8.1	9.9	8.7
N_2O production from bulk NO_2^- through ND (Eq. 4)	4.9	6.2	6.2	4.6	6.6	5.1	7.3	6.5
Total N ₂ O production through ND (Eq. 5)	6.7	7.6	7.4	7.4	13	13	13	11
		$^{15}\mathrm{NH_4^+}$ additions				$^{15}\mathrm{NH_4^+}\mathrm{a}$	additions	
Days of operation	1	06	1()7	10	6	1	07
	Feed 2	Feed 3	Feed 2	Feed 3	Feed 2	Feed 3	Feed 2	Feed 3
Bulk N ₂ O production rate	6.1	5.0	5.5	5.3	13	14	11	13
N_2O production from NH_4^+ (Eq. 3)	2.1	3.6	1.9	3.1	5.2	6.7	4.9	6.4
N_2O production via bulk NO_2^-	0.49	1.8	0.70	1.8	0.82	2.4	1.5	3.4
N ₂ O production not via bulk NO ₂	1.6	1.8	1.2	1.3	4.4	4.3	3.4	3.0

Fig. 1. Nitritation performance in R1 (A, C) and R2 (B, D) throughout the operational period. (A, B) Nitrogen concentrations (ammonium, nitrite and nitrate in effluent, ammonium in influent). (C, D) Nitrogen conversion efficiency (ammonium oxidizing efficiency (AOR/ALR), nitrite accumulation efficiency (NiAR/AOR), nitrate accumulation efficiency (NaAR/AOR)). The break at the X-axis represents a period of 170 days, when the reactors were stopped and biomass was stored at 4 °C.

Fig. 2. In-cycle profiles of nitrogen species, pH, DO and N₂O in R1 (day 397). (A) Liquid N₂O concentrations and net N₂O production rates. (B, C) Bulk liquid nitrogen species (NO₂⁻ and NH₄⁺), calculated free nitrous acid (FNA), free ammonia (FA) and ammonium oxidizing rates (AORs). (D) pH and DO.

Fig. 3. (A) Profiles of liquid N_2O concentrations in one cycle in R2 on day 398, 421 and 463. (B) Profiles of liquid and off-gas N_2O concentrations and calculated net N_2O production rates in one cycle in R2 on day 463.

Fig. 4. Relative abundances of AOB, NOB, AnAOB and other bacteria in R1 and R2 over time based on qPCR of 16S rRNA genes. Error bars indicate standard deviations of duplicate measurements.

Fig. 5. Plots of bulk liquid N₂O concentrations versus time during the reaction phase of one cycle (upper panels) and isotopically labeled N₂O and N₂ concentrations versus time for feed 2 and 3 (lower panels) in Reactor 1. $^{15}NO_2^{-1}$ spikes were performed at 111 days of operation (A) and $^{15}NH_4^{+1}$ spikes at 107 days of operation (B).

Highlights

- Long-term high nitritation performance was achieved in intermittently-fed SBRs.
- Net N_2O production was, on average, 2.1% of the oxidized ammonium.
- Intermittent feeding appears an effective approach to mitigate N_2O emission.
- pH has a potential stimulatory effect on N_2O production.
- Nitrifier denitrification was the dominant source of N₂O production.

CER AL