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Abstract—In the future, mixed AC and DC grids, spanning
multiple areas operated by different transmission system opera-
tors (TSO), are expected to offer the necessary controllability for
integrating large amounts of intermittent renewable generation.
This is facilitated by high voltage direct current transmission
based on voltage source converter technology that can offer
recourse actions in the form of preventive and corrective control
of both active and reactive power. Market-clearing procedures,
based on optimal power flow algorithms, need to be revised to ac-
count for DC transmission, flexibility and privacy requirements.
To this end, we propose a decentralized two-stage stochastic
market-clearing algorithm that incorporates meshed DC grids
and allows the sharing of flexibility resources between areas.
The benefit of this approach lies in its pricing mechanism, used
for coordinating the different area subproblems and requiring
only a moderate exchange of information while ensuring system-
wide optimality. Case studies are presented to illustrate the
methodology and to demonstrated the benefits of additional
controllability provided by DC grids.

Index Terms—Decomposition, multi-area optimal power flow,
multi-terminal HVDC, stochastic programming.

NOMENCLATURE

A. Indices and sets

G Set of generators.
D Set of demand.
N Set of nodes.
S Set of wind power scenarios.
Γ Set of external lines (i.e. tie-lines).
A Area index.
AA Index for neighboring areas.
AC Index for terms belonging to AC grid.
DC Index for terms belonging to DC grid.
c Converter index.
g Generator index.
d Load/demand index.
l Line index.
n,m Node indices.
s Scenario index.
v Iteration index.
w Wind generator index.

B. Parameters

cg Generator cost function.
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cRU
g Cost of unit g for providing up-reserve capacity

[e/MWh].
cRD
g Cost of unit g for providing down-reserve capacity

[e/MWh].
I Incidence matrix [-].
pws Actual wind power production in scenario s

[MW].
rl Resistance of DC line l [p.u.].
xl Reactance of AC line l [p.u.].
V LOL Value of lost load [e/MWh].
πs Probability of scenario s [-].

C. Variables

Fl Day-ahead flow on intra-area lines [MW].
Pc Day-ahead converter power [MW].
Pg Day-ahead conventional generation [MW].
Pd Demand [MW].
Pw Day-ahead wind power production [MW].
Tl Day-ahead flow on tie-lines [MW].
Un Day-ahead voltage magnitude at DC node n [p.u.].
δn Day-ahead voltage angle at AC node n [rad].
fls Balancing flow on intra-area lines during s [MW].
pcs Balancing converter power during s [MW].
pshed
ds Balancing converter power during s [MW].

pspill
ws Wind spillage during s [MW].
rUgs Deployed up-reserve capacity during s [MW].
rDgs Deployed down-reserve capacity during s [MW].
tls Balancing flow on tie-lines during s [MW].
uns Balancing voltage magnitude at DC node n during s

[p.u.].
θns Balancing voltage angle at AC node n during s [rad].
µl Day-ahead power export price on tie-line l [e/MWh].
νls Balancing power export price on tie-line l during s

[e/MWh].

I. INTRODUCTION

The large scale integration of renewable energy sources
(RES) has introduced significant uncertainties in power system
planning and operation. This calls for flexibility and market
setups that explicitly account for fluctuating and partially
predictable generation [1]. In the future, in Europe, China,
and the US, mixed AC and DC grids, spanning multiple
areas controlled by different transmission system operators



(TSO), are expected to offer the necessary controllability for
integrating large amounts of RES. High voltage direct current
transmission based on voltage source converter technology
(VSC-HVDC) has significant benefits compared to AC and
conventional HVDC technology. It can offer recourse actions,
in the form of preventive and corrective control, and enables
the formation of meshed HVDC grids which are very likely
to evolve from already existing point-to-point connections [2].

To this end, optimal power flow algorithms (OPF), used for
clearing electricity markets, need to be revised in order to (a)
optimally coordinate mixed AC and DC grids in a multi-area
setting, (b) avoid the disclosure of sensitive intra-area data,
(c) incorporate recourse actions offered by DC grids and (d)
provide a market for reserve capacity. Ideally, this coordination
would be done by a central entity with access to all data, but
the restriction imposed by (b) calls for methods which decom-
pose the OPF by area. This decentralization can be done by
decomposition techniques that limit the amount of information
shared between areas while ensuring system-wide optimality.
In [3] an OPF decomposition is performed using Augmented
Lagrangian Relaxation with multiplier updates based on the
Auxiliary Problem Principle, whereas [4] decomposes the
problem using Lagrangian Relaxation (LR) combined with a
subgradient method. Both methods have the drawback of using
multiplier updates whose convergence behavior is determined
by parameters that must be tuned depending on the system.
In [5] a multi-area OPF is solved using chance-constraints
to account for wind power forecast errors. However, this
setup only considers point-to-point HVDC interconnections
and does not account for an explicit reserve capacity market
that incentivizes the provision of regulating power.

To complement these findings, we present a decentralized
two-stage stochastic market-clearing algorithm that incorpo-
rates meshed DC grids and their flexibility while ensuring
data privacy of each regional TSO. Flexibility resources are
shared between areas and priced by a flexibility market. In
contrast to the decomposition methods applied in [3], [4],
we choose Optimality Condition Decomposition (OCD), a LR
based method, which does not need any parameter tuning
or central coordination [6], [7]. Prices used for coordinating
the different area subproblems, do not need to be estimated
with auxiliary update methods, that impact the performance
of decomposition methods. Prices on power exports along tie-
lines are provided by each area and can be used as costs in
neighboring areas objective functions. This allows for a fully
decentralized solution, but comes at a cost of requiring a higher
information exchange, where primal and dual variables are
exchanged. A reduced number of exchanged variables would
enable a distributed solution but would require a coordinating
entity. Reserve capacity markets are accounted for and make
preventive and corrective control actions available across the
entire system alleviating uncertainties arising from RES.

The remainder of this paper is organized as follows. Section
II describes the mathematical formulation of the centralized
and decentralized market-clearing models. II-B explains the
decomposition and the iterative algorithm. In Section III the

methodology is applied to a modified version of the IEEE
Two Area RTS-96 test system. A case study is presented that
shows the impact of additional controllability due to the DC
grid in Section III-B. In Section III-C we test the algorithm on
a three area system to verify its adaptability to systems with
more than two areas. Section IV concludes.

II. MATHEMATICAL FORMULATION

The mathematical formulation of the centralized multi-
area OPF and its equivalent decomposed formulation are
given in the following section. The market-clearing model
is formulated as a two-stage stochastic program optimizing
the energy and reserve dispatch simultaneously [8]. The only
source of uncertainty considered is wind power represented
by a finite set of scenarios. The market is cleared in a single-
period auction omitting inter-temporal constraints, such as
ramping limits. As usual in market applications, the network
is modeled using a linear DC approximation. Conventional
generators and loads are connected to AC nodes only. Wind
farms are assumed to be located at AC and DC nodes.

A. Centralized OPF Formulation

The centralized DC-OPF for the entire power system is
formulated below.

1) Objective Function: The objective function to be mini-
mized represents day-ahead and balancing costs in expectation:

min
Ξ

∑
A

{ ∑
g∈GA

[
cg(Pg) + cRU

g RU
g + cRD

g RD
g

]
+
∑
s∈S

πs

( ∑
g∈GA

[
cg(Pg + rUgs − rDgs)

]
+
∑

d∈DA

V LOLpshedds

)}
, (1)

where Ξ is the set of first- and second-stage decision variables.
Second-stage decisions dependent on particular scenario real-
izations are indicated with subscript s.

Reserve capacity costs cRU
g and cRD

g are incorporated in
the form of reserve capacity bids. Recourse actions rs include
up- and down-reserve deployment (rUgs and rDgs), load shedding
pshedds , wind spillage pspillws , converter setpoint changes pcs
and thus power flows on intra- and inter-area DC links,
denoted with fDC

ls and tDC
ls , respectively. Out of these, costs

are assigned to load shedding, in the form of penalties, and
reserve deployment, which correspond to energy production
costs. Other recourse actions are not penalized in the objective
function.

2) Equality Constraints: The set of equality constraints
comprises power balance and line flow equations for the
day-ahead and real-time stage, respectively. Power balance
equations are formulated in (2) to (5):

IngPg + InwPw − IncPc

− InlFl − InlTl − IndPd = 0, ∀n ∈ NAC (2)



InwPw + IncPc − InlFl − InlTl = 0, ∀n ∈ NDC (3)

Ing(rUgs − rDgs) + Inw(pws − pspill
ws −Pw)

− Inc(pcs −Pc)− Inl(fls − Fl)− Inl(tls −Tl)

− Indp
shed
ds = 0, ∀n ∈ NAC ,∀s (4)

Inw(pws − pspill
ws −Pw) + Inc(pcs −Pc)

− Inl(fls − Fl)− Inl(tls −Tl) = 0, ∀n ∈ NDC ,∀s (5)

Matrices and vectors are indicated with bold symbols. Day-
ahead power balance equations of the AC (2) and DC grid (3)
are coupled through controllable converter power flows Pc.
Real-time power balance constraints (4) and (5) link recourse
actions to day-ahead decisions depending on the actual wind
power realization pws. Incidence matrices are denoted with I
and indicate the location of generators, wind farms, converters,
lines and loads.

Power flows in the DC grid are modeled according to [9].
AC and DC tie-line flow equations are given by:

Tl =
δn − δm
xl

: µAC
l , ∀l = (n,m) ∈ ΓAC (6)

Tl =
Un − Um

rl
: µDC

l , ∀l = (n,m) ∈ ΓDC (7)

tls =
θns − θms

xl
: νAC

ls , ∀l = (n,m) ∈ ΓAC ,∀s (8)

tls =
uns − ums

rl
: νDC

ls , ∀l = (n,m) ∈ ΓDC ,∀s. (9)

Dual variables associated with tie-line flow constraints are
indicated after the colon. Intra-area AC and DC line flows, Fl,
are modeled in the same way and are not explicitly mentioned
here. The voltage angle of the AC slack bus is set to zero.

3) Inequality Constraints: Day-ahead and real-time in-
equality constraints comprise line capacity, converter power,
voltage, generation and reserve capacity limits. Minimum and
maximum voltage levels of DC buses are set to 0.9 and 1.1
p.u., respectively.

B. Decentralized OPF Formulation

AC and DC tie-line flow constraints (6) to (9) contain vari-
ables from more than one area. They constitute complicating
constraints and prevent the OPF of the interconnected power
system to be decomposed per area. To tackle this, we use
the Optimality Condition Decomposition (OCD) technique,
an iterative solution procedure, which is an extension to
the common LR method and based on the decoupling of
the first-order Karush-Kuhn-Tucker (KKT) conditions. The
KKT conditions of the original problem correspond to the
superposition of all subproblems’ KKT conditions. A more
detailed analysis of the method and conditions for convergence
are provided in [10].

As opposed to LR, where all complicating constraints of
the entire system are augmented as soft constraints to each
area’s objective function, OCD only augments complicating
constraints belonging to neighboring areas (indicated with AA

in equations (10) to (14)) [11]. As a result, each area can
keep its own complicating constraints in the constraint set by
treating neighboring areas’ decision variables as parameters
and setting them to the values obtained in the previous
iteration. The benefit of this approach is, that dual variables
associated with tie-line flow constraints and used as cost
parameters when augmenting the constraints to neighboring
areas’ objective functions, are readily available and do not
need to be estimated with auxiliary methods, such as ADMM.
Decomposition methods dependent on auxiliary update meth-
ods are prone to divergence, if their parameters are not
properly tuned. OCD allows for a fully decentralized solution,
given that all computation is done within the scopes of the
subproblems. Hence, the need for a central entity is avoided
and a coordinated solution is achieved by exchanging only a
moderate amount of information.

Each area’s OPF (A) is formulated as follows:

min
ΞA

CD,A + E[CB,A
s ]

+
∑

l∈ΓAC,A

µ̂AC,AA
l

( δ̂AA
m − δAn
xl

− T̂AA
l

)
+

∑
l∈ΓDC,A

µ̂DC,AA
l

( ÛAA
m − UA

n

xl
− T̂AA

l

)
+
∑
s

{ ∑
l∈ΓAC,A

ν̂AC,AA
ls

( θ̂AA
ms − θAns
xl

− t̂AA
ls

)
+

∑
l∈ΓDC,A

ν̂DC,AA
ls

( ûAA
ms − uAns

rl
− t̂AA

ls

)}
(10)

s.t. Constraints in II-A2 for area A
Constraints in II-A3 for area A

TA
l =

δAn − δ̂AA
m

xl
: µAC,A

l , ∀l = (n,m) ∈ ΓAC (11)

TA
l =

UA
n − ÛAA

m

rl
: µDC,A

l , ∀l = (n,m) ∈ ΓDC (12)

tAls =
θAns − θ̂AA

ms

xl
: νAC,A

ls , ∀l = (n,m) ∈ ΓAC ,∀s
(13)

tAls =
uAns − ûAA

ms

rl
: νDC,A

ls , ∀l = (n,m) ∈ ΓDC ,∀s
(14)

CD,A and CB,A
s represent area A’s day-ahead and balancing

costs, respectively. Hatted terms are constants with values
obtained from the neighboring areas’ most recent iteration.
Note that balancing tie-line flow constraints (i.e., stochastic
complicating constraints) do not need to be weighted by their
probabilities when augmented to the objective function (10),
since dual variables of stochastic constraints in the primal
problem already contain information on their probability of
occurrence. After each iteration border node state variables
(i.e. voltage angles for AC tie-lines and voltage magnitudes
for DC tie-lines) and dual variables associated with tie-line



flow constraints are exchanged. The dual variables exchanged
represent prices on power imports/exports along tie-lines.
The algorithm is suitable for both sequential and parallel
implementation.

For systems with a low number of primal consensus vari-
ables, which connected areas need to agree on, tie-line flow
mismatches can be used as convergence criteria. In this case,
the algorithm converges as soon as all tie-line flow mismatches
are within tolerance:

|TA
l + TAA

l | ≤ ε, ∀l ∈ ΓAC ∪ ΓDC (15)

|tAls + tAA
ls | ≤ ε, ∀l ∈ ΓAC ∪ ΓDC ,∀s. (16)

A large number of primal consensus variables significantly in-
creases computation time. Instead, convergence criteria based
on dual variables, which tend to converge faster, can be used.
In this case, the algorithm converges, if dual variables do not
change significantly in two consecutive iterations:

|µv
l − µv−1

l | ≤ ε, ∀l ∈ ΓAC ∪ ΓDC (17)

E[|νvls − νv−1
ls |] ≤ ε, ∀l ∈ ΓAC ∪ ΓDC . (18)

Equation (17) refers to the change in dual variables of the day-
ahead tie-line flow constraints, whereas criterion (18) checks
for the expected change in balancing tie-line flow prices. Thus,
convergence is evaluated on the basis of 2×|Γ| criteria, where
|Γ| denotes the cardinality of the total tie-line set.

III. CASE STUDY

All simulations were carried out in Python using the Gurobi
Optimizer [12]. The Python code will be made available
online.

A. IEEE Two Area RTS-96 test system with six-node DC
overlay grid

The algorithm is tested on a modified version of the IEEE
Two Area RTS-96 system [13] with an additional six-node DC
overlay grid. The system is depicted in Fig. 1 with the DC grid
highlighted in purple. The two areas are connected with two
AC tie-lines and one DC tie-line. Each area contains three
DC nodes, three internal DC lines, 12 conventional generators
and six wind farms of 200 MW capacity each. AC tie-line
parameters correspond to the ones of the original IEEE Two
Area RTS-96 test system [14]. All DC lines have a resistance
of 0.002 p.u. and a capacity of 300 MW. Power ratings of
500 MW are chosen for all converters. We consider a high
demand snapshot with a total system load of 4770.9 MW for
the single-period auction. Day-ahead wind power generation
is set to its expected value. A set of 100 equally probable
wind generation scenarios is used, which has been derived
from wind measurement data of a location in western Denmark
and made available online [15], [16]. The value of lost load
V LOL is chosen with 1000 e/MWh. The dual convergence
criteria stated in equations (17) and (18) are chosen with a
tolerance ε of 0.01 e. Quadratic cost functions are assumed for
conventional generators. The area splitting is performed along
geographical borders. TSOs are responsible for the operation

Fig. 1. Two-area IEEE RTS96 test system with six-node DC overlay grid.
Tie-lines are illustrated with dashed lines.

of those parts of the interconnected AC and DC system that are
located within their jurisdiction. The subproblems are solved
sequentially. Alternatively, the algorithm is suitable for parallel
implementation.

The decentralized algorithm converges after 19 iterations
for the chosen tolerance. The results are listed in Table I. The
cost difference between the centralized and the decentralized
solution amounts to 0.04%. Fig. 2 depicts the convergence
of the total system cost compared to the optimal centralized
solution. The convergence behavior of the balancing tie-line
flow prices for a particular scenario is illustrated in Fig. 3. It
can be observed that the convergence behavior does not suffer
from fluctuations as often seen in iterative solution procedures.
Oscillations are quickly damped due to the availability of dual
variables, which do not need to be estimated with auxiliary
methods that determine the performance of the algorithm
depending on the choice of parameters. Actual tie-line flow
mismatches are below 1 MW for the day-ahead stage and
at most 2.05 MW for the balancing stage in expectation, as
shown in Table II. If necessary, tie-line flows would have
to be adjusted by the two TSOs in agreement with each



other to offset the minor mismatches. The price of avoid-
ing the disclosure of sensitive intra-area data is the higher
computation time of the decentralized case compared to the
centralized solution. However, improvements can be achieved
with a parallel implementation and by performing only single
Newton-Raphson steps instead of solving the subproblems
until optimality at each iteration. Nevertheless, it should be
noted that this work focuses mainly on methods to preserve
each area’s independence, rather than increasing computational
efficiency.
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for scenario 60.

B. IEEE Two Area RTS-96 test system: HVAC vs. HVDC

To demonstrate the impact of increased controllability due
to the DC grid, the overlay DC grid of the system used in
Section III-A is replaced with AC transmission lines. Thus,
the set of available recourse actions is reduced to reserve
deployment, wind spillage and load shedding, and does not
include converter setpoint changes and DC line flows. The
line capacities of the overlay HVAC grid are set to 300

TABLE I
RESULTS FOR THE TWO AREA TEST SYSTEM WITH HVDC OVERLAY GRID.

Model
Total Cost

(e/h)
Number of
iterations v

Cost difference
(%)

Runtime
(s)

Centralized 78973.51 - 0.04 1.71
Decentralized 78945.69 19 27.07

TABLE II
TIE-LINE FLOW MISMATCHES FOR THE TWO AREA TEST SYSTEM WITH A

DC OVERLAY GRID.

Tie-line l
(-)

Day-ahead
(MW)

Balancing
(MW)

107− 203 0.02 0.72
123− 217 0.67 2.05
dc1 − dc2 0.71 0.05

MW, corresponding to the values of the DC lines used in
the previous section. The reactances of all new AC lines are
chosen with 0.0628 p.u.. Note that buses 115 and 121 as well
as 215 and 221 are already connected through AC lines in the
original system. Their line parameters are adjusted to account
for the new AC lines inserted in parallel.

Table III lists the results for both HVAC and HVDC system
configurations. The total system cost is higher for the HVAC
case. Even though less reserve capacity is scheduled, day-
ahead costs are higher, which indicates that more expensive
generators need to be deployed for generation and reserve
provision. In the HVDC case, more down-reserve capacity is
scheduled allowing for more wind power to be accommodated
by the system in scenarios with wind power surplus. This
also leads to a lower amount of expected wind spillage
resulting in cost savings due to the replacement of more
expensive conventional generation by wind power. The DC
grid for the case studies presented in this paper has not been
chosen optimally and serves only the demonstration of the
decentralized market-clearing algorithm. Thus, there is still
room for improvement in the cost savings from DC grids,
whose benefits are not fully captured here. As shown in table
IV, the decentralized algorithm for the HVAC case converges
after 20 iterations to a solution with a deviation of 0.02% from
the centralized system cost.

TABLE III
COMPARISON OF HVAC AND HVDC OVERLAY GRID.

HVAC HVDC

Total System Cost (e/h) 79160.03 78973.5
Day-ahead System Cost (e/h) 73275.2 73199.5
Total up-reserve capacity RU (MW) 1100 1100
Total down-reserve capacity RD (MW) 202.3 209.4
Total expected wind spillage (MW) 32.7 30.2



TABLE IV
RESULTS FOR TWO AREA TEST SYSTEM WITH HVAC GRID.

Model
Total Cost

(e/h)
Number of
iterations v

Cost difference
(%)

Runtime
(s)

Centralized 79160.03 - 0.02 1.51
Decentralized 79174.64 20 22.38

TABLE V
RESULTS FOR THREE AREA TEST SYSTEM.

Model
Total Cost

(e/h)
Number of
iterations v

Cost difference
(%)

Centralized 120343.25 - 0.34Decentralized 120753.87 27

C. IEEE Three Area RTS-96 test system with seven-node DC
overlay grid

In order to verify the adaptability of the algorithm to more
than two areas, we have applied the method to a modified
version of the IEEE Three Area RTS-96 test system. The two
areas A and B of the system depicted in Fig. 1 are identical
regarding their AC grids. A third area C with the same internal
AC structure has been added to the system. A new DC node,
dc7, is added to C and connected through a converter to the
AC node 318. The set of inter-area lines is extended to include
one AC tie-line between B and C (i.e., from node 223 to node
317) and one DC tie-line between A an C (i.e., from node dc5
to dc7). The parameters of the new AC tie-line correspond
to the ones of the original IEEE Three Area test system [14],
while the parameters for the new DC tie-line have been chosen
as in Section III-A. The dual convergence criteria stated in
equations (17) and (18) are chosen with ε equal to 0.01 e.

As shown in table V, the algorithm converges after 27
iterations. The difference between the centralized and the
decentralized solution amounts to 0.34%. This shows that the
algorithm can be generalized to cases with more than two
areas.

IV. CONCLUSION AND FUTURE WORK

An iterative method to decentralize the market-clearing of
mixed AC and DC grids by area has been presented. Flexibility
resources are made available across the entire system and are
more easily accessible due to the additional controllability
provided by DC grids. Fast convergence is achieved while
requiring only a moderate exchange of information between
neighbors preserving each area’s independence. The method
has proven to be scalable and thus, applicable to large systems
that cannot be solved centrally. In large networks with several
areas we expect the computation of the decentralized solution
to be equally good or even faster than in the centralized case.

It has been shown in [17] that the performance of OCD
largely depends on the splitting and coupling between areas.

Future work will investigate how to optimally split large
interconnected systems comprising AC and DC grids, while
allowing for an efficient decentralized solution. This could
also give an indication on the operation of a future DC
grid, whether it should be integrated in or decoupled from
current AC grid operations. The algorithm presented in this
paper could provide a framework for DC grid operators to
offer preventive and corrective control as services to the AC
grid using the pricing mechanism presented. Alternative ways
to incorporate uncertainties and recourse actions in OCD
algorithms will be studied.
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