

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Logic analysis and verification of n-input genetic logic circuits

Baig, Hasan; Madsen, Jan

Published in:
Proceedings of 20th Design, Automation and Test in Europe

Link to article, DOI:
10.23919/DATE.2017.7927070

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Baig, H., & Madsen, J. (2017). Logic analysis and verification of n-input genetic logic circuits. In Proceedings of
20th Design, Automation and Test in Europe (pp. 654-657). [7927070] IEEE. (Design, Automation, and Test in
Europe Conference and Exhibition. Proceedings). DOI: 10.23919/DATE.2017.7927070

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/84346889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.23919/DATE.2017.7927070
http://orbit.dtu.dk/en/publications/logic-analysis-and-verification-of-ninput-genetic-logic-circuits(895f7b8f-b869-4581-a1cb-a657e63cf735).html

Logic Analysis and Verification of n-input
Genetic Logic Circuits

Hasan Baig and Jan Madsen

Department of Applied Mathematics and Computer Science, Technical University of Denmark

Abstract – Nature is using genetic logic circuits to regulate the
fundamental processes of life. These genetic logic circuits are
triggered by a combination of external signals, such as
chemicals, proteins, light and temperature, to emit signals to
control other gene expressions or metabolic pathways
accordingly. As compared to electronic circuits, genetic circuits
exhibit stochastic behavior and do not always behave as
intended. Therefore, there is a growing interest in being able to
analyze and verify the logical behavior of a genetic circuit
model, prior to its physical implementation in a laboratory. In
this paper, we present an approach to analyze and verify the
Boolean logic of a genetic circuit from the data obtained
through stochastic analog circuit simulations. The usefulness of
this analysis is demonstrated through different case studies
illustrating how our approach can be used to verify the
expected behavior of an n-input genetic logic circuit.

I. Introduction and Motivation
Biologists and engineers are working together on

synthetic biology [1] to design new and useful biological
systems. The ability to re-engineer living cells has created
completely new ways of manufacturing biological systems
and materials. The applications of synthetic biology include
tumor destruction [2], bio-fuels [3], consuming toxic wastes
[4], etc.

Synthetic genetic circuits – an application of synthetic
biology, are composed of a group of genetic components of
DNA (promoter, terminator, etc), which interact with the
external signals to control the behavior of a living cell.
Genetic circuits produce output proteins, based on the
presence of input proteins. Figure 1(a) shows a genetic
circuit [14], which behaves as a 2-input electronic AND
gate, shown in Figure 1(b).

Figure 1. Genetic AND gate circuit. (a) Genetic implementation [14].

(b) Schematic symbol.

In Figure 1(a), P1 and P2 are promoters, which are the
regions of DNA that initiates the process of transcription (or
production) of a particular gene. In this example, when two
types of proteins, LacI and TetR, are present in significant
amount in the re-engineered cell, they inhibit promoters P1
and P2 to produce the output gene CI. When the
concentration of CI falls below a certain level, promoter P3
is activated and produces the output protein i.e. a green
fluorescent protein (GFP).

State-of-the-art is to design such circuits directly in the
laboratory, through trial and error, which is a time
consuming and costly process, as thousands of circuits may
have to be tested to find a few that works. To overcome this,
researchers are currently working on developing genetic
design automation (GDA) tools [5], to automate the design

and test process of genetic circuits – a process like
electronic design automation (EDA) where new circuits are
simulated before they are fabricated on-chip. The field of
genetic circuit design is still immature and only small
circuits, containing limited number of genes, can be
constructed in the laboratory.

As the number of molecules involved in the chemical
reactions inside a cell is small, standard ODE cannot be
used to model and solve these reactions [6]. Instead, a
stochastic simulation algorithm (SSA) [7] must be used.
SSA efficiently handles the reactions occurring randomly
for small and discrete number of species.

In this paper, we are interested in validating the logic
function of a given genetic logic circuit based on the
stochastic simulation traces obtained by applying all
different input combinations. The simulation traces can be
obtained by any of the many GDA simulation tools that
support stochastic simulations. In this work, we have chosen
to use D-VASim [8] that is developed for the simulation and
analysis of genetic logic circuit models represented in the
Systems Biology Markup Language (SBML) [9]. We
present a logic analysis and validation algorithm which
extracts the logic behavior from the simulations and provide
a fitness value that can be used to infer how likely it is that
the circuit will actually work after implementation in the
laboratory.

The presented algorithm is scalable and able to analyze

n-input genetic logic circuits. The logic analysis of genetic

circuits is useful in two ways – first, it allows the user to

verify complex genetic logic circuits, build by cascading

several genetic logic gates; secondly, it helps in extracting

the Boolean logic of a circuit even when the user does not

have any prior knowledge about its expected behaviour.

II. Methodology
Threshold value and propagation delay of I/O species

are two important parameters required to obtain a correct
Boolean expression of a circuit. The threshold value defines
a significant amount of concentration, which categorizes the
analog concentrations into digital logics 0 and 1.
Propagation delay specifies the time required to reflect the
changes in input species concentrations on the concentration
of output species. During the experimentation, if the input
species concentrations are applied below their threshold
levels and each of the input combination is changed before
the propagation delay has elapsed, then the circuit never
produces a correct output for some of the input
combinations. D-VASim supports the capability of
analyzing the threshold value and propagation delays [10].
In this work, we used this functionality to obtain a threshold
value and a propagation delay of a circuit. We used these
results to perform experiments on the genetic circuit models
and log all experimental simulation data, which were then
given to the proposed algorithm to extract the logical
behavior of a circuit.

654978-3-9815370-8-6/17/$31.00 c©2017 IEEE

Algorithm 1 shows the pseudo code of the main
procedure of the logic analysis and verification. Some initial
parameters (N, SDAn, ThVAL, FOVUD, IS, and OS) are required
to execute the algorithm; where N corresponds to the total
number of input species, SDAn refers to the simulation data
of all I/O species, ThVAL denotes the threshold value of I/O
species, FOVUD is the user-defined percentage of acceptable
variation in the output data (described later), and IS and OS
specify the names of input and output species, respectively.
By giving users an ability to select the input and output
species, they can perform Boolean logic analysis on the
entire circuit as well as on the intermediate circuit
components.

Algorithm 1: Pseudo code of the logic analysis and verification algorithm.

In the simulation of electronic circuits, a logical
abstraction is typically applied in which it is only
considered if the wire is in high or low state, instead of
tracking the exact voltage value. To utilize a similar
abstraction level here, the algorithm first converts the analog
simulation data into digital data with the help of threshold
values extracted from D-VASim. This step is shown as the
sub-procedure ADC at line 4 in Algorithm 1. The algorithm
scans the chosen N input and an output species and converts
their analog values in to digital values, based on the
threshold value provided. Once the analog data is converted
to logic high and low, the exact concentration of proteins are
no longer needed to obtain the Boolean logic of a genetic
circuit.

The response time of a genetic circuit is important to
obtain the correct behavior. Therefore, each input
combination must be applied for enough time to observe its
correct response on the output species. In electronic circuits,
the signals propagate in separate wires and applied voltage
remains constant. However, the signals in genetic circuits
are molecules drifting in the same volume of a cell and
easily merge with the concentrations of other compounds.
Due to this, the concentrations of species in genetic circuit
always vary, and may go up and down below the threshold
level over time. Because of this unstable behavior, for each
input combination, it is required to obtain continuous binary
streams of output species to extract the correct behavior of a
genetic circuit.

The sub-procedure, CaseAnalyzer (line 5, Algorithm 1)
analyzes the number of times each input combination occurs

and logs their corresponding output binary data streams. To
understand this procedure, consider the sample simulation
plots in Figure 2(a), which are produced from the 2-input
genetic AND gate of Figure 1. CaseAnalyzer, processes the
data and generates output as depicted in the first three
columns in Figure 2(b). These columns express, for each
input combination, the number of simulated data points as
well as the output digital data stream of logic-0 and 1
converted according to the threshold levels. In this example,
the case of input combination 00 appears about 1850 times
in total. The small glitch between 4650-6350 time units (in
Figure 2(a)) indicates the stochastic nature of the model. It
shows that the logic-0 of GFP may refer to a concentration
which is less than its threshold value but may not be sharply
zero. Also, the output of some genetic circuit models is
initially high which gradually reduces to zero, as shown in
Figure 2(a). These unwanted high peaks should be filtered
out to obtain the correct Boolean expression.

Figure 2. Analysis and verification process. (a) Sample plots of 2-input
genetic AND gate. (b) Sample data for illustrating the input case and

variation analysis.

For each input combination, the corresponding data
stream of the output species is also extracted, as shown in
the third column of the table shown in Figure 2(b). In this
example, the output data stream contains binary 1’s for two
input combinations – 00 and 11. Furthermore, Figure 2(a)
depicts a short period of time in which the output oscillates
around the threshold value (between 6350-9400 time units),
before entering into a stable logic-1. This happens when
both inputs are triggered high (i.e. 11). To examine such
scenarios, the digital output data streams, corresponding to
each input combination, are analyzed for stability through
the sub-procedure, VariationAnalyzer, (line 6, Algorithm 1).

VariationAnalzyer examines the output data stream and
counts how many times the output oscillates (or varies)
between logic-1 and 0. It first calculates the number of times
a logic-1 appears for a specific input combination. In the
example shown in Figure 2(b), the logic-1 appears for 3 and
1875 times for the input combinations 00 and 11,
respectively. It then analyses for each of these input
combinations, how many times the output varies, i.e.
changing 0-to-1 and 1-to-0. In Figure 2(b) this happens 2
times for input combination 00 and 7 times for 11. Since the
output is high when both the inputs are the same, one may
end up estimating the logical behavior of this circuit to be an
XNOR gate if the simulation data is not filtered out
correctly. To obtain a correct Boolean expression, two
filtrations of the data are performed by the sub-procedure,

2017 Design, Automation and Test in Europe (DATE) 655

ConstBoolExpr (line 7, Algorithm 1). The first one is the
calculation of fraction of variation through equation (1);

 (1)

Where, i is the input combination at which the output is
high at least once; O_Var[i] corresponds to the number of
variations in the output, for each i; and Case_I[i] is the
number of times the input combination i occurs in the
simulation data. Note that the value of Case_I[i] will always
be equivalent to the length of its corresponding output data
stream.

In the example shown in Figure 2, the estimated fraction
of variations – FOVEST, for input combinations 00 and 11,
are 2/1850 and 7/3050, respectively. This indicates that only
a small fraction of output, in comparison to its whole size
for specific input combination, is varied. This estimated
fraction of variation, FOVEST, is compared with the user-
defined fraction of variation, FOVUD, and the results are
accepted if the estimated value is less than the user-defined
one. In our experiments, we allowed up to 25% variation
(FOVUD = 0.25) in the output data streams.

However, this filter alone is not sufficient to obtain the
correct Boolean logic of a model. As in the case of the
example shown in Figure 2, the algorithm will consider
obtaining the output high for both input combinations 00
and 11, based on the estimated value of FOVEST, and end up
obtaining the XNOR logic for this circuit model. Therefore,
to handle this situation, another filter is applied according to
equation (2), which checks if the number of 1s’ in the output
binary data stream, for the specific input combination, are
greater than half the size of the whole output data stream.

 (2)

Here, i is the input combination at which the output
stream is being checked; HIGH_O[i] defines the number of
1’s in the output stream corresponding to the input
combination i; and Case_I[i] specifies the number of times
the input combination i occurs in the simulation data. This is
equivalent to the length of corresponding output data
stream. For our example, this condition holds false for the
input combination 00 (3 1850/2), but turns true for the
input combination 11 (1875 > 3050/2). This filter also helps
in making sure that the output, for a specific input
combination, is certain – either high or low. However, this
filtration technique may also produce wrong results if not
applied together with the first technique.

Figure 3. An example showing how both filters are useful, when applied

together, in obtaining the correct Boolean expression.

To understand this, consider the example case shown in
Figure 3, where the output binary data streams of two
different input cases, 00 and 11, are shown. The number of
1s in the output stream, for both the cases, is the same;
however, the output is highly oscillatory for the input case,
11. The algorithm therefore discards (in this case if FOVUD

≤ 0.5) this unstable output and do not consider it while
constructing the Boolean expression.

To filter out the results, both abovementioned conditions
should be satisfied. The Boolean expression is then
constructed for each filtered result. In the end, the algorithm
estimates the percentage fitness of estimated Boolean
expression (PFoBE), in the simulation data, according to
equation (3).

 (3)

Here, i is the input combination at which the filtered
output stream is high; FOVESTi is the estimated fraction of
variation in the output data stream for ith input combination;
and nc denotes the total number of input combinations.

III. Experimental Results
The proposed algorithm is tested on the SBML models

of 15 genetic circuits. This set includes 1 to 3-inputs genetic
logic circuits, which are composed of 1-7 genetic logic gates
containing 3-26 genetic components. The five genetic
circuit models are obtained from [12] and the remaining 10
are the models of real genetic circuits acquired from [11].
The circuits from [11] were first designed on a tool, named
Cello, which generates the Synthetic Biology Open
Language (SBOL) [13] file. Unlike SBML, the SBOL
representation does not describe the behavior of a biological
model. The behavioral description of a model in SBML is
expressed in terms of mathematical equations of the reaction
kinetics between molecular species. We, therefore, first used
the SBOL-SBML converter [14] to generate the behavioral
model of the real genetic circuits [11]. The SBML files
generated from this process are then loaded in D-VASim to
perform the experimentation followed by the logic
verification of these circuits.

In our experiments, we ran each circuit for 10,000
simulation time units, assuming a value of 1000 time units
for the propagation delay of all circuits. This means that
during simulation, each input combination is applied for at
least 1000 time units. Also, a threshold value of 15
molecules is used for all circuits. Due to space limitations,
the simulation data analytics of only three circuits (0x0B,
0x04, and 0x1C), from [11], are shown in Figure 4. These
analytics are used to obtain the logical behavior of the
circuits. In Figure 4, Case_I indicate the number of times
each input combination occurs during 10,000 time units of
simulation. It further includes the number of times the
output of a circuit remains high (High_O) for that particular
input combination along with the number of variations in
the output data (Var_O). The Boolean expressions as well as
the percentage fitness for these circuits are also included in
Figure 4. In this figure, the output variation is not too high
for any of the output states of each of the three circuits. For
example, in the case of circuit 0x0B, the output state
appears to be logic-1 for the input combination 100 and
seems quite stable having very low variation value of 2. The
reason why the input combination is 100 has so many logic-
1 output states is because the output is high for the previous
input combination 011. When the input combination is
changed from 011 to 100, the output starts to decay
gradually, and remains high until it passes by the threshold
level. This input combination should, therefore, be included
in the Boolean expression, but however filtered out using
equation (2), because for 3587 times of the input
combination 100 occurs during the entire simulation, the

656 2017 Design, Automation and Test in Europe (DATE)

Figure 4. Analytical simulation data, Boolean expression and percentage fitness of three circuits (0x0B, 0x04 and 0x1C) obtained from [11].

corresponding output remains high for 1191 times
(<3587/2). It is therefore obvious that like electronic
circuits, where the output state may be incorrect if the inputs
are changed before the propagation delay has elapsed, the
correct behavior of a genetic circuit can only be obtained
when each possible input combination is applied for
sufficient amount of time. Similarly, the analytical data for
the circuits 0x04 and 0x1C shows that the filters we have
applied help in obtaining the correct Boolean logic. In
Figure 4, the input combinations, at which the circuit’s
output is expected to be high, are highlighted in green color
along the x-axis.

Figure 5. Analytical data of circuit 0x0B for threshold values 3 and 40.

We further analyzed the behavior of genetic circuits by
varying the threshold value of input concentrations to very
low (3 molecules) and very high (40 molecules), and
observed that the same circuits behave differently. Figure 5
shows the comparison of simulation data for the circuit
0x0B for the abovementioned two threshold values. In this
figure, it can be noticed that the output response for a
threshold value of 3 molecules, is entirely different and it
behaves like a 3-input AND gate. This is because the
applied input concentration is too weak to trigger the output
concentration; but when applied together i.e., 111, the
output is triggered high to satisfy the applied filters.

On the other hand, the 0x0B circuit has two wrong states
(shown in the Boolean expression) when 40 molecules are
applied as an input concentration. For this case of threshold
value, the output response also seems to oscillate between
logic-high and low for large number of times (Figure 5) as
compared to other circuits (Figure 4). This is because the
concentration levels of input and output species are not
clearly distinguishable when the applied input concentration
is high.

IV. Conclusion
In this research, we presented an algorithm to analyze

and verify the intended behavior of genetic logic circuits. It
is shown experimentally that the circuit may not behave as
expected if the circuit parameter(s), like threshold value, are
varied. This may help users to analyze the circuit’s behavior
and robustness for different parameter sets before creating
them in the laboratory. We also observed that the proposed
algorithm takes about 8.4 seconds to analyze the logic of a
complex genetic circuit with significantly large-sized data.
As the experimentation in the laboratory requires a couple
of hours [11] to analyze even a single output state, the
proposed simulation-based approach is likely to be useful
for genetic circuit designers to analyze the intended logic of
genetic circuits prior to their implementation and testing in
the laboratory.

Acknowledgement
We would like to thank the CIDAR Lab (Boston

University) and Chris Myers (University of Utah) for
providing us the SBOL/SBML models of genetic circuits.

References
[1] A. Arkin, “Setting the standard in synthetic biology”, Nature

Biotech, no. 26, pp 771-774, 2008.
[2] J C. Anderson et al., “Environmentally controlled invasion of cancer

cells by engineering bacteria”, J. Mol. Biol., 355, pp. 619-627, 2006.
[3] S. Atsumi and J. C. Liao, “Metabolic engineering for advanced

biofuels production from Escherichia coli.”, Curr. Opin. Biotech.,
19, 5, pp. 414-419, 2008.

[4] I Cases and V De Lorenzo, “Genetically modified organisms for the
environment: stories of success and failure and what we have learned
from them”, Int. Microbiol., 8, pp. 213-222, 2005.

[5] Mario A Marchisio et al., “Computational design tools for synthetic
biology”, Curr. Opin. Biotechnol., vol. 20, no. 4, 2009.

[6] H. H. McAdams and A. Arkins, “It’s a noisy business! Genetic
regulation at the nanomolar scale”, Trends Genet., vol. 15, issue 2,
pp. 65-69, 1999.

[7] Gillespie, D.T., “Exact stochastic simulation of coupled chemical
reactions”, J. Chem. Phys., vol. 81, no. 25, pp. 2340-2361, 1977.

[8] H. Baig and J. Madsen, “D-VASim – An interactive Virtual
Laboratory Environment for the Simulation and Analysis of Genetic
Circuits”, Bioinformatics, September, 2016.

[9] The Systems Biology Markup Language (SBML): Language
Specification for Level 3 Version 1 Core, October 06, 2010.

[10] H. Baig and J. Madsen, “Logic and Timing Analysis of Genetic
Logic Circuits using D-VASim”, 8th IWBDA, August 16-18, 2016.

[11] AA Nielsen et al., “Genetic circuit design automation”, Science, vol.
352, issue 6281, 2016.

[12] Chris J. Myers, “Engineering Genetic Circuits”, Chapman &
Hall/CRC Press, July 2009.

[13] B. Bartley et al., “Synthetic Biology Open Language (SBOL)
version 2.0.0”, J. Integrative Bioinformat., vol. 12, no. 2, 2015.

[14] N. Roehner et al., “Generating Systems Biology Markup Language
Models from the Synthetic Biology Open Language”, ACS Synth.
Biol., vol. 4, no. 8, pp. 873-879, 2015.

2017 Design, Automation and Test in Europe (DATE) 657

