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Abstract. This paper gives results from joint analyses of dual polarimety
synthetic aperture radar data from the Sentinel-1 mission and optical
data from the Sentinel-2 mission. The analyses are carried out by means
of traditional canonical correlation analysis (CCA) and canonical infor-
mation analysis (CIA). Where CCA is based on maximising correlation
between linear combinations of the two data sets, CIA maximises mu-
tual information between the two. CIA is a conceptually more pleasing
method for the analysis of data with very different modalities such as
radar and optical data. Although a little inconclusive as far as the change
detection aspect is concerned, results show that CIA analysis gives con-
spicuously less noisy appearing images of canonical variates (CVs) than
CCA. Also, the 2D histogram of the mutual information based leading
CVs clearly reveals much more structure than the correlation based one.
This gives promise for potentially better change detection results with
CIA than can be obtained by means of CCA.
http://www.imm.dtu.dk/pubdb/p.php?6963.
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1 Introduction

In a preliminary investigation into change detection in data of different modali-
ties this paper looks into canonical analysis of Sentinel-11 (S1) radar and Sentinel-
22 (S2) optical remote sensing data. This kind of analysis is potentially important
due to often occurring clouds in optical data and the all-weather acquisition ca-
pability of radar. The data are analysed both by means of traditional canonical
correlation analysis (CCA) [4] and a more computer intensive method which we
have named canonical information analysis (CIA) [14, 13].

Earlier we have worked with CCA based change detection in bi-temporal op-
tical data. We termed this method multivariate alteration detection (MAD) [10],

1 https://sentinel.esa.int/web/sentinel/missions/sentinel-1.
2 https://sentinel.esa.int/web/sentinel/missions/sentinel-2.
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and we also published an iterative version termed iteratively re-weighted MAD
(IR-MAD or iMAD) [9, 2]. The so-called MAD variates containing information
on change are the differences between pairs of corresponding canonical variates.

CCA considers second order statistics of the involved variables only and as
such it is ideal for Gaussian data. CCA is therefore not necessarily an obvious
choice of analysis for data of such different modalities as here with radar and
optical data (which have very different genesis and potentially follow very dif-
ferent statistical distributions), but since it is the basis of the widely used MAD
methods we have included it here.

The idea in CIA is to replace correlation as the measure of association be-
tween variables with the more general information theoretical, entropy based
measure mutual information (MI) [5, 8, 1, 2]. Also in this case the change in-
formation is found in the differences between corresponding pairs of canonical
variates. Since MI between variables is independent of their signs, this differ-
encing is a little more tricky for MI based analysis than for correlation based
analysis.

Other workers have dealt with canonical analysis based on mutual informa-
tion [15, 6]. Entropy and mutual information depend on the sample probability
density functions of the involved variables and thus on higher order statistics.

In a situation with data of very different modalities the use of MI constitutes a
conceptually much more pleasing way of measuring association between variables
than the use of correlation.

For an illustrative (toy) example where CCA fails and CIA succeeds, (an
example with RGB images covering a busy motorway for traffic surveillance),
and an example of joint analysis of weather radar and Meteosat data, see [13].

2 Methods

Here we very briefly sketch the ideas in canonical correlation analysis, canonical
information analysis, and basic information theory. In both CCA and CIA linear
combinations U = aTX and V = bTY of two sets of stochastic variables, k-
dimensional X (here the Sentinel-1 data) and `-dimensional Y (here the Sentinel-
2 data), are determined.

2.1 Canonical Correlation Analysis

In canonical correlation analysis first published by Hotelling in 1936 [4] linear
combinations which maximise correlation between U and V are found. Correla-
tion considers second order statistics of the involved variables only. It is therefore
ideal for Gaussian data. The canonical variates U and V are found by solving a
generalised eigenvalue problem.

2.2 Canonical Information Analysis

Inspired by canonical correlation analysis, canonical information analysis is a
method which replaces the maximisation of correlation with maximisation of
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mutual information between the linear combinations U and V . For further details
see the next subsection and [14, 13, 11].

2.3 Basic Information Theory

In 1948 Shannon [12] published his now classical work on information theory.
Below, we describe the information theoretical concepts entropy, relative entropy
and mutual information for discrete stochastic variables, see also [5, 8, 1, 2].

Entropy Consider a discrete stochastic variable X with probability density
function (pdf) p(X = xi), i = 1, . . . , n, i.e, the probability of observing a par-
ticular realization xi of stochastic variable X, where n is the number of possible
outcomes or the number of bins. Let us look for a measure of information content
(or surprise if you like) h(X = xi) in obtaining that particular realization. If xi

is a very probable value, i.e., p(X = xi) is high, we receive little information by
observing xi. If on the other hand xi is a very improbable value, i.e., p(X = xi)
is low, we receive much information by observing xi. The measure of information
content should be a monotonically decreasing function of p. This can be obtained
by choosing for example h ∝ 1/p.

If we observe independent realizations xi and xj , i.e., the two-dimensional
pdf p(X = xi, X = xj) equals the product of the one-dimensional marginal pdfs
p(X = xi)p(X = xj), we would like the joint information content to equal the
sum of the marginal information contents, i.e., h(X = xi, X = xj) = h(X =
xi) + h(X = xj). This can be obtained by transformation by means of the
logarithm.

Thus the desired characteristics of the measure of information or surprise can
be obtained if we define h(X = xi) as

h(X = xi) = ln
1

p(X = xi)
= − ln p(X = xi). (1)

The expectation H(X) of the information measure, i.e., the average amount
of information obtained by observing the stochastic variable X, is termed the
entropy

H(X) = −
n∑

i=1

p(X = xi) ln p(X = xi). (2)

In the limit where p tends to zero and ln p tends to minus infinity, −p ln p tends
to zero. H(X) = −E{ln p(X)} is nonnegative. A discrete variable which takes
on one value only has zero entropy; a uniform discrete variable has maximum
entropy (equal to lnn). For the joint entropy of two discrete stochastic variables
X and Y we get

H(X,Y ) = −
∑
i,j

p(X = xi, Y = yj) ln p(X = xi, Y = yj). (3)
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Relative Entropy The relative entropy also known as the Kullback-Leibler
divergence [7] between two pdfs p(X = xi) and q(X = xi) defined on the same
set of outcomes (or bins) is

DKL(p, q) =
∑
i

p(X = xi) ln
p(X = xi)

q(X = xi)
. (4)

This is the expectation of the logarithmic difference between p and q. DKL ≥ 0
with equality for p(X = xi) = q(X = xi) only. The relative entropy is not
symmetric in p and q (and therefore it is not a metric).

Mutual Information The extent to which two discrete stochastic variables
X and Y are not independent, which is a measure of their mutual information
content, may be expressed as the relative entropy or the Kullback-Leibler diver-
gence between the two-dimensional pdf p(X = xi, Y = yj) and the product of
the one-dimensional marginal pdfs p(X = xi)p(Y = yj), i.e.,

DKL(p(X,Y ), p(X)p(Y )) = (5)∑
i,j

p(X = xi, Y = yj) ln
p(X = xi, Y = yj)

p(X = xi)p(Y = yj)
.

This sum defines the mutual information I(X,Y ) of the stochastic variables X
and Y . Mutual information equals the sum of the two marginal entropies minus
the joint entropy

I(X,Y ) = H(X) + H(Y )−H(X,Y ). (6)

Unlike the general Kullback-Leibler divergence in (4) this measure is symmetric.
Mutual information is always nonnegative, it is zero for independent stochastic
variables only.

Obviously we need to estimate marginal as well as joint pdfs to obtain the
mutual information estimate in (6). We employ kernel density estimation, which
uses N data samples to estimate these pdfs. Mutual information is subsequently
estimated using the same N data points. This is possible in practice only due to
a very fast estimation of pdfs, see [13].

3 S1 and S2 data, Frankfurt Airport

Both the radar and the optical data cover the international airport in Frankfurt,
Germany. The data are obtained from Google Earth Engine3 (GEE) [3].

The Sentinel-1 data acquired in instrument Interferometric Wide Swath (IW)
mode, is an S1 Ground Range Detected (GRD) scene, processed using the

3 https://earthengine.google.com,
https://developers.google.com/earth-engine.
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Fig. 1. RGB image of Sentinel-1 C-band VV/VH data, VV as R and VH as G and
B (i.e., cyan), 10 m pixels, 5 km north-south and 8 km east-west, Franfurt Airport,
Germany, acquired on 15 July 2016.

Fig. 2. RGB image of Sentinel-2 MSI data, band 4 (near-infrared as R), band 3 (red
as G), and band 2 (green as B), 10 m pixels, 5 km north-south and 8 km east-west,
Franfurt Airport, Germany, acquired on 12 Sep 2016.
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Sentinel-1 Toolbox4 to generate a calibrated, ortho-corrected product. This pro-
cessing includes thermal noise removal, radiometric calibration, and terrain cor-
rection using Shuttle Radar Topography Mission 30 m (SRTM 30) data. Finally
it includes saturating the data (quoting GEE): “Values are then clamped to the
1st and 99th percentile to preserve the dynamic range against anomalous out-
liers, and quantised to 16 bits.” This is to avoid excessive precision loss during
conversion from floats to integers for storage. The outliers are usually due to
strong reflections from sharp angles on antennas and other man-made objects.
The spatial resolution is (range by azimuth) 20 m by 22 m and the pixel spacing
is 10 m. The IW data are multi-looked, the number of looks is 5 by 1 and the
equivalent number of looks is 4.9. We have 500 rows by 800 columns of 10 m pix-
els. Figure 1 shows an RGB image of Sentinel-1 C-band VV/VH data acquired
on 15 July 2016, VV as red and VH as green and blue (i.e., cyan). The data are
log transformed.

The Sentinel-2 data are the near-infrared, red, green and blue channels from
the MultiSpectral Instrument (MSI), level-1C processed, 500 rows by 800 columns
of 10 m pixels. Figure 2 shows an RGB image of bands 4, 3, and 2 (near-infrared,
red, and green). These data are acquired on 12 Sep 2016. The saturation issues
mentioned for the S1 data are not present for the S2 data.

Here k-dimensional X in the CCA/CIA analyses is the Sentinel-1 VV and
HV data, k = 2, and the `-dimensional Y is the Sentinel-2 VNIR data, ` = 4.

4 Results

First: in a change detection setting with data of different modalities, the re-
sults obtained of course reflect both change over time and the different kinds
of information contained in the different data modalities. It is very difficult to
discriminate between the two.

A philosophical question is whether change detection between so different
data sources/modalities can be carried out in a meaningful fashion at all. Maybe
not, but it is always interesting to try to optimise the joint information content
in the data irrespective of their origin. And this is exactly what the CIA method
aims to do.

Figures 3 and 4 show the leading (CCA based) canonical variates (CV) for
the S1 and the S2 data, respectively.

Figures 5 and 6 show the leading (CIA based) canonical variates for the S1
and the S2 data, respectively. Starting weights a and b are the values obtained
by CCA.

As stated above CCA is not necessarily an obvious choice of analysis for
data of quite different modalities. Neither is therefore the choice of starting
values from CCA a good one. Figure 7 shows the leading (CIA based) canonical
variate for the S2 data. Starting weights a and b are equal for each set. Table 1
shows correlation and mutual information for the three solutions, CCA, CIA
with starting weights from CCA, and CIA with equal starting weights.

4 https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1.
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Fig. 3. Leading canonical variate from CCA of Sentinel-1 C-band VV/VH data.

Fig. 4. Leading canonical variate from CCA of Sentinel-2 VNIR data.
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Fig. 5. Leading canonical variate from CIA of Sentinel-1 C-band VV/VH data, starting
weights (a and b) from CCA.

Fig. 6. Leading canonical variate from CIA of Sentinel-2 VNIR data, starting weights
(a and b) from CCA.
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Fig. 7. Leading canonical variate from CIA of Sentinel-2 VNIR data, equal starting
weights (a and b) for each set.

0 5 10 15 20 25 30 35 40 45

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 8. Development of mutual information over the CIA iterations starting with the
CCA solution (in blue) and starting with equal weights for each set (in red).
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Fig. 9. Development of the weights [a1, a2]T for S1 data and [b1, . . . , b4]T for S2 data
over the CIA iterations starting with the CCA solution for each set (left), and equal
weights for each set (right). For the left plot, especially coefficients b1 and b4 associated
with the S2 blue and near-infrared bands change drastically and b4 changes sign. Also
in this case the coefficient a1 for S1 VV changes drastically albeit less than b1 and
b4. For the right plot, especially coefficients b1 and b4 associated with the S2 blue
and near-infrared bands change drastically and b4 changes sign. Also in this case the
coefficient a1 for S1 VV changes drastically albeit less than b1 and b4.

Figures 8 and 9 show the development for mutual information and the weights
(a and b) over the iterations for the CIA method with both starting conditions.

Figure 10 shows 2D histograms of the leading CVs for both CCA (left) and
CIA with equal starting weights (right). CIA based CVs clearly reveal more
structure in the data than the CCA CVs. The saturation issue mentioned above
is clearly seen, especially in the CCA based S1 CV.

Although the weights in a = [a1 a2]T are not equal for the two different sets
of starting values there is no visual difference between the two CIA based S1
CVs. Therefore only one of them is shown. On the other hand the two S2 CVs
are very different. The solution based on equal weights have a higher MI and
much more structure in both built-up areas in the town of Kelsterbach to the
north of the airport and in wooded regions.

For both sets of starting values for a and b we observe the following:

– It is obvious, that the MI based solution is far less noisy for both the S1 and
the S2 data and that it reveals more structure.

– The different appearance of the leading S1 CIA CV (compared to the S1
CCA CV) must be due mainly to the drastic change in a1 associated with
the S1 VV data. Apart from the conspicuously less noisy visual appearance,
we note that the leading S2 CIA CV looks very different from the CCA CV.

Table 1. Correlation and mutual information for the three solutions examined.

CCA CIA (cca) CIA (equal)

Corr 0.4484 0.0305 –0.3297
MI 0.0453 0.2569 0.3183
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Fig. 10. 2D histograms for leading canonical variates, correlation based (left) and
mutual information based with equal starting weights (right). The CVs all have mean
value zero and variance one; the axes are stretched between minus and plus three
standard deviations. The 2D histogram of the leading MI based CVs clearly reveals
more structure in the data than the correlation based one. Also, we see that the MI
based CVs are less sensitive to the saturation of the S1 data.

This is especially true for most taxiways (but not for runways), aprons and
other impervious regions, which have high values/appear bright in the CCA
solution and have low values/appear dark in the two CIA solutions. Also the
wooded areas surrounding the airport have low values/appear dark in the
CCA solution whereas they have intermediate or high values/appear gray or
bright in the two CIA solutions. This must be due to the change of sign in
b4 associated with the near-infrared channel of the S2 MSI data.

5 Conclusions

Although one may not be able to perform change detection between so different
data sources/modalities in a meaningful fashion (here with radar and optical
data), it is certainly interesting to try to optimise the joint information content
in the data irrespective of their origin. And this is exactly what CIA aims to do.

Starting with equal weights for each set in the search for the CIA solution in
our case is better than starting with weights from traditional CCA.

In this preliminary study of canonical analysis of data with different modal-
ities, the results are a little inconclusive as far as the change detection aspect
is concerned. Still, results show that CIA gives conspicuously less noisy appear-
ing CV images than CCA. Also, a 2D histogram of the leading MI based CVs
clearly reveals more structure in the data than the correlation based one. Finally,
the MI based CVs are less sensitive to the saturation of the S1 data. Thus MI
based canonical analysis reveals more signal and structure than correlation based
analysis, and it gives promise for potentially better change detection results.
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