
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Jul 12, 2018

Single Channel 106 Gbit/s 16QAM Wireless Transmission in the 0.4 THz Band

Pang, Xiaodan; Jia, Shi; Ozolins, Oskars; Yu, Xianbin; Hu, Hao; Marcon, Leonardo; Guan, Pengyu; Da
Ros, Francesco; Popov, Sergei; Jacobsen, Gunnar; Galili, Michael; Morioka, Toshio; Zibar, Darko;
Oxenløwe, Leif Katsuo
Published in:
Optical Fiber Communication Conference 2017

Link to article, DOI:
10.1364/OFC.2017.Tu3B.5

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Pang, X., Jia, S., Ozolins, O., Yu, X., Hu, H., Marcon, L., ... Oxenløwe, L. K. (2017). Single Channel 106 Gbit/s
16QAM Wireless Transmission in the 0.4 THz Band. In Optical Fiber Communication Conference 2017 [Tu3B.5]
Optical Society of America (OSA).  (2017 Optical Fiber Communications Conference and Exhibition (ofc)). DOI:
10.1364/OFC.2017.Tu3B.5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/84346859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1364/OFC.2017.Tu3B.5
http://orbit.dtu.dk/en/publications/single-channel-106-gbits-16qam-wireless-transmission-in-the-04-thz-band(cac468f2-cd42-4ae8-988a-a3f9ee76584d).html


Single Channel 106 Gbit/s 16QAM Wireless Transmission in 

the 0.4 THz Band 
 

Xiaodan Pang1, Shi Jia2,5, Oskars Ozolins1, Xianbin Yu3, Hao Hu2, Leonardo Marcon4,  

Pengyu Guan2, Francesco Da Ros2, Sergei Popov4, Gunnar Jacobsen1, Michael Galili2,  

Toshio Morioka2, Darko Zibar2, Leif Katsuo Oxenløwe2* 
1 NETLAB, Acreo Swedish ICT, SE-16425 Kista, Sweden  

2 DTU Fotonik, Technical University of Denmark, DK-2800, Lyngby, Denmark 
3 College of Information Science and Electronic Engineering, Zhejiang University, 310027 Hangzhou, China 

4 School of ICT, Royal Institute of Technology (KTH), Electrum 229, Kista, SE-164 40, Sweden 
5 School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China 

*lkox@fotonik.dtu.dk  

 

Abstract: We experimentally demonstrate a single channel 32-GBd 16QAM THz wireless link 

operating in the 0.4 THz band. Post-FEC net data rate of 106 Gbit/s is successfully achieved without 

any spatial/frequency multiplexing. 
OCIS codes: (060.5625) Radio frequency photonics, (060.4080) Modulation 

 

1. Introduction 

Recently, photonic-assisted millimeter wave (MMW) and THz technologies have elevated the capacity of wireless 

transmissions to a new level, of over 100 Gbit/s. This is mainly enabled by employing spectrally efficient modulation 

formats, advanced multiplexing techniques, and fully exploiting the available ultra-broad bandwidth at high carrier 

frequencies of over 100 GHz [1]. System demonstrations with wireless bitrates of the order of 100 Gbit/s have been 

reported at different carrier frequencies. In the W-band (75-110 GHz) and D-band (110 - 170 GHz), up to 400 Gbit/s 

wireless transmissions have been demonstrated using wireless spatial multiple-input multiple-output (MIMO) and/or 

frequency multiplexing techniques, with up to 100 Gbit/s per frequency/spatial channel [2-5]. However, the proposed 

solutions cannot fit in the lately regulated available bandwidth below 200 GHz [6]. In the sub-THz band (200-

300 GHz), transmissions of over 100 Gbit/s with single pair of antennas have been achieved by frequency multiplexing 

of multiple sub-channels [7, 8]. In the THz band (>300 GHz), we have recently reported a series of high-speed wireless 

demonstrations in the 0.3-0.5 THz regime with multi-channel QPSK/16QAM signals, reaching a net data rate of up to 

260 Gbit/s [9-11]. However, both the spatial MIMO and the frequency multiplexing techniques will increase the 

system’s size, power consumption and the complexity of both the hardware and the DSP module. Therefore, a single 

channel wireless link without spatial and frequency multiplexing techniques operating over 100 Gbit/s has the 

potential to relax the system complexity, while fulfilling the capacity requirements of emerging bandwidth intensive 

wireless applications. 

In this paper, we experimentally explore the achievable transmission rate of single channel photonic-wireless link 

in the 0.4 THz band with a single pair of THz emitter and receiver. The transmitter consists of a coherent optical 

frequency comb for photonic heterodyne mixing in a uni-travelling carrier photodiode (UTC-PD) integrated with an 

ultra-wideband antenna [12], generating a THz signal with high carrier frequency stability. We have successfully 

recovered up to 32 Gbaud 16QAM signals after a 0.5 m THz link, which results in pre-FEC line rates of up to 

128 Gbit/s and a post-FEC error-free bit rates of up to 106 Gbit/s in a single frequency channel. 

2.  Experimental setup  

Figure 1 shows the experimental setup of the high-speed single channel THz transmission system. We launch the 

output of an external cavity laser (ECL) of <100-kHz linewidth into two cascaded intensity and phase modulators, 

with a tunable optical delay line in-between, to generate a coherent optical frequency comb. Both modulators are 

driven by a 25 GHz radio frequency (RF) signal, which determines the line spacing of the optical frequency comb. 

By optimizing the optical delay, a timing match between the two modulators can be achieved to improve the signal-

to-noise ratio (SNR) of the optical comb lines and to broaden the spectrum for generating the desired THz carrier 

signal. After amplification, a programmable wavelength selective switch (WSS) is used to select, separate and equalize 

two comb lines with 425 GHz spacing at its two output ports. One of the optical tone is used as signal carrier for data 

modulation and the other tone is served as an optical local oscillator (LO) for heterodyne mixing. A 2-channel arbitrary 

waveform generator (AWG, 64 GSa/s) is employed to map and modulate two shifted PRBS 215-1 sequences into a 

16QAM signal at an IQ modulator. The 16QAM signal waveform is pulse shaped with a root-raised-cosine (RRC) 

filter of 0.15 roll-off factor. Static digital pre-equalization is performed prior to the modulation to pre- 
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Fig. 1 Experimental setup of the single channel photonic-wireless link in the 0.4 THz band. IM: intensity modulator, PM: phase modulator, 

EDFA: erbium doped fiber amplifier, WSS: wavelength selective switch, AWG: arbitrary waveform generator, VOA: variable optical attenuator, 

PC: polarization controller, UTC-PD: uni-travelling carrier photodiode, DSO: digital sampling oscilloscope. Insets: optical spectra of the 

generated optical frequency comb and combined modulated signal and LO, and the DSP routine structure at the receiver. 

compensate the AWG output frequency roll-off and the skew between the electrical cables. The optical 16QAM signal 

is amplified and filtered before combining with the optical LO branch. 

An ultra-broadband UTC-PD is used for heterodyne mixing. Two critical technical rules need to be noted for an 

efficient THz generation with heterodyne mixing: firstly, the optical power ratio between the signal and the LO needs 

to be balanced; secondly, the polarization states between the two branches need to be aligned. Both factors are found 

to have significant impacts on the generated THz signal power and SNR thus requiring precise optimization [13]. 

Therefore, a variable optical attenuator (VOA) and a polarization controller (PC) are placed in the signal branch before 

a polarization maintaining 3-dB coupler. After combining with the LO, the EDFA, polarizer and VOA placed after 

the 3-dB coupler are all polarization maintaining to match the input state of the UTC-PD. The optical spectra of the 

optical frequency comb and the combined signals after the 3-dB coupler are shown in insets of Fig. 1. At the output 

of the UTC-PD, a single channel THz signal with carrier frequency centered at 425 GHz are generated and sent into 

free space. A pair of THz lenses is used to collimate the THz beam in a 0.5 m line-of-sight (LOS) link. At the receiver, 

the signal is down-converted to an intermediate frequency (IF) signal using a 12-order harmonic THz Schottky mixer 

operating in the range of 300-500 GHz. The mixer is driven by a 33.8-34.3 GHz tunable electrical LO signal, resulting 

an IF carrier frequencies of 13-19 GHz, depending on the transmitted signal baud rate. 

The IF signal is amplified and converted to digital samples at a 160 GSa/s real-time digital sampling oscilloscope 

(DSO) with 63 GHz analog bandwidth. The digital signals are processed and analyzed offline with a specifically 

designed DSP routine in a quasi-real-time manner with a loop probing the captured samples every ~6 seconds. The 

structure of the DSP chain is also shown in Fig.1 inset. We observe a strong filtering effect to the IF signal at high 

baud rates due to the bandwidth limit of the mixer output. To equalize this filtering roll-off, a 2-tap static post-emphasis 

filter is employed. This needs to be performed before the IF down-conversion because the receiver low-pass filtering 

effect to the IF signal is not symmetrical around the IF carrier but around DC. After down-conversion, the baseband 

complex signal is processed through matched filtering, resampling and clock recovery, 29-tap multi-modulus 

algorithm (MMA) based adaptive channel equalization, blind phase search (BPS) based 2-stage frequency and phase 

noise compensation, before being differentially decoded. The bit-error-rate (BER) is evaluated by counting errors 

within a total number of ~400k bits per trace. 

3.  Results and discussions 

In this work, we experimentally evaluate single channel 16QAM THz wireless transmissions at symbol rates of 

16 Gbaud, 20 Gbaud, 28 Gbaud and 32 Gbaud, corresponding to line rates of 64 Gbit/s, 80 Gbit/s, 112 Gbit/s and 

128 Gbit/s. We measure BER as a function of launched optical power into the UTC-PD for all four baud rates, as 

shown in Fig. 2 (a), and successfully show below-FEC threshold performance in all cases. As shown in the figure, 

both 16 Gbaud and 20 Gbaud transmissions achieve BER performance below the 7% overhead hard-decision forward 

error correction (7%-OH HD-FEC) threshold, yielding error-free post-FEC net bit rates of 59 Gbit/s and 74 Gbit/s, 

respectively. In the cases of the 28 Gbaud and 32 Gbaud transmissions, BER performances below the 20% overhead 

soft-decision FEC (20%-OH SD-FEC) limit are achieved, resulting in overall post-FEC error-free net bit rates of 

93 Gbit/s and 106 Gbit/s, respectively. Corresponding signal constellations captured at 14 dBm for all symbol rates  
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Fig. 2 (a). BER performance versus launched optical power into the UTC-PD. (b). Constellations for all 4 baud rates at 14 dBm optical power. 

(c). System stability tests for all 4 configurations (250 traces (~25 min) per channel, 800 k Sa/Trace). 

are shown in Fig. 2 (b). The system performance is mainly limited by the SNR of the received signals and the receiver’s 

bandwidth. The former is primarily due to the conversion efficiency of the UTC-PD (0.15 A/W) and the THz Schottky 

mixer. And the latter further enhances the high frequency noise after post-emphasis equalization. The performance 

difference between different symbol rates can also be seen from the spreading clusters of corresponding constellations. 

It is also noted that further increase of launched optical power into the UTC-PD above 14 dBm does not yield better 

BER performance. We attribute this to the saturation of the UTC-PD in terms of output THz signal power. However, 

it is expected that in the future, a larger margin can be achieved by employing multi subcarrier modulation formats 

with higher noise tolerance, and improved hardware. 

Finally, we evaluate the performance stability of the THz communication link in the lab environment and show 

the results in Fig. 2 (c). For each symbol rate we run the system continuously over 25 minutes, collecting 250 traces 

with 800 k samples per trace and counting errors. From Fig. 2 (c) it is observed that for all cases the system could 

maintain the BER performance within a small fluctuation range, below the corresponding FEC limits. This result 

indicates that the demonstrated THz wireless link operating at high symbol rates has a stable performance because of 

the sophisticated DSP algorithms employed in this work. 

4. Conclusion 

We have experimentally demonstrated a high speed single channel THz photonic-wireless link operating in the 

0.4 THz band using a single pair of THz transmitter and receiver. The employment of 16QAM modulation format, 

ultra-broadband THz transceivers and advanced DSP routine enables the high throughput up to 106 Gbit/s net data 

rate in the THz band without spatial or frequency multiplexing techniques. The demonstrated THz link also shows 

high transmission performance stability, indicating its potential to support upcoming bandwidth intensive short range 

wireless applications. 
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