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Preface 

This thesis is based on the work carried out at the Department of 

Environmental Engineering at the Technical University of Denmark from 

January 2014 to April 2017. This thesis was prepared as part of the LaGas 

project (http://www.lagas.dk ). The research was performed under the main 

supervision of Professor Barth F. Smets (DTU Environment) and co-

supervision of Associate Professor Benedek Gy. Plósz (DTU Environment) 

and Associate Professor Gürkan Sin (DTU Chemical and Biochemical 

Engineering).  

  

The thesis is organized in two parts: the first part puts into context the 

findings of the PhD in an introductive review; the second part consists of the 

papers listed below. These will be referred to in the text by their paper 

number written with the Roman numerals I-V. 

I Domingo-Félez, C., Pellicer-Nàcher, C., Petersen, M. S., Jensen, M. 

M., Plósz, B. G., Smets, B.F. 2017. Heterotrophs are key 

contributors to nitrous oxide production in activated sludge under 

low C-to-N ratios during nitrification – Batch experiments and 

modeling.  Biotechnology and Bioengineering, 114, 132-140. 
 

II Domingo-Félez, C., Smets, B.F. 2016. A consilience model to 

describe N2O production during biological N removal.  

Environmental Science: Water Research and Technology, 6, 923-

930. 
 

III Domingo-Félez, C., Calderó-Pascual, M., Sin, G., Plósz, B. G., 

Smets, B.F. 2017. Calibration of the comprehensive NDHA-N2O 

dynamics model for nitrifier-enriched biomass using targeted respi-

rometric assays.  Submitted 

 

IV Domingo-Félez, C., Smets, B.F. 2017. Application of the NDHA 

model to describe N2O dynamics in activated sludge mixed culture 

biomass.  Manuscript in preparation. 
 

V Domingo-Félez, C., Smets, B.F. 2017. Modelling electron 

competition in a mixed denitrifying microbial community with 

different carbon sources through an electric circuit analogy.  

Manuscript in preparation.  

http://www.lagas.dk/
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In addition, the following authored or co-authored publications, not included 

in this thesis, were also concluded during this PhD study: 

 Domingo-Félez, C., Mutlu, A. G., Jensen, M. M., Smets, B. F. (2014). 

Aeration strategies to mitigate nitrous oxide emissions from single-

stage nitritation/anammox reactors. Environmental Science and Tech-

nology. (48) 15: 8679-8687. 

 

 Ma, Y., Domingo-Félez, C., Plósz, B. G., Smets, B. F. (2017). Sup-

pression of nitrite-oxidizing bacteria in intermittently membrane-

aerated biofilms: a model-based explanation. DOI: 

10.1021/acs.est.7b00463. Accepted in Environmental Science and 

Technology.  

 

 Su, Q., Ma, C., Domingo-Félez, C., Kiil, A.S., Thamdrup, B., Jensen, 

M.M., Smets, B. F. (2017). Low nitrous oxide production through ni-

trifier-denitrification in intermittent-feed high-rate high performance 

nitritation reactors. Under revision for Water Research. 

 

 Blum, J. M., Su, Q., Ma, Y., Valverde-Pérez, B., Domingo-Félez, C., 

Jensen, M. M, Smets, B. F. (2017). The pH dependency of N-

converting enzymatic processes, pathways and microbes: effect on net-

N2O production. Submitted. 

 

This PhD study also contributed to international conferences with the follow-

ing proceeding papers: 

 

 Domingo-Félez, C., Smets, B. F. Critical assessment of a novel N2O 

model. N2O Expert Meeting and Workshop. Bochum (Germany). 21
st
 – 

22
nd

 September 2016. Oral presentation. 

 Domingo-Félez, C., Valverde-Pérez, B., Plósz, B. G., Sin, G., Smets, B. 

F. Towards an optimal experimental design for N2O model calibration 

during biological nitrogen removal. 5
th

 IWA/WEF Wastewater Treatment 

Modelling Seminar (WWTmod2016). Annecy (France). 2
nd

- 6
th

 April 

2016. Poster presentation. 

 Domingo-Félez, C., Pellicer-Nàcher, C., Petersen, M. S., González-

Combarros, R., Jensen, M. M., Sin, G., Smets, B. F. Challenges encoun-

tered calibrating N2O dynamics from mixed cultures. International Con-

ference on Nitrogen (ICON4). Edmonton (Canada). University of Alberta. 

June 29
th

-July 2
nd

 2015. Poster presentation. 
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 Domingo-Félez, C., Plósz, B. G., Sin, G., Smets, B. F. N2O and NO dy-

namics in AOB-enriched and mixed-culture biomass: Experimental Ob-

servations and Model Calibration. Fifth International Conference on Nitri-

fication and Related Processes (ICoN5). Vienna (Austria). 23-27 July 

2017. Accepted Abstract. 

 Ma, Y., Domingo-Félez, C., Plósz, B. G., Smets, B. F. Suppression of 

nitrite-oxidizing bacteria in intermittently aerated biofilm reactors: a mod-

el-based explanation. IWA Microbial Ecology in Water Engineering & 

Biofilms. 4-7
th

 September 2016. Copenhagen (Denmark). Poster presenta-

tion. 

 Smets, B. F., Pellicer-Nàcher, C., Domingo-Félez, C., Jensen, M. M., 

Ramin, E., Plósz, B. G., Sin, G., Gernaey, K., V., Modelling N2O dynam-

ics in the engineered cycle: Evaluation of alternate model structures. Spa 

(Belgium). 4
th

 IWA/WEF Wastewater Treatment Modelling Seminar. 30 

March – 2 April 2014. Poster presentation. Proceedings p. 343-346. 

 Domingo-Félez, C., Calderó-Pascual, M., Sin, G., Plósz, B. G., Smets, B. 

F. Calibration of the NDHA N2O model via respirometric assays. Fron-

tiers International Conference on Wastewater Treatment. 21-24
th

 May, Pa-

lermo (Italy). Poster flash presentation. 

 Ma, Y., Domingo-Félez, C., Smets, B. F. N2O Production in Membrane-

aerated Nitrifying Biofilms: Experimentation and Modelling. Frontiers In-

ternational Conference on Wastewater Treatment. 21-24
th

 May, Palermo 

(Italy). Poster flash presentation. 

 Ma, Y., Domingo-Félez, C., Piscedda, A., Smets, B. F. Investigating In-

termittent Aeration in Membrane-Aerated Nitrifying Biofilm Reactors. 

IWA 10
th

 International Conference on Biofilm Reactors on, Dublin (Ire-

land) 9-12
th

 May 2017. Oral presentation. 

 Morset, M., Valverde-Pérez, B., Blum, J. M., Domingo-Félez, C., Mauri-

cio-Iglesias, M., Smets, B. F. N2O emissions from a single-stage partial 

nitritation/anammox granule-based reactor – a model based assessment.  

IWA 10
th

 International Conference on Biofilm Reactors on, Dublin (Ire-

land) 9-12
th

 May 2017. Poster presentation. 

 Ekström, S., Domingo-Félez, C., Jensen, M. M., Gustavsson, D. J. I., 

Persson , F., Jansen J. L. C., Smets, B. F. Influence of aeration strategy on 

N2O emissions from a pilot-scale mainstream anammox process. NOR-

DIWA 2015 – 14th Nordic Wastewater Conference (November, 2015, 

Bergen, Norway). Oral presentation. 
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Summary 

Research on biological nitrogen removal (BNR) in wastewater treatment 

plants (WWTP) has historically focused on achieving good effluent quality, 

with more recent attention to energy savings and carbon dioxide (CO2) foot-

prints. Novel processes and operating conditions are being implemented that 

enhance cost and energy efficiency in BNR, while maintaining effluent quali-

ty. Now, increasing attention is placed on direct emissions of nitrous oxide 

(N2O) as by-product of BNR; N2O is a greenhouse gas (GHG) with a high 

warming potential and also an ozone depleting chemical compound.  

Several N2O production pathways have been identified from pure culture 

studies, while mechanisms are still being unravelled. Heterotrophic bacteria 

(HB) and ammonium oxidizing bacteria (AOB) are well known to produce 

N2O. However, the effect of environmental factors on N2O production is not 

yet well understood. Current process modelling efforts aim to reproduce ex-

perimental data with mathematical equations, structuring our understanding 

of the system. Various mechanistic models with different structures describ-

ing N2O production have been proposed, but no consensus exists between 

researchers. Hence, the existing plant-wide GHG models still lack a complete 

biological process model that can be integrated in a methodology that assess-

es N2O emissions and their impact on overall plant performance. 

A mathematical model structure that describes N2O production during 

biological nitrogen removal is proposed. Two autotrophic and one 

heterotrophic biological pathways are coupled with abiotic processes. The 

model stoichiometry and process rates synthesize a comprehensive literature 

review on the metabolism of microbes involved in nitrogen removal. The 

proposed model can describe all relevant NO and N2O production pathways 

with fewer parameters than present in other proposed models.  

A novel experimental design based on the developed model and on extant 

respirometric techniques is introduced. Monitoring dissolved oxygen and 

N2O allowed the isolation of individual processes and the estimation of 

parameters associated to oxygen consumption (endogenous activity, nitrite 

and ammonium oxidation) and N2O production (NN, ND and HD pathway 

contributions). 

To estimate parameters of the N2O model a rigorous procedure is presented 

as a case study. The calibrated model predicts the NO and N2O dynamics at 

varying ammonium, nitrite and dissolved oxygen levels in two independent 
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systems: (a) an AOB-enriched biomass and (b) activated sludge (AS) mixed 

liquor biomass. A total of ten (a) and seventeen (b) parameters are identified 

with high accuracy (coefficients of variation < 25%). The critical validation 

of the model response and the estimated parameter values represent a novel 

and rigorous tool for N2O modelling studies. For the first time, uncertainty 

associated with parameter estimation from N2O models is reported, this 

procedure is recommended to be included with best-fit simulations. 

Additionally, modelling electron competition in heterotrophic processes is 

explored via an analogy to current intensity through resistors in electric 

circuits. While further model validation is required, this approach captured 

the electron competition during denitrification for four different carbon 

sources. 

Overall, a combination of modelling and experimental efforts to study N2O 

dynamics was successfully implemented. Results represent a step forward in 

the development of consensus process model for N2O emissions in WQE 

processes. 
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Dansk sammenfatning 

Forskning i biologisk kvælstoffjernelse på spildevandsrensningsanlæg har 

historisk fokuseret på at opnå en god udledningskvalitet, mens opmærksom-

heden de seneste år er blevet rettet mod energibesparelser og CO2-udslip. Nye 

processer og driftsforhold, der nedsætter omkostninger og øger energieffekti-

viteten for biologisk kvælstoffjernelse implementeres samtidig med at udled-

ningskvaliteten fastholdes. Senest er der kommet øget opmærksomhed på di-

rekte emissioner af dinitrogenoxid (N2O), også kaldt lattergas, som er et bi-

produkt af biologisk kvælstoffjernelse. Lattergas er en drivhusgas med et højt 

drivhusgaspotentiale og en ozonnedbrydende kemisk forbindelse. 

Flere bakterielle processer for lattergasproduktion er blevet identificeret ved 

hjælp af studier af rene kulturer, mens mekanismerne bag lattergasproduktio-

nen stadig undersøges. Både heterotrofe denitrificerende bakterier og ammo-

niak-oxiderende bakterier producerer lattergas. Men man ved endnu meget 

lidt om hvilke faktorer, der regulerer lattergasproduktionen. Igangværende 

forskning inden for procesmodellering forsøger at reproducere eksperimentel-

le data med matematiske ligninger og derved strukturere vores forståelse af 

systemet. Forskellige mekanistiske modeller med forskellige strukturer der 

beskriver lattergasproduktion har tidligere været foreslået, men der er ingen 

konsensus imellem forskere. Derfor mangler de eksisterende drivhusgas-

emissionsmodeller for hele renseanlægget stadig en komplet biologisk pro-

cesmodel, som kan integreres på en måde der giver mulighed for at vurdere 

lattergasemissioner og indvirkningen af disse på den samlede anlægspræstati-

on. 

Her foreslås en matematisk modelstruktur, der beskriver lattergasproduktio-

nen under biologisk kvælstoffjernelse. To autotrofe og en heterotrof biologisk 

reaktionsvej er koblet sammen med abiotiske processer. Modellens støkiome-

tri og reaktionsrater udspringer fra et omfattende litteraturstudie i de mikro-

organismers metabolisme, der er involveret i fjernelse af nitrogen. Modellen 

kan beskrive alle relevante kvælstofoxid- og lattergas-produktionsveje med 

færre parametre end i tidligere publicerede modeller. 

I afhandlingen introduceres også et nyt eksperimentelt design baseret på den 

udviklede model og på eksisterende respirometriske teknikker. Målinger af 

opløst oxygen og lattergas gjorde det muligt at  isolere individuelle processer 

og estimering af parametre forbundet med iltforbrug (endogen aktivitet, ni-
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trit- og ammonium-oxidation) og lattergasproduktion (bidrag fra NN-, ND- 

og HD-productionsveje). 

For at estimere parametre i lattergas modellerne, fremlægges en stringent 

procedure som et case study. Den kalibrerede model forudsiger dynamikken 

af kvæfstofoxid- og lattergas-akkumulering ved forskellige niveauer af am-

monium-, nitrit- og opløst oxygen i to uafhængige systemer: (a) en beriget 

ammoniak-oxiderende biomasse og (b) aktiveret slam biomasse. I alt blev ti 

(a) og sytten (b) parametre identificeret med høj nøjagtighed (variationskoef-

ficienter <25%). Den kritiske validering af modeludkastet og de estimerede 

parameterværdier repræsenterer et nyt og stringent redskab til lattergas mo-

delleringsstudier. For første gang rapporteres usikkerheden i forbindelse med 

parametervurdering fra lattergas-modeller. Det anbefales at tilføje denne 

fremgangsmetode til best-fit simuleringsprocedurer. 

Derudover undersøges modellering af konkurrencen om elektroner imellem 

de heterotrofe processer analogt til strøm-intensiteten gennem modstande i 

elektriske kredsløb. Mens yderligere validering af modellen er påkrævet, fan-

gede fremgangsmåden den elektronkonkurrence, der forekommer når denitri-

ficerende bakterier oxiderer fire forskellige kulstofkilder.  

Samlet set blev en kombination af modellering og forsøg med formålet at 

studere N2O-dynamik succesfuldt gennemført. Resultaterne er et skridt frem-

ad i udviklingen af en konsensus procesmodel for lattergasemissioner i inge-

niørmæssige vandkvalitets-processer. 
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1 Introduction 

1.1 Background and motivation of the study  
Nitrous oxide (N2O) is a stratospheric ozone depleter and a greenhouse gas 

(GHG), recently identified as the most important threat to the ozone layer of 

the 21
st
 century (Ravishankara et al., 2009). The global warming potential of 

N2O is 300 times higher than that of CO2 due to its long residence time in the 

atmosphere (Stocker et al., 2013). 

In the anthropogenic water cycle N2O emissions can contribute up to 26% of 

the GHG footprint (Desloover et al., 2012), and specifically during sewage 

treatment accounts for 3.2% of the total N2O global emission rates (Mosier et 

al., 1999). The objective of wastewater treatment is of sanitary purposes, re-

ducing the number of pathogens present in wastewater. However, still 47% of 

wastewater produced in manufacturing and domestic sectors is untreated 

(Stocker et al., 2013). Hence, global N2O emissions may be enhanced by the 

increasing wastewater treatment loadings. 

The carbon footprint of full-scale wastewater treatment plants (WWTPs) con-

sists of direct emissions of GHG (e.g. methane, nitrous oxide), energy con-

sumption, use of chemicals, etc. The study of Scandinavian municipal 

WWTPs indicated that the most important contributions corresponded to the 

direct GHG emissions and energy categories (Gustavsson and Tumlin, 2013). 

Overall, while energy neutral and energy self-sufficient WWTPs exist (Yan et 

al., 2017), carbon neutral WWTPs are still lacking in the literature 

(Gustavsson and Tumlin, 2013). 

A high variability in N2O emissions exists and emission factors are not repre-

sentative for individual process configurations (Ahn et al., 2010). The impact 

assessment of N2O emissions from the nitrogenous liquid waste should be 

thus addressed at a local level. 

Intensive on-site measurements together with accurate measurement proto-

cols have been reported as an alternative to estimate N2O emissions 

(Chandran, 2011). Mechanistic models have also been suggested to predict 

N2O emissions from plant-wide systems and incorporated during control 

strategies (Snip et al., 2014). However, poor knowledge of key processes 

driving N2O production and lack of consensus on how to model the producing 

pathways has impeded the implementation of plant-wide GHG models 

(Desloover et al., 2012). Models have increased their predictive capabilities, 
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but convergence towards a consilience N2O model has not been achieved yet 

(Mannina et al., 2016).  

Compared to full-scale systems, the differences in formation mechanisms and 

kinetics between biomass cultures can be studied in lab-scale reactors or tar-

geted experiments as they offer more controlled environments. Model devel-

opment can also benefit from recent advances on microbial metabolism and 

analytical measurements (e.g. pure culture studies, quantification of microbial 

communities, isotopic portioning, microelectrodes, etc.). Therefore, a better 

understanding of the biological factors that control N2O production and con-

sumption will improve the mathematical prediction of new N2O process mod-

els.  

Additionally, the high parameter variability of reported N2O models high-

lights possible model limitations to address regulation of multiple pathways, 

microbial population switches, or hydrodynamic heterogeneities (Manser et 

al., 2005; Spérandio et al., 2016). The confidence of model predictions is 

critical when comparing the performance of N2O models during the develop-

ment of mitigation strategies as the carbon footprint is highly sensitive to 

N2O emissions (Gustavsson and Tumlin, 2013). Moreover, as an end-product 

of nitrogen removal N2O predictions are greatly affected by the uncertainty of 

primary N-substrates (e.g. NH4
+
, NO2

-
, etc.). The quality of the calibration 

results is commonly addressed in environmental models (Bennett et al., 2013) 

but has not been studied for N2O emissions. Hence, rigorous methods for N2O 

model response evaluation will benefit model discrimination procedures, and 

improve mitigation strategies (Belia et al., 2009).  
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1.2 Aim of the thesis 
This thesis is embedded in a project (LaGas) that focuses on untangling the 

factors driving N2O production from wastewater treatment. LaGas is a multi-

disciplinary project in which this thesis aims to contribute by building and 

validating a consensus mechanistic process model for N2O dynamics for wa-

ter quality engineering use. This thesis represents the modelling link between 

lab-scale stable isotope techniques and intensive full-scale measuring cam-

paigns. 

In this thesis, a state-of-the-art overview of the pathways driving N2O produc-

tion during BNR is exposed, current N2O modelling approaches are discussed 

and a consilience model is proposed. An overview of the research approach 

followed in this thesis is shown in Figure 1.1.  

 

Figure 1.1. Overview of the research approach in this thesis. 

 

The objectives of the thesis are: 

• Critically review N2O models to evaluate the prediction accuracy and as-

sess structural limitations. (Paper I). 

• Develop a consilience N2O model structure capable of describing the 

known biological and abiotic pathways relevant for water quality engineering 

processes (Paper II).  
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• Design of lab-scale experiments to accurately obtain parameters describing 

N2O production (Paper III and IV). 

• Validate the estimated model parameters by assessing the model response 

and the parameter values (Paper III and IV). 

• Analyse the predictive capabilities and precision of validated process mod-

els (Paper III, IV and V). 

• Explore a modelling approach that describes electron competition; specif i-

cally applied for heterotrophic processes (Paper V). 
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2 Nitrous oxide production during 

biological nitrogen removal  

2.1 Biological nitrogen removing organisms 

The microbiome of wastewater treatment plants is a complex community 

comprised mostly of bacteria, and to a lesser extent, archaea. A large assump-

tion is that all sewage treatment microbial communities will have roughly 

similar community compositions. The number of bacteria in activated sludge 

is estimated to be in the range of 1–10 x 10
12

/g VSS (Nielsen and Nielsen, 

2002), 80% of which are typically active. Chemoorganoheterotrophs are the 

most abundant populations in activated sludge, belonging to Alpha-, Beta-, 

Gamma-, Delta- and Actinobacteria. These microbes are capable of nitrogen 

removal, iron reduction, sulfate reduction, phosphate and glycogen accumula-

tion, among other functions. In the next sections the microbial communities 

involved in nitrogen removal as well as the biochemical processes they medi-

ate will be discussed in more detail (Figure 2.1). 

 

 

Figure 2.1. Simplified nitrogen cycle and relevant biological transformations. 
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2.1.1 Aerobic ammonia oxidizing bacteria 

Aerobic ammonia oxidizing bacteria (AOB) are chemolithoautotrophic Prote-

obacteria (i.e., they use inorganic energy sources). AOB obtain energy from 

the oxidation of ammonia (NH3) to nitrite (NO2

-
) with molecular oxygen (O2) 

as electron acceptor (2.1). The oxidation of NH3 with oxygen to hydroxyla-

mine (NH2OH) is an endergonic process catalysed by the ammonia monoox-

ygenase (AMO) (2.2) (Sayavedra-Soto et al., 1996). This step requires two 

electrons, supplied by the subsequent NH2OH oxidation to NO2

-
, catalysed by 

the enzyme hydroxylamine oxidoreductase (HAO) (Böttcher and Koops, 

1994; de Bruijn et al., 1995) (Figure 2.2). NH2OH oxidation releases four 

electrons, two sustain NH3 oxidation and the other two are utilized for ana-

bolic processes (2.3) (Vajrala et al., 2013). While carbon dioxide (CO2) is the 

preferred carbon source incorporated during growth, the metabolism of AOB 

is more versatile and they can also incorporate and obtain energy from small 

organic substrates (Daims and Wagner, 2010). 

NH3 + 0.0496CO2 + 1.44O2 → 0.01C5H7O2N + 0.99NO2
− + 0.97H2O +

0.99H+                 (2.1) 

NH3 + O2 + 2H
+ + 2e−

AMO
→  NH2OH + H2O   (2.2) 

NH2OH + H2O + 2e
−
HAO
→  HNO2 + 4H

+ + 4e−   (2.3) 

In addition, AOB have a denitrifying functionality where NO2

-
 can be used as 

electron acceptor at low dissolved oxygen (DO) conditions. NH2OH oxida-

tion provides the electrons for the sequential NO2

-
 reduction to nitrous oxide 

(N2O) via nitric oxide (NO) (Poth and Focht, 1985). This process is encoded 

by a set of NO2

-
- and NO-reducing enzymes (NIR, NOR) and is termed nitri-

fier denitrification (ND). AOB can also produce N2O from the incomplete 

oxidation of NH2OH to HNO2 via NO, or its reduced form HNO (Hooper and 

Terry, 1979). This process is referred to as nitrifier nitrification (NN) (Zhu et 

al., 2013) associated N2O production. The enzymology of AOB suggests the 

presence of alternate N2O producing pathways such as one mediated by 

CYT554 which possesses a NO reducing catalytic units similar to the NOR 

cluster (Upadhyay et al., 2006; Kozlowski et al., 2014). Recently, a direct 

enzymatic conversion of NH2OH to N2O mediated by CYTP460 was also 

demonstrated (Caranto et al., 2016). DO differently affects the transcription 

and expression of NIR and NOR enzymes. NO production, regulated by 

NirK, would be favoured under anoxic conditions (Kester, 1997; Perez-
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Garcia et al., 2014), while NorB activity would be upregulated under oxic 

conditions (Yu and Chandran, 2010). 

 

Figure 2.2. Simplified NH3 oxidation to HNO2 by AOB, main intermediates, electron flow 

and enzymatic sites. 

 

The majority of AOB species belong to the Betaproteobacteria class (Nitro-

somonas, Nitrosospira) while two known species belong to the Gammaprote-

obacteria (Nitrosococcus halophilus and N. oceani). Different sub-lineages of 

the genus Nitrosomonas are frequently detected by 16S rRNA and amoA se-

quence analysis in wastewater treatment plants (Nielsen et al., 2010; 

Purkhold et al., 2000). Nitrosomonas europaea, or Nitrosomonas eutropha 

adapt to higher ammonia concentrations compared to Nitrosomonas oli-

gotropha. Diversity varies between systems, with some being dominated by 

one species and others, where ammonium concentrations vary over a wide 

range, by several species (Daims and Wagner, 2010).  

Ecologically, Nitrosomonas cells have a higher specific growth rate than Ni-

trosospira species and a lower substrate affinity, suggesting a better adapta-

tion to systems with high substrate as wastewater treatment plants (Schramm 

et al., 1999; Terada et al., 2013). The NH4
+
 and NH2OH aerobic oxidation by 

AOB pure cultures (N. europaea, N. communis, and N. multiformis among 

others) revealed different physiological responses of NO and N2O production 

(Kozlowski et al., 2016). 

 

2.1.2 Aerobic nitrite oxidizing bacteria 

Some nitrite oxidizing bacteria (NOB) belong to the Alphaproteobacteria 

class (e.g. Nitrobacter spp,), the Betaproteobacteria (e.g. Nitrotoga spp.) oth-
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ers to the Nitrospira phylum (e.g. Nitrospira spp.) and recently some Chlor-

oflexi (e.g. Nitrolanceta spp.) were discovered (Sorokin et al., 2012). They 

are also more physiologically diverse than AOB, not all NOB being chemo-

lithoautotrophs (Madigan et al., 2010). NOB obtain energy from the oxida-

tion of NO2

-
 to nitrate (NO3

-
) catalysed by nitrite oxidoreductase (NXR) us-

ing water as oxygen source (2.4). Molecular oxygen is reduced with the elec-

trons released during NO2

-
 oxidation in a cytochrome aa3-type terminal oxi-

dase (Daims and Wagner, 2010). NOB genera Nitrobacter and Nitrospira can 

also grow mixotrophically on small organic compounds in the absence of 

NO2

-
. 

NO2
− + H2O

NXR
→  NO3

− + 2H+ + 2e−    (2.4) 

Four genera comprise the best studied NOB: Nitrobacter, Nitrospira, Nitro-

coccus, and Nitrospina. In wastewater treatment operations Nitrobacter-like 

bacteria were considered the dominating species, but recent microbial charac-

terization of activated sludge systems and biofilms showed a wider distribu-

tion of Nitrospira (Nielsen et al., 2010) and in some cases Nitrotoga seems 

dominant (Lücker et al., 2015).  

From pure culture studies Nitrobacter spp. are considered r-strategist, being 

outcompeted by Nitrospira spp. at low substrate concentrations, K-strategists 

(Nowka et al., 2014). Coexistence of Nitrobacter and Nitrospira has been 

observed in highly-loaded nitrifying reactors, but Nitrospira seems to out-

compete Nitrobacter at low-load activated sludge systems (Paper IV).  

N2O is not part of the metabolism of NOB, but they possess a NirK gene re-

sponsible for NO2

-
 reduction to NO (Perez-Garcia et al., 2016a). Hence,  indi-

rectly, NOB play an important role on N2O emissions from wastewater treat-

ment operations. Indeed, by consuming NO2

-
, a possible substrate for N2O 

production by AOB, NOB can act as an indirect N2O mitigator in nitrifying 

systems. 

 

2.1.3 Denitrifying bacteria 

Denitrifying bacteria are commonly heterotrophs which at low oxygen ten-

sion can use nitrate, nitrite, nitric oxide and nitrous oxide as electron accep-

tors in their respiratory metabolism (2.5). Most denitrifiers can also respire 

organic carbon with oxygen as electron acceptor. Denitrifiers of the Betapro-

teobacteria class belong to the genera Curvibacter, Thaurea, Azoarcus, Zoo-
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gloea and Accumulibacter (Daims and Wagner, 2010). In addition, chemoli-

totrophic denitrifers exist, that use compounds such as elemental sulfur, sul-

phide, or hydrogen as electron donor (Berks et al., 1995); they will not be 

discussed here as they would not dominate typical water quality engineering 

systems. 

NO3
− + 1.08CH2OH + 0.24H2CO3 → 0.056C5H7O2N + 0.47N2 + 1.68H2O +

HCO3
−   (2.5) 

NO3
−
NAR
→  NO2

−
NIR
→ NO

NOR
→  N2O

NOS
→  N2  (2.6) 

The four-step reduction is carried out by the NAR, NIR, NOR and NOS en-

zymes (2.6); NAR is a membrane-bound enzyme while NIR, NOR and NOS 

are located in the periplasm (Berks et al., 1995) (Figure 2.3). Heterotrophic 

denitrifiers possess a highly modular microbiome with very different distribu-

tion of denitrifying genes (Graf et al., 2014). Co-occurrence of NAR, NIR 

and NOR enzymes without NOS would yield a net N2O producer, while non-

denitrifier N2O reducers carrying an atypical nosZ gene have been identified 

and may act as  N2O sinks (Jones et al., 2014). Moreover, the reduction of 

N2O also occurs in some non-denitrifying bacteria (Domeignoz-Horta et al., 

2016). The potential of an heterotrophic community to serve as N2O source or 

sink may be governed by the diversity and relative abundance of the nosZ 

gene with respect to nar, nir and nor genes (Sanford et al., 2012; Jones et al., 

2014). In  WWTP removing phosphorus and nitrogen biologically some 

Phosphate-Accumulating Organisms (PAO) also act as denitrifiers (Ekama 

and Wentzel, 1999). 

The electrons released from carbon oxidation are distributed through the res-

piratory electron transport chain, to the ubiquinol pool and circulated to two 

branches: nitrate reductase and cytochrome c (Richardson et al., 2009). Both 

branches have been shown to compete for a limited flow of electrons from 

NADH and succinate dehydrogenases (Kucera et al., 1983). Similarly, nitrite 

and nitrous oxide reductases compete for electrons from the reduced cyto-

chrome c (Alefounder et al., 1983). Thus, the reduction rate of individual ni-

trogen oxide are influenced by the presence of other terminal acceptors 

(Kucera et al., 1983). The reversible inhibitory effect of DO on NOx
-
 reduc-

tion is similar for each step (Alefounder et al., 1983; Richardson et al., 

2009). N2O reduction is the most sensitive step towards DO, and under low 

DO N2O accumulation is promoted compared to the other N-species (Wild et 

al., 1994). The activity of enzymes encoded by the nir, nor and nosZ genes, 
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located in the periplasm, are pH-dependent, with different optima for each 

denitrification step (Thomsen et al., 1994).  

 

Figure 2.3. Diagram of canonical electron transport system in denitrification. 

 

External carbon sources such as methanol, ethanol or acetate are commonly 

added to wastewater to enhance denitrification and improve nitrogen removal 

(Mokhayeri et al., 2009). The denitrification rates and yield vary significantly 

based on the carbon source used, which has been proposed as the controlling 

factor for the community function and structure (Lu et al., 2014). The meta-

bolic pathways to oxidize each carbon source are different (Madigan et al., 

2010), and thus, dosage of a specific carbon source can shape the microbial 

community (Hallin et al., 2006). Acetate-fed enriched for members of the 

Comamonadaceae and Rhodocyclaceae family, while methanol-fed enriched 

for members of the Methylophilaceae (Osaka et al., 2006). Methanol oxidiz-

ers typically represent a small fraction of the complex denitrifying guild in 

wastewater treatment plants but increase after an adaptation period (Ginige et 

al., 2004; Lu et al., 2014). 

 

2.1.4 Anaerobic ammonium oxidizing bacteria  

Theoretical calculations predicted the existence lithotrophs that could oxidize 

NH4
+
 to N2 with NO3

-
 or O2 as electron acceptors (Broda, 1977). Anaerobic 

ammonium oxidizing, “anammox” bacteria, are chemolithoautotrophs that 

obtain energy from the anaerobic oxidation of NH4
+
 with NO2

-
 as electron 

acceptor and fix inorganic carbon (2.7) (Strous and Heijnen, 1998). 
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NH4
+ + 1.32NO2

− + 0.066HCO3
− + 0.13H+ → 1.02N2 + 0.26NO3

− +

0.066CH2O0.5O0.15 + 2.03H2O   (2.7) 

Anammox bacteria comprise five genera Ca. Anammoxoglobus, Ca. Broca-

dia, Ca. Jettenia, Ca. Kuenenia, and Ca. Scalindua, all belonging to the 

Planctomycetes phylum. Previously considered as slow growers (doubling 

time of 10-15 days), it was recently shown to grow much faster (2.1 – 3.9 

days) (Zhang et al., 2017). N2O is not part of the metabolism of Anammox 

bacteria, but intermediates of N2O production pathways such as NO2

-
 and 

NO, are part of the metabolism of Anammox. Hence, as well as NOB, 

Anammox play an important role on N2O emissions from wastewater treat-

ment operations. 

 

2.1.5 Recent discoveries in the nitrogen cycle 

Thermodynamic calculations predicted the existence of complete nitrifying 

organisms, capable of oxidizing ammonium into nitrate (Costa et al., 2006). 

Recently, “comammox” organisms (completely ammonium oxidizers) have 

been discovered, reshaping our understanding of the nitrogen cycle (van 

Kessel et al., 2015; Daims et al., 2015; Palomo et al., 2016). The abundance 

of comammox in wastewater treatment plants is significantly lower than 

AOB, and thus, this study will solely focus on AOB as aerobic ammonium 

oxidizers (Chao et al., 2016). 

 

2.1.6 Abiotic reactions 

Earlier studies on abiotic N2O production have highlighted the importance of 

two chemical reactions driven by NH2OH (Heil et al., 2014) that can occur at 

relevant rates under wastewater treatment conditions. 

OHNHONOHNH 2322 324           (2.8) 

OHONHNOOHNH 2222 2         (2.9) 

NH2OH can decompose to N2O at high pH (2.8, (Feelisch and Stamler, 1996); 

its acidic form  NH3OH
+
 is more stable (Liu et al., 2014) (pKa = 5.9, 25 C)). 

In the second reaction, an N-N linkage is formed by N-nitrosation of NH2OH, 

a nucleophile, with a nitrosating agent, HNO2, at low pH (Spott et al., 2011) 

(2.9, (Döring and Gehlen, 1961)). Thus, independently from the main driving 

process (e.g., nitrification or denitrification) and the environmental condi-
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tions (e.g., aerobic or anaerobic), biotically-driven (because it requires 

NH2OH) abiotic N2O production is possible in WWTP.  

Previously considered as low, NH2OH concentrations from highly N-loaded 

wastewaters can be higher than expected (0.03-0.11 mgN/L) (Soler-Jofra et 

al., 2016), highlighting a possible underestimation of the abiotic N2O produc-

tion (Harper et al., 2015). For example, a nitritating reactor for reject water 

(high AOB activity and NO2

-
 accumulation) estimated a 1.1% abiotic emis-

sion factor driven by NH4
+
 oxidation (Soler-Jofra et al., 2016).  

Nitrate or nitrite reduction coupled with Fe(II) oxidation was also proposed 

as abiotic contributor to NO and N2O production under anoxia at high nitrite 

levels in wastewater treatment systems (2.10, 2.11) (Kampschreur et al., 

2011).  

OHFeNOHFeNO 2

32

2 2         (2.10) 

OHONFeHFeNO 22

32 5.05.01       (2.11) 

The observations hinted to a role for iron oxidation coupled to nitrite reduc-

tion from mixed liquor because of its considerable iron reducing activity. 

However, the presence or absence of Fe(II) or Fe(III) did not affect aerobic 

abiotic N2O production (Terada et al., 2017; Soler-Jofra et al., 2016). For 

more details on abiotic N2O production the reader is referred to (Zhu-Barker 

et al., 2015).  
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2.2 Nitrogen removal in wastewater treatment 

and nitrous oxide emissions 
Sewage treatment contributes to 3.2% of the anthropogenic N2O emissions, 

but can triplicate if manure, landfill leacheates and industrial nitrogenous ef-

fluents are included (Desloover et al., 2012). The carbon footprint of a 

WWTP is highly sensitive to N2O emissions (Gustavsson and Tumlin, 2013), 

where an N2O emission factor of 1% increases the carbon footprint by 50% 

(Monteith et al., 2005), reaching up to 83% of the operational CO2  footprint 

of a Biological Nitrogen Removal (BNR) plant (Desloover et al., 2011). 

All of the BNR processes include an aerobic zone in which biological nitrif i-

cation occurs. Some anoxic volume or time must also be included to provide 

biological denitrification to complete the objective of total nitrogen removal. 

Biological nitrification/denitrification is the most common treatment in 

WWTP due to its high efficiency, stability and reliability. Energy savings are 

linked to economic savings, and hence, processes that reduce the high use of 

energy in aeration are considered as attractive alternatives to actual BNR pro-

cesses. Short-cut nitritation-denitritation, the combination of nitritation and 

anammox in single or two-stage systems are such alternatives with lower en-

ergy demands (Joss et al., 2011). However, a trade-off seems to exist between 

aeration costs and reduced N2O emissions (Ahn et al., 2011). 

N2O mitigation strategies have been proposed based on intensive measure-

ment campaigns (Desloover et al., 2012; Foley et al., 2010), but N2O emis-

sions are highly variable even for similar processes (0.001 – 25.3% N2O 

emitted/N-load). A ranking of BNR technologies based on the potential N2O 

risk cannot be established because of the yet unknown high variability of re-

ported N2O emissions (Desloover et al., 2012; Kampschreur et al., 2008a). 

Key variables such as low dissolved oxygen or high nitrite accumulation have 

been identified as potential hotspots for N2O emissions in BNR processes 

(Sun et al., 2015; Kampschreur et al., 2009b).  
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2.3 Regulation of nitrous oxide production in 

wastewater treatment 
In nitrogen removing systems N2O production has been associated to several 

variables and operational parameters. Suggestions on how to fine-tune these 

variables has been applied to manage N2O emissions using a black-box ap-

proach (Figure 2.4) (Brotto et al., 2015; Kampschreur et al., 2009a; Park et 

al., 2000). These methods rely on obtaining a better understanding of N2O 

emissions by means of correlation analysis: what variables trigger N2O emis-

sions? 

 

Figure 2.4. Nitrous oxide emission during biological nitrogen removal.  

 

The NH4
+
 load and influent NH4

+
 concentration have been correlated to N2O 

emissions from aerobic zones operating at high dissolved oxygen (DO) con-

centrations (Lotito et al., 2012; Ni et al., 2013b). At low DO NH4
+
 is oxi-

dized at a lower rate but a higher fraction is converted to N2O (Burgess et al., 

2002; Li and Wu, 2014) (Figure 2.5). The aeration strategy, i.e. aeration rate 

and frequency of aeration, also impact N2O emission (Yu et al., 2010; 

Domingo-Félez et al., 2014; Kampschreur et al., 2008a). 

NO2

-
 accumulation has also lead to higher N2O emissions in N-removing sys-

tems (Wang et al., 2016b; Kampschreur et al., 2008b) (Paper I). As the di-

rect precursor of N2O in most of the biological pathways, NO has shown the 

highest correlations with N2O (Kampschreur et al., 2008b; Wang et al., 

2016b; Domingo-Félez et al., 2014). 

pH levels have two distinct effects on N2O production. First, on the enzymat-

ic level, maximum activities have been described as pH-dependent (Park et 

al., 2007) (Figure 2.5). Second, the availability of the true substrates for 
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AOB and NOB are assumed to be NH3 and HNO2 respectively; the actual 

concentrations of these species are in a pH-dependent equilibrium with their 

ionized counterparts NH4
+
 and NO2

-
 (Udert et al., 2005) (pKaHNO2 = 3.25, 

pKaNH4+ = 9.25,  25 C (Lide, 2009)). Acidification enhanced the N2O yield of 

Nitrosospira-dominated community, suggested due to the hybrid N2O-

forming reaction of NH2OH and HNO2 (Frame et al., 2017). 

Inorganic carbon (IC) is fixed to form cellular carbon during AOB growth. At 

limiting IC availability, NH3 is oxidized at a lower rate due to increased cel-

lular maintenance energy demand, which decreases the overall N2O produced 

(Jiang et al., 2015). However, under the same NH3 oxidation rates, IC-

limitation increases the fraction of N2O produced (Mellbye et al., 2016). De-

pending on the nitrogen removal system, wastewaters can have varying IC 

levels. 

 

Figure 2.5. Left: Nitrous oxide consumption dependency on pH (Paper IV). Right: Net 

production rates at varying dissolved oxygen concentrations from mixed liquor biomass. 

(Unpublished data).  

 

The heterotrophically-oxidized organic content of conventional urban 

wastewater typically produces excess IC for autotrophic growth, but high N-

strength wastewaters with a lower C/N ratio, may result in IC limited AOB 

growth (Panwivia et al., 2014).  

Operational parameters and wastewater characteristics have also shown to 

affect N2O emissions. A limited flow of electron donors (COD) due to a low 

carbon-to-nitrogen ratio of the incoming wastewater can also slow down NOx
-
 

reduction rates. Therefore, N2O production can be enhanced by a lower N2O 

reduction rate compared to previous steps because of the lower electron affin-

ity. Consequently, side stream processes, characterized by a high N and low 

COD content, are potential hotspots for heterotrophic N2O production 

(Kampschreur et al., 2009b; Yang et al., 2009; Hu et al., 2013). Additionally, 
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N2O consumption is the most sensitive denitrification step to the presence of 

DO and thus, N2O can be released in the presence of low DO concentrations 

(Richardson et al., 2009). 

Other operational parameters such as the solids retention time (SRT) have 

shown increasing N2O emission factors for low SRT values (Li and Wu, 

2014; Lotito et al., 2012). Seasonal variations of N2O emissions have been 

observed and associated to temperature changes that affect the microbial 

populations involved in nitrogen removal (Wang et al., 2014, 2016b).  

In biofilms the spatial distribution of microbial communities and mass trans-

fer limitations are linked by chemical gradients (Manser et al., 2005; 

Picioreanu et al., 2016). Biofilms showed a lower emission factor compared 

to suspended-growth systems with smaller particle size (Park et al., 2000). 

For example, in partial nitritation/anammox suspended granules, anammox 

are located in the inner anoxic layers, acting as a NO2

-
 sinks and thus, reduc-

ing the risk of N2O production. Other parameters affecting N2O production in 

suspended and biofilm wastewater treatment operations have been recently 

reviewed  (Todt and Dörsch, 2016; Massara et al., 2017). 
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3 Modelling nitrous oxide emissions during 

WQE  

3.1 Modelling biological nutrient removal 
Models are simplifications of reality that describe, through mathematical 

equations, a system of interest. The purpose of the model also defines the 

scope and detail that model predictions should achieve. For example, in 

wastewater treatment applications models have been used to develop control 

strategies, to evaluate new plant designs or to support management decisions 

(Henze et al., 2008). The modelling objectives tend to align with regulatory 

discharge wastewater characteristics (e.g. particulate, organic carbon, and 

nutrient content of effluents).  

A wastewater treatment process model typically comprises a variety of dif-

ferent components: influent characterisation model, hydraulic process model, 

sedimentation model and reaction model (Figure 3.1). 

Specifically, the reaction model integrates the hydrodynamic mixing model 

and the biological model. The first one considers the model components and 

flow through the reactor volume, ideally as a Completely-Stirred Tank Reac-

tor (CSTR), Plug-Flow Reactor (PFR), or a combination of ideal reactors. 

The focus of this thesis is on the biological model that describes the conver-

sions of state variables. 

 

Figure 3.1. Representation of a complete wastewater treatment plant model (Modified 

from (Meijer, 2004)). 
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3.2 ASM-based models for nutrient removal 
The increasing metabolic understanding of nutrient removal can be described 

with mathematical equations and has been successfully used to predict the 

fate of C, N and P in wastewater treatment operations (Henze et al., 2000). 

The Activated Sludge Model (ASM) No. 1, No.2, and No. 2d are grey-box 

models where different microbial guilds present in the activated sludge and 

their specific functionality are incorporated in a so-called population-based 

model. ASM1, 2, and 2d consider the microbes as a black box and do not take 

into account intracellular processes. However, new ASM-based extensions 

incorporate metabolic process descriptions that result in bigger and more 

complex models (Snip et al., 2014). 

A generic mathematical model (e.g. ASM-based) can be described by the fol-

lowing equations:  

𝑑𝑥

𝑑𝑡
=  𝑓(𝑡, 𝑥, 𝑢, 𝜃) 

𝑥(𝑡0) = 𝑥0 

𝑦 =  𝑔(𝑥(𝑡)) 

Where 𝑡 is time, 𝑥  are the state variables (𝑥0 the initial states), 𝑢 the input 

variables, 𝜃  the input parameters and 𝑦  the output variables. Underscored 

symbols correspond to vector variables. The partial differential equation de-

scribes the substrate utilization and dynamic accumulation. The general rate 

expression for compound Si that is affected by multiple processes P j is de-

scribed by ρj (Table 3.1).  

Table 3.1. Stoichiometric matrix for a two-process and three-component model. 

Processes Pj  ↓  

Components  Si →    
S1 S2 X1 Process Rate (ρj) 

P1    ν1,1 ν1,2 ν1,3 ),,,,( 12121 XSSf   

P2    ν2,1  ν2,3 ),( 13 Xf    

Parameters: Kinetic  
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The process rate is described by model components and kinetic parameters. 

The mass balance for a compound corresponds to the observed transformation 

rate ri, and the rates are coupled through conservation relations (stoichiome-

try). 

3.3 Nitrous oxide models 
Mathematical models can be useful tools to predict N2O emissions and thus, 

help develop mitigation strategies to reduce the carbon footprint of 

wastewater treatment operations. N2O models are developed as extensions 

from existing models for N-removal. Additional state variables, process rates 

and parameters increase the complexity of N2O models conventional N-

removal models. 

Models vary based on the number of processes and/or variables considered in 

N2O production and the relationships of their mathematical rates (Liu et al., 

2016; Perez-Garcia et al., 2014; Pocquet et al., 2016).  

In empirical models N2O emissions and nitrogen removal rates are fit to op-

erational factors (e.g. pH value, temperature, feeding and aeration strategy, 

etc.) via multiple linear regression models (MLR) (Leix et al., 2017; Liu et 

al., 2016). The specific effects and combined influences are then used to find 

conditions for N2O mitigation. 

Of increasing complexity, Stoichiometric Metabolic Network (SMN) models 

make use of the increasing knowledge on metabolic engineering to describe 

microbial interactions (Perez-Garcia et al., 2016b). N2O production from ni-

trification by N. europaea at steady state was described with a SMN model 

containing 44 metabolites and 49 stoichiometric reactions (Perez-Garcia et 

al., 2014). For wastewater treatment purposes ASM-based models are widely 

used, and many N2O extensions have been proposed (Ni et al., 2011, 2014; 

Pocquet et al., 2016; Guo and Vanrolleghem, 2014; Hiatt and Grady, 2008). 

The ASM-based models differ on the biological description and the number 

of N2O pathways, which are always significantly lower than for SMN models 

(6-7 metabolites, 5-6 reactions) (Paper II). Control strategies based on N2O 

predictions are being developed for the reduction of N2O emissions (Boiocchi 

et al., 2016).   

3.3.1 Autotrophic models 

Initially, single-pathway models were proposed describing/capturing either 

the NN or ND pathway. The main differences between models regards the 

stoichiometric coefficients, the number of substrates considered, the identity 
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of the electron donor, and the inclusion or absence of substrate inhibition. 

Initial models described NO and N2O production as directly dependent on 

NH4
+
, DO and NO2

-
 levels (Kampschreur et al., 2007; Schreiber, 2009). In 

subsequent models NH2OH was  considered an intermediate of NH3 oxida-

tion, allowing the NN pathway to be modelled as a fraction of NH2OH oxida-

tion to NO2

-
, either via NOH (Law et al., 2012) or via NO (Ni et al., 2013a) 

(Figure 3.2, A). In the ND pathway NH2OH acts as electron donor for the 

consecutive reduction of NO2

-
 to N2O via NO (Ni et al., 2011) (Figure 3.2, 

B). However, N2O dynamics cannot be captured with single-pathway models, 

and recent models combining the NN and ND pathways provide better de-

scriptions of N2O production than single-pathway models (Ni et al., 2014; 

Pocquet et al., 2016; Ding et al., 2016) (Figure 3.2, C, D, E). 

In a novel approach, global cellular oxidation (electron generating) and re-

duction (electron consuming) reactions are linked by a common pool of elec-

tron carriers, represented by one model component. This model aggregates all 

intracellular electron carriers such as cytochromes and ubiquinone into one 

component that cannot be directly quantified (Kim et al., 2010). Oxidative 

and reductive processes are therefore uncoupled and competition is described 

with specific kinetic parameters (Ni et al., 2014). 

The two-pathway AOB models are adequate in predicting a shift in NN and 

ND contributions to total N2O production at different DO and NO2

-
 concen-

trations. However, these models would not describe the increased NO emis-

sions at low DO and high NO2

-
 levels observed in several nitrifying systems 

(Chandran et al., 2011; Kester, 1997; Rodriguez-Caballero and Pijuan, 2013). 

 

Figure 3.2. Comparison of the reactions involved in autotrophic models for N2O produc-

tion. The arrow widths represent typical reaction rates. Mod A (Ni et al., 2013b), Mod B 

(Ni et al., 2011), Mod C (Ding et al., 2016), Mod D (Pocquet et al., 2016), Mode E (Ni et 

al., 2014). 
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3.3.2 Heterotrophic denitrification models 

The first kinetic model describing heterotrophic denitrification was based on 

pure cultures and described each denitrification step according to the Michae-

lis-Menten equation (Betlach and Tiedje, 1981). This approach considers eve-

ry reduction rate independent from each other and has been widely used 

(Schulthess et al., 1995; Hiatt and Grady, 2008). Wild et al., (1994) explicitly 

calculated the concentration of enzymes to describe the delay in denitrifica-

tion and N2O accumulation after aerobic growth, which was recently updated 

to the four steps (Zheng and Doskey, 2015). However, these models are lim-

ited to the assumption that carbon oxidation supplies all the electrons neces-

sary for the four denitrification steps. Hence, only nitrogenous species limit 

denitrification rates under excess organic carbon conditions (Pan et al., 

2015). 

Differently, branched models reflect the modularity of the electron transport 

chain (Richardson et al., 2009). Grant and Pattey, (1999) developed a model 

where a maximum electron supply is distributed among electron acceptors, 

with preference given to the most oxidized compounds in a feed-back redox 

control ('inhibition by product via respiratory chain'). A different approach 

considered a double branch with common electron mobile carriers and de-

scribed the accumulation of intermediates, but was not validated experimen-

tally (Thomsen et al., 1994). Almeida et al. (1997) proposed an analogy bet-

ween an electric circuit and the electron flow through the cell membrane. The 

model was validated with experimental results from two pure culture studies 

where NO2

-
 (Pseudomonas fluorescens), and NO2

-
 and N2O (Paracoccus de-

nitrificans) accumulated. The indirect coupling of electrons approach (ICE) 

calculates the concentration of internal electron carriers, uncoupling the car-

bon oxidation and denitrification processes at the cost of higher complexity 

(Pan et al., 2013). 

Even though the indirect approach has been heralded as superior as it can po-

tentially describe all experimental observations (Pan et al., 2015) more in-

formation about reaction kinetics is required. The direct approach can predict 

COD and nitrogen removal for systems with low intermediates accumulation 

(NO2

-
, N2O) (Ni and Yuan, 2015) but might be inadequate for systems with 

high accumulation levels. 
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Heterotrophic denitrification: competitive electron distribution 

The direct approach first developed by (Betlach and Tiedje, 1981) for denitri-

fication is widely used in ASM-based models and hence will be used here. 

However, other approaches exist, such as the indirect modelling of carbon 

and nitrogen removal (Thomsen et al., 1994; Pan et al., 2013; Almeida et al., 

1997). The modelling approach presented by (Almeida et al., 1997) is ex-

plored here. 

A model describing 4-step denitrification and aerobic organic carbon removal 

is developed based on the analogy between electron competition during deni-

trification and electron distribution in electric circuits (Figure 3.3, M1).  

A potential (E) is created by the presence of an electron donor/acceptor pair. 

The reaction rate is kinetically analogous to the current intensity (i i) through 

a resistor. The resistance depends on the concentration of the substrate 

(Monod kinetics, KS,i) and a minimum resistance (3.1) at substrate (Si) limit-

ing conditions the resistance (ri) is infinite and no current flows, while at ex-

cess substrate the resistance becomes minimal, with value (R i). 

ri = Ri ∙  
(Si+KS,i)

Si
         [E ∙

mgN

gVSS
∙ h]     (3.1) 

Following the conservation of potential (3.2) and conservation of charge 

(3.3), the current through any resistor can be calculated. Thus, for any 

branched model the electron distribution from common pools (e.g. quinones, 

cytochromes) to several electron acceptors can be calculated. 

E = ECOD + ENOx     (3.2) 

iCOD = ∑ iNOX      (3.3) 
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Compared to the original model structure by (Almeida et al., 1997) two new 

electron distribution analogies considering additional processes are imple-

mented: a one-branch model where all the reduction steps compete for elec-

trons from a common source, and a two-branch model that resembles more 

precisely the intracellular electron distribution at a cost of an additional pa-

rameter (Figure 3.3). The model uses fewer parameters compared to existing 

state-of-the art denitrification models (Pan et al., 2013). Model fitting is per-

formed with data obtained from batch experiments with mixed denitrifying 
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communities for a combination of nitrogen oxides and for four different car-

bon sources in excess: methanol, ethanol, acetate and a carbon mixture. 

 

Figure 3.3. Simplified electron distribution in heterotrophic respiration and corresponding 

electric circuit analogy: one-branch model (M1), two-branch model (M2). (Paper V). 

 

The model successfully describes the competition for electrons during batch 

experiments at excess substrate concentrations for a combination of nitrogen 

oxides (Figure 3.4). The total electron consumption rate predicted was not 

additive as non-competitive models suggest (Hiatt and Grady, 2008), and was 

distributed differently among the four denitrification steps (Figure 3.4). 

 

Figure 3.4. Left: Experimental (grey) and simulated (black) denitrification rates. Right: 

Electron consumption rates by NO3

-
 reduction (Nar – green), NO2

-
 reduction (Nir – or-

ange), NO reduction (Nor – grey) and N2O reduction (Nos – blue) in Methanol-fed denitri-

fying experiments. Experimental (left bar) and modelling results (right bar). (* not used 

during calibration). (Paper V). 
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Among the four carbon sources evaluated calibration results indicate faster 

specific denitrification rates for methanol compared to any of the other car-

bon sources (RNAR/NIR/NOS,MeOH < RNAR/NIR/NOS,Acet,EtOH,C-mix) (Table 3.2).  

Table 3.2. Best-fit parameters for denitrification batches: Methanol, Acetate, Ethanol, C-

mix. (Paper V). 

  

In the scenarios evaluated in this study - excess electron donor (methanol) 

and electron acceptor - a simpler model such as M1 performs better than the 

ASM-ICE model. Further evaluation under a wider range of operation condi-

tions (e.g. different carbon loadings) will benefit model discrimination be-

tween M1 and ASM-ICE. Overall, a different modelling approach for denitri-

fication was explored but further validation is required.  

  

Methanol Acetate Ethanol C-mix

RNAR 5.6 11.8 8.2 8.9

RNIR 5.0 9.2 44.3 25.9

RNOS 0.6 15.0 7.6 11.1
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3.4 NDHA model 
An ASM-based model structure that describes N2O production during biolog-

ical nitrogen removal is proposed. The model builds on existing structures for 

nitrogen removal and expands the number of processes to describe N2O dy-

namics. The model intends to answer the limitations of existing N2O models. 

For example, a better understanding of the AOB pathways would help identi-

fy operating conditions affecting N2O production and improve the accuracy 

of N2O predictions (Mannina et al., 2016).  

Theoretically, the model describes all relevant NO and N2O production path-

ways with fewer parameters than other proposed models. The NDHA model 

comprises the three known biological pathways (NDHA) as well as abiotic 

production (NDHA) (Figure 3.5, Table 3.3).  

 

Figure 3.5. Diagram of the proposed N2O-producing mechanisms occurring during N-

removal: nitrifier nitrification, nitrifier denitrification, heterotrophic denitrification and 

abiotic pathways (NDHA). (Adapted from Paper II). 

 

Nitrifier Nitrification (NN): The first process considers NH3 oxidation to 

NH2OH (P1). NH2OH can be oxidized incompletely to NONN (P2) or com-

pletely to HNO2 in the presence of DO (P3). The effect of IC limitation on 

NH3 oxidation is described by a Monod dependency (Guisasola et al., 2007). 

The NN process is indirectly dependent on the NH3 oxidation rate, reducing 

the DO dependency only to P1. The fraction of NH2OH oxidized via the NN 

pathway is described by the factor εAOB. 
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P2. HAO*  NH2OH → NONN  
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P3. HAO  NH2OH + 0.5 O2 → HNO2 + H2O 
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Nitrifier Denitrification (ND): In the ND pathway HNO2 denitrification to 

NOND is negatively affected by DO (P4). Different from other two-pathway 

AOB models N2O production from its precursor (NO) is described by one 

process (P5) as there is no evidence of different NO reduction mechanisms 

within individual cells (Upadhyay et al., 2006). The NN and ND pathways 

are differentiated by two NO-producing processes with different DO and 

HNO2 dependencies. These dependencies govern the shift between pathways 

(Chandran et al., 2011; Kozlowski et al., 2014). N2ONN production is en-

hanced at high NH3 and DO levels while N2OND increases at low DO and 

high HNO2 levels.  

The NO/N2O ratio can be used to help elucidate the individual contribution of 

each pathway during model calibration (Pocquet et al., 2016). An advantage 

of the proposed model is uncoupling the NN- and ND-driven NO production, 

which allows for a more biologically congruent estimate of NO/N2O. 
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P5. NOR   2 (NOND + NONN) + NH2OH → 1.5 N2O   
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Heterotrophic denitrification (HD):  

Because of the wide applicability of the direct approach a four-step complete 

denitrification is used following the ASM-N model (Hiatt and Grady, 2008). 

The indirect coupling approach was not considered because of its limited ap-

plication (only one full-scale study has been reported (Wang et al., 2016a)), 

and hence limited information about reaction kinetics. Moreover, the ASM-N 

model has also been extended coupled with phosphorus removal (Liu et al., 
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2015). In the four-step denitrification model individual reaction kinetics (pH-

dependent), inhibition and substrate affinities are considered for every step as 

recently suggested for systems with low intermediates accumulation (Ni and 

Yuan, 2015). 

P8-11. HD   NOX,oxidized + COD → NOX,reduced   
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Heterotrophic consumption and autotrophic production of N2O can occur 

simultaneously, at different rates, throughout wastewater treatment opera-

tions. Ignoring heterotrophic N2O consumption can underestimate the auto-

trophic production. Thus, an N2O model should always include compatible 

structures for both the autotrophic and heterotrophic pathways (Paper I). 

Abiotic (Ab): Two biologically-driven abiotic N2O production processes are 

considered (P7). Nitrification produces NH2OH, which is oxidized to HNO2, 

while also forming HNO (Igarashi et al., 1997). HNO dimerizes via H2N2O2 

to N2O and H2O. Nitrosation of NH2OH with HNO2 has also been postulated 

as a relevant reaction in partial nitrification reactors (Soler-Jofra et al., 2016). 

Reactions rates are modelled with pH dependent second order kinetics. A 

model combined for the first time the abiotic reaction between NH2OH and 

HNO2 together with the ND pathway (Harper et al., 2015). Nitritation reac-

tors with high NH4
+
 removal rates or low pH that lead to higher NH2OH and 

HNO2 accumulations could thus be relevant sources of simultaneous abiotic 

and biotic N2O production. 

P. Abiotic   NH2OH → N2O 

    NH2OH + HNO2 → N2O   

(  pHfSk OHNHAbiotic  21_
) ;  (

222_ HNOOHNHAbiotic SSk  ) 

Model predictions for every pathway are pH-dependent, either due to sub-

strate speciation or to an enzymatic effect on the maximum growth rate. Aer-

obic growth of nitrite oxidizing bacteria on HNO2 and heterotrophs on solu-

ble COD are also included. 

In the NDHA model the assumption that there is no ND-associated NO pro-

duction is resolved and NOND is produced from HNO2 reduction as experi-

mentally observed (Rodriguez-Caballero and Pijuan, 2013; Chandran et al., 

2011; Kester, 1997; Wang et al., 2016b; Domingo-Félez et al., 2014). 
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Whether the source of NO is NH2OH oxidation or HNO2 reduction will de-

termine the contribution of each autotrophic pathway to N2O production, NN 

or ND respectively (Figure 3.6). Although oxidation and reduction processes 

are not uncoupled in the NDHA model, the competition for electrons is repre-

sented by NH2OH, the common electron donor: HNO2, NO and DO compete 

for NH2OH instead of reduced electron carriers.  

The same net N2O production rate can result from different individual N2O 

production/consumption rates. Thus, together with total N2O production, cor-

rectly predicting the individual contribution of each pathway is key for N2O 

models. For example, the mitigation strategy of an autotrophic system with a 

small N2O sink capacity will differ from that of mixed liquor with a higher 

N2O consuming capacity.  

 

Figure 3.6. Schematic comparison of the reactions involved in two-pathway autotrophic models for 

N2O production. Arrow widths represent typical reaction rates. Model D (Pocquet et al., 2016), 

Model E (Ni et al., 2014). (Adapted from Paper II). 

 

  

 



29 

Table 3.3. Gujer matrix for the NDHA model (Paper IV): 
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4 Experimental design and parameter 

estimation 

4.1 Monitoring nitrous oxide production for 

model calibration 
N2O is highly soluble in water, over 20 times more than O2 at 20 C, leading 

to potentially high N2O bulk concentrations. Yet, at ambient atmospheric 

N2O gas concentration (330 ppb, (Stocker et al., 2013)) the equilibrium aque-

ous concentration is 0.27 μgN/L. The biological production is in equilibrium 

with physico-chemical processes such as abiotic reactions and physical strip-

ping due to liquid-gas partitioning.  

In wastewater treatment applications N2O can be monitored in both liquid and 

gas phase. Gas phase measurements are preferred over liquid as N2O emis-

sions can be directly calculated. However, under low stripping conditions 

(e.g. mechanical mixing and no aeration) no information is obtained. Liquid 

phase N2O measurements are correlated with N2O emissions via a volumetric 

mass transfer coefficient (kLaN2O [d
-1

]) that can be experimentally determined 

(Domingo-Félez et al., 2014). Hence, liquid N2O measurements provide qual-

itatively richer information on the net production dynamics compared to gas 

phase measurements. 

Reactor configurations 

Datasets for N2O model calibration need to capture the range of operating 

conditions in which the model will be used. This information can be either 

directly obtained from the daily reactor performance (Ding et al., 2016) or by 

conducting targeted experiments (Yang et al., 2009). 

Long-term measuring campaigns from full-scale systems provide valuable 

information on diurnal and seasonal variations (Daelman et al., 2013; Wang 

et al., 2016b; Spérandio et al., 2016). The hydrodynamic model is, however, 

as important as the biological model, which increases the model complexity 

(Ye et al., 2014). The reactor configuration (i.e. SBR, CSTR) and operating 

conditions (i.e. feeding and aeration strategies) will also impact the infor-

mation content of the dataset. In a SBR cycle the system undergoes a wide 

range of concentrations provide compared to a CSTR, where the information 

content depends on the influent characteristics (Pocquet et al., 2016; Ni et al., 

2013b). 
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Lab-scale systems allow for more controlled environments and more degrees 

of freedom in the experimental design. However, limitations exist on the rep-

resentability of lab-scale data on full-scale data (Sin et al., 2005). For exam-

ple, transient phases or mass transfer limitations can hamper the transferabil-

ity of information from the lab-scale to the full-scale. 

Datasets 

N2O models are extensions of existing model structures describing nitrogen 

transformations. Consequently, the calibration of N2O models requires da-

tasets of the primary substrates (i.e. DO, NH4
+
, NO2

-
 , etc.) and additional 

N2O measurements (liquid and mass transfer coefficients, or gas phase). The 

number, the amount and the quality the dataset will pose a direct impact on 

the calibration results (Brockmann et al., 2008; Dochain and Vanrolleghem, 

2001). Quantification of N2O production intermediates such as NO is not 

common despite its potential role in model discrimination studies because of 

its low bulk accumulation (Kampschreur et al., 2008b; Yu et al., 2010; Wang 

et al., 2016b; Pocquet et al., 2016). Similarly, NH2OH is rarely quantified 

and the liquid accumulation is reported low (< 0.1mgN/L) (Yu and Chandran, 

2010; Soler-Jofra et al., 2016). 

Respirometry 

Respirometry is an experimental protocol for estimating metabolic rates by 

measuring consumption of oxygen (or potentially other terminal electron ac-

ceptor). The acquisition of DO data relies on high frequency and high sensi-

tive liquid oxygen measurements, allowing automated and continuous meas-

urements (Figure 4.1). The burden of chemical-specific analyses (e.g. NH4
+
, 

NO2

-
) associated to substrate depletion tests is alleviated (Chandran et al., 

2008). Respirometric tests are best for the determination of extant kinetic pa-

rameters, which are representative of the existing condition of the biomass 

(Ellis et al., 1996), and have been applied to characterize aerobic degradation 

processes in activated sludge (Vanrolleghem et al., 1999). Aerobic carbon 

degradation (Gernaey et al., 2002) and nitrification processes have been in-

terpreted and optimized via respirometry (Chandran and Smets, 2005). The 

N2O and NO response of several pure cultures of AOB during NH3 and 

NH2OH oxidation has also been determined via microrespirometric assays 

(Kozlowski et al., 2016). 



33 

 

Figure 4.1. Top: Schematic of a respirometric assay to estimate nitrification kinetics: left, 

design; right, experimental DO and liquid N2O concentrations for two consecutive NH4
+
 

pulses. Bottom: Experimental setup used for respirometric assays. (Paper III, IV). 

 

Experimental design  

In the initial experimental design of this study the regulation of N2O produc-

tion – effect of DO, NOx

-
, etc. – allows evaluating the performance of exist-

ing N2O model structures (Figure 4.1). Mostly, parameters associated to N2O 

production are estimated and the capabilities of model structure are assessed 

based on best-fit simulations (Paper I) (Ni et al., 2013c; Ding et al., 2016). 

However, the experimental design indicates that N2O emissions are also sen-

sitive to parameters indirectly related to N2O production (e.g. μNOB, kH). 

Hence, the following experimental design aims at obtaining accurate parame-

ter estimates that will reduce the uncertainty of N2O emissions. 

Specific respirometric assays are designed to estimate parameters from the 

NDHA model structure. Parameter estimates should reflect in situ microbial 

activity (extant) and minimize Monod parameter correlation. Designs consid-

er a low initial substrate-to-initial biomass concentration (S0/X0) but suffi-

ciently high initial substrate-to-substrate affinity (S0/KS) (Huang et al., 2014). 
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During respirometric assays the electron donor consumption (e.g. NH4
+
) is 

measured indirectly by tracking electron acceptor depletion (DO). Simultane-

ously, the set up can monitor online other variables of interest (e.g. N2O, NO, 

pH). Datasets for the NDHA model calibration are obtained from respiromet-

ric assays and, for those under anoxic conditions, substrate depletion exper i-

ments (Table 4.1).  

Table 4.1. Experimental design for respirometric assays (shaded corresponds to anoxic experi-

ments) 

Spikes Targeted processes N2O pathways 

NH4
+
 NH4

+
 removal by AOB NN, ND 

NH2OH NH2OH removal by AOB NN, ND 

NO2
-
 NO2

-
 removal by NOB HD 

NH4
+
, NH2OH, NO2

-
 AOB-driven N2O production NN, ND 

N2O, NO2
-
 HB-driven N2O production HD 

 

A lab-scale respirometer (400-mL) was designed to continuously monitor DO 

consumption rates. The vessel geometry allows the continuous monitoring of 

DO, pH, NO and N2O, and the collection of grab samples (Figure 4.1). Paral-

lel assays are performed at 25°C in jacketed glass vessels completely filled 

with biomass and sealed with the insertion of the following sensors: Clark-

type polarographic DO electrode, liquid NO, liquid N2O and pH. In the respi-

rometric assays two types of biomass representative of wastewater treatment 

systems are studied in Respirom_PN, Respirom_ML: 

Mixed liquor - Mixed liquor derived from a full-scale phase-isolated activat-

ed sludge wastewater treatment plant (700,000 PE Lynetten, Copenhagen, 

Denmark). Quantitative polymerase chain reaction (qPCR) was used to enu-

merate the quantities of AOB, Nitrobacter spp. and Nitrospira spp., targeting 

the 16S gene (Nitrospira spp. 92 ± 3% relative abundance in comparison to 8 

± 3% of Nitrobacter spp., and AOB:NOB = 3:1). Details on the qPCR proto-

col can be found in (Terada et al., 2010). 

Nitritating enrichment - A lab-scale nitrifying sequencing batch reactor (5 

L) enrichment from an AS mixed liquor sample with NH4
+
 as the only nutri-

ent was maintained at oxygen-limited conditions. NH4
+
 removal was 82 ± 

14%, and nitritation efficiency (NO2

-
/NH4

+
removed) at 85 ± 24%. The biomass 

composition, based on 16 rRNA targeted qPCR analysis had a dominance of 

AOB over NOB (30:1). Among NOB species, and differently from the mixed 

liquor biomass, Nitrobacter spp. dominates over Nitrospira spp. (≈ 700:1). 



35 

Differences in relative abundance of NOB species are in accordance with 

their substrate affinity, where Nitrobacter spp. dominate over Nitrospira spp. 

in high NO2

-
 environments (NO2

-
 > 100 and < 1 mgN/L in nitritating enrich-

ment and mixed liquor respectively) (Nowka et al., 2014). 

 

 

 

Figure 4.2. Top: Characteristics of the experimental designs used. Middle: Diagram of the 

microbial composition for the two different biomasses studied. Bottom: Main substrates 

and processes from a nitrogen removing community (Paper I, III, IV, V). 

 

The kinetics of the oxidation of the primary N-substrates (NH4
+
 and NO2

-
) are 

individually and step-wise measured via extant respirometry at varying DO 

concentrations (Chandran and Smets, 2005). The purpose is to predict the fate 

of the primary N-substrates based on the specific oxygen-consuming rate. If a 

model captures accurately the relevant oxygen-consuming processes, then 

DO and the primary N-substrates are predicted accurately too. By sequential-

ly adding substrate pulses from oxidized to reduced form (endogenous → 

Respirom_PN Respirom_ML Batch_HD*

Aeration mode Preaerated → anoxia Preaerated → anoxia Continuous Continuous -

Substrate addition Pulse Pulse Pulse Pulse (excess) Pulse (excess)

Biomass AOB-enriched Mixed Liquor Mixed Liquor Mixed Liquor Mixed denitrifying

Reactor volume 400 mL 400 mL 400 mL 3 L 330 mL

Used in Paper III Paper IV Paper I Paper V
* from Ribera-Guardia et al.  (2014)

Respirom_ML_aer
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NO2

-
 → NH2OH → NH4

+
), based on the NDHA model structure the individu-

al rates can be isolated (Figure 4.2, P1-P11). In all experiments, even prior to 

any substrate spikes, oxygen consumption is always positive and proportional 

to the biomass concentration due to endogenous respiration. 

Based on the overall good fit of model predictions and experimental data the 

NDHA model describes the dynamics of the measured DO and N-species for 

the AOB-enriched and mixed liquor biomass (R
2
 > 0.99 and 0.94 respective-

ly) (Figure 4.3). Best-fit parameter estimates are estimated at high accuracy: 

coefficients of variation are below 7% for the AOB-enriched and below 25% 

for the mixed liquor and the collinearity indices below 15, as suggested for 

identifiable subsets (Brun et al., 2002) (Table 4.2). The high correlation ob-

served between μAOB.AMO-KAOB.NH3 and μNOB-KNOB.HNO2 (ρ > 0.80 ) typically 

occurs for Monod-type kinetics but it does not affect their identifiability. 

In sum, the respirometric experimental design can be used to precisely identi-

fy and calibrate the primary substrate dynamics of the NDHA model based on 

the DO profiles. 

Table 4.2. Estimated NDHA model parameters from DO datasets (estimated at 20 C) (Pa-

per III, IV). 

 

Respirom_PN Respirom_ML

Parameter Unit Value Parameter Unit Value 

μAOB.AMO d
-1

0.49 ± 0.01 μAOB.AMO d
-1

0.49 ± 0.01

μNOB d
-1

0.67 ± 0.07 μNOB d
-1

1.04 ± 0.05

kH d
-1

2.01 ± 0.02 μHB d
-1

5.15 ± 0.11

KAOB.NH3 mgN/L 0.12 ± 0.005 KAOB.NH3 μgN/L 7.00 ± 1.17

KAOB.O2.AMO mgO2/L 0.23 ± 0.02 KNOB.HNO2 μgN/L 0.027 ± 0.006
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Figure 4.3. Experimental DO, NH4
+
 and NO2

-
 (blue markers) and model predictions (black 

line best-fit, red lines 95% CI) for the DO calibration from respirometric assays. (A) DO, 

NH4
+
 and NO2

-
 concentrations. (B), (C), (D), DO concentrations after pulse additions (D: 

pH changed from 7 to 8 before the second NH4
+
 pulse). Respirom_PN (A, D), Respi-

rom_ML (B, C). (Paper III, IV). 

 

Abiotic N2O production 

To study the effect of HNO2, NH2OH and pH on abiotic N2O production a 

factorial experimental design is constructed (Table 4.3). Results show that in 

the absence of NO2

-
, NH2OH-driven abiotic N2O production only occurs at 

very high pH (≥ 8.7) (Figure 4.4). Coupling HNO2 and NH2OH produces 

N2O at high pH (≥ 8) and high NH2OH (≥ 0.5 mgN/L). Therefore high NO2

-
 

and NH2OH concentrations are necessary, outside the range of typical 

wastewater systems (pH > 8.4, NO2

-
 > 500 mgN/L, NH2OH ≥ 0.5 mgN/L). 

Table 4.3. Factorial experimental design to study abiotic N2O production. (Unpublished 

data). 

 

HNO2 (μgN/L) 0 0.2 2 20 100

NH2OH (mgN/L) 0 0.05 0.2 0.5 2

pH 6.5 7.25 8 8.7 9.4
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Overall, the substrate concentrations necessary to produce N2O abiotically are 

outside the range of the experiments design to calibrate the NDHA model: 

high pH, NO2

-
 and NH2OH. 

 

Figure 4.4. Abiotic N2O production rates for NH2OH pulses (1.2 mgN/L) at varying pH. 

(Unpublished data). 

 

 

 

  



39 

4.2 Parameter estimation and model evaluation 
The objective of the experimental studies is to obtain informative N2O da-

tasets that allows the estimation of parameters associated to N2O production 

with the NDHA model. The ability of the results obtained from lab-scale ex-

perimentation to predict full-scale processes remains to be validated.  

Systematic calibration protocols for activated sludge models are applied to 

wastewater treatment operations. Numerous experimental methodologies and 

calibration approaches exist with varying degrees of automatization and re-

quirements (e.g. influent fractionation, parameter subset selection, parameter 

estimation procedure, etc.) (Corominas et al., 2011; Mannina et al., 2011; Sin 

et al., 2008). Deterministic methods have been commonly used, but with in-

creasing computational power Bayesian methodologies are being proposed to 

activated sludge models (Sharifi et al., 2014; Martin and Ayesa, 2010). 

However, N2O modelling studies still lack fundamental process understand-

ing and have not been integrated in calibration protocols yet. While some 

N2O models have reported a calibration framework (Guo and Vanrolleghem, 

2014), in most N2O models the parameter estimation procedures are often ill-

described, with little information about each step. For example, the parameter 

subset selection procedure is sometimes not addressed.  

N2O modelling efforts currently focus on evaluating the capabilities of model 

structures to describe N2O production with best-fit simulations (Ni et al., 

2013c; Spérandio et al., 2016) (Paper I). However, the quality of the N2O 

calibration results has not been analysed further in-depth as occurs for other 

environmental models (Bennett et al., 2013). Hence, more rigorous tools for 

model response evaluation will become more important to discriminate be-

tween N2O models, especially for models with similar best-fit predictions 

(Lang et al., 2017). 

The focus of this study is on the parameter estimation procedure and valida-

tion of the model response and the estimated parameter values (Figure 4.5). 

The methods presented represent a rigorous tool that will benefit N2O model 

discrimination procedures. 
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Figure 4.5. Parameter estimation procedure. (Paper III, IV). 

 

Parameter subset selection 

The objective of this step is to select the parameters to be estimated from a 

given scenario. Sensitivity analysis techniques identify those parameters 

where a change in value leads to a large variation in model output. High sen-

sitivity is a necessary, but not sufficient, condition for a parameter to be iden-

tified (Dochain and Vanrolleghem, 2001). Local sensitivity analysis (LSA) 

analyses the model response to individual parameter changes and have been 

applied to N2O model calibrations (Pocquet et al., 2016; Spérandio et al., 

2016). The drawback of LSA rankings is that results depend on the parameter 

values and do not capture parameter interactions, for which global sensitivity 

analysis is required (GSA) (Brun et al., 2001; Sweetapple et al., 2013). For 

GHG emissions, GSA methods are preferred over LSA despite the higher 

computational costs (Sweetapple et al., 2013; Boiocchi et al., 2017; Mannina 

and Cosenza, 2015). GSA is beneficial to identify sensitive parameters, but 

more importantly, to identify what parameters cannot be estimated to fix their 

values. Hence, the Standardized Regression Coefficient (SRC) method is 

used to identify non-sensitive parameters and fix them to their default value 

(Figure 4.6). Dynamic and averaged results are combined as a screening 

method to manually select the top sensitive parameters that are considered for 

estimation (Machado et al., 2009). Among these parameters subsets of differ-

ent size and combination of parameters are considered. Metrics such as RDE 

(Machado et al., 2009) and modE are used to quantify the information con-
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tent of a dataset and elucidate what parameter subset should be estimated 

(Paper III). 

 

Figure 4.6. Global sensitivity analysis for N2O, an example from Respirom_PN (Figure 

4.1). Left: Dynamic N2O sensitivity (β
2
) of an experiment targeting ND-associated parame-

ters where NH2OH and NO2

-
 were spiked. The sensitivity of μAOB.HAO increases after the 

NH2OH pulse and the sensitivity ηNIR and KAOB.HNO2 increased after the NO2

-
 pulse. Right: 

Averaged sensitivity during an NH4
+
 oxidation experiment targeting NN-associated param-

eters. The three parameters to which liquid N2O concentrations are most sensitive to: εAOB, 

KAOB.NH2OH and ηNOR. (Paper III). 

 

Parameter estimation 

The objective function for the minimization problem is defined as: 

RMNSE =  ∑∑
RMSEj

y̅obs,j

n

j

m

k

;                 RMSEj = √
∑ (ysim,i − yobs,i)

2p

i

p
 

Where m is the number of experiments in one scenario (e.g. 2 NH4
+
 experi-

ments in Scenario (C)), n the number of data series in one experiment (e.g. 

NO, N2O), p experimental points of each data series, ysim,i the model predic-

tion and yobs,i the experimental data at time i. As the dimensions of the mini-

mization problem increase (i.e. number of parameters) the convergence of the 

algorithm to a minimum becomes more computationally demanding. Addi-

tionally, single search algorithms might not find the global minimum among 

multiple minima (Nelder and Mead, 1965). Thus, to avoid finding a local 

minimum, global and multiple largely-bounded local optimization algorithms 

are used (Wágner et al., 2016). 
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Validation of model response 

Previous N2O models describe the overall fit and capabilities based on the 

visual inspection or regression of model simulations and experimental data 

(Lang et al., 2017; Pan et al., 2015; Ding et al., 2016). For example, the per-

formance of two models cannot be compared via visual inspection (Ni et al., 

2014) or regression coefficients (R
2
), which do not identify structural defi-

ciencies unless combined with quantitative metrics such as RMSE (Haefner, 

2005). A more rigorous analysis of residuals (e.g. Gaussian distributions, au-

tocorrelation functions (ACF), F-test, etc.) is required to validate the model 

response (Bennett et al., 2013). In this study the F-test is used as it can identi-

fy a deficient model fit despite a visually good fit and high degree of correla-

tion (R
2
 > 0.99). 

Validation of parameter values 

By addressing the practical identifiability of newly estimated parameters 

model calibrations and experimental designs can be compared to discriminate 

between N2O models. What is the confidence in the reported best-fit parame-

ter values? Approximate confidence regions can be calculated with different 

methods. Based on the error function and the size of the parameter subset and 

dataset (Beale, 1960), or considering the Fisher Information Matrix (FIM) as 

a lower bound for the variance matrix (Dochain and Vanrolleghem, 2001). 

The FIM summarises the information concerning the model parameters 

gained from an experiment: 

FIM =  ∑Yp(ti, θ)
T
QiYp(ti, θ)

N

i=1

 

where Yp is the output sensitivity function with respect to the parameters θ 

and Qi the weighting matrix, typically selected as the inverse of the error co-

variance matrix. This method is widely used, but assumes a linear approxima-

tion of the state variables with respect to the parameters, which might not ap-

ply to non-linear systems. The bootstrap method analyses the system proper-

ties by using repeated simulations, like a Monte-Carlo method, and has been 

successfully applied in those cases (Joshi et al., 2006). Hence, if the confi-

dence intervals of the parameter estimates are determined more accurately the 

95% confidence intervals of the state variables will be calculated more pre-

cisely.  
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In N2O model evaluation studies the parameter variance and correlation ma-

trix, indicators of the confidence that can be given to a value, are not typical-

ly reported, which complicates the comparison between studies (Spérandio et 

al., 2016; Ding et al., 2016; Pocquet et al., 2016; Kim et al., 2017) (Paper I). 

Sometimes overlooked, methods used to calculate confidence intervals for 

parameter estimates often rely on structural assumption of the residuals. 

Here, to improve these limitations the gaussian distribution (Kolmogorov-

Smirnov test 95%) and the interdependency of residuals at different lag times 

are analysed and minimized when possible (Lilliefors, 1967; Cierkens et al., 

2012) (Figure 4.7). The autocorrelation of residuals is minimized by reduc-

ing the data acquisition frequency, which increased the confidence interval of 

the estimated parameters (Figure 4.7). Testing the model response can avoid 

over interpretation of the dataset and uncertainty underestimation (vari-

ance/mean ≪ 0.001% (Peng et al., 2015)). 

 

Figure 4.7. Autocorrelation of DO residuals for increasing time lags (τ) from an experi-

ment used to estimate parameters associated with NH4
+
 oxidation (KAOB.NH3, μAOB.AMO). A1: 

Residuals from the original dataset. A2: residuals from the downsampled dataset. B: Pair-

wise samples from the estimated multivariate normal distribution for KAOB.NH3 (mgN/L) 

and μAOB.AMO (min
-1

) for sampling rates of 0.5 (blue), 2 (red), 5 (black) and 10 (cyan) 

minutes. (Paper III). 

 

Uncertainty propagation 

The uncertainty obtained during parameter estimation can be used to build 

confidence intervals in model predictions (Neumann and Gujer, 2008; Belia 

et al., 2009).  

The precision, or width of the confidence interval, associated to N2O emis-

sions will be a key factor to consider when comparing the performance of 

N2O models during the development of mitigation strategies. Specifically, the 

carbon footprint of wastewater systems is very sensitive to N2O emissions 

(Gustavsson and Tumlin, 2013) and precise predictions are desired. Yet, the 
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uncertainty of N2O emissions associated to parameter estimation has never 

been studied. 

Here, the uncertainty from the parameter estimation results is evaluated via 

Monte-Carlo simulations. The reliability of predictive distributions (95% 

confidence intervals) is used to validate the model response as suggested by 

(Jin et al., 2010). Parameter values were sampled via Latin Hypercube Sam-

pling (LHS, n = 500) for two cases: (1) from literature following (Sin et al., 

2009), and (2), compared to the distributions obtained after parameter estima-

tion. As an example, in Paper IV, the uncertainty of N2O and NO emissions 

during excess NH4
+
 oxidation at two different DO levels (0.5, 2.0 mg/L) is 

described. The calibrated NDHA model predicts for low and high DO, an 

N2O emission factor of 4.6 ± 0.6 % and 1.2 ± 0.1% (case (2)), which corre-

sponds to low coefficients of variation (9 and 12%). However, when the un-

certainty is propagated based on the reference case (1) the confidence inter-

vals are 360% larger. These results highlight the importance of evaluating the 

uncertainty of parameter estimates in N2O emissions, but unfortunately can-

not be compared to other N2O modelling studies. 

 

Figure 4.8. Nitrous oxide (N2O) and nitric oxide (NO) pathway contribution during NH4
+
 

oxidation at low and high DO for the calibrated NDHA model for mixed liquor biomass. 

The standard deviations correspond to uncertainty from estimated parameters: (top) from 

Respirom_ML, (bottom) default by classes following (Sin et al., 2009) (n = 500). (Paper 

IV). 

 

In this work, mathematical models and calculations were implemented in the 

Matlab-Simulink environment (The MathWorks, Natick, MA) (Paper III, IV 

and V) and in Aquasim (Reichert, 1998) (Paper I).  
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5 Model evaluation 

5.1 Case 1: AOB-enriched biomass 
A novel experimental design to calibrate N2O models through extant respi-

rometry is evaluated on an AOB-enriched biomass. 

Nitrous oxide production: Experimental and modelling results 

Aerobic NH4
+
-oxidation products, NH2OH and NO2

-
 are responsible for the 

higher N2O production rate at the onset of anoxia and not NH4
+ 

itself, which 

requires molecular O2 for its oxidation (Sayavedra-Soto et al., 1996). The 

higher N2O yield of nitrifying biomass and pure cultures fed on NH2OH 

compared to NH4
+
 observed has been already reported (de Bruijn et al., 1995; 

Kim et al., 2010; Kozlowski et al., 2016). However, even under anoxic con-

ditions the sole presence of NH2OH also yields a large amount of N2O, re-

cently suggested as a new N2O producing pathway by (cyt) P460 (Caranto et 

al., 2016). The addition of an electron donor like NO2

-
 further increases N2O 

production, highlighting the role of the primary N-substrates on N2O dynam-

ics, especially of NH2OH (Figure 5.1). Based on the model structure of other 

two-pathway models for AOB none can predict the observed N2O dynamics: 

while in certain models NH2OH does not react under anoxic conditions (Ding 

et al., 2016; Pocquet et al., 2016), in other NH2OH reacts producing both 

N2O and HNO2 (Ni et al., 2014). 

 

Figure 5.1. Experimental N2O (black) and NO (blue) liquid concentrations after NH2OH, 

NH4
+
 and NO2

-
 pulses added under anoxia for the AOB-enriched biomass. (Unpublished 

data). 

 

Parameter estimation to fit the N2O datasets is performed after the NDHA 

model showed a good fit for DO and hence for the main N-substrates (NH4
+
, 
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NO2

-
, NO3

-
). The sequence in which the N2O-associated parameters are esti-

mated targeted each N2O production pathway as follows: under anoxia and no 

electron donors for AOB (e.g. NH2OH) the contributions of NN and ND are 

null and hence HD-associated parameters can be estimated independently, 

and the new estimated parameters fixed. During NH4
+
 oxidation experiments 

at high DO levels the ND and HD contributions are minimal, as both are in-

hibited by DO, and NN-associated parameters can be estimated and fixed. 

Finally, the ND contribution is estimated from NH4
+
 and NH2OH oxidation 

experiments at low DO. 

Specifically for the AOB contribution, N2O production observed from NH4
+
 

oxidation at high DO is used to calibrate the NN pathway. Then, experiments 

designed to reach anoxia at varying HNO2 concentrations are used to estimate 

parameters associated to the ND pathway, as they are the most sensitive. Af-

ter parameter estimation the NDHA model describes the N2O production dy-

namics and yield observed in the calibration datasets (F-test = 1). After pa-

rameter estimation the 95% predictive distribution for liquid N2O narrows by 

58% from the reference uncertainty scenario (Sin et al., 2009). The model is 

then validated on three batches with lower HNO2 and with higher NH2OH 

pulses. The average Janus coefficient is 1.57 and R
2
 is 0.985, indicating a 

good validation (Figure 5.2, bottom). Hence, the NDHA model can describe 

the N2O production rates at a range of DO and HNO2 concentrations. For 

more details see Paper III. 

 

Figure 5.2. Experimental (markers) and model predictions (dark lines – best-fit, light lines 

- 95% CI) for the experiments from Respirom_PN. From left to right: (A) Aerobic NH4
+
 

pulses, (B) Aerobic → anoxic NH4
+
 pulses, (C) Aerobic NH4

+
 pulse, (D) Anoxic NH2OH 

pulse. (Paper III). 
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Model evaluation 

Evaluations of the NDHA model at varying DO and HNO2 concentrations at 

pH = 7.5 are performed to study the variability of N2O emissions at a wider 

range of operating conditions (Figure 5.3). The model predicts the largest 

N2O emission at the lowest DO and high HNO2; and the lowest N2O emission 

at the highest DO and lowest HNO2. This relationship has been described by 

other two-pathway models, where ND was the main contributor to the N2O 

emission factor during NH4
+
 oxidation (Pocquet et al., 2016; Ni et al., 2014). 

The contribution of the NN pathway is maximal when HNO2 is not present 

and decreased with increasing HNO2. On the other hand, the ND contribution 

follows opposite trends, indicating a shift between autotrophic pathways 

driven by HNO2 and DO. The HD contribution is maximal at low DO and 

high HNO2 but at low levels.  

The uncertainty of the N2O emission factor is, in average, only 25% of that 

predicted with the reference case. Taken together, the N2O production ob-

served in all the scenarios can only be potentially described by the NDHA 

model structure compared to other N2O models (Ni et al., 2014; Pocquet et 

al., 2016; Ding et al., 2016) (Paper II) (Figure 3.6). Additionally, the esti-

mated parameters from respirometric assays decrease significantly the uncer-

tainty of N2O emissions. 

 

Figure 5.3. NDHA model simulations with best-fit parameters: N2O emissions (% 

N2Oemitted/NH4
+

removed) and NN (middle) and ND (right) pathway contributions. The contri-

bution of the HD pathway is not shown, maximum 0.02. NH4
+
 oxidation by AOB-enriched 

biomass at constant DO (0.1 - 0.3 - 0.5 - 1.0 - 2.0 - 3.5 - 5.0 mg/L), and NO2

-
 (0 – 1 – 4 – 

10 – 20 – 90 – 340 mgN/L). (Paper III). 
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5.2 Case 2: Mixed liquor biomass 
A nitrification/denitrification case study is used to investigate, with default 

parameter values, the main processes driving N2O production and sources of 

uncertainty during aerobic NH4
+
 removal. The majority of N2O is emitted 

during the aerobic part of the cycle, when NH4
+
 oxidation occurs. The GSA 

ranking shows that up to four of the ten most sensitive parameters for N2O 

and NO liquid concentrations correspond to AOB, and the rest to NOB and 

HB. These results highlight the importance of NOB and HB together with 

AOB on the N2O production from a mixed culture biomass during NH4
+
 oxi-

dation. The experimental design developed that targets sources of uncertainty 

for N2O emission predictions should include NOB and HB processes. 

Nitrous oxide production: Experimental and modelling results 

Irrespectively of the N-substrate being oxidized, at the onset of anoxia NO 

and N2O concentrations increase. First NO, and then N2O, reach a maximum 

followed by a steady decrease, indicating net N2O consumption. 

In this study, the HD contribution is estimated first as no electron donors for 

AOB are present (addition of N2O, NO2

-
, NO3

-
 or soluble organic carbon). 

Hence, ten parameters associated to hydrolysis of particulates, heterotrophic 

denitrification and organic carbon removal are estimated. Of special interest, 

three parameters associated to N2O consumption: two describing the pH de-

pendence of the maximum reduction rate (wnosZ, pHopt.nosZ) and the substrate 

affinity for N2O (KHB.N2O) (Figure 5.4, Table 5.1). Similarly to Paper III, 

the contribution of the NN pathway is estimated next during NH4
+
 oxidation 

at high DO, followed by the ND. 

Table 5.1. Selected NDHA model parameters estimated from N2O and NO datasets. (Pa-

per III, IV). 

 

Based on the overall good fit of model predictions and experimental data the 

NDHA model describes the dynamics of the measured DO and N-species (R
2
 

≥ 0.94). A total of 17 parameters are estimated with bounded approximate 

Respirom_PN Respirom_ML

Parameter Unit Value Parameter Unit Value 

εAOB ( - ) 0.48 ± 0.005 (x10
-3

) εAOB ( - ) 0.0031 ± 0.0001

ηNOR ( - ) 0.16 ± 0.005 ηNOR ( - ) 0.36 ± 0.02

KAOB.NH2OH.ND mgN/L 0.25 ± 0.005 ηNIR ( - ) 0.22 ± 0.01

KAOB.HNO2 μgN/L 0.67 ± 0.03 pHopt.nosZ ( - ) 7.9 ± 0.1

wnosZ ( - ) 2.2 ± 0.2

KHB.N2O mgN/L 0.078 ± 0.020
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confidence regions indicating good identifiability (CV < 25%). For more de-

tails see Paper IV. 

The predictive ability of the calibrated NDHA model is evaluated on a set of 

batch experiments when mixed liquor biomass from the same WWTP had 

been subject to varying N pulses at constant aeration (For details see Paper 

I). 

 

Figure 5.4. Experimental and modelling results obtained during parameter estimation. N 2O con-

sumption profile after DO pulses (t = 13, 21 min) (A). NO and N 2O production after anoxic NO2

-
 

pulse under endogenous conditions (B). Oxygen consumption, NO and N 2O accumulation rates 

after NH4
+
 pulse addition (t = 10 min) (C). Model evaluation results for mixed liquor biomass: 

Effect of NO2

-
 pulse (tpulse = 30 min) (D). (Paper IV). 

 

Overall, the model captures the trends of DO, main N-substrates and liquid 

N2O without any parameter modification (R
2

avg for DO = 0.98; NH4
+
 = 0.99; 

NO2

-
 = 0.84; N2O = 0.80). Higher NH4

+
 pulses yield more N2O as more NH4

+
 

oxidation occurs at low DO, thus promoting the contribution of denitrifica-
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tion pathways. Addition of a NO2

-
 pulse increases the fraction of N2O pro-

duced compared to a NO3

-
 pulse or no pulse (Figure 5.4, D). 

 

Model evaluation 

NH4
+
 oxidation simulations with best-fit estimate parameters are run for a 

wider range of DO (0.2 – 4 mg/L) and NO2

-
 (0 – 1.4 mgN/L), representative 

of full-scale system where the biomass originates. The N2O emission factor 

and individual pathway contributions to the total N2O pool at pseudo-steady 

state are shown in Figure 5.5. The simulated NH4
+
 oxidation at low DO 

yields a higher N2O emission factor as compared to that at higher DO (4.6 

and 1.2% respectively), in agreement with other nitrification/denitrification 

systems (Hu et al., 2010; Tallec et al., 2006) and comparable with those re-

ported by (Wunderlin et al., 2012). The NN pathway contributes most at the 

lowest NO2

-
 and highest DO (98%), and the least at high NO2

-
 and low DO 

(3%). The ND and HD pathways show similar trends with maximum contri-

butions of 72% and 43% respectively, but opposite compared to the NN 

pathway. 

 

Figure 5.5. Model evaluation at varying NO2

-
 and DO concentrations during excess NH4

+
 

removal (pH = 7.2). From left to right: Pathway contributions to total N2O pool NN, ND, 

HD; N2O emission factor. (Paper IV). 

 

The different microbial community composition between AOB-enriched and 

mixed liquor biomass poses a significant effect on the associated N2O pro-

duction during NH4
+
 removal. In the mixed liquor biomass the NO2

-
 sink is 

much larger due to a higher NOB biomass fraction, and hence, a higher N2O 

emission factor is expected from the AOB-enriched biomass. If N2O is pro-

duced during anoxic periods, or transiency into anoxia, it accumulates in the 

liquid phase and can be stripped at the onset of aeration. In this scenario the 

mixed liquor biomass also offers an advantage with respect to the AOB-

enriched biomass as the heterotrophic fraction of the biomass will act as an 
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N2O sink even in the absence of additional organic carbon (Figure 5.7). As-

suming a constant autotrophic N2O production, the observed or net N2O pro-

duction from mixed liquor biomass is expected to be lower as the hetero-

trophic biomass can mask autotrophically-driven N2O production (Figure 

5.7). 

 

Figure 5.7. Left: Theoretical model evaluations for mixed microbial communities: AOB ≫ 

HB (solid line), AOB ≈ HB (dashed line), and AOB ≪ HB (dotted line). Right: net N2O 

production rates observed during NH4
+
 oxidation at constant DO. Mixed liquor biomass 

from Respirom_ML_aer (Figure 4.2.). 

 

Role of hydroxylamine on nitrous oxide models 

Low NH2OH bulk concentrations were reported for AOB pure cultures and 

nitrifying systems (NH2OH < 0.1mgN/L) (Soler-Jofra et al., 2016; Yu and 

Chandran, 2010), indicating a quick turnover of NH2OH. However, NH2OH 

predictions from N2O models are not verified and would overestimate 

NH2OH equilibrium concentrations during NH4
+
 oxidation (μAMO ≥ μHAO, 

KAOB.NH2OH ≈ KAOB.NH4 = 0.7 – 2.4mgN/L) (Pocquet et al., 2016; Ding et al., 

2016; Ni et al., 2011, 2013b, 2014). Here, a faster HAO process compared to 

AMO prevents high NH2OH accumulations and is therefore necessary for 

more accurate NH2OH predictions. This is in agreement with the calibrated 

NDHA model where μAMO < μHAO and KAOB.NH2OH < KAOB.NH4, being 

KAOB.NH2OH = 0.2 mgN/L the lowest value reported in N2O models. Simula-

tion results of a biofilm system also calculated overestimation of NH2OH re-

lease from other N2O models, where 27% of the NH3 oxidized accumulated 

as NH2OH (Todt and Dörsch, 2016). 

Experimental and modelling results suggest that N2O pathways such as the 

associated to cyt P460, could be responsible for the high N2O production ob-

served during aerobic NH2OH oxidation (Kozlowski et al., 2016). The 

NDHA model might not individually describe all the co-occurring N2O path-

ways in the AOB metabolism. However, N2O production associated to 



52 

wastewater treatment conditions is successfully captured by lumping path-

ways into the NN and ND processes. 

Role of nitric oxide on nitrous oxide models 

NO and N2O production from NH4
+
 oxidation under aerobic conditions is 

significantly lower than at low oxygen tension, as reported for AOB pure cul-

tures (Kozlowski et al., 2016). In nitrifying systems NO and N2O production 

was also triggered by NO2

-
 and anoxic conditions (Kampschreur et al., 

2008b; Wunderlin et al., 2012). Modelling results show that the higher anoxic 

rates can be explained by the transient accumulation of NH2OH which, under 

anoxia, has been suggested to act as electron donor for NO2

-
 reduction to N2O 

in a two-step process over NO (de Bruijn et al., 1995; Poth and Focht, 1985; 

Yu and Chandran, 2010; Kester, 1997). 

The ratio between the substrate affinity of NO reductases, KAOB.NO / KHB.NO, 

is an important parameter of N2O models as it can shift the contributions of 

the ND and HD pathways for the same overall N2O fit (Paper I). However, 

direct estimation of NO affinity is difficult due to its toxicity (Schulthess and 

Gujer, 1996). In N2O models KNO values are typically assumed (Pan et al., 

2013; Hiatt and Grady, 2008) and highly variable (KHB.NO = 0.00015-0.05 

mgN/L and KAOB.NO, 0.004-0.1mgN/L, KAOB.NO / KHB.NO = 1 - 56) (Wang et 

al., 2016a; Hiatt and Grady, 2008; Spérandio et al., 2016; Schreiber et al., 

2009; Ni et al., 2011). For example, in the study by (Wang et al., 2016a) the 

HD pathway has an NO affinity over 50 times higher than the NN pathway. 

The HD pathway could, in theory, uptake NO produced by the NN pathway at 

a much higher rate and underestimate the NN contribution to the total N2O 

pool. Hence, based on current knowledge and to avoid a preferential NO-

consumption/N2O-production pathway the NO affinity ratio between AOB 

and HB is set to one (Figure 4.8). 
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6 Conclusions 

The main findings of this thesis are: 

 In microbial communities from conventional biological nitrogen removal 

systems heterotrophs are more abundant than autotrophs and heterotrophic 

activity should not be neglected even under very low carbon-to-nitrogen 

conditions. Hence, in mixed microbial communities the heterotrophic 

contribution to N2O production should always be considered. 

 A consilient mathematical model structure that describes N2O production 

during biological nitrogen removal is proposed. Three biological 

pathways, two autotrophic and one heterotrophic, are coupled with abiotic 

processes. Consistent with experimental studies, the model considers NO 

as the direct precursor of N2O in three biologically-driven pathways. This 

model can describe all relevant NO and N2O production pathways with 

fewer parameters than other proposed models. 

 An experimental design to estimate N2O model parameters through extant 

respirometry is developed and applied to two different biomass types: 

AOB-enriched and Activated Sludge mixed liquor communities. The 

experimental design allowed the isolation of individual process rates and 

the estimation of parameters associated with oxygen consumption 

(endogenous, nitrite and ammonium oxidation) and N2O production (NN, 

ND and HD pathway contributions). In respirometric and batch assays 

N2O and NO production increased during ammonium oxidation under low 

dissolved oxygen concentrations and the presence of nitrite. 

 The model predicted the NO and N2O dynamics at varying ammonium, 

nitrite and dissolved oxygen levels from two independent systems: (a) an 

AOB-enriched biomass and (b) Activated Sluge mixed liquor biomass. A 

total of ten (a) and seventeen (b) parameters were identified with high 

accuracy (coefficients of variation < 25%). 

 A rigorous procedure to estimate parameters associated to N2O models is 

presented. Moreover, the critical validation of the model response and the 

estimated parameter values will benefit N2O model discrimination 

procedures. 

 As an end-product in the metabolism of aerobic ammonium oxidizers and 

obligate intermediate of heterotrophic denitrifiers, the uncertainty of 

nitrogenous substrates (e.g. ammonium, nitrite, etc.) propagates to N2O 



54 

predictions. Hence, N2O model predictions should be described by best-fit 

N2O predictions together with uncertainty metrics (e.g. confidence 

intervals). 

 A model describing organic carbon oxidation and four-step denitrification 

through electron competition using fewer parameters than other models is 

proposed. The model describes reaction rates as analogy to current inten-

sity through resistors in electric circuits. The model describes the electron 

competition during the reduction rates of single and most of the combined 

nitrogen oxides for four different carbon sources. Further validation under 

different carbon and nitrogen loadings needs to be explored. 
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7 Future perspectives 

In this study N2O datasets for parameter estimation relied on online sensors 

for bulk measurements. The model can then predict the contribution of each 

pathway to the total N2O pool. Other analytical techniques such as stable iso-

tope labelling (
15

N, 
18

O or isotopic signatures) could be performed simultane-

ously to validate or correct predictions regarding pathway contributions.  

The applicability of the proposed model could be extended to continuous or 

full-scale systems. However, for the purpose of model discrimination and 

model development lab-scale systems with defined controlled environments 

are preferred. For example, biochemical gradients exist along the bioaggre-

gates in biofilm configurations where pH changes from the bulk to the inner 

layer of the aggregate. Hence, biofilm models should consider explicit pH 

calculations as N2O formation (KAOB.HNO2) and consumption (pHopt.nosZ) are 

pH-dependent. It was shown that heterotrophs are ubiquitous, even if sup-

ported by biomass decay products and thus, should always be considered in 

N2O models.  

The role of NH2OH as electron donor in the AOB metabolism remains to be 

untangled as new N2O producing pathways are discovered (Caranto et al., 

2016). NH2OH might not be the direct electron donor for NO2

-
 and NO reduc-

tion (cytochromes) and the simplification of our assumption vs the use of 

lumped set of electron carriers (Ni et al., 2014) deserves further examination. 

As more datasets are being retrieved, direct comparison of the benefits of 

more complex mechanistic models compared to empirical approaches could 

be studied (Leix et al., 2017).  

Another suite of questions are: How marginal is the benefit of including more 

species that share function but differ in their kinetic parameters? (e.g. Nitro-

spira spp., Nitrobacter spp.). How complex do N2O models need to be to cap-

ture N2O emissions with a given accuracy and precision? Mechanistic models 

have focused on accuracy; and the precision example shown in this study can 

be considered as a reference for further comparisons.  

Additionally, it is recommended for N2O modelling studies to recognize and 

quantify uncertainties associated to N2O emissions together with best-fit sim-

ulations and parameter identifiability metrics. If the uncertainty of N2O pre-

dictions from parameter variance is identified (i.e. certain parameters carry 

most of the uncertainty) then Optimal Experimental Design (OED) tech-
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niques can help reducing it (Munack and Posten, 1989). OED criteria have 

been successfully applied to batch experiments with important improvements 

in parameter confidences. 

In this work an example methodology is proposed, but other modelling 

frameworks such as a Bayesian hierarchical approach that considers a proba-

bilistic parameter estimation could be used. It provides identifiability and 

sensitivity metrics and has also been applied for the estimation of activated 

sludge process parameters (Sharifi et al., 2014; Cox, 2004). A substantial 

limitation compared to the method presented here is the higher computational 

cost (number of simulations). On the other hand, if the parameter subset to 

consider for estimation could be minimized, the complexity of the multidi-

mensional problem would decrease significantly. 

Finally, in the next step the model is ready to be used for plant-wide applica-

tions. While some parameters will certainly need to be estimated (after the 

mass balance for solids the maximum growth rates will probably differ), the 

parameter set reported here should describe the kinetics of full-scale systems. 
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