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Abstract 

Individual variation in behavior and physiological traits in a wide variety of animals has been 

the focus of numerous studies in recent years. In this context, early life experiences shape 

responses that individuals have to subsequent environments, i.e. developmental plasticity. In 

this experiment, we subjected 10-month old fish to an unpredictable chronic stress (UCS) 

regime or no stress (control) for 3 weeks. These individuals then underwent the parr-smolt 

transformation, when salmonids become adapted for the seawater environment, and were 

subsequently transferred into seawater before the final sampling. Biometric data was 

collected at the end of each period. Sampling on the final day was conducted in order to 

analyze basal monoaminergic activity in the brain stem and hypothalamus, as well as gene 

expression of target genes in the telencephalon. We found that post-hoc sorting of individuals 

by their serotonergic activity (high and low) resulted in the elucidation of growth and gene 

expression differences. UCS groups were found to have less growth disparities throughout 

the experiment, compared to control fish. Furthermore, we found brain serotonergic signaling 

and corticotropic releasing factor binding protein expression were positively associated with 

brain stem serotonergic activity, which is consistent with fish showing a stress reactivity 

neurophysiological profile. In conclusion, we here submit evidence that sorting individuals 

by their basal serotonergic activity levels may be a useful tool in the study of developmental 

plasticity. These results may thus apply directly to improving husbandry practices in 

aquaculture and elucidating neural mechanisms for coping behavior. 

 

Keywords: stress, serotonin, coping style, SGR, developmental plasticity 
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Introduction 

Individual variation in behavior and physiological traits in a wide variety of animals has been 

the focus of numerous studies in recent years [1-4]. The term coping style characterizes a 

group of individuals that express consistent physiological and behavioral responses to 

stressful stimuli [3]. Much of the research leading to the characterization of the proactive and 

reactive coping styles in fish has been based upon the rainbow trout (Oncorhynchus mykiss) 

post-stress cortisol selected lines [5]. Notably, selection by post-stress cortisol levels is 

consistently proportional with the serotonergic system's reactivity. That is, while proactive 

(i.e. bold/aggressive) consistently exhibit low serotonergic activity, reactive (i.e. shy) have 

enhanced serotonergic responsiveness [6, 7]. The serotonergic system is phylogenetically 

ancient and anatomically well conserved across species [7]. The neurotransmitter serotonin 

(5-hydroxytryptamine; 5-HT) has been associated with energy regulation, neural plasticity, 

stress regulation and behavioral/emotional control [8-11]. Therefore, serotonergic reactivity 

has been crucial in the study of individual differences in stress responses. Interestingly, even 

though there is compelling evidence that early life experiences, particularly stress, shape how 

individuals cope with their present and future environments [12-14], this is not often taken 

into account when studying individual variation in animals. Even though there are consistent 

differences reported within individuals comprising a population, there is still a lack of 

consensus regarding the consistency of a given individual response throughout different 

contexts and across time [2]. For example, proactive individuals are often characterized as 

responding in an active and aggressive way, even when it appears to not be adaptive [15]. 

However, behavioral traits are not as fixed as once proposed, but highly dynamic and animals 

exhibit a series of plastic responses to stimuli that are based upon external and internal cues. 

For example, Ruiz-Gomez et al. [16] reported that reactive trout adopted a more proactive 

style for up to one year when they experienced a decrease in body fat after transport. This 

plasticity in behavioral outputs to exogenous stimuli may involve immediate responses 

(contextual plasticity) or it may involve responses shaped by past events (developmental 

plasticity) [2, 17]. Therefore, it is not always possible to find consistent responses across 

different situations. Importantly, since behavioral responses are regulated by physiological 

systems, it is fundamental to study differences in physiological traits. In this context, it has 

been particularly useful to apply strong artificial selection of extreme values of a given 

physiological trait in order to elucidate relationships between individual behavioral responses 

and physiological regulation [6, 18-22].  

Here we explore the effect of an unpredictable chronic stress regime (UCS) on Atlantic 

salmon performance and physiology through different early life stages compared to control 

fish. Furthermore, via the post hoc sorting of individuals by their high (H) and low (L) 

serotonergic activity, we explore the regulation of gene expression of target serotonergic, 

neural plasticity and corticotropic genes. We hypothesize that long-term developmental 

plasticity of growth and neural responses to an early life stress regime will be elucidated in 

terms of the fish´s basal brain serotonergic activity. We collected data at several time-points 

during development and analyzed the final monoamine neurochemistry in the hypothalamus 

and brain stem (which contain the main serotonergic nuclei innervating the brain [23]). In 

addition, we studied the telencephalic gene expression of the aforementioned genes, since this 

area has been associated with the top-down regulation of the serotonergic stress response [24, 

25]. 
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Methods 

Ethics statement  

This work was conducted in accordance with the laws and regulations controlling 

experiments and procedures on live animals in Norway and was approved by the Norwegian 

Animal Research Authority (NARA), following the Norwegian Regulation on Animal 

Experimentation of 1996.  

Experimental animals and facilities. 

Atlantic salmon eggs (Aqua Gen strain, Aqua Gen AS, Trondheim, Norway) were hatched 

and reared at the Institute of Marine Research (IMR), Matre, Norway. Experimental fish were 

kept in 10000 L outdoor tanks under natural conditions (9°C). A month before the start of the 

experiment, 1110 fish (approx. 10 months old) were transferred into 9 indoor tanks (400 L; 

density: 7 kg fish /tank) supplied with flow-through freshwater. Fish were kept at 12 °C on a 

12:12 photoperiod with a water flow of 15 L/min which provided an approximately a 92% 

oxygen saturation. Fish were fed with dry pellets (2 mm Skretting Nutra Olimpic, Stavanger, 

Norway) distributed ad libitum three times a day with automatic feeders (Arvo-tec feeding 

units: Arvo-Tec T drum 2000. Huutokoski, Finland). Tank conditions were monitored and 

regulated by a fully automated system (SD Matre, Normatic AS, Nordfjordeid, Norway).  

Experimental procedure 

At the beginning of the experiment, tank groups were randomly assigned to one of 2 

treatments (3 replicates/treatment, 124 fish per tank), unpredictable chronic stress (UCS) or 

no stress (control). The UCS treatment consisted of stressing fish three times per day (at 8:30, 

13:00, and 17:00) using 8 different stressors in a random and unpredictable order throughout 

the week for a total of 3 weeks, following the protocol previously described in Madaro et al. 

[26] and Vindas et al. [27]. Control fish were only subjected to routine practices of tank 

maintenance, but otherwise left undisturbed. The 3 feedings/day were maintained throughout 

the experiment starting approximately one hour after the stressors. Importantly, throughout 

this period fish were sequentially sampled terminally (n = 50) in order to quantify their stress 

response through this period. These data were previously reported by Madaro et al. [26]. At 

the end of the stress regime, all fish were mildly sedated in metacaine (25 mg /L, 

Finquel®vet, ScanAqua AS, Årnes, Norway, buffered with 25 mg/L sodium bicarbonate) and 

fork length and body weight recorded (Sampling 1). The remaining fish were individually 

tagged with a PIT-tag inserted into the abdominal cavity for individual recognition and 

distributed into two tanks per treatment (111 fish; 7kg/tank). The fish then underwent light 

controlled parr-smolt transformation (6 weeks L:D 24:0) At the end of this period all fish 

were mildly sedated, measured and weighed (sampling 2). To maintain a density of 7 kg/tank, 

the groups were reduced to 74 fish per tank. At this point, the water flow was switched into 

full strength seawater (35 ppt.) for a period of 4 weeks before the final sampling (sampling 

3).  

Final sampling protocol 

During the final sampling (sample 3) a total of 60 fish were sampled directly from holding 

tanks and immediately killed with an overdose of MS-222 (1 g/L) which rendered them 

completely motionless (no opercular movement) within 10 s of immersion. Fish were rapidly 
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weighed, fork length measured and decapitated for brain dissection. The brain stem, 

hypothalamus and telencephalon were quickly excised within 2 min, snap-frozen in liquid 

nitrogen and stored at -80 C for later analysis.  

The specific growth rate (SGR) 

The percent of body weight gain per day (standardized growth into % body mass per time 

unit) may be studied by calculating the SGR which allows for comparison of growth rate and 

fish weight in a linear manner by correcting for fish size effects (although it needs to be 

considered that small fish grow faster in % of body mass). This is done by using the formula 

(1):  

     (1) 

where W1 and W2 are the Masst (g) at the start (t1) and end (t2) of the specific growth period 

of interest [28] . 

Serotonergic neurochemistry 

Frozen brain stems and hypothalamus were analyzed by means of high-performance liquid 

chromatography (HPLC) as described by Vindas et al [27].  

Gene expression analysis 

Total RNA was extracted from the telencephalon using TRIzol® reagent. All RNA 

concentrations were assessed using a NanoDrop® ND-1000 UV–Vis Spectrophotometer 

(NanoDrop Technologies, Rockland, DE, USA). The RNA quality was determined from 

RNA integrity numbers (RINs) calculated by a 2100 Bioanalyzer (Agilent Technologies, Palo 

Alto, CA, USA). A RIN equal or above eight confirmed excellent RNA quality. First strand 

cDNA was synthesized from 1260 ng/µl DNase I (DNA-free™ Kit, Ambion Applied 

Biosystems)-treated total RNA using Superscript III reverse transcriptase (Invitrogen, 

Carlsbad, CA, USA) with oligo dT12–18 primers synthesized by Invitrogen. 

Several of our target genes have previously been sequenced in Atlantic salmon and were 

retrieved using NCBI (www.ncbi.nlm.nih.gov/; accession numbers are given in Table 1). 

Gene specific primers for Atlantic salmon for the remaining interest genes were designed 

using the web-based Primer3 program 

(http://frodo.wi.mit.edu/cgibin/primer3/primer3_www.cgi), and synthesized by Invitrogen. A 

minimum of four primer pairs were designed at exon junctions for each gene and the primers 

showing the lowest Cq values and a single peak melting curve were chosen and are listed in 

Supplementary Table S1. The qPCR products were also sequenced to verify that the primers 

amplified the right cDNA. The qPCRs were carried out using a Roche LC480 light cycler® 

(Roche Diagnostics, Penzberg, Germany). Reactions were 10 μL and included Light cycler® 

480 SYBR Green I Master (Roche diagnostics GmbH, Mannheim, Germany), primers (5 μM) 

and cDNA. Cycling conditions were as follows: 10 min at 95 °C, then 42 cycles of 10 s at 95 

°C, 10 s at 60 °C and 10 s at 72 °C followed by melting curve analysis. All reactions were run 

in duplicates and controls without DNA template were included to verify the absence of 

cDNA contamination. Individual crossing points (Cq) and priming efficiency were calculated 

for each qPCR reaction using LinRegPCR software (version 11.30.0) [29]. All Cq values  

40 were eliminated since such high numbers imply low efficiency. Furthermore, all Cq values 
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above 35 were rejected based upon comparison between the Cq of the lowest concentration 

unknown and non-template controls, following procedures described by Bustin et al. [30]. All 

3 reference genes were used to calculate a geometric average in order to accurately normalize 

the relative gene expression data following method by Vandesompele et al. [31].   

Statistical analyses 

The R program v. 3.3.2 (R Development Core Team, http://www.r-project.org) and the 

statistical packages ‘nlme’ and ‘MuMIn’ were used for exploratory linear models (LM) and 

linear mixed effect models (LME). Body size was analyzed using an LME, with body weight 

as the dependent variable, treatment (control vs UCS) as a categorical independent variable, 

time (days) and brain stem serotonergic activity as continuous independent variables, and fish 

identification as the random effect. Weight data were missing from 6 control fish at sampling 

time 2 (4 low and 2 high responders); therefore, these individuals were not included in the 

growth and body size analysis. A similar LM was used to assess SGR, but following 

preliminary analysis, fish was not included as a random effect as in the SGR model (see 

supplementary Tables S2, S3 and S4). Here, it is noted that UCS fish weighed less than 

controls at the beginning of the individual growth trial. It is well established that smaller fish 

have a higher SGR than larger fish. To control for this, we included body mass at the start of 

the experiment as a main effect in the initial SGR model. Linear models were used for all 

monoaminergic neurochemistry and gene expression data, with treatment (control vs UCS) as 

a categorical independent variable and brain stem serotonergic activity as a continuous 

independent variable.  

The initial LME/LM models allowed the independent variables treatment × time × brain 

stem serotonergic activity for body size/growth data or treatment × brain stem serotonergic 

activity for neurochemistry and gene expression to interact. However, the final model was 

selected based on a comparison of all possible model combinations, with the final model 

being the one with the lowest Akaike information criterion (AICc) score, i.e. the model with 

the best data fit (see supplementary table 2 for the final models). When significant interaction 

effects were observed, type III sum of squares were used to assess the main effects and the 

contrast values were used to identify effects within sampling time for growth/body size data, 

or treatment/brain stem serotonergic activity for brain neurochemistry and gene expression. 

An examination of the residual plots made sure that there were no systemic errors within the 

residuals of the final models. Here, we are aware that models with a delta value within 2 of 

the model with the lowest AICc score are considered to be of a similar fit as the model with 

the lowest AICc score and can be averaged. However, there is no defined practice for 

averaging models that contain interactions [32]. Therefore, we provide model average results 

for the benefit of the reader, but we report only the models with the lowest AICc score in the 

results. Body weight was natural log transformed prior to analysis, whereas the serotonin 

transporter (5-HTT) and crf data were natural log transformed +1 to improve data fit as 

judged by examination of the residual plots of the initial models. Initial exploratory statistics 

were used to assess all models with the addition of tank as a categorical independent variable, 

but tank was not found to influence any endpoint and was therefore excluded from the final 

analysis (see supplementary material). Significance was assigned at p < 0.05. 

Results    

Selection of high and low serotonergic activity individuals (i.e. [5-HIAA]/[5-HT] ratios) 
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We used brain stem serotonergic activity at basal conditions as a proxy for high (H) and low 

(L) groups within treatment groups. From a total of 30 individuals we selected the fish 

exhibiting the highest and lowest ratios in each treatment (n = 10 per coping style/ treatment, 

Fig 1A & 1B). We compared brain stem serotonergic activity between treatment groups and 

found no effect of UCS vs controls (LM, ss (type II) = 0.003, df = 1, F = 0.77, p = 0.384). 

Interestingly, we found hypothalamic serotonergic activity was positively associated with 

brain stem activity, and UCS treatment led to a general increase in serotonergic activity (Fig 

2).       

Telencephalic mRNA gene expression 

We found a significant positive association between brain stem serotonergic activity and 5-

HT1Aβ (Fig 3A) and crfbp (Fig 4A) mRNA expression. For bdnf, there was a significant 

interaction effect, whereby there was a positive association with brain stem serotonergic 

activity in controls, but a negative association in UCS fish (Fig 4B). We found an increase in 

5-HTT expression following UCS treatment (Fig 3B), but no other treatment effects were 

found in any of the other studied genes (Supplementary Figs 1S and 2S). 

Mass and SGR  

Fish groups did not differ in body mass (t(28) = −1.39, p = 0.18; mean: 63 ± 1 and 63 ± 2 for 

UCS and control, respectively) at the start of the experiment (sample 0). For further details 

please refer to Vindas et al. [27]. There was a significant interaction between treatment and 

time on body mass, as UCS were smaller than controls, but this difference decreased over 

time (LME, Chisq = 15.7, df = 1, p < 0.001). Brain stem serotonergic activity was also 

negatively associated with body mass (LME, Chisq = 4.86, df =1, p = 0.027). There was a 

significant interaction between brain stem serotonergic activity, treatment, and time on SGR. 

Here, SGR for control fish was positively associated with brain stem serotonergic activity at 

time 2, but the association was negative at time 3. In contrast, brain stem serotonergic activity 

was not associated with SGR in UCS fish at either time point (Fig 5). 

Discussion 

We studied the effects of early life stress on growth, neurochemistry, and telencephalic gene 

expression in farmed Atlantic salmon. Of most interest, we found significant associations in 

growth rates with brain stem serotonergic activity throughout the experiment in control fish, 

but not in UCS groups, which suggest a more dynamic regulation of growth rates in control 

groups. Furthermore, there was a positive association between hypothalamic and brain stem 

5-HT ratios, which shows that hypothalamic serotonergic activity follows the same pattern of 

activation as that of the brain stem. In addition, we found positive associations between 

telencephalic gene expression of the 5-HT1A receptor and corticotropin releasing factor 

binding protein (crfbp) abundance and brain stem serotonergic activity, which is indicative of 

a reactive neuroendocrine profile in fish showing high serotonergic activity.  

The main serotonergic nuclei, the raphe, are located in the brain stem [23], therefore 

serotonergic activity in this area has been commonly used as a proxy of total brain 5-HT 

activity [11, 33, 34]. In this context, proactive fish have been found to have lower 

serotonergic levels than reactive individuals [7]. We used basal levels of brain stem 

serotonergic activity (measured as the catabolite to neurotransmitter ratio; 5-HIAA/5-HT 
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[35]) to sort the highest (H) and lowest (L) groups within each treatment in order to establish 

an indicator of individual differences, similar to what has been done in other studies [2, 36]. 

Interestingly, we found in all fish a positive association between brain stem and hypothalamic 

serotonergic activity, which shows that these two brain areas have the same activation pattern 

regarding serotonergic neurochemistry. This, in turn, corroborates the robustness of our 

sorting method since often brain regions are highly dynamic and often show different 

activation patterns, as we have previously reported in salmon [37]. Furthermore, by sorting 

fish in this manner, we were able to indirectly infer previous growth differences related to 

long-term effects of stress conditions. That is, there were marked treatment-related 

differences relating to serotonergic activity in the controls, but not in UCS fish. We found 

that in the control group, serotonergic activity was positively associated with growth rate 

after smoltification, but negatively associated during seawater transfer. No association 

between growth rates and serotonergic activity were found in UCS fish. These associations 

suggest a higher growth discrepancy within the population in control groups. Here, it is noted 

that UCS treated fish were smaller at the end of the stress regime period and may therefore 

have expressed compensatory growth. Although we corrected for the initial differences in 

body mass in the statistical model, we cannot exclude any possible confounding effect of 

growth history on brain stem serotonergic activity. Nevertheless, classically, low serotonergic 

responding fish have been associated with a proactive coping style [7], and these individuals 

are characterized as bolder, more aggressive, and dominant. Therefore, proactive fish have 

been proposed to perform better in environments with high competition for resources [3, 36, 

38, 39], such as those usually encountered in aquaculture environments, particularly during 

the seawater period were food distribution promotes competition over areas closest to the 

middle and the water surface of the seacages  [40]. Our results are certainly in agreement 

with this literature, particularly in the control group at the end of the seawater period, where 

the growth rate was the highest in the fish with the lowest serotonergic activity. However, we 

found that UCS treated fish do not show the same pattern as control groups, in fact, all UCS 

fish show less growth disparities and this exemplifies how important it is to consider previous 

environmental conditions experienced by animals when studying group differences to 

environmental stimuli. Notably, since it is not ideal to have high growth disparity within the 

population, the growth in the UCS group highlights some of the possible benefits that early 

life stress may confer in artificial environments. That is, although speculative, it is possible 

that the stress treatment may decrease the growth rate of proactive fish throughout their lives, 

while the more reactive fish may cope better with this unpredictability early in life and 

therefore grow at a similar rate than proactive fish. Importantly, we found that UCS fish were 

smaller than control fish at sampling 1, after the stress regime. This size difference is a direct 

result of the stress regime, as discussed in Vindas et al [27]. Unfortunately, due to logistical 

reasons fish were not individually tagged before the initiation of the stress regime and we 

were, therefore, unable to include this time point within our statistical analysis. However, we 

found no general significant differences in mass between fish tanks assigned to control and 

UCS treatments at the start of the experiment (Sampling 0).    

The 5-HT1A receptor is both a somatic autoreceptor and a postsynaptic heteroreceptor, which 

has been highly associated with alterations in mood and emotions [9]. However, since there 

are no serotonergic nuclei in the fish´s telencephalon [23], this implies that the 5-HT1A 

mRNA expression obtained in our experiment is indicative of the heteroreceptor abundance 

in this brain area. Importantly, we only found significant effects in the 5-HT1Aβ abundance 
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and not of its paralog 5-HT1A. Since duplicate genes may exhibit different functions [41], it 

is possible that in the case of salmonid fish the 5-HT1Aβ is more involved in stress regulation 

and individual differences, as evidenced from several recent experiments in our lab ([37] and 

Riise et al. unpublished). We found that low expression of both the 5-HT1Aβ receptor the 5-

HT transporter genes are indicative of an overall lower serotonergic activity, as evidenced by 

the serotonergic activity ratios in the brain stem and hypothalamus. Interestingly, in 

mammals, low postsynaptic 5-HT1A levels in telencephalic areas (particularly in the 

telencephalon and amygdala) have been associated with non-human-specific anxious 

behavior (hereafter referred to as anxiety/anxious behavior) [9, 42]. However, in our 

experiment we did not observe a downregulation of 5-HT1Aβ to the stress regime, in fact there 

are no significant differences between control and UCS groups. Instead we found that lower 

5-HT1Aβ abundance characterized fish with an overall lower serotonergic activity at least at 

basal conditions. It would be interesting to analyze this relationship post-stress, to see what is 

the general response in serotonergic signaling under these conditions. In addition, region-

specific studies of telencephalic 5-HT1A regulation need to be conducted in salmonid fishes in 

order to corroborate the role of serotonergic signaling in stress and anxiety in more specific 

telencephalic neuronal populations, particularly since neural gene expression in individuals 

exhibiting opposite coping styles, has been shown to be highly dynamic exhibiting rapid 

region-specific changes to stress (e.g. [37, 43]).  

The signaling molecules CRF and CRFBP are important in the regulation of stress, appetite 

and modulation of the immune response [44, 45]. Specifically, in telencephalic areas CRF 

mediates anxious behavior, increased arousal and altered locomotor activity [44, 46]. We 

found a positive association between serotonergic activity and crfbp mRNA expression. The 

biological effect of CRF is mediated through its receptors (CRF1 and CRF2) and its binding 

protein [47]. Specifically, CRFBP has been proposed to be involved in the negative feedback 

of CRF signaling, since it inhibits the CRF activation of both its receptor isoforms. Notably, 

the magnitude of this receptor inhibition is receptor and isoform-specific. Therefore,  cell 

populations exhibiting only one type of receptor isoform may be selectively inhibited by 

CRFBP, which provides a very localized regulation of CRF signaling [47]. On the other 

hand, other functions of CRFBP have been proposed in addition to CRF sequestering, such as 

CRF2 potentiating by an accessory protein /escort protein action [48]. The exact interpretation 

for increased CRFBP will thus depend on affinity and relative concentration of both CRFBP 

and specific receptor subtypes. Conceivably, the increased expression of crfbp in fish 

showing high serotonergic activity could be part of a mechanism aimed at attenuating the 

release of cortisol, although in order to conclude further on this matter it would be necessary 

to obtain information on CRF receptor expression as well as protein levels in the 

hypothalamus and pituitary, since they play a key role on CRF activity and regulation [44, 

45].  

Curiously, we found that there were opposite association patterns between serotonergic 

activity and the brain derived neurotrophic factor (bdnf) mRNA abundance in control 

(positive) and UCS (negative) groups. The negative regulation of bdnf in UCS fish suggests 

that the stress regime may have long-term consequences on learning and neural plasticity, 

since bdnf is highly associated with promoting neurogenesis, cell survival, and the 

strengthening of learning and memory [49]. However, further research is needed in order to 
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understand the possible effects of an early life stress regime on learning, memory and neural 

plasticity. 

In conclusion, we here submit evidence that high and low 5-HT activity-based post-hoc 

sorting of individuals may be a useful tool in the study of long-term effects of early life 

stress. Grouping fish in this manner allowed us to discern significant differences in 

neuroendocrine and growth metabolism. Notably, we found that fish exposed to an early 

unpredictable stressful environment appear to have less variability in their growth throughout 

several life stages. Furthermore, we found that individuals showing high brain stem 

serotonergic activity, were also characterized by both enhanced serotonergic signaling in the 

hypothalamus and the telencephalon (i.e. increased 5-HT1Aβ receptor) as well as and crfbp 

expression, which is in agreement with a stress reactive neuroendocrine profile. Importantly, 

this profile should not be interpreted as a possible constraint for these individuals, since this 

could be a tradeoff to a life history strategy. In other words, the profile exhibited by these fish 

may yield the highest survival in an unpredictable environment and should therefore convey 

an advantage, so long as it does not mismatch their current environment [50]. The 

methodology described in this paper may help promote novel research into the study of 

phenotypic developmental plasticity not only in fish, but also in other vertebrates. Results 

from these endeavors may help elucidate vulnerable phenotypes in specific environments and 

help reduce disease, mortality and increase welfare.        
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Figure 1. Fish selection by means of basal brain stem serotonergic activity ([5-HIAA]/[5-

HT]) in control (A) and UCS (B) groups.  

Figure 2. Relationship between brain stem and hypothalamic serotonergic activity ([5-

HIAA]/[5-HT]) for high and low groups previously subjected to an unpredictable chronic 

stress (UCS) regime or at control conditions. Significant linear model results: ss (type II) = 

0.003, df = 1, F = 20.8, p < 0.001; UCS: ss (type II) = 0.007, df = 1, F = 52.7, p < 0.001 and  

Figure 3. Relationship between brain stem serotonergic activity ([5-HIAA]/[5-HT]) and the 

relative telencephalic mRNA expression of (A) the serotonin receptor 5-HT1Aβ and (B) the 

serotonin transporter 5-HTT, for high and low groups previously subjected to an 

unpredictable chronic stress (UCS) regime or at control conditions. Significant linear model 

results for (A) 5-HT1Aβ: ss (type II) = 9.5, df = 1, F = 10.5, p = 0.003 and (B) 5-HTTA: ss 

(type II) = 0.31, df = 1, F = 7.7, p = 0.010; brain stem 5-HIAA/5-HT, ss (type II) = 0.11, df = 

1, F = 2.8, p = 0.104.   

Figure 4. Relationship between brain stem serotonergic activity ([5-HIAA]/[5-HT]) and the 

relative telencephalic mRNA expression of the corticotropin releasing factor binding protein 

(crfbp, A), and the brain derived neurotrophic factor (bdnf, B) for high and low groups 

previously subjected to an unpredictable chronic stress (UCS) regime or at control conditions. 

Significant linear model results for (A) brain stem 5-HIAA/5-HT: ss (type II) = 10.6, df = 1, 

F = 9.87, p = 0.004 and (B) brain stem 5-HIAA/5-HT x UCS: ss (type III) = 10.4, df = 1, F = 

5.41, p = 0.027.  

Figure 5. Relationship between brain stem serotonergic activity ([5-HIAA]/[5-HT]) and the 

specific growth rate (SGR) for high and low groups previously subjected to an unpredictable 

chronic stress (UCS, A) regime or at control (B) conditions at sampling point 2 (S2), after 

smoltification triggered by continuous light and at sampling point 3 (S3), after seawater 

transfer. Significant linear model results, brain stem 5-HIAA/5-HT x Time x UCS: ss (type 

III) = 0.76, df =1, F = 9.3, p < 0.003.  
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Highlights 

 Early life stress decreases growth disparities in farmed salmon  
 Post-hoc serotonergic activity sorting was used to study 

developmental plasticity  
 An early life stress regime may increase welfare in farmed fish 
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