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 Abstract–The aim of model calibration is to estimate unique parameter values 

from available experimental data, here applied to a biocatalytic process. The 
traditional approach of first gathering data followed by performing a model 
calibration is inefficient, since the information gathered during experimentation 
is not actively used to optimise the experimental design. By applying an iterative 
robust model-based optimal experimental design, the limited amount of data 
collected is used to design additional informative experiments. The algorithm is 
used here to calibrate the initial reaction rate of an ω-transaminase catalysed 
reaction in a more accurate way. The parameter confidence region estimated 
from the Fisher Information Matrix is compared with the likelihood confidence 
region, which is a more accurate, but also a computationally more expensive 
method. As a result, an important deviation between both approaches is found, 
confirming that linearisation methods should be applied with care for nonlinear 
models. 

Keywords: Biocatalysis, robust model-based optimal experimental design, ω-

transaminase, curvature, Fisher information matrix ■ 
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BA benzylacetone 

CFD computational fluid dynamics 

CI confidence interval 

DOF degree of freedom 

IPA isopropylamine 

MPPA 1-methyl-3-phenylpropylamine 

OED optimal experimental design 

PLP pyridoxal 5’-phosphate 

rMbOED robust Model-based OED 

SD standard deviation 

Model Parameters & Variables 

[E]t [U/mL] total enzyme concentration 

KACE [mM] Michaelis constant ACE 

KBA [mM] Michaelis constant BA 

Keq [–] equilibrium constant 

KiIPA [mM] dissociation constant IPA 

KiMPPA [mM] dissociation constant MPPA 

KIPA [mM] Michaelis constant IPA 

KMPPA [mM] Michaelis constant MPPA 

Vf [nmol/(Umin)] max forward reaction rate 

Vr [nmol/(Umin)] max backward reaction rate 

v [nmol/(mLmin)] reaction rate 
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Symbols 

 Eigenvalue 

FIM Fisher information matrix 

H Hessian matrix 

x independent variables 

X design space 

J objective function 

Σ  measurement error covariance matrix 

  parameter set 

  parameter space 

  parameter estimates error covariance matrix 

Q weight matrix 

y measurements 

ŷ  measurable model outputs 

Introduction 

Biocatalysts convert substrates to products of interest at a certain rate, which 

depends on the local environmental conditions. The relation between the 

reaction rate and the local environmental conditions can be formalised in a 

mathematical model. A well-known and widely used mathematical model is 

the Michaelis-Menten model (Equation 1), which describes the irreversible 

conversion of a substrate to a product by a biocatalyst. 

max

m

[ ]

[ ]

V S
v

K S



 (1) 
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where v denotes the reaction rate, [S] the substrate concentration, Km the 

Michaelis constant, and V max the maximum reaction rate (which is dependent 

on the total enzyme concentration). If 
m[ ]S K , the reaction rate v equals half 

of the maximum reaction rate V max. The two parameters describing the 

relation between the reaction rate and the substrate concentration (V max and 

Km) depend on the substrate and enzyme used, but also on conditions such 

as the temperature and the pH. Consequently, these parameters need to be “ 

updated” for each specific case. In most cases, experimental data are 

collected at certain conditions allowing to estimate the actual parameter 

values. In the literature, different approaches to estimate model parameters 

are available and this remains an important aspect of the modelling exercise. 

Two major classes of methods can be distinguished, i.e. the linear plotting 

and nonlinear regression [10]. The linear plotting methods are based on 

algebraic expressions of simplified kinetic differential equations at initial rate 

conditions to give a series of straight line equations. Different linear plotting 

methods exist [10]: Lineweaver-Burk [33], Hanes-Woolf [27], Eadie-Hofstee 

[20, 28], the direct linear plot [21], and the Dixon plot [16] (which is used in 

particular for determining enzyme inhibition constants). It might seem that the 

choice of linear transformation is unimportant, since they are all variants of the 

same equation, and thus would yield an equal accuracy. However, this is only 

true if both the concentrations and measurements would be errorless [19]. By 

transforming the equation, the error distribution is distorted depending on the 

kind of transformation or linearisation that is applied [37]. Dowd and Riggs 

[19] compared the accuracy of the Lineweaver-Burk plot, Hanes-Woolf plot, 

and Eadie-Hofstee plot and found that closeness of fit is always the best for 

the Lineweaver-Burk plot and worst for the Eadie-Hofstee. However, the 

accuracy with which the Michaelis constants were estimated is the greatest 

for Eadie-Hofstee and worst for the Lineweaver-Burk plot, leading to the 

paradox that the “ worst fitting” line was yielding the “ best” parameter 

estimates and vice versa. Dowd and Riggs [19] stated that the popularity of 

the Lineweaver-Burk method may be based upon the ability to provide what 

seems a good fit even when the experimental data are poor. In the original 

paper, Lineweaver and Burk [33] already stated that “the relative weighting of 
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the experimental observations alters in a definite matter when the form of the 

equation is altered, and if not taken into account may alter slightly the 

parameter constants obtained”. By applying the proper weighting, identical 

parameter estimates can be obtained as the Eadie-Hofstee approach. 

However, Dowd and Riggs [19] stated that calculating the proper weighting 

factors is inconvenient, and often coupled with ignorance. Ranaldi et al. [42] 

extended the analysis of Dowd and Riggs [19] by also including the direct 

linear plot and the nonlinear regression. Nonlinear regression, also known as 

nonlinear optimisation, reduces the offset between the model and data using 

an objective function, without the need for linearising the model. Ranaldi et al. 

[42] showed that using nonlinear regression, even without using the proper 

weighting factors, yields the most reliable estimates for the different 

parameter values. Linear methods are still useful as graphical methods, but 

not as quantitative methods to estimate parameter values. 

It is clear from the above that linear plotting methods should be omitted to 

estimate parameter values from experimental data. However, this is only one 

step in the entire parameter estimation approach. The experiments, which 

were designed to gather the necessary data, had to be designed first. 

Traditionally, first all the experimental data are gathered before starting the 

parameter estimation exercise [29, 1], whereby the gathered information is not 

used during the experimentation phase to adjust experimental conditions (i.e. 

experimentation and model calibration are conducted sequentially). This 

seems abstract, but can be easily illustrated using the Michaelis-Menten 

model (Equation 1). Let us assume, that initially no information is available 

about the parameter values, and thus a proper experimental design cannot be 

set up. Therefore, one first has to perform experiments before trying to 

estimate the parameter values. However, if all experiments are designed in 

the region where m[ ]S K , Equation 1 reduces to max m[ ] /v V S K . In this way, 

only the ratio between the two parameters can be estimated, and thus more 

experiments need to be performed. Measuring additional conversion rates at 

concentrations well above Km results in an estimate for V max, and thus allows 

to estimate both parameters in a reliable way. To avoid this kind of 
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identification problems, i.e. lack of informative data, it may be more interesting 

to use an iterative approach as depicted in Figure 1. Dochain and 

Vanrolleghem [17] and Goujot et al. [24] proposed this procedure in order to 

optimise the experimental conditions. First, some preliminary experiments are 

conducted, which can afterwards be used to perform an initial parameter 

estimation. Next, one needs to assess whether the reliability of the parameter 

estimates is sufficiently high. If not, new informative experiments need to be 

conducted to gain additional information. Using the model, regions with high 

information content can be detected and new experiments will be designed. 

These new experiments are then performed in the lab, and afterwards this 

new information can be added and used for improving the quality of the 

parameter estimates. Application of this strategy is powerful and is often 

referred to as iterative Optimal Experimental Design (OED) [17, 24]. The 

effectivity of these OED methods is highly dependent on the accuracy of the 

initial parameter estimates. Therefore more robust OED methods have been 

developed which are less sensitive to these parameter estimates. Despite the 

fact that these robust OED procedures are available, the nonrobust OED 

methods are applied more frequently in literature [24, 35, 3]. 

In the following sections, the reaction under study and the corresponding 

model to be calibrated will be discussed. Next, some theoretical background 

will be given about parameter confidence estimation, and how this can be 

used to design informative experiments. Next, the maximin algorithm, which is 

a robust OED procedure, is applied for this specific case. Finally, the 

confidence region of the parameter estimates is calculated using the 

traditional approach of the Fisher Information Matrix and compared with the 

likelihood method, which is a more accurate, but computationally more 

expensive approach. 

Theoretical background 

Reaction 

The reaction under study is the synthesis of acetone (ACE) and 1-methyl-3-

phenylpropylamine (MPPA) from isopropylamine (IPA) and benzylacetone 
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(BA) by means of an ω-transaminase (ω-TA). By using ω-transaminase 

(EC 2.6.1.X), optically pure chiral amines are produced by transferring the 

amine group from an amine donor, to a pro-chiral acceptor ketone, yielding a 

chiral amine and a ketone as co-product (Figure 2). The enzyme requires 

pyridoxal 5’-phosphate (PLP) as a cofactor to act as a shuttle to transfer the 

amine moiety between the molecules [1, 31]. 

Kinetic Model 

The reaction in Figure 2 obeys the ping-pong bi-bi mechanism (also known as 

substituted-enzyme mechanism) [11]. The quasi steady-state model of the 

plain ping-pong bi-bi mechanism, i.e. without substrate or product inhibition, is 

given in Equation 2 [44]. 

f r

eq

f ACEf MPPA
r BA r IPA r

eq eq

f f MPPA r IPA

eq eq iIPA iMPPA

[ ][ ]
[ ][ ]

[ ][ ]
[ ] [ ] [ ][ ]

[ ][ ] [ ][ ] [ ][ ]

ACE MPPA
V V IPA BA

K
v

V K MPPAV K ACE
V K IPA V K BA V IPA BA

K K

V ACE MPPA V K IPA ACE V K BA MPPA

K K K K

 
 

 


   

  

 (2) 

where [IPA], [BA], [ACE], and [MPPA] represent the substrate/product 

concentrations [mM], V f, and V r the maximum forward and backward reaction 

rate [nmol/(Umin)], and KBA, KIPA, KMPPA, KACE the Michaelis constants [mM]. 

Keq represents the equilibrium constant [-] and KiIPA and KiMPPA represent the 

dissociation constants [mM] [11, 44]. Equation 2 contains 9 kinetic 

parameters, which all have to be estimated from experimental data. However, 

by using the Haldane relationship, Keq can be estimated from the other 

parameter values. The Haldane relationship for a plain ping-pong bi-bi 

mechanism is given in Equation 3 [44, 45]. 

2

ACE MPPAf
eq

r IPA BA

K KV
K

V K K

 
   

 (3) 
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By using this relationship, the total number of kinetic parameters which need 

to be estimated is reduced to 8. 

Parameter estimation 

As previously discussed, different approaches exist to estimate the kinetic 

parameter values. However, it can be challenging to calibrate all eight 

parameters of Equation 2. Chen et al. [10] and Al-Haque et al. [1] proposed a 

methodology to reduce the number of parameters which need to be estimated 

simultaneously by reducing the full model to several simpler initial rate 

models. For example at very low product concentrations, Equation 2 can be 

reduced to the initial forward reaction rate vforw in Equation 4. In this way, only 

three parameters need to be estimated simultaneously under these 

conditions. 

f
forw

BA IPA

[ ][ ]

[ ] [ ] [ ][ ]

V IPA BA
v

K IPA K BA IPA BA


 
 (4) 

Similarly, at very low substrate concentrations, Equation 2 can be reduced to 

the initial backward reaction rate backv  (Equation 5). 

r
back

ACE MPPA

[ ][ ]

[ ] [ ] [ ][ ]

V MPPA ACE
v

K MPPA K ACE MPPA ACE


 
 (5) 

After calibrating both Equations 4 and 5, only two parameters remain to be 

calibrated in the original rate Equation 2, i.e. both dissociation constants KiIPA 

and KiMPPA. Al-Haque et al. [1] proposed to use progress curves at different 

substrate and product concentrations to estimate the dissociation constants 

and Keq. However, in this paper initial rate experiments, which are spiked with 

product, will be used to calibrate the dissociation constants since such data 

were already available (B). To ensure that the parameter estimates are 

suitable, progress curve analysis will be used to validate the full model under 

different conditions. 

The parameter values are estimated by means of nonlinear regression. The 

weighted sum of squared errors is used as a cost function. 
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1

ˆ ˆ( ) ( ( , )) ( ( , ))
N

i i i i i

i

J


   y y x Q y y xθ θ θ  (6) 

where J represents the cost function which is function of the parameter 

estimate θ . y represents an N M  matrix containing the M measurements 

for N samples. ŷ  also represent a N M  matrix containing the measurable M 

model predictions for the N samples. Q is a N M M   matrix containing 

user-supplied weighting coefficients. Typically, Q is chosen as the inverse of 

the measurement error covariance matrix Σ  [35, 39]. The diagonal of 

Σ  contains the variances of y, the off-diagonal elements represent the 

covariances between the different measurements. In this way, the 

measurement uncertainty is inherently incorporated in Equation 6, and 

resulting in Equation 7 [49]. 

1

1

ˆ ˆ( ) ( ( , )) ( ( , ))
N

i i i i i

i

J 



   y y x Σ y y xθ θ θ  (7) 

By using nonlinear optimisation, the optimal parameter estimate θ  can be 

found by minimising the objective function J. Different optimisation techniques 

exist, which can be divided in two major classes: local and global optimisation 

algorithms [17]. As the name suggests, local optimisation algorithms try to find 

the minimal value of J in a local neighbourhood starting from an initial guess 

in the parameter space. However, when the objective function contains 

multiple local minima and one global minimum, it is likely that the local 

optimisation algorithm will not end up in the global minimum. To circumvent 

this problem, global optimisation algorithms are available which are less 

sensitive to these local minima, though typically are computationally more 

expensive. However, it is important to be aware that the application of these 

global algorithms cannot guarantee that the final minimum is the global 

minimum. In this paper, the parameter estimation is performed using the 

downhill simplex algorithm [38], which is a local optimisation method. 

However, the downhill simplex algorithm was repeated a number of times for 

different initial parameter guesses to avoid ending up in a local minimum. 

Confidence regions 
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After finishing a (preliminary) model calibration, there is still the need to 

assess the quality of these parameter estimates, an often forgotten or ignored 

step in parameter estimation. Some parameters might have little or no 

influence on the model output, and therefore the estimated parameter value 

will be meaningless. Uncertain parameter estimates indicate that the available 

data are not sufficiently informative to extract information with regard to that 

parameter. If the collection of informative data is unfeasible, the model can be 

regarded as overparameterised and should be adapted in order to yield 

reliable predictions [9, 14]. In this context, Marsili-Libelli et al. [35] stated that 

parameter values always need to be accompanied by a confidence region in 

order to be meaningful. The confidence region is the region in which it can be 

expected that, with a certain probability, the true parameters will lie [35]. An “ 

exact” confidence region, in the sense that it is not based on any 

approximations, is given by Equation 8 [43]: 

 : ( ) ( ) ,J cJθ θ θ  (8) 

where 1c . The constant c is generally unknown, but can be approximated for 

a sufficiently large number of data points N  [7, 43]: 

,: ( ) 1 ( ) ,P N P

P
J F J

N P





  
     

θ θ θ  (9) 

where ,P N PF

  is the upper α critical level of the F-distribution with P (number of 

estimated parameters) and N P  degrees of freedom. The confidence region 

produced by Equation 9, is generally referred to as the likelihood confidence 

region. The expectation surface of the objective function is planar if there 

exists a reparametrisation of ˆ ( , )iy x θ  that makes the function linear in the P 

parameters [18]. If this is the case, the confidence regions constructed by the 

likelihood method are exact. One advantage of using the likelihood method is 

that the confidence region is not affected by any reparametrisation of the 

function ŷ . However, to obtain the likelihood confidence region, a lot of 

calculations need to be performed since J needs to be evaluated at a 

sufficient number of points to produce a contour [18]. To overcome this 
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computational burden, most often linear approximations of the objective 

function J are used to construct the confidence region. The objective function 

( )J θ  (Equation 7) can be approximated by a second order Taylor series: 

2( ) 1 ( )
( ) ( ) ( ) ( ) ( )

2

J J
J J

  
      

   

θ θ
θ θ θ θ θ θ θ θ

θ θ θ
 (10) 

In a (global) minimum, the first derivative of the objective function J equals 

zero, reducing Equation 10 to Equation 11. 

21 ( )
( ) ( ) ( ) ( )

2

J
J J

 
    

  

θ
θ θ θ θ θ θ

θ θ
 (11) 

Substituting Equation 11 in Equation 9 yields a new expression for the 

confidence region: 

1

,( ) ( )( ) P N PPF

  Φθ θ θ θ θ  (12) 

where 1( )
Φ θ  is the inverse of the parameter estimation error covariance 

matrix defined by [35]: 

1( )
( ) 2 ( )

J

N P




Φ H
θ

θ θ  (13) 

where ( ) / ( )J N Pθ  is an approximation of the residual variance s2. For a 

sufficiently large number of samples and in case of a perfect model fit, s2 will 

approximate the real variance 2  of the normal error distribution. This 

approximation is based on the fact that, assuming the model is correct, the 

residuals will be random errors and the average of these squared residuals is 

an estimate of the error variance. In the above equation, 1( )
H θ  is the inverse 

Hessian matrix defined by: 

2

|J

 

H
θθ θ

 (14) 

According to the Cramér-Rao inequality [34], the inverse of the H is equal to 

the lower bound of the parameter estimation error covariance matrix Φ  if the 
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measurement errors are independent samples taken from a normal 

distribution with zero mean. The linear approximation of the confidence region 

(Equation 12) is only exact for linear models. In this case the objective 

function contours are of a quadratic form, meaning that the two-dimensional 

confidence regions are ellipses and the three-dimensional confidence regions 

are ellipsoids. However, for nonlinear models Equation 7 is not exactly 

quadratic, and as a result the linear approximation of Equation 12 is only 

appropriate if the curvature of the model (i.e. second derivative of ŷ  to the 

parameters θ ) is sufficiently small. In much of the applied literature 

[1, 49, 24], the importance of the curvature is ignored. Bates and Watts [5] 

proposed relative curvature measures which allow to determine whether the 

model nonlinearity is important. These curvature measures can be divided in 

two kinds of curvatures, i.e. the intrinsic curvature and the parameter-effects 

curvature. The intrinsic curvature measures how much the expectation 

surface deviates from a plane [8]. The parameter-effects curvature represents 

the degree of curvature induced by the choice of the parameters and its 

parametrisation. Bates and Watts [4] found that the nonlinearity induced by 

the parametrisation is generally greater than the intrinsic nonlinearity of the 

model. Donaldson and Schnabel [18] confirmed that the parameter-effects 

curvature provides an excellent indication when the linearisation method may 

produce less satisfactory results. Therefore, these relative curvature 

measures will be used to determine whether the linear approximation of the 

confidence region can be regarded as reliable. 

Parameter estimate uncertainty and correlation 

From the parameter estimation error covariance matrix (Equation 15), the 

parameter uncertainty and correlation can be obtained. 

1

2

2

1 2 1

2

2 1

2

1

Cov( , ) Cov( , )

Cov( , )

Cov( , )
P

P

P







    

  

  

 
 
 

  
 
 
 

Φ  (15) 
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The diagonal elements of this matrix represent the variances ( 2

i
 ) of the 

errors of the parameter estimates. The off-diagonal elements represent the 

covariances between the parameter estimation errors. Based on these 

variances and covariances, the elements of the linear correlation matrix can 

be calculated as: 

, 2 2

Cov( , )

i j

i j

i j

 

 

 


 
  (16) 

As mentioned before, the parameter estimation error covariance matrix Φ  can 

be used to construct the confidence regions. The confidence interval 
i

  of a 

single parameter ˆ
i  is typically calculated as [43]: 

2 ,
i i N Pt     (17) 

where 
N Pt  is the two-tailed Student t-distribution for the given confidence 

level α and N P  degrees of freedom. 

As stated in Equation 13, the parameter estimation error covariance matrix Φ  

can be related to the Hessian matrix H in Equation 14. However, the 

parameter estimation error covariance matrix Φ  is most often calculated from 

the so-called Fisher Information Matrix (FIM): 

  1

1

ˆ ˆ( , ) ( , )
, .| |

N

i i
i

i





    
        


y x y x
FIM x Σ

θ θ

θ θ
θ

θ θ
 (18) 

The Fisher Information Matrix FIM is an approximation of the Hessian matrix 

H, and the relation between both matrices is given by [40, 17, 35]: 
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y x

y y x Σ
θ

θ
θ

θ θ

 (19) 

Based on Equations 18 and 19, the Hessian matrix H can thus be rewritten as 

follows: 

 
2

1

1

ˆ ( , )
ˆ2 2 ( , ) .|

N

i

i i i

i





  
       


y x

H FIM y y x Σ
θ

θ
θ

θ θ
 (20) 

The relation between the Hessian H and the FIM is given in Equation 20, and 

from this equation it can be seen that they differ by the term: 

 
2

1

1

ˆ ( , )
ˆ2 ( , ) .|

N

i

i i i

i





  
     


y x

y y x Σ
θ

θ
θ

θ θ
 (21) 

The term consists of three components: the estimation error  ˆ ( , )i iy y x θ , the 

inverse measurement error covariance matrix 1

i


Σ , and the second derivatives 

of ŷ  to the parameters, also known as the “ curvature”. For a model which 

has successfully been calibrated using the available data, the estimation error 

should be the random (i.e. normally distributed with mean 0 and 2 ) 

measurement error of each point. Therefore, the second derivative terms tend 

to cancel out when summed over all points i [35], and thus Equation 11 can 

be reduced to 

( ) ( ) ( ) ( ).J J   FIMθ θ θ θ θ θ  (22) 

As stated before, this is only true for linear models and when the model fits 

the data perfectly, i.e. the model structure is correct and the global minimum 

is found [35]. Marsili-Libelli et al. [35] proposed to use the conceptual 
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difference between the Hessian matrix H and the FIM to detect inaccurate 

parameter results because the optimisation algorithm will be terminating far 

from the optimum. This method was successfully applied to two simple 

ecological models using in silico generated data. However, De Pauw [15] 

pointed out that also other factors beside the premature convergence might 

influence the difference between the Hessian matrix H and the FIM. First, the 

model could be inadequate. Second, by fixing some parameters at specified 

values, an unsatisfactory model fit might be obtained (although being the 

global optimum for the selected parameter subset). Therefore, the difference 

between the Hessian matrix and the FIM can be used as an indicator for 

model inadequacies, local minima and/or non-normally distributed residuals 

[15]. In this paper, both the Hessian matrix H and the FIM will be used to 

calculate the confidence regions, since this will allow to determine whether the 

model is calibrated properly. 

Optimal experimental design 

The aim is to perform experiments which lead to accurate parameter 

estimates with minimum experimental effort. Such informative experiments 

imply that during parameter estimation a small change in parameter value 

results in a large difference of the cost function J. A clearly defined minimum 

for J, can be achieved by maximising the difference between ( )J θ  and ( )J θ . 

Maximising the difference between ( )J θ  and ( )J θ  can be realised by 

maximising the second order term in Equation 11. In most cases, the second 

order term is approximated by using the FIM, since this is easier to calculate 

and reduces computational expenses. In order to maximise the magnitude of 

the FIM by using an optimisation algorithm, the FIM needs to be reduced to a 

scalar metric. Various real-valued functions are suggested as metrics and are 

shown in Table 1. The D-criterion is most commonly used and will also be 

used in this paper. By maximising the determinant of the FIM the overall 

volume of the confidence region is reduced. D-optimal experiments possess 

the attractive property, as opposed to the other design criteria, of being 

invariant with respect to any rescaling of the parameter units. Although the 
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value of the criterion changes as function of the parameter units, the optimal 

experiment remains the same [50]. 

Mathematically the optimal experiment, using the D-criterion, is given by 

Equation 23. 

 D arg max det[ ( , )][ ]



x X

x FIM xθ  (23) 

where X represents the experimental design space and 
Dx  the optimal 

experiment for a specific parameter set θ  using the D-criterion. The optimal 

experiment is thus only optimal for the parameter set it was designed for. 

Since the FIM is calculated from the local sensitivity functions (see 

Equation 18), for nonlinear models the FIM is directly influenced by the 

parameter values themselves. Therefore, all designs based on the FIM 

properties are called local designs [41]. Prior to a model calibration no 

detailed knowledge is available about the parameter values, but this 

knowledge is important since it will determine the effectiveness of the 

experimental design. To overcome this problem, more robust Model-based 

Optimal Experimental Design (rMbOED) methods have been proposed in 

literature which are insensitive (or at least less sensitive) to the starting values 

of the different parameters [41, 2]. The use of rMbOED is therefore more 

suitable for parameter estimation, and will be discussed in the following 

section. 

Robust Optimal Experimental Design 

The aim of robust OED is to design experiments which are suitable for an 

entire parameter space Θ  and not just for one parameter set θ . Different 

rMbOED methodologies exist in literature [41, 2]. In this paper the focus will 

be on the implementation and use of the maximin approach, since it was 

shown that this approach is superior compared to other robust methodologies 

[2]. 

Maximin approach 
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The maximin approach, also known as the worst-case approach, aims to 

optimise the experiment design for any Θθ  [2]. By searching for the 

experimental design x which maximises the information for the worst 

performing parameter set, this approach tries to find an acceptable 

performance for all parameter sets θ  in the parameter design space Θ . This 

results in a robust design 
MMDx , which is given by Equation 24. 

MMD arg max min det( [ , ]){ [ [ ]]}



Θx X

x FIM x
θ

θ  (24) 

Asprey and Macchietto [2] stated that Equation 24 can also be written as an 

infinite dimensional problem, as the constraints must be satisfied for all values 

of θ  within the infinite parameter space Θ  (Equation 25). 

,

MMD arg max

s.t. det( [ , ]),

{ }
 

 

   

x X Θ

x

FIM x Θ

θ

θ θ

 (25) 

Equation 25 represents an infinite dimensional problem, as the constraint 

must be satisfied for all values of θ  within the infinite set Θ  [2]. Gustafson 

[25] suggested a general algorithm to solve such problems for constrained 

nonlinear optimisation under uncertainty. Instead of calculating the nested 

optimisation directly, the general algorithm allows to solve the optimisation in 

two separate steps: First, the experimental design x is optimised for the worst 

performing parameter set in a list of parameter sets with unacceptably low 

performance. Initially, this list only contains the initial parameter guess, but 

gradually expands during the iterations. Second, for the current design x the 

worst performing parameter set θ  within the parameter space Θ  is searched 

for. If a new parameter set is found which performs worse for the current 

optimal design, the parameter set is added to the list of parameter sets with 

low performance and the procedure is repeated. Otherwise it can be 

concluded that the current optimal design is robust for the parameter space Θ  

[2]. The practical implementation of the algorithm is discussed in more detail 

by Asprey and Macchietto [2]. The maximin optimisation is performed using 

the particle swarm optimisation (PSO) algorithm, which is a global 

optimisation method. 
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Materials and methods 

Experimental Approach 

Stock solutions 

For performing the experiments, different stock solutions were prepared. First, 

a 20 mM KH2PO4 / K2HPO4 buffer was prepared at pH 8. From this buffer 

solution, a stock solution containing 0.1 mM pyridoxal-5’-phosphate (PLP) 

was prepared which was used to prepare the 500 mM ACE and 40 mM MPPA 

stock solutions. For all the stock solutions, the pH was measured and 

adjusted to obtain the required pH 8. All stock solutions were contained in the 

fridge to avoid concentration losses due to evaporation. The enzyme solution 

was prepared daily, using the buffer stock solution without PLP. The enzyme 

solution was prepared using ω-transaminase (ATA-wt) crude enzyme powder 

and freeze-dried cells with a specific activity of 1.56 U/mg and was provided 

by c-LEcta GmbH, Leipzig, Germany. 

Experiments 

The proper amount of buffer with PLP, ACE and MPPA were injected in a 4.5 

mL glass vial. These vials were sealed using a lid with a septum and placed in 

a thermoshaker which was operated at an orbital agitation of 400 rpm and at a 

temperature of 30  C. The sealing was performed to minimise the losses of 

substrate and products. After heating the solution for about 20 min, the 

reaction was started by injecting the enzyme solution. The injection time of the 

enzyme was considered as time zero, and samples were taken after 0.5, 15, 

30, 45 and 60 min. Using a manual high-performance liquid chromatography 

(HPLC) syringe of 25 µL, 20 µL samples were taken from the vials and 

injected in a small HPLC vial containing 180 µL of 1 M NaOH. 

HPLC 

The samples were analysed ex situ with a reversed-phase chromatography 

on an Ultimate 3000 HPLC (Dionex, Sunnyvale, CA, USA) equipped with a 

UV detector. The column was a Gemini® 3 µm NX-C18 110 Å, 100 x 2.0 mm 

(Phenomenex, Torrance, CA, USA), and the analytes were eluted at a flow 
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rate of 0.450 mL/min in isocratic mode using a mobile phase composition of 

65% Milli-Q aqueous phase pH 11 (adjusted with NaOH) and 35% 

acetonitrile. 

Software 

Python was used to implement the maximin algorithm described by Asprey 

and Macchietto [2]. The algorithm was implemented in the framework of the 

pyIDEAS package [47]. Data analysis was performed by using pandas (data 

structures and analysis) [36], scipy [32], numpy [48], and matplotlib (plotting 

library) [30]. Symbolic derivations were performed using Sympy [46]. Global 

optimisation problems were tackled by using the Particle Swarm Optimisation 

(PSO) algorithm of the inspyred package [23]. The calculation of the relative 

curvature measures [5] was also implemented using numpy, and is discussed 

in more detail in Appendix A. 

Results & Disussion 

First, the model parameters of Equation 5 (V r, KACE, and KMPPA) are estimated 

using the iterative rMbOED approach. Next, the estimation of the 95% 

confidence region is compared with the more accurate likelihood method. 

Finally, the rMbOED strategy is compared with a straightforward uniform 

design strategy to illustrate the merit of using rMbOED. 

Parameter estimation strategy using iterative rMbOED 

To retrieve the intrinsic parameter values of the backward initial reaction rate, 

experiments need to be performed at conditions which are most informative. 

During the rMbOED approach, it is assumed that the model structure is 

perfect (i.e. valid under all experimental conditions). Therefore, the 

concentrations of ACE and MPPA are gradually expanded during the different 

iterations in order to avoid inhibition. Moreover, such an iterative approach is 

typically more powerful compared to a traditional approach [6]. 

Preliminary expert-based experiments 
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Before starting the actual rMbOED, some preliminary experiments needed to 

be performed. By gathering such preliminary data, a very rough estimation of 

the different parameter values and uncertainties can be made. Initially, the 

experimental design ranges of [ACE] and [MPPA] were limited between 25 

and 100 mM and 2.5 and 10 mM respectively. These small concentration 

ranges were considered to avoid inhibition, and were based on expert 

knowledge. The preliminary experiments are given in Table 2, and were used 

to perform a preliminary parameter estimation of the backward initial rate 

(Equation 5). The corresponding parameter estimates and uncertainties are 

provided in Table 2. Since the 95% confidence intervals are much larger 

compared to the corresponding estimated parameter values, it is obvious that 

more informative experiments need to be conducted. To design new 

experiments, a parameter design space Θ  has to be defined. The parameters 

95% confidence region is used as the parameter design space Θ  for each 

iteration with a minimum parameter value of zero. For example, the parameter 

design range of KACE for designing iteration 1 is set to [0 mM, 1061 mM]. This 

allows to propose experiments which are suitable for all parameter sets 

located within the 95% confidence region. Since the size of this confidence 

region will gradually decrease, the design will become more and more specific 

during the iterative rMbOED procedure. 

The rMbOED approach is now used to design five new experiments with two 

repetitions for iteration 1, yielding a total of 10 experiments. All newly 

designed experiments seem to be located at a concentration of 100 mM of 

ACE, indicating that more information can potentially be found at higher ACE 

concentrations. As shown in Table 2, the preliminary estimate of KACE is 263 

mM which indicates that experiments need to be performed at higher ACE 

concentrations and is confirmed by Figure 3. Since the parameter relative 

sensitivities are used in Figure 3, the sensitivity of the different parameters 

can be directly compared, yielding that V r is the most sensitive parameter, 

followed by KMPPA and KACE. It is interesting that the region where the 

parameters are most sensitive are quite different, which allows to reduce 

correlation between the parameters. The sign of the local parameter relative 
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sensitivity of V r is positive, which indicates that an increase of V r will lead to 

an increase of the backv  and vice versa. For the other two parameters (KMPPA 

and KACE), the sign is negative, indicating that an increase in parameter value 

will lead to a decrease of backv . 

Iteration 1 of rMbOED 

Since no inhibition was observed in the preliminary experiments, the 

maximum allowed concentrations of [ACE] and [MPPA] were doubled to 200 

and 20 mM respectively. It is expected that the extended range will yield more 

information for the parameter calibration, since the parameters are more 

sensitive at higher concentrations. The newly designed experiments are given 

in Table 2: iteration 1. For the current and the following iterations, the 

experiments proposed by the rMbOED algorithm were rounded to 

concentrations and volumes which were easy to handle in practice. 

Performing these experiments, 10 additional data points were generated, 

yielding a total of 20 data points (10 from iteration 0 and 10 from iteration 1) 

which were used to calibrate Equation 5. Compared to the preliminary 

calibration (iteration 0) and iteration 1, some changes were noticed. First, the 

KMPPA value decreased from 21 mM to 3.4 mM and V r decreased from 34 

nmol/(Umin) to 24 nmol/(Umin). 

Moreover, the standard deviations (SDs) of all parameters dropped with at 

least a factor 5, indicating that the experiments in iteration 1 were more 

informative. A similar trend was observed for the 95% confidence intervals 

(CIs), leading to the fact that for all parameters 0 was no longer within the 

95% CI. This might seem unimportant, but as long as 0 is part of the 95% CI, 

the parameter has no significant added value for the model and thus may as 

well be omitted. In order to evaluate the effectivity of the rMbOED approach, 

the standard deviations between the different iterations need to be compared. 

The 95% CIs are dependent on the number of experiments (see Equation 17), 

and thus make a fair comparison between the different iterations impossible 

as the 95% CI decreases as the number of experiments increases. 

Iteration 2 of rMbOED 
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Since no inhibition was observed in the previous iteration, the maximum 

allowed concentration of [ACE] was further increased to 300 mM. Since KMPPA 

is low (3.4 ± 3.3 mM), it was decided to reduce the maximum [MPPA] 

concentration to 16 mM. The stepwise increase/decrease of the maximum 

concentrations can look inefficient, however this approach has some 

advantages: The product concentrations in the current experimental setups 

are always well below 10 mM, so the current range is already high compared 

to the experiments. Moreover, the model structure is limited to only three 

parameters instead of requiring two additional parameters to describe the 

inhibition. More complex models are harder to calibrate and also require more 

data to estimate the parameters in a reliable way. The estimated parameter 

values remained fairly constant (small decreases for all parameter values), 

but the 95% uncertainty was decreased with more than 30% for all 

parameters. 

Iteration 3 of rMbOED 

Based on the parameter values of iteration 2, the maximum concentration of 

[MPPA] was reduced to 10 mM since the estimated KMPPA value was around 

2.7 mM in the previous iteration, and thus will be most sensitive at values 

below 10 mM. The experiments proposed by the rMbOED algorithm were 

mainly located at the maximum concentration for both ACE and MPPA. 

Therefore, three out of five newly designed experiments are located at an 

ACE concentration of 250 mM and a MPPA concentration of 10 mM. The 

newly gathered data allowed to perform a third calibration and uncertainty 

calculation. Like in previous iterations, the uncertainties for the different 

parameters further decreased, and it was decided that given the experimental 

uncertainty, the parameter values and confidence intervals were now 

sufficiently accurate. The local parameter relative sensitivities for the final 

iteration are given in Figure 4. Compared to the preliminary iteration 

(Figure 3), the sensitivities have changed (most pronounced for KMPPA), 

stressing the importance of the parameter value on the local sensitivity and 

hence on the experimental design. From this figure, it also becomes clear why 

most of the experiments are designed at the maximum concentration for both 
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ACE and MPPA. V r is the most sensitive parameter, and thus will have the 

largest impact on the design. Moreover, the two Michaelis constants also 

show a relatively high sensitivity in this region. These observations indicate 

that this region is of interest for all kinetic parameters, and thus will play an 

important role in maximising the D-criterion. 

Using the estimated parameter values of both the backward and forward 

(Appendix B) initial reaction rates, the remaining parameters (i.e. KiIPA, KiMPPA, 

and Keq) can be estimated (see Appendix B). 

Parameter correlation 

The parameter correlations for the different iterations can be calculated based 

on Equation 16 and are listed in Table 3. The correlation between the different 

parameters is high, especially between parameters V r and KACE. From the 

local parameter relative sensitivities in Figure 4, it can be seen that the 

absolute value of the local parameter relative sensitivities increases when 

increasing both [ACE] and [MPPA], making it difficult to decouple the effect of 

both parameters. The parameter correlations can be reduced by increasing 

the maximum ACE concentration to about 500 mM, since the KACE will show a 

decreasing sensitivity at higher concentrations (not shown). 

Measurement uncertainty of backward initial rate 

For the forward reaction rate a measurement uncertainty analysis had already 

been carried out. This measurement uncertainty analysis yielded that the 

measurement uncertainty relative to the reaction rate, was following a normal 

distribution ( 0  and forw forw( ) 0.10v v  ). 

Therefore, for the backward reaction rate the same measurement uncertainty 

was assumed and used to perform the rMbOED, since the same equipment 

and solutions were used. It would be possible to estimate the uncertainty 

during the actual experimentation, but this would require at least three 

repetitions for each experiment, which would increase the experimental effort 

considerably. Otherwise, estimating the uncertainty from the offset between 

the data and model is only reasonable when a sufficiently high number of 
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experimental data points have been collected, and thus is preferably done 

after the data collection. However, now it is verified whether the use of the 

relative error of the forward initial reaction rate is also valid for the backward 

initial reaction rate. The relative error 
rel,i

 is given in Equation 26 and the 

corresponding histogram for the gathered data and calibrated model is given 

in Figure 5. 

rel,

ˆ ( , )i i

i

i




y y x

y

θ
 (26) 

The null hypothesis was that the relative measurement uncertainty ( rel,i ) was 

indeed following a normal distribution. This null hypothesis was tested using 

an omnibus test of normality proposed by D’Agostino [12], and is appropriate 

to detect deviations from normality due to either skewness or kurtosis [13]. 

This normality test is available in the scipy package (scipy.stats.normaltest) 

[32], and returns a two-sided 2  probability for the hypothesis test. The test 

yielded a p-value of 0.595, and thus the null hypothesis could not be rejected. 

Therefore it was concluded that the relative measurement uncertainty was 

following a normal distribution with back back( ) 0.104v v  . The approach of 

estimating the measurement error by evaluating the difference between the 

model prediction and measurements is only valid if the model in Equation 5 

represents the true model. The measurements of Table 2 and the model 

prediction using the parameter values and covariance matrix obtained in the 

third iteration are shown in Figure 6. From this Figure, it can be observed that 

the measurement uncertainty (which is calculated by using Equation 26, and 

thus only provides an estimate of the real error) is much larger compared to 

the predicted 95% model confidence interval. The 95% model confidence 

interval is calculated by propagating the uncertainties on the parameter 

estimates by using the covariance matrix Φ  [39]. It can also be noticed that 

the measurements performed in iteration 3 are consistently overpredicted by 

the model. The enzyme used for this iteration was from a different batch, 

probably increasing the overall uncertainty of the parameter estimates. 

However, in this way the potential deviations between the batches originating 
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from the enzyme production are also incorporated in the parameter 

uncertainty. 

Difference between FIM and Hessian matrix H 

In the previous calculations, the 1
FIM  was used to estimate the covariance 

matrix. However, the FIM is only a good estimate of the Hessian H if no 

important offset exists between the model and the data (Equation 21). Since 

the model under study is an algebraic model, it is straightforward to calculate 

the second derivatives of ŷ  to the parameters. The 2H FIM  is given in 

Equation 27 and is very small compared to the H, since the maximum relative 

deviation between the different terms (i.e. ( 2 ) / )ij ij ijH FIM H ) is smaller than 

2%). Therefore based on Marsili-Libelli et al. [35], it is concluded that the 

model is calibrated properly. 
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H FIM  (27) 

Importance of curvature for parameter confidence estimation 

Using the procedure proposed by Bates and Watts [5] (A), the importance of 

the curvature of the objective function J can be assessed. It is found that the 

relative intrinsic curvature ci is equal to 0.034 and the relative parameter-

effect curvature cθ  is equal to 0.296. From these results, it can already be 

concluded that the intrinsic curvature is much less important compared to the 

parameter-effects curvature, which is in accordance with previous 

observations of Bates and Watts [4] and Donaldson and Schnabel [18]. In 

order to provide a sufficiently low deviation from the tangent plane at a 

distance F  from the tangent point, c F  needs to be (much) smaller than 1, 

where F represents the value of the F-distribution. The square root of the 

critical F-value ( ( , ,0.95)F N N P ) here found is equal to 1.70. Bates and 

Watts [5] stated that c F  should be lower than 0.3, to have deviations lower 

than 15%. Since c Fθ  is equal to 0.503, it is expected that the parameter-

effects curvature is important and thus the FIM and H will not provide proper 

estimates of the parameter confidence intervals. To determine how close the 
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current confidence region prediction is compared to reality, independent 

samples were taken to estimate the likelihood confidence region (Equation 9). 

The likelihood method is suitable to estimate the confidence region, since the 

intrinsic curvature is very low and thus will provide a good approximation of 

the confidence regions. 1000000 random parameter samples are taken from 

uniform distributions, for which the ranges are given in Table 4. 

Only 14876 samples were found to be located within the 95% likelihood 

confidence region. The approximated confidence regions for the different 

methods are shown in Figure 7. From this Figure, it is clear that the use of the 

FIM and Hessian matrix H to construct the confidence ellipses, yield the same 

result. However, these linear approximations differ considerably from the 

likelihood confidence region, and thus it can be concluded that it is important 

to determine the curvature of the objective function, in order to assess 

whether the linear approximation methods yield reliable results. In this case, 

the confidence intervals are overpredicted for low parameter values, and 

underpredicted for high parameter values. These asymmetric confidence 

intervals are typical for nonlinear models, since only linear models will yield a 

symmetric, ellipsoidal confidence region [18]. 

In silico uniform design approach 

To illustrate the added value of the iterative rMbOED strategy, the results are 

compared with an in silico traditional uniform design based on the initial 

ranges of the independent variables ([ACE] and [MPPA]). For the rMbOED, 

20 experiments were conducted with two repetitions for each experiment. To 

allow comparison, the same number of experiments is used for the in silico 

uniform design, using the estimated parameter values of iteration 3 of the 

rMbOED. Both design strategies are shown in Figure 8, and as expected the 

design space for the uniform design is much smaller since it uses the initial 

product ranges. 

Assuming that the calibrated parameter values and the measurement error 

calculated earlier ( back back( ) 0.104v v  ) are correct, the parameter confidence 

levels for the uniform design of Figure 8 can be calculated. The 95% 
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confidence intervals (CI) for the uniform design strategy are given in Table 5. 

Compared to the iterative rMbOED strategy, the information content is much 

lower for the uniform design strategy since the det[ ]FIM  is about ten times 

lower. This also results in confidence intervals which are two times larger for 

the same experimental effort. This shows that by using the iterative rMbOED 

strategy, experimental effort can be reduced by indicating and only performing 

experiments of interest. This is especially true when the a priori parameter 

information is low and/or the model is highly nonlinear. In these cases, it is 

impossible to come up with an experimental design which is informative and 

efficient. However, an iterative procedure allows to update the parameter 

values and uncertainties during the experimentation, and allows to identify 

and narrow the experimental regions of interest. In Figure 8, only a uniform 

design for the initial design space is considered, which might seem unfair to 

be used for a comparison. However, initially only a limited amount of 

information is available about the design space, and thus in practice this small 

design space would be used to design the experiments. If the (a priori 

unknown) maximum design space of the rMbOED would be used for the 

uniform design, the parameter uncertainties would be close to those of the 

rMbOED, but still be higher (about 2%). This comparison is also not 

completely fair, since the iterative rMbOED only gradually expands from the 

initial to the maximum design space. However, this small difference raises the 

question to what extent an optimal experimental design approach will 

outweigh an intuitive planning based on the experimental interpretation of the 

results. Bauer et al. [6] performed such a comparison, and found that the 

standard deviations of an intuitive design by an experienced experimentalist 

were about 30% higher compared to the model-based design. This illustrates 

that the use of MbOED is generally superior, and yields more accurate 

parameter estimation results. 

Conclusions 

The iterative robust model-based optimal experimental design (rMbOED) 

strategy was applied to the backward initial reaction rate (i.e. a submodel of 

the plain ping-pong bi-bi model), and proved to be powerful and superior to 
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the uniform design strategy. By using rMbOED, experimental efforts can be 

reduced and the experimental region of interest can be identified. During the 

iterative rMbOED, the experimental design space X was gradually expanded 

to include informative design regions. Since no detailed information was 

available prior to the experimentation a suitable experimental design range 

was unknown, and thus a conservative design space was considered initially. 

Using data collected earlier, the remaining model parameters were 

successfully calibrated, and the full model in Equation 2 was validated for 

short term experiments (<7 h). However, large deviations between the data 

and model predictions were found at long reaction times. This is probably 

related to enzyme instability and/or precipitation. 

The use of linearisation techniques like the Fisher Information Matrix (FIM) to 

approximate the confidence region of the parameters, was found to deviate 

significantly from the likelihood confidence region. It was found that the 

confidence region predicted by the FIM overpredicted the lower 95% 

confidence interval boundary, but underpredicted the upper 95% confidence 

interval boundary. The relative curvature measures proposed by Bates and 

Watts [5], allowed to determine whether the FIM is appropriate to approximate 

the confidence region, and thus should be always calculated when using the 

FIM for nonlinear models. 
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A Curvature measures of nonlinearity 

The second and higher order derivates of a linear function with respect to the 

parameters are zero. Therefore, Bates and Watts [5] used second order 

derivatives of the expectation function to measure the nonlinearity of a model. 

They introduced a N P  derivative matrix V , where each row contains the 

gradient of ŷ  at a specific sample point ix  to the parameters θ  
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and a N P P   second order derivate matrix V  
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where each face of 
iV  of V  is a complete P P  second derivative matrix, or 

Hessian. From V  the ( 1) / 2P P  nonredundant acceleration vectors can be 

easily extracted to construct a matrix W  and be combined with the tangent 

vectors in V  to give 

 , .D V W  (30) 

By performing a QR decomposition on D, the different acceleration vectors 

are projected into the tangent plane and into the space normal to the tangent 

plane but spanned by the acceleration vectors. 
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where 
11

R  is a P P  upper-left triangular matrix, which equals the full R 

matrix when performing a QR decomposition only on V . The matrices A
θ  

and i
A  have dimensions ( 1) / 2P P P   and ( 1) / 2P P P    respectively, and 

are used to form the parameter effects and intrinsic components of the 

curvature or acceleration array A . The tangential components of the 

acceleration vectors are contained in A
θ , while the normal components are 

contained in i
A . The extent to which the acceleration vectors lie outside the 

tangent plane provides a measure of how much the expectation surface 

deviates from a plane, which is called the intrinsic nonlinearity since it does 

not depend on the parametrisation chosen for the expectation function, but 

only on the experimental design and the expression of the expectation 

function. However, the projections of the acceleration vectors in the tangential 

plane depend on the parametrisation of the model, and measure the 
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nonuniformity of the parameter lines on the tangent plane, which is called the 

parameter effects nonlinearity. [5] 

Bates and Watts [5] pointed out that the curvatures, are measured in units of 

1/response, and thus the values depend on the scaling of the data. To remove 

this dependence, a ( )P P P P    relative curvature array can be calculated 

(Equation 32). 

1

11 11s P C R AR  (32) 

where s represents / ( )SSE N P . For data analysis, a simple overall 

measure of the nonlinearity is needed to assess the quality of a linear 

approximation. Bates and Watts [5] proposed a simple overall scalar 

measure, i.e. root mean square (RMS) curvature measure, which is the 

square root of the average over all directions of the squared curvature [8], 

calculated by 
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where index n goes from 1 to P for cθ  and from P + 1 to P P  for ci. 

B Parameter estimation remaining model parts 

The data for the forward initial reaction rate and the dissociation parameters 

were gathered separately, and thus the presented rMbOED methodology was 

not applied for the model calibration of the remaining model parts. All 

parameter estimates, uncertainties and correlation derived from the FIM are 

given in Tables 6 and 7. 

B.1 Forward initial reaction rate 

The forward initial reaction rate in Equation 4 contains three parameters, i.e. V 

f, KIPA, and KBA. In order to estimate the parameter values 54 experiments 

were conducted, for which the substrate concentrations were varied between 

20 and 800 mM for IPA and between 0.5 and 10 mM for BA. The initial 
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product concentrations for [MPPA] and [ACE] were equal to 0 mM. After the 

data collection, the model was calibrated using two different error 

distributions, i.e. the absolute constant error and the relative error. It was 

found that the absolute constant error distribution was no suitable error 

distribution (p-value of 0.00715), and thus was rejected. The relative error 

distribution seemed to represent the error distribution well, for 0  and 

0.099v . The calibrated parameter values and 95% CIs are given in Table 6. 

The gathered forward initial reaction rate data and calibrated model are 

shown in Figure 9. 

From Figure 9 it is clear that the model is able to predict the data well. 

However, at high concentrations of IPA, the measurement uncertainty is 

higher. This is probably related to the operational instability of the enzyme at 

high amine donor-to-acceptor ratios. 

B.2 Dissociation parameters 

After estimating the parameters of both the forward and backward initial 

reaction rate, three parameters remained to be calibrated: Keq, KiIPA, and 

KiMPPA. Using the Haldane relationship from Equation 3, Keq could already be 

estimated. To estimate the other two parameters, additional initial rate 

experiments were performed. The substrate concentrations for [IPA] and 

[BA] were fixed to 450 and 10 mM respectively. The product concentration of 

[ACE] was varied between 0 and 100 mM and that of [MPPA] was varied 

between 0 and 20 mM, and is shown in Figure 10. Twelve experiments were 

carried out, allowing to calibrate the two remaining parameters (Table 6). 

B.3 Model validation 

A model validation was performed at different initial conditions and it was 

found that the model prediction showed a good correspondence with the 

experiments at low reaction times (<7 h). At higher reaction times (up to 17 h), 

[MPPA] was overpredicted and [BA] underpredicted. Two possible reasons 

can be formulated: First, the model in Equation 2 might be unsuitable for 

predicting the concentrations for high reaction times. Second, the enzyme 
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was suffering from some stability issues and precipitation was observed, 

possibly influencing the reaction kinetics. As the model can be regarded as 

calibrated and validated for low reaction times, the final parameter values, 

95% confidence intervals and correlation are given in Table 6. The 95% 

confidence intervals and correlations were calculated using the FIM (Table 7), 

and since the model in Equation 2 is nonlinear, this is only a rough 

approximation (see section). 
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Fig. 1 Schematic overview of the iterative optimal experimental design 

procedure [17]. 

Fig. 2 Conversion of isopropylamine and benzylacetone to acetone and 1-

methyl-3-phenylpropylamine by ω-transaminase (ω-TA) in presence of 

coenzyme pyridoxal-5’-phosphate (PLP). 

Fig. 3 Local parameter relative sensitivity for the different parameters of the 

backward initial reaction rate for the estimated parameter values of the 

preliminary iteration ( r 34V   nmol/(Umin), MPPA 21K   mM and ACE 263K   

mM). Higher absolute values, i.e. larger deviation from zero, means that the 

parameter has more influence. 

Fig. 4 Local parameter relative sensitivity for the different parameters of the 

backward initial reaction rate for the estimated parameter values of the 

third/final iteration ( r 21.7V   nmol/(Umin), MPPA 2.96K   mM and ACE 250K   

mM). 

Fig. 5 Histogram of the relative error rel,i  (Equation 26). The red line 

represents a normal probability density function with with mean μ and 

standard deviation σ equal to 0 and 0.104 respectively. 

Fig. 6 The model prediction backv  is shown for the different experiments shown 

in Table 2. The measurement uncertainty depicted is twice the standard 
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deviation shown in Figure 5, and thus is only an estimate of the actual 

measurement error. 

Fig. 7 The confidence regions using the linear approximation (
FIMCR  and 

HessianCR ) show consistent results. Since the parameter-effects curvature is 

important, the likelihood confidence region ( LikelihoodCR ) yields a more accurate 

approximation of the actual confidence region. 

Fig. 8 The experimental design strategies for the uniform design and robust 

model-based optimal experimental design (rMbOED). The gray areas show 

the design space, i.e. the ranges in which an experiment could be designed. 

The maximum design space is shown for the rMbOED, since it was gradually 

expanded during the rMbOED iterations. 

Fig. 9 The model prediction vforw corresponds well with the experimental data. 

However, at high IPA concentrations the measurement uncertainty increases. 

Fig. 10 The experiments to estimate the dissociation parameters were 

performed at varying product concentrations ([ACE] and [MPPA]) and 

constant substrate concentrations ([ ] 450IPA   mM and [ ] 10BA   mM). 

Table 1 The different “alphabetic” optimal design criteria based on the FIM 

properties [22, 50]. 

Design Name  Criterion  

A-optimal  1min{tr( )}
FIM  

Modified A-optimal max{tr( )}FIM  

D-optimal  max{det( )}FIM  

E-optimal  minmax{ ( )} FIM  

Modified E-optimal max minmin{ ( ) / ( )} FIM FIM  

  

tr() : sum of eigenvalues; det() : product of eigenvalues 
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Table 2 Experiments conducted for each iterative step of the rMbOED. The 

parameter estimates and uncertainties are always based on the cumulative 

dataset, i.e. the parameter estimation of iteration 1i  also takes into account 

the data gathered in iterations i, 1i , …, 0. 

Iteration  

Ex

p. 

Condition

s 

Measurement

s Estimated parameter 

 nr.  

[AC

E]  

[MPP

A] rep,1v  

rep,2v

   

val

ue  

95% 

CI ( SD  ) 

  

[m

M]  [mM]  

[nmol/(U

min)]           

preliminary expert-

based design 1  50  5  3.25  

3.4

3          

 2  75  7.5  4.79  

4.5

7  

KAC

E  = 263  ± 798  ( 

33

7  ) 

 3  75  10  5.39  

4.7

6  

KMP

PA  = 21  ± 68  ( 28  ) 

 4  100  7.5  5.23  

5.1

3  V r  = 34  ± 86  ( 36  ) 

 5  100  10  6.28  

6.2

8          

1  6  35  10  2.93  

2.7

7          

 7  115  20  8.04  

8.0

9  

KAC

E  = 263  ± 161  ( 76  ) 

 8  200  2.5  6.86  

6.8

9  

KMP

PA  = 3.4  ± 3.2  ( 1.5  ) 

 9  200  7.5  8.47  

8.2

1  V r  = 24  ± 12  ( 5.5  ) 

 10  200  15  9.86  

8.9

6          
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Iteration  

Ex

p. 

Condition

s 

Measurement

s Estimated parameter 

2  11  50  12  3.39  

3.7

3          

 12  105  2.5  4.61  

4.5

5  

KAC

E  = 262  ± 111  ( 54  ) 

 13  185  16  8.08  

8.6

2  

KMP

PA  = 2.7  ± 1.8  ( 

0.8

7 ) 

 14  250  10  10.19  

10.

01  V r  = 

23.

1  ± 7.6  ( 3.7  ) 

 15  300  2.5  8.59  

8.8

4          

3  16  50  10  2.74  

2.9

9          

 17  190  2.5  5.15  

5.5

7  

KAC

E  = 250  ± 81  ( 40  ) 

 18  250  10  8.40  

8.7

4  

KMP

PA  = 

2.9

6  ± 1.48  ( 

0.7

3 ) 

 19  250  10  9.74  

8.7

2  V r  = 

21.

7  ± 5.3  ( 2.6  ) 

 20  250  10  9.11  

8.4

9          

              

Table 3 Parameter correlations for the different iterations. 

Iteration V r vs KMPPA  V r vs KACE  KMPPA vs KACE  

0  0.940  0.957  0.802  

1  0.876  0.876  0.807 

2  0.866  0.982  0.790  

3  0.860  0.973  0.790  
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Iteration V r vs KMPPA  V r vs KACE  KMPPA vs KACE  

    

Table 4 Parameter ranges used to estimate the likelihood confidence region. 

Parameter  Minimum Maximum Units  

V r  10  40  nmol/(Umin) 

KACE  100  500  mM  

KMPPA  0.5  6.5  mM  

    

Table 5 Parameter 95% confidence intervals (CI) when using the uniform 

design strategy of Figure 8. The parameter 95% CIs for the iterative rMbOED 

are shown in the last column (Table 2). 

Parameter  Value  95 % CI  95 % CI   

   Uniform rMbOED Units  

rV   21.7  ± 11.6  5.2  nmol/(Umin) 

KACE  250  ± 155  80  mM  

KMPPA  2.96  ± 2.92  1.49  mM  

      

Table 6 Calibrated parameter values and corresponding 95% confidence 

intervals for the model in Equation 2. 

Parameter type Parameter  Value  95 % CI  Units  

Forward  V f  24.0  ± 2.4  nmol/(Umin) 

 KBA  3.39  ± 0.63  mM  

 KIPA  138  ± 22  mM  

Backward  V r  21.7  ± 5.2  nmol/(Umin) 

 KMPPA  2.96  ± 1.49  mM  

 KACE  250  ± 80  mM  
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Parameter type Parameter  Value  95 % CI  Units  

Dissociation  KiIPA  1.76  ± 0.29  mM  

 KiMPPA  1.60  ± 0.40  mM  

Equilibrium  Keq  1.94  ± 0.71 *  -  

      

* Using Equation 3, the uncertainty of Keq was estimated directly from the 

uncertainties of the other parameters, taking into account the correlation 

between the different parameters. 

Table 7 The correlation matrix for all the parameters from Equation 2. It can 

be seen that the correlation between parameters which are estimated 

simultaneously is high. Parameter estimates which have been estimated 

separately have no correlation (since they were estimated from different data 

sets), and are therefore set to zero. 

f BA IPA r MPPA ACE iIPA iMPPA eq

f

BA

IPA

r

MPPA

ACE

iIPA

iMPPA

eq

1 0.88 0.90 0 0 0 0 0 0.29

- 1 0.70 0 0 0 0 0 0.32

- - 1 0 0 0 0 0 0.31

- - - 1 0.97 0.86 0 0 0.71

- - - - 1 0.76 0 0 0.91

- - - - - 1 0 0 0.64

- - - - - - 1 0 0

- - - - - - - 1 0

- - - - - - - - 1

V K K V K K K K K

V

K

K
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