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A Statistical Model for Hourly Large-Scale Wind
and Photovoltaic Generation in New Locations

Jussi Ekström, Matti Koivisto, Ilkka Mellin, John Millar, Member, IEEE and Matti Lehtonen, Member, IEEE

Abstract—The analysis of large-scale wind and photovoltaic
(PV) energy generation is of vital importance in power systems
where their penetration is high. This paper presents a modular
methodology to assess the power generation and volatility of a
system consisting of both PV plants (PVPs) and wind power
plants (WPPs) in new locations. The methodology is based on
statistical modelling of PV and WPP locations with a vector
autoregressive model, which takes into account both the temporal
correlations in individual plants and the spatial correlations
between the plants. The spatial correlations are linked through
distances between the locations, which allows the methodology
to be used to assess scenarios with PVPs and WPPs in multiple
locations without actual measurement data. The methodology can
be applied by the transmission and distribution system operators
when analysing the effects and feasibility of new PVPs and
WPPs in system planning. The model is verified against hourly
measured wind speed and solar irradiance data from Finland. A
case study assessing the impact of the geographical distribution
of the PVPs and WPPs on aggregate power generation and its
variability is presented.

Index Terms—Monte Carlo simulation, photovoltaic (PV)
power generation, renewable energy, vector autoregressive model,
wind power generation.

I. INTRODUCTION

THE installed capacities and overall penetration of stochas-
tic renewable energy sources (RES), such as PVPs and

WPPs, have been increasing rapidly in past years, and this
progress is expected to continue in the future. As the penetra-
tion of RES increases, there arise several difficulties related
to the operation and planning of power systems due to the
variability in the generation caused by the stochastic nature
of these energy sources, such as severe power ramps, both up
and down, and increased volatility in the power generation in
general. Therefore, the modelling of the PV and wind power
generation, and especially its variability, together to understand
the combined effects of large-scale PV and wind power
generation on the power system becomes crucial. This applies
for both transmission and distribution system operators, and
also for power producers with RES in their portfolio.

Wind power variability modelling and long-term simulations
have been a topic of interest for several years, and have
been published extensively, [1]–[4]. Large-scale PV generation
has also been modelled and studied widely with different
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methodologies and objectives during past years [5]–[9]. The
methodologies to model PV and wind power generation and
variability separately in new generation locations without
actual measurement data, i.e. in non-measured locations, have
been presented in [10], [11]. The modelling of power systems
with both PV and wind power is a current topic, and is being
actively researched and published, [12]–[15]. The impacts of
the geographical distributions of the PV or wind generation
have been analysed separately in [10], [11], [16]. However,
statistical modelling of systems with both PV and wind gen-
eration in non-measured locations and the analyses of different
geographical distributions of the generation locations in such
systems are scarce.

The copula method has been commonly used with wind
and solar modelling to separate the dependency structures in
several locations from the marginal probability distributions
(margins) of the individual locations [2], [6], [17]. This
approach is used as the base of the modelling in this paper.

The dependency structures can be divided into spatial and
temporal dependencies, which can be modelled in various
ways. The temporal dependencies have been modelled for
each individual location with, e.g., autoregressive (AR) models
and the spatial correlations between the individual locations
with spatial correlation matrices in [10], [18]. Alternative
approaches have been to model the temporal and spatial
dependencies together with, e.g., artificial neural networks
(ANNs) [3], [4], or with vector autoregressive (VAR) models
[4], [17], [19].

The paper contributes to the literature by presenting a
modular statistical modelling methodology for both WPPs and
PVPs. The methodology combines the core functionality of
the wind power simulation model introduced in [10] and the
PV simulation model presented in [11]. The methodology
is based on a VAR model, which is able to capture both
the temporal correlations in both types of generation and the
spatial correlations between the installation locations. It is used
with Monte Carlo (MC) simulations to model the PV and wind
energy generation simultaneously, and to evaluate the volatility
and energy output of a generation mix consisting of both PVPs
and WPPs.

The methodology is able to model non-measured locations,
which is crucial for versatile applicability, as new generation is
constantly being planned and measurements are not available
from all locations of interest. Although applied in to Finnish
data in this paper, the methodology is applicable in any geo-
graphical area where measurements for parameter estimation
are available. One of the key benefits of the methodology
is also its modular structure, which allows the usage of
different WPP and PVP power generation models within the
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methodology.
This paper proceeds as follows. Section II presents the

data and the marginal distributions. Section III presents the
modelling of the dependency structures by specifying the
VAR model and its parameters. Section IV describes the
modelling of non-measured wind speed and solar irradiance
locations. Section V assesses the simulation results of the out-
of-sample test locations. Section VI conducts a case study of
the impact of the geographical distribution of the PV and wind
power generation locations on the aggregate power generation.
Section VII presents the conclusions drawn from the presented
models and results.

II. THE DATA AND THE MARGINAL DISTRIBUTIONS

This section presents the used datasets and the estimated
marginal distributions for wind speed and solar irradiance.
Fig. 1 shows the complete simulation procedure. The steps
are presented in detail in Sections II, III and IV.

Fig. 1. The flowchart of the MC simulation procedure. The tiles with the
blue background indicate simulated data and white background operations.

A. The Data

The wind speed simulation related dataset used in this paper
is the same utilized in [10]. Most importantly, it consists of
hourly high altitude wind speed time series measured from 12
locations and low altitude measurements from 19 locations in
Finland. The high altitude measurement height varies from 74
meters up to 150 meters above the surrounding ground level

and the measurement lengths vary from location to location
between one to three years. A more detailed specification of
the dataset can be found in [10].

The solar dataset is obtained from the Finnish Meteorologi-
cal Institute and consists of measured hourly global horizontal
irradiance (including both direct normal and diffuse horizontal
irradiance) and temperature time series from eight locations in
Finland. The measurement lengths vary from location to loca-
tion between one and five years. A more detailed specification
of the dataset can be found in [11].

As the wind speed and irradiance data both have the
resolution of one hour, it is the time resolution adopted in
this paper. The high altitude wind speed and global irradiance
measurement locations used for the estimation of the spatial
correlations and the two out-of-sample test locations are shown
in Fig. 2.

Fig. 2. The wind speed (blue circles) and global irradiance (red circles)
measurement locations and the two out-of-sample test locations (magenta
circles) in Finland.

B. The Marginal Distributions

Weibull distributions are widely utilized to represent the
distribution of wind speeds in a given location [10]. They
are also used as margins to describe the local wind speed
conditions in this paper.

For solar locations, clear-sky index distributions are used
as margins in the simulations, as in [11]. The clear-sky index
data are obtained by dividing the measured global irradiance
with the estimated clear-sky irradiance. The clear-sky irradi-
ance contains the theoretical maximums, i.e. the deterministic
component, caused by the movements of the earth and the
sun, of the global irradiance. The clear-sky index data contain
the stochastic component (the deviation from that theoretical
maximum) of the global irradiance, caused by e.g. the clouds.
For location i at time t, the clear-sky index is obtained as
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kTi,t =
Ei,t

ECS
i,t

, (1)

where Ei,t is the measured (or simulated) global irradiance and
ECS

i,t is the clear-sky irradiance. When the clear-sky irradiance
is zero, kTi,t is not defined, i.e. the clear-sky index data
are defined only during the hours when the sun is above
the horizon. The clear-sky index data kT,t are modelled as
a stochastic variable using the VAR model, and model the
deviation from the theoretical maximum irradiance (i.e. the
cloudiness).

The VAR model generally assumes normally distributed
margins [20]. Therefore, the wind speed and clear-sky index
data are transformed to data with normally distributed margins,
zwD
t with the probability integral transformation, where wD

means with day structures (i.e. diurnal structures are not yet
removed)

zwD
i,t = F−1N [F̂i(yi,t)], (2)

where F−1N is the inverse cumulative distribution function
(CDF) of the standard normal distribution, F̂i is the estimated
clear-sky index or Weibull margin for location i, and yi,t =
kTi,t for solar measurement locations and the wind speed
data for wind measurement locations. The transformation to
normally distributed margins, despite the t-distributed errors,
is an appropriate approach when the error terms are modelled
separately from the conditional mean model (the VAR model).
Separate modelling of the errors is commonly used, e.g.,
in ARMA-GARCH modelling, where the GARCH part can
include errors that are not normally distributed [21]. A similar
approach for modelling the error terms separately from the
VAR model is utilized in this paper.

The monthly diurnal day structures are then estimated and
removed from zwD

t by calculating hourly mean values for each
month in each location and then subtracting these from the
respective data, which yields zt = [z1,t, z2,t, ..., zk,t]

′. A more
detailed explanation of the calculation of the monthly diurnal
structures can be found in [11].

The VAR model also assumes stationarity [20]. There were
no trends, but seasonality was found from both the wind speed
and global irradiance data. However, the transformation to
clear-sky index data (1) and the removal of the monthly diurnal
structures eliminated the seasonality. To ensure the stationarity
of zt, the augmented Dickey-Fuller test [22] was utilized and
zt was found to be stationary, and therefore, suitable to be
modelled with the VAR model. zt is used to estimate the
VAR model parameters in the next section.

III. THE DEPENDENCY STRUCTURES

This section presents the time-varying VARk(3) model used
in the paper to model the dependency structures of solar
irradiance and wind speeds in multiple locations. First, the
VAR model is specified and then the calculation of the VAR
model parameters is presented.

A. The Time-Varying VAR Model
A VAR model is a multivariate generalization of a univariate

AR model. A k-dimensional p-order VARk(p) model for the
transformed zt = [z1,t, z2,t, ... , zk,t]

′ is defined as

zt = c+

p∑
i=1

Aizt−i + ut, (3)

where c is a k-vector of intercept terms, Ai, . . . ,Ap are the
k × k AR coefficient matrices and ut is the error term of the
model [20].

In the paper, five appropriate stipulations are made in the
VAR model to enable the modelling of both solar irradiance
and wind speeds in non-measured locations. First, the intercept
terms are assumed to be zero, i.e., c = 0 (this can be done as
in (2) the transformation is to standard normal distribution).
Second, the model identification was done by analysing the
autocorrelation functions (ACFs) and partial autocorrelation
functions (PACFs) of zt. It was concluded that the order of
the VAR model should be three, i.e. p = 3. The model is
thus a VARk(3) model, where k is the number of locations.
Third, the AR coefficient matrices are assumed to be time-
dependent, i.e., they are A1,t,A2,t and A3,t, which gives a
specific set of coefficients for different t, and thus specifies
a time-varying VAR model. Time-dependency is necessary to
capture differences in temporal dependency structures in solar
irradiance depending on the time of the year [11]. Fourth, ut

is assumed to follow a multivariate t-distribution to handle the
peakedness of the residuals, as in [10], [11]. This is justified,
as the VAR model parameters are estimated with ordinary least
squares (OLS), which do not require normally distributed error
terms and allow separate modelling of the errors [21], [23].
Fifth, the off-diagonal components of A1,t,A2,t and A3,t are
assumed to be zero, yielding

Ai,t =


ai,t,1 0 · · · 0
0 ai,t,2 · · · 0
...

...
. . .

...
0 0 · · · ai,t,k

 . (4)

The off-diagonals are assumed to be zero to allow a straight-
forward modelling of non-measured locations. This matter
is discussed in Section IV. Because of specification (4), all
spatial correlations between the components of zt must come
from the error terms ut = [u1,t, u2,t, ... , uk,t]

′. With the
above mentioned specifications, the utilized VAR model can
be written as

zt =
3∑

i=1

Ai,tzt−i + ut, (5)

where A1,t,A2,t and A3,t are time-dependant. The adequacy
of the model presented in (5) was ensured by the assessment
of the ACFs, PACFs and cumulative periodogram of the model
residuals, and with the Ljung-Box Q-test [24]. The residuals
had no visible autocorrelation in neither of the location types
and the residuals passed the Ljung-Box Q-test. Therefore, the
model was considered adequate.

The next section introduces an approach to add the required
spatial correlations to zt through ut using the covariance
matrix Σu = cov(ut).
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B. Specifying the VAR Model Parameters

For solar locations, the time-varying coefficient matrices
A1,t,A2,t,A3,t are specified for six different groups, each
consisting of two month time periods, which was found to be
the most suitable approach to capture the seasons for the AR
models in [11]. For wind locations, the coefficient matrices
are the same for all t. Estimation of the AR parameters for
new locations is presented in Section IV A.

The covariance matrix Σu is specified as follows. First, the
spatial correlations (off-diagonal elements) in the autocorre-
lation matrices Rz(h) of the process zt are calculated for
all required lags h. The correlations are estimated from the
distances between the locations, as shown in Section IV B.

Second, the temporal correlations (the diagonal elements) of
Rz(h) of zt are specified. The temporal correlations for lags
h > 0 (as autocorrelation is 1 for h = 0) can be determined
with the AR coefficient matrices Ai, . . . ,Ap using the Yule-
Walker equations [20]. To simplify the calculations, and as
the AR coefficients do not vary greatly with different t, the
averages of A1,t,A2,t,A3,t are used.

Now the autocorrelation matrices Rz(h) are fully deter-
mined for all required lags. The autocorrelation matrices are
then transformed to corresponding autocovariance matrices
Γz(h), using the transformation

Γz(h) = DRz(h)D, (6)

where D is a diagonal matrix with the standard deviations
calculated for the components of zt (the k solar and wind lo-
cations) on the diagonal (these standard deviations are smaller
than 1, as the diurnal structures are subtracted from the N(0, 1)
distributed zwD

t ).
For further analyses, the VAR model has to be presented

in the VARkp(1) form (the state-space presentation) [20]. The
autocovariance matrix ΓZ(0) of the process zt in this form is
formed from the autocovariance matrices Γz(h) obtained with
(6), in the following manner

ΓZ(0) =

 Γz(0) Γz(1) Γz(2)
Γz(−1) Γz(0) Γz(1)
Γz(−2) Γz(−1) Γz(0)

 . (7)

The kp × kp -dimensional A-matrix is then formed from
the AR coefficient matrices Ai (where the coefficients are the
averages of Ai,t) as

A =

A1 A2 A3

Ik 0 0
0 Ik 0

 , (8)

where Ik is a k × k identity matrix. Next, the kp × kp -
dimensional covariance matrix ΣU can be calculated with the
equation

ΣU = ΓZ(0)−AΓZ(0)A
′, (9)

as shown in [20]. Finally, the k × k -dimensional covariance
matrix Σu is obtained by taking the first k rows and first k
columns from ΣU . All parameters for the used VAR model
are now specified.

IV. THE SIMULATION OF NON-MEASURED WIND SPEED
AND SOLAR IRRADIATION LOCATIONS

The main objective for the methodology is to be able to
simulate future scenarios with non-measured wind speed and
solar irradiance locations. This section presents the specifi-
cation of the simulation parameters, the estimation of the co-
variance matrix for non-measured locations and the simulation
procedure.

A. The Simulation Parameters for Non-Measured Locations

As noted in Section III A, the residuals ut of the VARk(3)
model follow a t-distribution. The mean values of the degrees
of freedom, estimated from the residuals of the measured
locations, as done in [10], are considered for non-measured
locations (estimated separately for wind speed and solar irra-
diance locations).

The mean values of the estimated parameters (separate for
wind and solar locations) are used as the time-varying AR
parameters for non-measured locations. The monthly diurnal
variations are estimated from the geographically closest mea-
sured location of the same type.

The wind speed margins in the non-measured locations can
be obtained from Wind Atlas or a similar database [25]. The
Wind Atlas database, which is used in this paper, provides
Weibull distribution parameters, describing the local wind
speed conditions according to the provided coordinates.

Empirical cumulative distribution functions (ECDFs) of
the clear-sky index data obtained from the geographically
closest measured location are considered for the non-measured
locations for solar locations, as in [11].

The clear-sky irradiance distributions in non-measured loca-
tions are determined using a clear-sky irradiance model [26].
The clear-sky irradiance model estimates the clear-sky global
irradiance for the given coordinates, when the Linke turbidity
factors for the coordinates are provided [11], [26]. The Linke
turbidity factors are obtained from [27].

B. The Estimation of the Covariance Matrix

The underlying correlations, calculated from zt, between
wind and solar locations can be linked to the distances between
the locations. Fig. 3 shows the correlations, calculated from
zt, plotted against the distance between two wind locations.
Fig. 4 presents the correlation, calculated from zt, between
two solar locations. Fig. 5 shows the correlations, calculated
also from zt, between solar and wind locations.

Wind speeds and solar irradiances are negatively correlated,
as shown in [13], [14]. According to Fig. 5, wind speed
and global irradiance locations are also negatively correlated
when calculated from zt, where all deterministic components,
caused by the movements of the earth and the sun, in solar
irradiance and monthly day structures in solar irradiance and
wind speed have been removed from the data. This is a
crucial observation, and also indicates why PV and wind
power should be modelled together. As the model utilized in
the paper is VARk(3), it requires spatial correlations also for
lags h = 0, 1, 2 (the fitted curves to do this are shown in
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Figs. 3−5. Nine curves (lags h = 0, 1, 2 for each of the three
cases) are fitted to allow the estimation of the non-diagonal
components of Rz(h) for non-measured locations.

The diagonal temporal correlations for each non-measured
location for lags h = 0, 1, 2 are obtained using the average val-
ues of the estimated time-dependent AR coefficient matrices
A1,t,A2,t,A3,t, as explained in Section III B.

The diagonal standard deviation matrices D required to
transform Rz(h) to Γz(h) with (6) are estimated from the
measurement data and average values of the standard devi-
ations of the wind speed or global irradiance measurements
are used for non-measured locations, respectively. With this
approach, the covariance matrix Σu for the simulation of new
locations can be determined.

Fig. 3. Spatial correlations ρ estimated from zt between wind speed locations
at high and low altitudes (at lag 0) plotted against the distances between the
locations, with fitted curves for spatial correlations at lags 0, 1 and 2.

Fig. 4. Spatial correlations ρ estimated from zt between solar irradiance
locations (at lag 0) plotted against the distances between the locations, with
fitted curves for spatial correlations at lags 0, 1 and 2.

C. The Simulation Procedure

This section describes the MC simulation procedure for
the simulation of non-measured locations illustrated in Fig.
1. First, multivariate normal random numbers, whose margins
are then transformed to the appropriate t-distributions, as

Fig. 5. Spatial correlations ρ estimated from zt between wind speed and
solar irradiance locations (at lag 0) plotted against the distances between the
locations, with fitted curves for spatial correlations at lags 0, 1 and 2.

in [16], are generated for all k locations for the desired
simulation period t = 1, ... , T . These data are then used as the
input (innovations) for the time-varying VARk(3) model. This
results in a multivariate time series zt containing the desired
spatial and temporal correlations.

The estimated monthly diurnal variations (day structures)
are then added to zt, and thus, zwD

t is obtained. The next
step is to transform the time series zwD

t to the wind speed
and clear-sky index domains through the transformation

yi,t = F̂−1i [FN (zwD
i,t )], (10)

where F̂−1i is the inverse of the estimated CDF of the wind
speed margin (in wind locations) or the clear-sky index margin
(in solar locations) for location i, FN is the CDF of the
standard normal distribution and yi,t are the simulated wind
speed or clear-sky index (yi,t = kTi,t) time series. kTt are
further transformed to the global irradiance domain using the
clear-sky irradiances obtained with the clear-sky irradiation
model [26]. Multivariate time series (with the spatial and
temporal correlations) consisting of both wind speed and solar
irradiance data from the desired k locations are now obtained
for power generation analyses.

V. THE SIMULATION RESULTS FOR THE OUT-OF-SAMPLE
TEST LOCATIONS

This section presents the long term MC simulation results
for the two out-of-sample test locations shown in Fig. 2.
The data from these two locations were excluded from the
estimation process. 1000 MC simulation runs, with a length
of one year and time resolution of one hour, were carried out,
yielding 8.76 × 106 simulated samples for both locations. In
addition, 1000 MC simulation runs were also carried out for
both locations with the separate wind and solar simulation
models (referred to as separate simulations) presented for
wind in [10] and solar in [11]. The following compares the
simulated data to the measured and separately simulated wind
and solar data.
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A. The Spatial Correlations

The cross-correlation functions (XCFs) between the two
test locations, for simulated and measured data, are illustrated
in Fig. 6. The correlations between the wind and solar test
locations are negative and relatively small, but still notable,
especially near lag 0. The simulation model is able to capture
the shape of the XCF calculated from the data and the XCFs
are relatively similar (especially near lag 0). This applies both
when all hours are included in the calculation of the XCFs
and when only the hours when the sun is above the horizon
are included. It should be noted, though, that the simulated
XCF values are slightly lower than the XCF values calculated
from measurements. However, some differences are expected
in an out-of-sample test, as e.g., the actual monthly diurnal
structures in the test locations can vary slightly from the ones
used for out-of-sample locations.

It should be noted, that the separate simulations also show
some correlation structure as the daily variations in wind
speeds and solar irradiance are negatively correlated. However,
the impact of the distance between the out-of-sample locations
is not modelled, and thus, its effect is left out from the
XCF. Consequently, the separate modelling of wind and solar
has a major deficiency when modelling both wind and solar
locations.

Fig. 6. The XCFs between the simulated and measured wind speed data
and the separate simulations from test location 1 and solar irradiance data
from test location 2. In the upper figure, all hours are considered and in the
lower figure only hours when the sun is above the horizon are considered.
The simulation results are averages of the 1000 MC runs.

B. The Temporal Correlations

The ACFs of the simulated and measured data are presented
for test locations 1 and 2 in Fig. 7. In can be seen that both
of the ACFs calculated from the simulated data are similar to
the ACFs calculated from the measurements, although small
differences can be seen between the simulated and measured

data near the 24-hour lag. In addition, the simulated data
captures the behaviour of the measurement data as closely
as the data simulated with the separate simulations.

Fig. 7. The ACFs of the simulated and measured wind speed data from
test location 1, the simulated and measured global irradiance data from test
location 2 and the separate simulations. The simulation results are averages
of the 1000 MC runs.

C. The Probability Density Functions

The probability density functions (PDFs) calculated from
the simulated and measured data are illustrated in Fig. 8. It
can be observed that the shapes of the simulated PDFs are
very similar to those estimated from the measurement data for
both wind and solar test locations. Additionally, the simulated
data depicts the measurement data as accurately as the data
simulated with the separate simulations.

Fig. 8. The PDFs of the simulated and measured data and the separate
simulations for test locations 1 and 2. The simulation results are averages
of the 1000 MC runs.

D. The Ramp Rates

The PDFs for the ramp rates for one hour ramps calculated
from the simulated and measured data are illustrated in Fig. 9.
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It can be seen that the shapes of the simulated ramp rate PDFs
are close to those estimated from the measurement data for
both wind and solar test locations. Furthermore, the simulated
data represents the ramps of the measurement data similarly
as the data simulated with the separate simulations.

Fig. 9. The ramp rate PDFs of the simulated and measured data and the
separate simulations for test locations 1 and 2. The simulation results are
averages of the 1000 MC runs.

E. The Numerical Results

This section presents the most relevant numerical statistics,
shown in Table I, estimated from the simulated and measured
data. It can be seen that all of the statistics estimated from
the simulated data are similar to those estimated from the
measured data. It should be noted that the simulated data
performs as well as the separate simulations in each statistic,
except the spatial correlations, where the separate simulations
perform poorly as the distance related correlation between
wind and solar locations is not included in the models.

To summarize, the results for the out-of-sample locations
are satisfactory with all measures considered and the model is
able to assess the spatial correlations between wind and solar
locations and the temporal correlations, margins and ramp
rates in individual locations.

VI. THE COMPARISON OF THE GEOGRAPHICAL
DISTRIBUTIONS AND PROPORTIONAL YEARLY ENERGIES

OF THE WPP AND PV GENERATION

This section presents a case study consisting of 12 scenarios,
assessing the effects of different geographical distribution
and proportional yearly generated energies of WPPs and PV
generation on the volatility of the aggregate power generation.
The geographical distributions considered in the scenarios can
be seen in Fig. 10. In addition, a short analysis that shows the
effect of the proportional yearly installed capacities of WPPs
and PVPs on the volatility is also presented.

A. The Simulation Setup for the Scenarios

The scenarios in the case study assess 12 different scenarios,
which are presented in Table II. Each scenario consists of 12

WPPs (all with equal capacities) and 12 PVPs (also with equal
capacities) located in Finland, so that the expected aggregated
annual energy is fixed at 1 TWh, in each case (to provide well
comparable scenarios). Due to the fixed generated energy, the
installed capacities vary between the cases.

Fig. 10. The dispersed (blue circles) and concentrated (red circles) geograph-
ical distributions of wind and PV generation used in the scenarios.

The VAR24(3) model produces wind speed and global
irradiance time series, and therefore, these have to be converted
to power through wind turbine and PV panel power generation
models. For WPPs, a wind turbine model, including the
modelling of the wake effect in a wind farm, introduced in
[10] is utilized to transform the wind speeds to wind power.
Gamesa G128-5.0 turbines [28] with 140 meter towers are
used for all turbines. Depending on the scenario, the number
of turbines in one WPP varies from 6 to 14. The wake
effect inside WPPs is considered as in [10]. To focus on the
effects of the geographical distribution of the generation, the
locations were chosen so that the wind generation potential
(i.e. the Weibull parameters) are similar in all locations,
yielding similar annual wind energy generation. The Weibull
parameters for the locations are obtained from [25].

For PV power generation, polycrystalline silicone panels
facing south and with a tilt angle of 45 degrees are con-

TABLE I
STATISTICS ESTIMATED FROM THE MEASURED AND SIMULATED DATA

AND THE SEPARATE SIMULATIONS FOR THE OUT-OF-SAMPLE TEST
LOCATIONS. σ DEPICTS STANDARD DEVIATION AND ρ CORRELATION. ALL

ESTIMATES FROM THE SIMULATED DATA ARE AVERAGES OF THE 1000
SIMULATION RUNS.

Statistic Measured
Data

Simulated
Data

Separate
simulations

Mean for test loc 1 (m/s) 6.85 6.84 6.84
Mean for test loc 2
(kJ/m2)

96.91 97.67 98.12

σ for test loc 1 (m/s) 2.75 2.82 2.82
σ for test loc 2 (kJ/m2) 167.75 169.06 168.23
Temporal ρ at lag 1 for
test loc 1

0.93 0.93 0.93

Temporal ρ at lag 1 for
test loc 2

0.94 0.92 0.92

Spatial ρ at lag 0 between
locs 1 and 2

-0.23 -0.22 -0.12
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TABLE II
THE SPECIFICATIONS OF THE 12 SCENARIOS.

Scenario WPP
Geograph.
Distr.

PV
Geograph.
Distr.

WPP
Yearly
Energy
(%)

PV Yearly
Energy
(%)

Scenario 1 Dispersed Concentrated 70 30
Scenario 2 Dispersed Concentrated 80 20
Scenario 3 Dispersed Concentrated 90 10
Scenario 4 Dispersed Dispersed 70 30
Scenario 5 Dispersed Dispersed 80 20
Scenario 6 Dispersed Dispersed 90 10
Scenario 7 Concentrated Concentrated 70 30
Scenario 8 Concentrated Concentrated 80 20
Scenario 9 Concentrated Concentrated 90 10
Scenario 10 Concentrated Dispersed 70 30
Scenario 11 Concentrated Dispersed 80 20
Scenario 12 Concentrated Dispersed 90 10

TABLE III
THE NUMERICAL RESULTS FOR THE 12 SCENARIOS. σ DEPICTS STANDARD
DEVIATION. THE < 10% AND > 90% CASES PRESENT THE PERCENTAGE

OF HOURS IN A SIMULATION RUN WHEN THE HOURLY AGGREGATED
GENERATION IS WITHIN THE RESPECTIVE LIMITS. ALL ESTIMATES ARE

AVERAGES OF THE 1000 MC RUNS.

Scenario Hourly σ (MWh/h) <10% >90%

Scenario 1 65.0 11.3 0.1
Scenario 2 57.8 7.2 0.1
Scenario 3 58.7 5.0 0.2
Scenario 4 62.4 9.9 0.1
Scenario 5 56.7 6.4 0.1
Scenario 6 58.5 4.6 0.4
Scenario 7 72.2 18.5 0.1
Scenario 8 68.5 14.1 0.1
Scenario 9 72.5 11.5 0.2
Scenario 10 70.5 17.1 0.1
Scenario 11 68.5 14.1 0.1
Scenario 12 72.6 11.1 0.2

sidered and the power transformation is conducted with a
widely utilized power generation model for polycrystalline
silicon PV panels, presented in [29] and utilized in similar
applications e.g., in [11]. The ambient temperatures used for
the PV generation models are taken from the closest measured
location (measurements from 2013).

B. The Simulation Results

The simulation results using 1000 hourly MC simulation
runs with a length of one year for the 12 scenarios are
presented in Fig. 11 and in Table III. Fig. 11 illustrates
the uncertainty in hourly aggregate generation with estimated
PDFs of the generation in different scenarios and Table III
presents the key numerical results.

As Table III and Fig. 11 show, there are notable differences
between the cases in terms of PDFs, standard deviations and
percentage of hours when the generation is less than 10% or
more than 90% of the aggregate installed capacity. It should

Fig. 11. The PDFs of the hourly aggregate generation in the 12 scenarios.
The lines with the same colors have the same geographical distribution. The
PDFs are averages of the 1000 MC runs.

be noted, that the values in > 90% column are small as they
require excellent generation conditions in all plants and as the
wake effect decreases the efficiency of the WPPs and e.g. the
inverters the efficiency of the PVPs. When both WPPs and
PVPs have a dispersed geographical distribution (Scenarios 4,
5 and 6), the standard deviation of the aggregate generation
is low. However, Scenarios 1, 2 and 3 where WPPs are dis-
persed and PVPs concentrated, are also good in terms of low
volatility. The highest volatilities can be found in Scenarios
7−12, where wind generation is geographically concentrated.
In addition, Fig. 11 also illustrates that in scenarios where the
geographical spread of the WPPs is concentrated, a notable
drop can be seen in the PDFs when the WPP generation
reaches its maximum aggregate capacity.

The most optimal proportion of annual generated energies,
considering low volatility of the aggregate generation, can be
found in Scenarios 2, 5, 8 and 11, where the WPPs generate
80% and the PVPs 20% of the annual energy. Despite the
geographical distribution, volatility increases if the proportion
of energy generated with WPPs decreases to 70% or increases
to 90%. This is caused by the negative correlation between
WPPs and PVPs and the greater hourly variability of the PVPs
compared to the WPPs. The relative standard deviation (RSD),
which is the sample standard deviation divided by the sample
mean, is 0.592 for WPPs and 1.615 for PVPs in Scenario 5.

If the PVP share increases to 30%, the greater variability
of the PVPs outweighs the benefits of the negative correlation
between wind and solar generation on the volatility of the
aggregate generation. If the PVP share decreases to 10%, the
benefit of the increased share of the WPPs (which have lower
hourly variability than PVPs) is not sufficient to compensate
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TABLE IV
THE PROBABILITIES THAT THE AGGREGATED POWER GENERATION

EXCEEDS OR IS LESS THAN A SPECIFIED LIMIT IN THE 12 SCENARIOS.
ALL ESTIMATES ARE AVERAGES OF THE 1000 MC RUNS.

Scenario Less than 20% of the
installed capacity for 3
consecutive hours (%)

Exceeding 80% of the
installed capacity for 3
consecutive hours (%)

Scenario 1 27.83 0.0006
Scenario 2 18.83 0.0022
Scenario 3 14.75 0.0081
Scenario 4 24.50 0.0003
Scenario 5 16.18 0.0038
Scenario 6 13.64 0.0245
Scenario 7 30.78 0.0021
Scenario 8 24.49 0.0045
Scenario 9 21.53 0.0452

Scenario 10 28.87 0.0016
Scenario 11 24.48 0.0045
Scenario 12 21.39 0.0726

for the lost benefit from the negative correlations between
WPPs and PVPs. This is a similar balancing between the
volatility in individual locations and the correlations between
the locations as was studied with wind generation in [16].

Table IV shows the probabilities for events where the
aggregated power generation is less than 20% or exceeds
80% of the installed capacity for three consecutive hours.
It can be observed that the probabilities for the generation
remaining less than 20% for at least three consecutive hours
are large. However, the probabilities for events where the
generation remains more than 80% of the capacity for at least
three consecutive hours are very low. It can be seen that the
dispersed geographical distribution for both generation types
and the 90% share of WPPs are both beneficial for reducing
the likelihood of the low generation events. On the other hand,
the concentrated geographical distribution of WPPs increases
the likelihood of the high generation events.

To summarize the results, the smallest volatility is achieved
in Scenario 5, where both the WPPs and PVPs are dispersed
and the WPPs produce 80% and PVPs 20% of the annual
energy. The inclusion of both generation types is beneficial
due to the negative spatial correlations between wind speeds
and global irradiance, as shown in Fig. 5. In addition, the
geographical distribution of the WPPs seems to have a larger
impact on the volatility of the generation compared to the
distribution of the PVPs.

C. The Fixed Aggregate Installed Capacities Instead of Fixed
Yearly Energies

The fixed energy enables a clear comparison between the
cases, but the power system operator might be also interested
in a similar comparison, but with a fixed installed capacity
(power) instead of the yearly energy. Scenarios with the same
simulation setup as with the fixed yearly energy were analysed
also with an aggregated fixed capacity of 1200 MW in each
scenario, so that the proportional installed capacity of WPPs
and PVPs varied between the scenarios, as shown in Table V.

TABLE V
THE SPECIFICATIONS OF THE FIXED AGGREGATE INSTALLED CAPACITY

SCENARIOS AND RSDS FOR EACH SCENARIO.

WPP
Geograph.
Distr.

PV
Geograph.
Distr.

WPP
installed
cap. (%)

PV
installed
cap. (%)

RSD

Dispersed Concentrated 50 50 0.5456
Dispersed Concentrated 60 40 0.5067
Dispersed Concentrated 70 30 0.5032
Dispersed Dispersed 50 50 0.5312
Dispersed Dispersed 60 40 0.4977
Dispersed Dispersed 70 30 0.4982
Concentrated Concentrated 50 50 0.6174
Concentrated Concentrated 60 40 0.6008
Concentrated Concentrated 70 30 0.6141
Concentrated Dispersed 50 50 0.6081
Concentrated Dispersed 60 40 0.5961
Concentrated Dispersed 70 30 0.6119

The different capacity factors (the ratios between installed
capacity and the actual output) made the comparison more
difficult, as the PVPs had an average capacity factor of 0.1195
and the WPPs of 0.3132. Therefore, the RSD was used when
comparing the volatility between the scenarios. As shown in
Table V, the scenarios where both WPPs and PVPs have
a dispersed geographical distribution have also the lowest
volatility compared to other geographical distributions. This
is the same observation as with the fixed yearly energy.
In addition, for fixed power the most optimal proportional
capacities were 60% of WPPs and 40% PVPs for three out of
the four different combinations of geographical distributions.
The lowest hourly volatility, in terms of RSD, was achieved in
the scenario where both locations had dispersed geographical
distribution and the proportional capacities were 60% of the
WPPs and of 40% the PVPs.

VII. CONCLUSION

This paper has introduced an MC simulation based method-
ology to model systems with WPPs and PVPs in multiple
existing or new locations. A VAR model was presented to
capture the temporal correlations in individual locations and
the spatial correlations between the locations. The spatial cor-
relations were linked to the geographical distances between the
locations to enable the addition of non-measured generation
locations to the model.

The model was verified against two out-of-sample test
locations, one wind and one solar location, which were both
excluded from the estimation. It was shown that the model
was able to produce simulated data with the correct temporal
and spatial correlation structures and probability distributions
for the test locations.

The methodology can be utilized in long-term simulations
and scenario analyses focusing on the variability of the aggre-
gate RES generation in power systems with multiple WPPs
and PVPs. The methodology can be applied in any geograph-
ical area where measurement data for the estimation of the
model parameters are available. The modular structure of the
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model allows it to be combined with several different wind
turbine or PV panel models, as the model provides simulated
wind speed and global irradiance data instead of power data.
The methodology can be beneficial for both transmission and
distribution system operators alike, and for power producers
that have both wind and solar energy generation in their
portfolio.

In addition, a case study was conducted with 12 scenarios
assessing different geographical distributions of wind and
PV generation with various proportional annual generated
energies. It was found that the scenario where WPPs and
PVPs were both geographically dispersed and the WPPs
generated 80% and the PVPs 20% of the annual energy was
the most favourable in terms of small variability. The dispersed
geographical spread of WPPs was more important than the
spread of PV generation for decreasing the variability of the
aggregate RES generation.
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