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Abstract. The aim of this short note is twofold. First, we give a sketch of

the proof of a recent result proved by the authors in the paper [7] concerning
existence and uniqueness of renormalized solutions of continuity equations with

unbounded damping coefficient. Second, we show how the ideas in [7] can

be used to provide an alternative proof of the result in [6, 9, 12], where the
usual requirement of boundedness of the divergence of the vector field has been

relaxed to various settings of exponentially integrable functions.

1. Introduction. In this paper we consider the Cauchy problem for the continuity
equation, namely{

∂tu(t, x) +∇ · (b(t, x)u(t, x)) = c(t, x)u(t, x)

u(0, x) = u0(x)
(1)

where (t, x) ∈ (0, T ) × Rd, u ∈ R, b ∈ Rd and c ∈ R. The continuity equation is
a fundamental tool to study various nonlinear partial differential equations of the
mathematical physics, for example equations arising in fluid mechanics and kinetic
theory. In many physical situations the continuity equation has to be considered in
a non-smooth setting. Starting from the papers of DiPerna and Lions [10] and Am-
brosio [1], a huge literature has been developed in this direction (for an overview,
see [2] and the references quoted therein). Roughly speaking, the continuity equa-
tion (1) is well-posed in the class of bounded distributional solutions, and in the
class of renormalized solutions, if the vector field b has bounded divergence, namely
∇ · b ∈ L1(0, T ;L∞(Rd)), and has at least a derivative of first order in some weak
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sense. More precisely, the case of Sobolev regularity has been considered in [10] and
the BV regularity in [1].

Concerning the source term c, that we will call damping term in analogy with
fluid mechanics, the classical requirement is c ∈ L1(0, T ;L∞(Rd)). In the paper [7]
the case when the damping term is only in L1((0, T ) × Rd) has been considered.
It turns out that dealing with this low integrability assumption requires a different
approach from the ones in [10] and [1].

Let us first explain at a very formal level the approach for the case where
c ∈ L1(0, T ;L∞(Rd)). In this case the crucial part in the theory is proving unique-
ness of distributional solutions. Let u be the difference between two distributional
solutions with the same initial datum. By linearity u solves (1) with initial datum 0.
Multiplying the equation by 2u one has

d

dt

∫
Rd
u(t, x)2 dx =

∫
Rd

(2c(t, x)−∇ · b(t, x))u(t, x)2 dx

≤ (2‖c(t, ·)‖L∞(Rd) + ‖∇ · b(t, ·)‖L∞(Rd))

∫
Rd
u(t, x)2 dx.

(2)

It follows by Gronwall Lemma that
∫
Rd u(t, x)2 dx = 0 for every t ∈ [0, T ], which

implies uniqueness.
When c is only in L1((0, T )×Rd) the previous formal calculation does not work

anymore and we need to find another strategy to prove uniqueness. Inspired by the
argument in [8] we proceed, always formally, as follows. As in the computation (2),
we consider the difference u of two solutions with the same initial datum and we
multiply (1) by u/(δ + u2), where δ > 0 is fixed, and we obtain

d

dt

∫
Rd

log
(

1 +
u(t, x)2

δ

)
dx =

∫
Rd
∇ · b(t, x) log

(
1 +

u(t, x)2

δ

)
dx

+ 2

∫
Rd

(c(t, x)−∇ · b(t, x))
u(t, x)2

δ + u(t, x)2
dx

≤ ‖∇ · b(t, ·)‖L∞(Rd)

∫
Rd

log
(

1 +
u(t, x)2

δ

)
dx

+ 2

∫
Rd
|c(t, x)|+ |∇ · b(t, x)| dx.

(3)

(We have to assume here that the divergence is also globally integrable in space,
however with a suitable truncation argument one can see that its boundedness is in
fact sufficient.) By Gronwall Lemma we deduce that for every t ∈ [0, T ]∫

Rd
log
(

1 +
u(t, x)2

δ

)
dx ≤ exp

(∫ T

0

‖∇ · b(t, ·)‖L∞(Rd) dt
)

·
∫ T

0

∫
Rd

2(|c(t, x)|+ |∇ · b(t, x)|) dx dt.

Letting finally δ go to 0, since the right-hand side is finite and independent of δ we
obtain that u(t, ·) = 0. Now, we have a formal procedure to prove uniqueness which
requires only the damping term c to be integrable. However, a rigorous justification
is definitely not straightforward and we will outline the main arguments in the next
section. Then, in Section 3 we will show how the arguments can be adapted to
the case of ∇ · b ∈ L1(0, T ; (BMO ∩ L1)(Rd)), i.e. when the divergence is globally



LOGARITHMIC ESTIMATES FOR CONTINUITY EQUATIONS 3

integrable and has bounded mean oscillation in the space variable (see Section 3 for
the definition of this space).

2. The case of an integrable damping. In this section we explain the main
arguments in the paper [7] to prove existence and uniqueness of solutions of the
Cauchy problem (1). The first nontrivial problem we have to face concerns the
definition of solution. In the smooth setting there is a well-known representation
formula for solutions of (1). Let us recall that the continuity equation is strictly
related to the ordinary differential equation for the flow of b, namely{

∂tX(t, x) = b(t,X(t, x)) ∀t ∈ (0, T )

X(0, x) = x
(4)

where x ∈ Rd. Assuming that u0, b and c are smooth and compactly supported,
a solution of (1) is then given in terms of the flow X by the following well-known
explicit formula:

u(t, x) =
u0(X−1(t, ·)(x))

JX(t,X−1(t, ·)(x))
exp

(∫ t

0

c(τ,X(τ,X−1(t, ·)(x))) dτ
)
, (5)

where JX(t, ·) denotes the Jacobian of the map X(t, ·).
Denoting with f]µ the pushforward of a Borel measure µ on Rd through a Borel

function f : Rd → Rd, (5) can be equivalently rewritten as

u(t, ·)L d = X(t, ·)]
(
u0 exp

(∫ t

0

c(τ,X(τ, ·)) dτ
)
L d

)
. (6)

When c is only integrable we cannot expect to have a solution u in some Lebesgue
space. Indeed, (5) does not make sense as distributional solution even in the simplest
autonomous cases: let b(t, x) = 0, u0 = 1[0,1]d , and c ∈ L1(Rd). A solution of (1)

is given by u(t, x) = u0(x)etc(x); however u(t, ·) may not belong to L1
loc(Rd) due to

the low integrability of c. In this case (5) is not a distributional solution of (1).
Then, we are forced to replace distributional solutions by renormalized solutions
(originally introduced in [10]), whose definition does not require the function u to
be integrable. Specifically, the notion of solution for the Cauchy problem (1) is the
following.

Definition 2.1. Let u0 : Rd → R be a measurable function, let b ∈ L1
loc((0, T ) ×

Rd;Rd) be a vector field such that ∇· b ∈ L1
loc((0, T )×Rd) and let c ∈ L1

loc((0, T )×
Rd). A measurable function u : [0, T ] × Rd → R is a renormalized solution of (1)
with initial datum u0 if for every function β : R→ R satisfying

β ∈ C1 ∩ L∞(R), β′(z)z ∈ L∞(R), β(0) = 0 (7)

we have that

∂tβ(u) +∇ · (bβ(u)) +∇ · b
(
uβ′(u)− β(u)

)
= cuβ′(u) (8)

in the sense of distributions, namely for every φ ∈ C∞c ([0, T )× Rd)∫
Rd
φ(0, x)β(u0) dx+

∫ T

0

∫
Rd

[∂tφ+∇φ · b]β(u) dx dt

+

∫ T

0

∫
Rd
φ
[
∇ · b

(
β(u)− uβ′(u)

)
+ cuβ′(u)

]
dx dt = 0.

(9)
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Notice that if we assume c ∈ L1((0, T )× Rd) we have that∫
Rd

∫ T

0

|c(τ,X(τ, x))| dτ dx ≤ C
∫ T

0

∫
Rd
|c(τ, x)| dτ dx <∞ (10)

since the flow is assumed to compress the Lebesgue measure in a controlled way,
see [7]. Therefore the function u in (5) is well-defined pointwise almost everywhere.

In order to prove existence of renormalized solutions of (1) we argue as follows.
First, we construct the flow X for the ODE (4) by using results from [10, 1, 8], and
then we check by a direct computation that (5) is a renormalized solution of (1). We
remark that in the case of a divergence-free vector field b proving that (5) solves (1)
is just a direct computation. On the other hand, the case when b is not divergence-
free requires a bit of work to justify the change of variable between Eulerian and
Lagrangian coordinates. Precisely, some properties of the weak Jacobian of the flow
X have to be proven. We refer to Lemma 3.1 in [7] for the details.

After proving the existence of renormalized solutions we consider the problem
of uniqueness. Reproducing the formal calculation explained in the Introduction in
this non-smooth setting requires some work. First, as in [10], we have to prove that
when we consider the difference of two renormalized solutions, this is a renormalized
solution of (1) with initial datum 0. This is nontrivial due to the nonlinear nature
of the definition of renormalized solution. Precisely, in [7] the following Lemma has
been proved.

Lemma 2.2 (Lemma 4.2, [7]). Let b ∈ L1(0, T ;BVloc(Rd;Rd)) be a vector field
with ∇ · b ∈ L1(0, T ;L1

loc(Rd)). Let c ∈ L1((0, T ) × Rd) and let u0 : Rd → R be
a measurable function. Let u1 and u2 be renormalized solutions of (1) with initial
datum u0. Then u := u1 − u2 is a renormalized solution with initial datum 0.

At this point we argue following the lines of the formal computation explained
in the Introduction. We consider the function

Γδ,R(t) =

∫
Rd
ϕR(x)βδ(u(t, x)) dx,

where for any δ > 0

βδ(r) = log
(

1 +
[arctan(r)]2

δ

)
∀r ∈ R (11)

and for any R > 0 the function ϕR is smooth and has a suitable decay at infinity.
Note that βδ satisfies the hypothesis of the Definition 7 and in particular

|rβ′δ(r)| =
∣∣∣ 2 arctan(r)

δ + [arctan(r)]2
r arctan′(r)

∣∣∣ ≤ 2 ∀r ∈ R. (12)

By taking the time derivative of Γδ,R(t) and using the definition of renormalized
solution we get the following differential equality

d

dt
Γδ,R(t) =

∫
Rd
∇ϕR · b βδ(u) dx+

∫
Rd
ϕR(c−∇ · b)uβ′δ(u) dx

+

∫
Rd
ϕR∇ · b βδ(u) dx.

(13)

By estimating carefully the right-hand side and using the fact that δ and R are
arbitrary we conclude, by using Gronwall Lemma, that Γδ,R is 0. The rigorous
statement of the result in [7] is the following:
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Theorem 2.3. Let b ∈ L1(0, T ;BVloc(Rd;Rd)) be a vector field that satisfies a
bound on the divergence ∇ · b ∈ L1(0, T ;L∞(Rd)) and the growth condition

|b(x)|
1 + |x|

∈ L1(0, T ;L1(Rd)) + L1(0, T ;L∞(Rd)). (14)

Let
c ∈ L1((0, T )× Rd)

and let u0 : Rd → R be a measurable function. Then there exists a unique renor-
malized solution u : [0, T ] × Rd → R of (1) starting from u0 and it is given by the
formula

u(t, x) =
u0(X−1(t, ·)(x))

JX(t,X−1(t, ·)(x))
exp

(∫ t

0

c(τ,X(τ,X−1(t, ·)(x))) dτ
)
. (15)

3. The case of divergence of b in BMO. In [12] the author proved existence
and uniqueness of solutions of the transport equation when the divergence ∇ · b
of the vector field b is the sum of a function in L∞ and a compactly supported
function of bounded mean oscillation (defined in the sequel). This result extends
the previous theory of [10, 1] (see also [2] and the references quoted therein), where
∇ · b is assumed to be bounded in space. Uniqueness is the most delicate point
and its proof is based on a new inequality for BMO functions, which gives the
differential inequality Ė(t) ≤ E(t)| log(E(t))| in [0, T ], where E(t) is the L2 norm of
the difference of two solutions of the continuity equation (23). Then, uniqueness
follows by Gronwall Lemma.

In this section we provide an alternative proof of this uniqueness result, in which
we also somewhat refine the hypothesis on the compact support of the divergence,
and allow general growth conditions on the vector field.

A similar result was proved previously in [9]. In such paper, the divergence of
the vector field b is assumed to be the sum of a bounded term and a term in an
exponential space, namely

∇ · b ∈ L1(0, T ;L∞(Rd)) + L1(0, T ; ExpL(Rd)), (16)

where ExpL denotes the Orlicz space of globally exponentially integrable func-
tions. This condition on the divergence is more general than the one of [12], since
compactly supported functions of bounded mean oscillation belong to the space
ExpL(Rd). However, the same proof of [12], as well as the one presented below,
works when the divergence of b satisfies the condition (16).

In a very recent paper [6], the authors improved the results in [9, 12]. They con-
sider vector fields whose divergence is not necessarily compactly supported, and
satisfies a weaker condition than (16), expressed in terms of the Orlicz spaces
Exp

(
L

logγ L

)
for γ ∈ (0,∞). In particular, they show that if the vector field is

locally Sobolev, satisfies the classical growth conditions, and

∇ · b ∈ L1(0, T ;L∞(Rd)) + L1
(

0, T ; Exp
( L

logγ L

)
(Rd)

)
(17)

for γ = 1, then there is existence and uniqueness of bounded solutions of the
continuity equation with given initial datum. The proof of their result is based
on the differential inequality Ė(t) ≤ E(t)| log(E(t))| log | log(E(t))| in [0, T ], which
allows to apply Gronwall Lemma. They also adapt a counterexample of DiPerna
and Lions [10] to show that, for any exponent γ > 1, the condition (17) is not
enough to guarantee the uniqueness.
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Before stating our result, we recall the definition and the properties of functions
of bounded mean oscillation.

Definition 3.1. Given a locally integrable function f : Rd → R we consider its
average on Br(x)

(f)Br(x) =

∫
−
Br(x)

f(y) dy =
1

|Br(x)|

∫
Br(x)

f(y) dy

and its mean oscillation in Br(x)∫
−
Br(x)

|f(y)− (f)Br(x)| dy.

We say that f is a function of bounded mean oscillation (BMO) if

sup
r>0, x∈Rd

∫
−
Br(x)

|f(x)− (f)Br(x)| dx <∞. (18)

A natural norm ‖ · ‖∗ on the quotient space of BMO functions modulo the space
of constant functions is given by the quantity in (18). From [11, Lemma 1] we have
that

L d
(
{x ∈ K : |f − (f)K | > r}

)
≤ A

‖f‖∗
exp (− br

‖f‖∗
)

∫
K

|f − (f)K | dx (19)

for any r > a‖f‖∗, where K is an arbitrary cube in Rd and A, a, b are some universal
constants depending only on the dimension d.

In the following lemma we present the properties of BMO functions which are
used in the proof of Theorem 3.3; in particular, we prove the exponential decay of
the integral of f on its superlevels.

Lemma 3.2. Let f ∈ (BMO∩L1)(Rd) be a nonnegative function. Then there exist
C, c > 0, depending only on d, such that for every λ > a∫

Rd

(
f(x)− λ(‖f‖1 + ‖f‖∗)

)
+
dx ≤ C exp(−cλ)‖f‖1. (20)

Proof. Let K be any cube such that L d(K) > a−1. Since the function f is globally
integrable, we have

(f)K ≤
‖f‖1

L d(K)
≤ a‖f‖1 . (21)

Thanks to (21), for every λ > a we have that λ‖f‖1 > (f)K , so that(
f(x)− λ(‖f‖1 + ‖f‖∗)

)
+
≤
(
f(x)− (f)K

)
+

∀x ∈ Rd

and similarly{
x ∈ K : f(x) > λ(‖f‖1 + ‖f‖∗)

}
⊆
{
x ∈ K : f(x)− (f)K > λ‖f‖∗

}
.
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Using also (19), we deduce that∫
K

(
f(x)− λ(‖f‖1 + ‖f‖∗)

)
+
dx

≤
∫
{x∈K : f−(f)K>λ‖f‖∗}

(
f(x)− (f)K

)
+
dx

≤
∫ ∞
λ‖f‖∗

L d
(
{x ∈ K : f(x)− (f)K > r}

)
dr

+ λ‖f‖∗L d
(
{x ∈ K : f(x)− (f)K > λ‖f‖∗}

)
≤ 2A

‖f‖∗
‖f‖1

(
λ‖f‖∗ exp(−bλ) +

∫ ∞
λ‖f‖∗

exp(− br

‖f‖∗
) dr
)

=
2A

b
‖f‖1(bλ+ 1) exp(−bλ)

≤ C‖f‖1 exp(−cλ)

(22)

for some constant C, c depending only on the dimension d, with c < b. Since the
cube K is arbitrary, taking the supremum over all admissible K we get (20).

In the following, we prove that the continuity equation

∂tu+∇ · (bu) = 0 (23)

with a BV vector field with divergence in (BMO ∩ L1)(Rd) + L∞(Rd) is well-
posed in the class of bounded distributional solutions. We recall that the space
(BMO ∩ L1)(Rd) is naturally endowed with the norm ‖ · ‖1 + ‖ · ‖∗ and that a
function u ∈ L∞((0, T )×Rd) is a distributional solution of (23) with initial datum
u0 ∈ L∞(Rd) if for every φ ∈ C∞c ([0, T )× Rd)∫

Rd
φ(0, x)u0(x) dx+

∫ T

0

∫
Rd

[∂tφ(t, x) +∇φ(t, x) · b(t, x)]u(t, x) dx dt = 0.

Theorem 3.3. Let u0 ∈ L∞(Rd) and b ∈ L1(0, T ;BVloc(Rd;Rd)) a vector field
such that

∇ · b ∈ L1(0, T ;L∞(Rd)) + L1(0, T ; (BMO ∩ L1)(Rd)), (24)

and such that there exist two nonnegative functions b1 and b2 with

|b(t, x)|
1 + |x|

≤ b1(t, x) + b2(t), b1 ∈ L1(0, T ;L1(Rd)), b2 ∈ L1(0, T ). (25)

Then there exists a unique distributional solution u ∈ L∞((0, T )×Rd) of (23) with
initial datum u0.

Existence is obtained through a standard regularization argument, see [1]
or [12, Appendix A2], and we omit the proof. The result can be also general-
ized adding a right-hand side of the form cu, for some c ∈ L1((0, T )×Rd), with the
same ideas as in Section 2, and we would have to consider renormalized solutions
in place of distributional solutions.

The proof of uniqueness in Theorem 3.3 starts by considering the difference of two
distributional solutions with the same datum, which is a distributional (and hence
renormalized, by [1]) solution with initial datum 0. As in the proof of Theorem 2.3,
the choice of the particular renormalization function (11), together with a Lipschitz,
decaying test function, allows to get a contradiction thanks to Gronwall Lemma.
Before proving the result, we state a lemma which allows to use a Lipschitz, decaying
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space function in place of smooth, compactly supported functions as a test function
in the definition of renormalization.

Lemma 3.4. Let C > 0 and let b be as in Theorem 3.3. Let u be a renormalized
solution of (23) with initial datum 0, let β be a renormalization function satisfy-
ing (7), and let ϕ ∈W 1,∞(Rd) be a function such that

|ϕ(x)| ≤ C

(1 + |x|)d+1
, |∇ϕ(x)| ≤ C

(1 + |x|)d+2
a.e. x ∈ Rd. (26)

Then the function
∫
Rd ϕ(x)β(u(t, x)) dx coincides a.e. with an absolutely continuous

function Γ(t) such that Γ(0) = 0 and for a.e. t ∈ [0, T ]

d

dt
Γ(t) =

∫
Rd
∇ϕ · bβ(u) dx+

∫
Rd
ϕ
[
∇ · b

(
β(u)− uβ′(u)

)]
dx. (27)

Proof. The proof is a standard argument via approximation. Consider a sequence
of smooth, compactly supported functions ϕn satisfying the same decay (26) with

C independent on n and approximating ϕ strongly in W 1,1
loc . By a well-known

observation (see [7, Remark 2.6]), we can test (8) with the space function ϕn to
obtain that, for every n ∈ N, the function t →

∫
Rd ϕn(x)β(u(t, x)) dx coincides for

a.e. t ∈ [0, T ] with an absolutely continuous function Γn(t) which satisfies Γn(0) = 0
and

d

dt
Γn(t) =

∫
Rd
∇ϕn · b β(u) dx+

∫
Rd
ϕn

[
∇ · b

(
β(u)− uβ′(u)

)]
dx. (28)

Thanks to (26), to the growth assumptions on b, and to the fact that ∇ · b is the
sum of a bounded and an integrable function (by (24) and (21)), by dominated
convergence the right-hand side of (28) converges to the right-hand side of (27) in
L1(0, T ). Moreover by dominated convergence for a.e. t ∈ [0, T ]

Γ(t) = lim
n→∞

Γn(t) = lim
n→∞

∫
Rd
ϕn(x)β(u(t, x)) dx =

∫
Rd
ϕ(x)β(u(t, x)) dx. (29)

Hence the functions Γn pointwise converge to the absolutely continuous function Γ,
formula (27) holds, and Γ(0) = 0.

Proof of uniqueness. Given R, δ > 0, we consider the function βδ defined as in (11)
and we define

ϕR(x) =


1

2d+1
x ∈ Rd, |x| < R

Rd+1

(R+ |x|)d+1
x ∈ Rd, |x| > R.

(30)

By the linearity of the continuity equation (23), up to taking the difference of two
distributional solutions with the same initial datum, it is enough to show that
any distributional solution u with initial datum 0 is constantly 0. Thanks to the
assumptions on b (in particular, the local regularity b ∈ L1(0, T ;BVloc(Rd;Rd)) and
the assumption on the divergence (24), which implies that ∇·b ∈ L1(0, T ;L1

loc(Rd)))
and to the results in [1], every bounded distributional solution of the continuity
equation with such a vector field b is also renormalized. In other words, u is a
renormalized solution with initial datum 0 (in the sense of Definition 2.1 with c = 0).
By Lemma 3.4 we can use ϕR as a test function in (27); in other words, for every
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R, δ > 0 there exists an absolutely continuous function Γδ,R : [0, T ] → R such that
Γδ,R(0) = 0,

Γδ,R(t) =

∫
Rd
ϕR(x)βδ(u(t, x)) dx for a.e. t ∈ [0, T ],

d

dt
Γδ,R =

∫
Rd
∇ϕR · b βδ(u) dx+

∫
Rd
ϕR∇ · b

(
βδ(u)− uβ′δ(u)

)
dx a.e. in [0, T ].

(31)

We estimate the first term in the right-hand side of (31) as in [7, (4.15)], thanks
to the growth condition (14) on b. Let b1 and b2 be the two nonnegative functions
as in (25). For every R > 1, by explicit computation, we have that

|∇ϕR(x)| ≤ 1BcR(x)(d+ 1)ϕR(x)(R+ |x|)−1 for every x ∈ Rd.

Therefore we obtain that for every R > 1 and t ∈ [0, T ]∫
Rd
∇ϕR · b βδ(u) dx ≤ (d+ 1)

∫
Rd\BR

ϕR
R+ |x|

(1 + |x|)(b1 + b2)βδ(u) dx

≤ (d+ 1)

∫
Rd\BR

ϕR(b1 + b2)βδ(u) dx

≤ (d+ 1) log
(

1 +
π2

4δ

)∫
Rd\BR

b1 dx+ (d+ 1)b2

∫
Rd
ϕRβδ(u) dx.

(32)

Let d1 and d2 be nonnegative functions such that

|∇ · b(t, x)| ≤ d1(t, x) + d2(t, x),

d1 ∈ L1(0, T ;L∞(Rd)), d2 ∈ L1(0, T ; (BMO ∩ L1)(Rd)).

Let λ > a to be chosen later. Since |uβ′δ(u)| ≤ 2 (see (12)) and since ϕR(x) ≤ 2−d−1,
for every δ > 0 and t ∈ [0, T ] we estimate the second term in the right-hand side of
(31) ∫

Rd
ϕR∇ · b

(
βδ(u)− uβ′δ(u)

)
dx ≤

∫
Rd
ϕR(d1 + d2)

∣∣βδ(u)− uβ′δ(u)
∣∣ dx

≤ (‖d1‖∞ + λ(‖d2‖1 + ‖d2‖∗))
∫
Rd
ϕR
(
βδ(u) + 2

)
dx

+
(

log
(

1 +
π2

4δ

)
+ 2
)

2−d−1
∫
Rd

(
d2 − λ(‖d2‖1 + ‖d2‖∗)

)
+
dx

≤ (‖d1‖∞ + λ(‖d2‖1 + ‖d2‖∗))
∫
Rd
ϕR
(
βδ(u) + 2

)
dx

+ C
(

log
(

1 +
π2

4δ

)
+ 2
)

exp(−cλ)2−d−1‖d2‖1,

(33)

where in the last inequality we applied Lemma 3.2 to the function |d2(t, ·)| (notice
that the norms appearing in the previous formula have to be intended in Rd for
fixed t).
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For every t ∈ [0, T ] we define the functions

aλ(t) = ‖d1(t, ·)‖L∞(Rd) + λ(‖d2(t, ·)‖1 + ‖d2(t, ·)‖∗) + (d+ 1)b2(t),

bλ,R(t) = 2
(
‖d1(t, ·)‖L∞(Rd) + λ(‖d2(t, ·)‖1 + ‖d2(t, ·)‖∗

)
‖ϕR‖L1(Rd)

+ C2−d exp(−cλ)‖d2(t, ·)‖1
cR(t) = (d+ 1)‖b1(t, ·)‖L1(Rd\BR),

dλ(t) = C2−d−1 exp(−cλ)‖d2(t, ·)‖1.

From (31), (32), and (33) we deduce that

d

dt
Γδ,R(t) ≤ aλ(t)Γδ,R(t) + bλ,R(t) + (cR(t) + dλ(t)) log

(
1 +

π2

4δ

)
.

Let τ0 > 0 to be chosen later in terms of b and independent on R, λ. It is enough
to show that u(t, ·) = 0 for every t ∈ [0, τ0], then we can repeat the argument in
the subsequent time intervals. Since by assumption Γδ,R(0) = 0, using Gronwall
Lemma we obtain that for every t ∈ [0, τ0]

Γδ,R(t) ≤ exp
(∫ τ0

0

aλ(s)ds
)(∫ τ0

0

bλ,R(s)ds+ log
(

1 +
π2

4δ

)∫ τ0

0

(cR(s) + dλ)ds
)

= exp(Aλ)
(
Bλ,R + log

(
1 +

π2

4δ

)
(CR +Dλ)

)
.

(34)

If, by contradiction, u(t, ·) is not identically 0 for some t ∈ [0, τ0], then there exist
R0 > 0 and γ > 0 such that m = L d({x ∈ BR0

: [arctanu(t, x)]2 > γ}) > 0. We
obtain that for every R ≥ R0

m

2d+1
log
(

1 +
γ

δ

)
≤ Γδ,R(t) ≤ exp(Aλ)

(
Bλ,R + log

(
1 +

π2

4δ

)
(CR +Dλ)

)
. (35)

First, we fix τ0 > 0 so that∫ τ0

0

(‖d2(s, ·)‖1 + ‖d2(s, ·)‖∗) ds ≤
c

2
.

Then, for a constant C > 0, we have

exp(Aλ)Dλ ≤ C exp
(
− c

2
λ
)
,

and we can choose λ big enough to have

exp(Aλ)Dλ ≤
m

2d+3
.

Since b1 ∈ L1((0, T )× Rd) we can choose R big enough to have

exp(Aλ)CR ≤
m

2d+3
.

Then, we are left with

m

2d+1
log
(

1 +
γ

δ

)
≤ exp(Aλ)Bλ,R +

m

2d+2
log
(

1 +
π2

4δ

)
. (36)

Dividing (36) by log(δ−1) and letting δ go to 0 we find a contradiction.
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