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Abstract Understanding magmatic plumbing within the Earth’s crust is important for understanding
volcanic systems and improving eruption forecasting. We discuss magma plumbing under Bárðarbunga
volcano, Iceland, over a 4 year period encompassing the largest Icelandic eruption in 230 years.Microseismicity
extends through the usually ductile region of the Earth’s crust, from 7 to 22 km depth in a subvertical column.
Moment tensor solutions for an example earthquake exhibits opening tensile crack behavior. This is consistent
with the deep (>7 km) seismicity being caused by the movement of melt in the normally aseismic crust. The
seismically inferred melt path from themantle source is offset laterally from the center of the Bárðarbunga
caldera by ~12 km, rather than lying directly beneath it. It is likely that an aseismicmelt feed also exists directly
beneath the caldera and is aseismic due to elevated temperatures andpervasive partialmelt under the caldera.

Plain Language Summary Understanding where molten rock travels within the Earth’s crust is
important for understanding how volcanoes are fed, useful for improving eruption forecasting. We discuss
the location of molten rock pathways under Bárðarbunga volcano, Iceland, before, during and after the
largest Icelandic eruption in 230 years. Earthquakes (triggered by molten rock moving through the Earth’s
crust) are found at 7-22 km depth in a sub-vertical column. These earthquakes are located at depths in the
crust where earthquakes would not normally occur. The observed path of molten rock is not under the center
of the main volcano caldera, but rather ~12 km to the south-east. It is likely that a route for molten rock
up through the crust also exists directly beneath the volcano, but we do not observe this, likely due to the
Earth’s crust being too hot here.

1. Introduction
We use microseismicity to investigate melt movement within the usually ductile region of the Icelandic crust
(>6–8 km below sea level (bsl) [Key et al., 2011]) beneath one of Iceland’s most active volcanoes,
Bárðarbunga, over a 4 year period including the 2014–2015Bárðarbunga-Holuhraun eruption. Althoughbrittle
failure seismicity has been attributed tomeltmovement at similar depths elsewhere in the Earth’s crust [Wright
and Klein, 2006; Key et al., 2011; Shelly and Hill, 2011;White et al., 2011; Tarasewicz et al., 2012; Power et al., 2013;
Greenfield andWhite, 2015; Klügel et al., 2015; Kiser et al., 2016], observations of seismicity associated with deep
(>7 km) crustal melt movement both preceding and following a volcanic eruption have until now
proved elusive.

For this study, we define deep crustal melt movement as molten rock propagating within the usually ductile
region of the Earth’s crust. The brittle-ductile boundary varies in depth geographically but lies ~7 km below
sea level (bsl) in this region of Iceland (Figure 1). Brittle failure of the ductile crust does not occur under normal
geological strain rates, so the ductile region is usually aseismic. However, if the rock is subjected to sufficiently
high strain rates, it can sustain brittle failure, emitting seismic energy that can be detected at the surface as a
microearthquake. Melt driven by increased magmatic pressure can provide locally high strain rates sufficient
to promote brittle failure [Shelly and Hill, 2011;White et al., 2011; Greenfield and White, 2015]. Therefore, brittle
failure microseismicity observed in the normally ductile region of the Icelandic crust can be attributed to
melt movement.

2. Data
A dense seismic network operated by the University of Cambridge surrounds Bárðarbunga central
volcano. Our earthquake catalogue covers 1 January 2012 to 1 August 2016, approximately 2 years
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Figure 1. (a) Map showing seismicity (colored by time after start of the 2014–2015 Bárðarbunga-Holuhraun dike intrusion)
from 1 January 2012 to 1 August 2016, with intrusive period seismicity (16–29 August 2014) in black. Sand colored areas
outline fissure swarms, transecting the central volcanoes (outlined by circles) of each volcanic system [Einarsson and
Saemundsson, 1987]. Red triangles show seismic stations. (b) East-west vertical plane projection, showing seismicity in
Figure 1a. All events from depths >7 km are manually refined, with shallower seismicity plotted from 1 January 2013 to 1
August 2016. Histograms are for hypocenters within Bárðarbunga (grey) and manually refined events (red).
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prior to and following the 2014–2015 Holuhraun eruption. On 16–29 August 2014, melt was fed through a
48 km long lateral dike from Bárðarbunga volcano to Holuhraun, where a 6 month long fissure eruption
started on 29 August 2014 [Sigmundsson et al., 2015; Ágústsdóttir et al., 2016]. During the eruption, 72
three-component Cambridge seismometers were in operation, in addition to 14 instruments maintained
by the Icelandic Meteorological Office (IMO) (supporting information Figure S1). This provides good azi-
muthal coverage of the region surrounding Bárðarbunga, allowing calculation of well constrained loca-
tions and moment tensor solutions. The nearest long-term seismometer is VONK (Figure 1). To improve
constraints on earthquake hypocenters, two additional instruments were deployed for ~50 days from
mid-June 2016, within 5 km of observed deep seismicity epicenters. This improved our understanding
of how well depth is constrained with and without a station present directly above the activity. Shifts
of ~2 km are observed, which is of similar magnitude to the average depth uncertainty of all manually
refined events, ±2 km.

An earthquake catalogue was created by automatically detecting and locating events using the Coalescence
Microseismic Mapping (CMM) technique [Drew et al., 2013], thenmanually refining CMM-derived arrival times
of P and S phases of all events with initial automatic locations deeper than 7 km bsl. Single event locations
were calculated using NonLinLoc [Lomax and Virieux, 2000] with the equal differential time method [Font
et al., 2004], then refined using double-difference relocation [Waldhauser and Ellsworth, 2000] where possible.
Double-difference relocations are generally within uncertainty (supporting information Figure S5). A velocity
model based on refraction profiles [Pálmason, 1971; Gebrande et al., 1980; Darbyshire et al., 1998], with a con-
stant Vp/Vs ratio of 1.78 [Ágústsdóttir et al., 2016] was used initially for all event locations, before varying the
Vp/Vs ratio to minimize the root-mean-square (RMS) of the time residuals for the manually refined events only
(supporting information Figure S2). Themotivation for this is that the Vp/Vs ratio in the crust below the brittle-
ductile transition is otherwise poorly constrained. The final velocity model uses a Vp/Vs ratio of 1.8 (supporting
information Table S1), similar to that found beneath Askja volcano, ~50 km NE of Bardarbunga on the same
rift zone [Greenfield et al. 2016].

3. Results
3.1. Shallow Seismicity

Shallow seismicity (Figure 1) delineates the brittle-ductile transition at ~6–7 km depth. During the dike pro-
pagation and eruptive periods there is increased shallow activity along the path of the dike at 6–8 km depth
[Ágústsdóttir et al., 2016], as well as within the caldera. Of the shallow activity within Bárðarbunga volcano
(<7 km bsl), ~11% of the ~4500 events occur before the dike intrusion started and ~89% after (Figure 1).
Seismicity to the immediate northeast of Bárðarbunga caldera preceding the 2014 intrusion is caused primar-
ily by rift-parallel tectonic faulting, suppressed by the propagating dike’s stress shadow [Green et al., 2015].
The majority of the seismic activity within and immediately north of the caldera following the intrusion is
associated with caldera collapse [Gudmundsson et al., 2016].

3.2. Deep Seismicity

The well-defined cluster of deep seismicity (>7 km bsl) (Figure 1), on the outer flank of the central vol-
cano, is laterally offset by ~12 km to the southeast of the center of the Bárðarbunga caldera. The deep
activity occurs primarily over depths of 10 to 22 km bsl, with no apparent temporal evolution in the depth
of events (supporting information Movie S1). A small number of events above the deep activity occur
within the shallow brittle crust, at 5–7 km bsl. Manually located events have P and/or S arrival time picks
on up to 40 seismometers (average of 18), with overall RMS misfit uncertainties of ~0.1 s. We detect two to
three times more deep crustal earthquakes using automatic locations than are plotted in Figure 1, within
the same area of crust as those plotted. These are evident as arrivals on the closer seismometers, but we
have not included them here because they are recorded on fewer stations and therefore have poorly con-
strained hypocentral locations.

The daily rate of deep manually refined earthquakes (Figure 2) shows sporadic swarms, with a maximum of
four events per day that are of sufficient amplitude to be manually refined. There appears to be an approxi-
mately constant average rate of deep seismicity over the time period, with no obvious change associated
with the eruption. An apparent lack of deep seismicity during the dike intrusion and eruptive periods
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shown in Figure 2 could indicate a genu-
ine lack of any melt movement at depth
during that period, but it is more likely
that the seismometer network is less
sensitive due to the many earthquakes
generated during the dike intrusion and
eruption. Approximately 50,000 shallow
events were detected and located in this
region during the eruption [Ágústsdóttir
et al., 2016], thus making it harder to
detect low magnitude deep events.

3.3. Earthquake Failure Mechanisms

Moment tensor inversions reveal that
these deep events show nondouble-

couple mechanisms and have a significant opening crack component (Figure S4). We focus on one parti-
cular representative event (01:28, 15 June 2015), discussed in detail here (Figure 3). The single event
location uncertainty associated with this event is plotted in Figure 3a as a scatter cloud representing
the posterior probability density function, and is approximately ±1 km vertically and ±250 m horizontally.
The waveforms arriving at one seismometer (VONK) are shown in Figure 3b. The earthquake has impul-
sive P and S phase arrivals, in common with all the events presented here. S phases have higher ampli-
tudes than P phases, as is true for the majority of deep events. The spectrum for the event at the closest
instrument has a peak in the P arrival at ~3.6 Hz and in the SH arrival at ~2.0 Hz.

Results from a full moment tensor inversion using both P and SH phase polarities are shown in a Lune plot
[Tape and Tape, 2012] in Figure 3c, using a Bayesian method, MTFIT [Pugh et al., 2016]. This provides a better
constrained solution than using only P phase polarities. The most likely full moment tensor focal mechanism
(Figures 3d and 3e) show that the example event has a component of opening tensile crack behavior. A volu-
metric component to the solution is required rather than a pure double couple solution (which would lie in
the center of the Lune plot at the point marked “DC”).

4. Discussion
4.1. Melt Induced Brittle Failure

The earthquake shown in Figure 3 is most likely caused by melt-induced brittle failure with a volumetric com-
ponent, accommodated through an opening tensile crack. At these depths in the crust a possible mechanism
for this is the movement of melt at sufficient pressure to induce brittle failure of the rock, with the fluid
intruded into the resulting crack providing the inferred positive volumetric increase. This is consistent with
melt moving from one sill to another, shallower sill, along pathways that are opened by the melt movement.
As the earthquake occurs within the normally ductile region of the Earth’s crust, the fluid must be forced
through the rock sufficiently fast to cause brittle failure. Similar behavior has been observed in deep seismi-
city under Askja volcano, ~50 km to the northeast of Bárðarbunga [Greenfield and White, 2015], where earth-
quakes caused by melt moving between crustal sills result in multiple but short-lived swarms of
microseismicity. Another, less likely but still plausible, mechanism could be fracture within the melt itself.
Peaks in the spectra of the earthquake at low frequencies further suggest the presence of fluid
during fracture.

It is likely that the melt movement is driven by overpressures due to melt buoyancy or by high pore pressures
generated by exsolution of CO2. Seismicity triggered by transient fluid pressure increases due to CO2

exsolved from melt are observed elsewhere [e.g., Shelly et al., 2015]. There are two possible mechanisms
for CO2 exsolution driven overpressure. First, CO2 is likely to start exsolving from primitive mantle melts at
depths of ~20 km as melt rises through the crust and decompresses. This mechanism could therefore trigger
deep melt movement and is consistent with the main onset of deep events being at ~20 km. Alternatively,
exsolution of CO2 could occur as melt crystallizes in situ in a sill.

Figure 2. Daily seismicity rate at depths of 7 to 25 km bsl, from 1 January
2012 to 1 August 2016. All hypocenters are manually refined. Light and
dark orange shaded regions indicate dike propagation and eruptive
periods, respectively. Red line shows cumulative number of events.
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4.2. Melt Propagation at Depth

Bárðarbunga is one of several large subglacial volcanoes above the center of the Iceland hot spot [Einarsson
et al., 1997]. A clear indicator of melt accumulation at Bárðarbunga is the enhanced seismicity observed for
several years prior to the 2014 Holuhraun eruption [Brandsdóttir and Pálsson, 2014]. Continued elevated seis-
micity also occurs following the eruption, potentially suggesting continued melt accumulation [Jónsdóttir
et al., 2017]. Melt must therefore travel up from its source in the underlying convecting mantle plume
[White and McKenzie, 1989] through a plumbing system in order to feed Bárðarbunga volcano. Figure 4 pre-
sents a summary schematic interpretation of the melt plumbing at Bárðarbunga superimposed on our
observed seismic hypocenters.

Three main factors control the deep magma plumbing in this region. First, the melt is generated at depths
>40 km, in the core of the underlying mantle plume, which has a diameter of ~100 km [White and
McKenzie, 1989]. The initial feed of melt into the lower crust is likely to be dominated by convection and
decompression melting in the mantle plume, with little influence from the volcanic edifices at the surface.

Figure 3. Example earthquake (15 June 2015, 01:28). (a) Most probable location (gold star) and scatter representing the
PDF of location uncertainty. (b) Vertical and transverse components, with associated spectrograms, recorded at station
VONK (see Figure 1a for location). (c) Lune plot shows the most likely solution from the moment tensor inversion (gold star)
and the associated PDF. Double-couple (DC), opening, and closing tensile cracks (TC+, TC�) and compensated linear
vector dipole (CLVD) solution locations are labeled. (d and e) Full moment tensor solution using P and SH phase arrival
polarities (phase arrivals shown in supporting information Figure S3, with phase and station information in Tables S3
and S4). Red and blue signify compressional and dilatational arrivals, respectively.
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There are likely to be multiple, transient feeder points into the overlying crust, of which we image just a
currently active one. Second, the region under Vatnajökull is an extensional environment, although the
precise location and interaction of extensional rifts under the ice cap is unknown. Nevertheless, an
extensional regime, controlled by tectonic stress gradients of the divergent rift zone, could provide
favorable conditions to encourage melt to rise vertically through the crust [Dahm, 2000]. Third, the
volcanic edifices themselves are likely to exert some control on the melt path near the surface as it is
affected by the topographic loads of the volcanoes, and the influence of magma chambers [Acocella and
Neri, 2003; Karlstrom et al., 2009]. Throughout the crust, melt plumbing is likely to comprise a complex
network of lateral sills, with magma rising within high density intrusive complexes near the surface (which
characterize large central volcanoes in Iceland [Pálmason, 1971; Brandsdóttir et al., 1997]).

The deep seismicity, and hence melt plumbing, observed here occurs primarily at depths of 10–20 km
(Figure 4, label 1 and supporting information Movie S1). There could be multiple reasons for the lack of seis-
micity below 22 km, even though melt must travel up from below this depth. It may be that the energy
emitted by fracture at these depths is highly attenuated, and so not recorded well at the surface; or that
the crust is hotter and more ductile at greater depths, requiring higher strain rates for fracture with

Figure 4. Interpretation of melt plumbing under Bárðarbunga volcanic system, superimposed on recorded seismicity. (a)
Map view with dike events; (b) Seismicity projected onto an east-west cross section with no vertical exaggeration. Blue
and green dots show hypocenters with manual arrival phase picks. Regions of melt (orange shading) are inferred from
seismicity, geodesy, and geochemistry [Green et al., 2015; Sigmundsson et al., 2015; Ágústsdóttir et al., 2016; Gudmundsson
et al., 2016]. See text for discussion of numbered labels and supporting information Movie S1 for time sequence animation.

Geophysical Research Letters 10.1002/2017GL074749

HUDSON ET AL. DEEP CRUSTAL MELT PLUMBING 8790



insufficient fluid pressures to drive this; or that there is no sill formation, which may be required for the pres-
sure of melt to build; or perhaps melt might instead ascend aseismically via buoyant diapirs at these depths
[Rubin, 1993]. An absence of sill formation at depths below 20–25 km could be caused by insufficient rigidity
contrasts or by insufficient melt temperature and flow rates that control the formation of sills when solidifica-
tion of melt is considered [Kavanagh et al., 2006; Chanceaux and Menand, 2014].

One intriguing observation is that the spread of seismicity with depth is relatively continuous, within the
depth uncertainty, likely indicating a continuous, linked vertical conduit. Elsewhere along the northern volca-
nic rift of Iceland, there are multiple pockets of seismicity caused by melt within the deep crust [e.g., Key et al.,
2011; Greenfield and White, 2015]. However, these are isolated pockets of activity that are interpreted as sills,
unlike the vertical melt conduit extending through the crust that we image here.

Although deep seismic activity is confined to the SE outer flank of Bárðarbunga, this lateral offset is not an
unusual observation [White and McCausland, 2016]. Other volcanoes such as Askja (Iceland) [Greenfield and
White, 2015], Kilauea (Hawaii) [Wright and Klein, 2006; Bell and Kilburn, 2012; Wech and Thelen, 2015; Lin and
Okubo, 2016], Mount St Helens (US) [Kiser et al., 2016], and El Hierro (Canary Islands) [Klügel et al., 2015] also
have deep seismicity with similar lateral offsets from the associated volcanoes.

In some other volcanoes, there is evidence of laterally offset melt plumbing that leads to magma bypassing
the main caldera melt source, indicated by petrological constraints. For example, in Krafla lavas erupted to
the north of the caldera during the 1975–84 eruptions exhibit marked petrological and geochemical differ-
ences from those lavas erupted within the caldera, suggesting that they bypassed the magma reservoir
under the caldera [Gronvold et al., 2008]. Likewise, in the hot spot volcano of Kilauea, primitive compositions
show that magma may bypass the summit storage region on its way to the eruption site [Vinet and Higgins,
2010]. Our seismic results may capture an instance of some melt bypassing the main caldera storage region.

4.3. Interactions of Deep Melt Plumbing With Shallow Volcanic Systems

Sparse seismicity is also observed in the shallow, brittle crust at ~5–7 km bsl, above the column of deep seis-
micity (Figure 1). There was no other seismicity in the shallow crust east of the Bárðarbunga caldera in the
period prior to the August 2014 dike injection (during and after which there was abundant seismicity along
the dike path), so we assume that this is related to the underlying deep column of seismicity. It is possible that
it is due to volatile release from the deeper melt triggering prestressed rupture in the brittle crust, as has been
interpreted above the Upptyppingar melt injection to the north [White et al., 2011]. However, we interpret
this predike shallow seismicity as indicating that at least a small volume of melt traveled up to the brittle crust
at ~6 km bsl (Figure 4, label 2) because several of the events are offset laterally toward the eventual location
of the dike, as would be expected for small volumes of melt moving laterally near the base of the brittle crust.

A speculative interpretation is that these small amounts of melt in the upper crust may have influenced the
dike propagation from Bárðarbunga in August 2014. This is near the location where the dike turned a 90° cor-
ner, from traveling southeast to northeast, on 16 August 2014 (64.6°N, �17.26°E, Figure 4a), approximately
along strike of the local rift zone. At this corner, even the initial dike tip propagation occurred aseismically
over a 4 km distance (Figure 4a, label 2 and supporting information Movie S1) and this section of the dike
remained aseismic throughout the eruption while melt passed through it. This contrasts with the intense seis-
micity along the rest of the dike path as the tip of the dike cracked its way forward (Figure 4, label 3).
However, as soon as the dike had propagated toward the northeast, the subsequent melt flow through it
was aseismic [Ágústsdóttir et al., 2016]. Therefore, the lack of seismicity as the dike propagated through this
aseismic corner (Figure 4, label 2) prompts the interpretation that at least a small amount of melt, or elevated
temperatures caused by melt fed through the deep column we map, was present in this region prior to the
dike propagation andmay also provide a reason for the abrupt change in direction of propagation of the dike
at this location.

It is perhaps surprising that if the deep earthquakes are caused by melt moving upward, they are not also
found directly beneath the Bárðarbunga caldera. However, this may be a consequence of the relatively
short period of observation of seismicity, since there are also no deep seismically active feeders currently
present under the other nearby hot spot volcanoes of Kverkfjöll and Grímsvötn. Or, perhaps most likely, if
the entire crust directly under the caldera is hotter with pervasive pockets of melt, then melt may move
through it aseismically. The seismic velocity of the upper crust under the hot spot volcanoes has markedly
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lower surface wave velocities than elsewhere in Iceland (0.5 km s�1 slower), indicating the presence
of pervasive melt or elevated temperatures [Green et al., 2017]. The deep column of seismicity we observe
may only represent relatively minor melt movement through cooler crust outside the caldera.
The presence of seismicity gives no indication of the volume of melt that may flow through this deep
subvertical feeder.

The abrupt decrease in seismicity at 6–7 km depth bsl under Bárðarbunga caldera provides an uppermost
depth bound on the main melt storage region (Figure 4, label 4). We have not found any seismicity under
Bárðarbunga caldera >7 km bsl (except for one single event at 19 km depth after the eruption), providing
a strong constraint on the likely upper limit of the melt storage region. However, the shallow
Bárðarbunga reservoir must have contained a significant volume of melt in order to feed the
1.9 ± 0.3 km3 Holuhraun intrusion and eruption [Gudmundsson et al., 2016]. The primary melt storage
region under Bárðarbunga is therefore likely to be shallower than the ~10.5–11 km bsl depth assumed
by Gudmundsson et al., 2016.

We believe that a shallower melt storage region still satisfies the geodetic, deformation, and petrologic con-
straints presented by Gudmundsson et al. [2016]. Geodetic modeling based on interferometric synthetic aper-
ture radar and GPS data constrains a Mogi pressure deflation source under the caldera to depths of ~6–10 km
bsl (8–12 kmbelow surface) [Gudmundsson et al., 2016].Gudmundsson et al. [2016] suggest that themelt source
lies at the bottom of this range, whereas our inferred melt source lies at the top of this range, so both models
are consistent with the deformation. Their choice of a deeper melt deflation source is based primarily on geo-
barometry, which indicates melt residence at pressures of 3.5–5.5 kbar (12–19 km depth below surface using
an average crustal density of 2800 kg/m3). Recentwork byHartley et al. [2017] indicates that themost probable
melt inclusion equilibration pressures lie between 2.5 to 4.2 kbar (corresponding to depths of 9–15 km below
surface), with the carriermelt equilibrating at 2.1 ± 0.7 kbar, ~7.5 kmdepth below surface (6 kmbsl). These geo-
barometry estimates are less precise than the seismicity control on depth but are consistent with ourmodel of
the main melt reservoir equilibrating at a depth of 6–7 km bsl, with crystals mixed in from underlying sills at
greater depths up to 13 km bsl. These observations are also consistent with those at the nearby volcano
Askja, where melt imaged by seismic tomography lies at a similar depth of 6 km bsl, with multiple deeper sills
under the volcano extending down to 20 km depth [Greenfield et al. 2016]. The adjacent hot spot volcano of
Grimsvötn has a melt region with its upper surface at an even shallower depth of ~3 km bsl [Alfaro et al.,
2007], while the Krafla magma chamber is similar with its top at ~3 km bsl [Brandsdóttir et al., 1997].

The major remaining question with our model is howmelt might feed this shallowmelt storage region under
Bárðarbunga volcano. It is probable that it simply rises vertically from the underlying mantle aseismically,
through a series of staging sills under the caldera (Figure 4b). When solidified, the stack of intrusive sills would
produce the relatively high-velocity core reported from beneath the Krafla caldera [Brandsdóttir et al., 1997],
with a magma chamber sitting at the top. However, if the column of seismicity southeast of the caldera is the
only or main melt feed route from the mantle, then the melt would have to migrate laterally along a sill at a
depth of ~10 km bsl. This corresponds to the top of the most intense column of seismicity, and a peak in
inferred depths from geobarometry, so it remains a possibility. However, since there is no seismicity or other
direct evidence for this putative sill, we believe that such a route for melt feeding the shallow Bárðarbunga
storage region is unlikely.

5. Conclusions

Persistent seismicity extending through the crust from 7 to 22 km depth bsl is observed before and after
an eruption of Bárðarbunga to the southeast of the caldera and is little affected by the eruption itself. The
seismicity is interpreted as caused by melt movement. The deep seismicity is laterally offset from the cen-
ter of Bárðarbunga’s caldera by ~12 km, indicating that melt can travel from depth at significant distances
from the near-surface volcanic system. Similar deep seismic activity laterally offset from the shallow volca-
nic system is observed at many other volcanoes. Furthermore, it suggests that there may be multiple seis-
mic and aseismic feeders for the melt rising through the crust beneath active volcanoes. It is therefore
important to monitor deep melt movement that feeds volcanoes at distances up to 20 km or more from
the main caldera, in order to understand better when a volcano might be receiving melt from depth and
hence more likely to erupt.

Geophysical Research Letters 10.1002/2017GL074749

HUDSON ET AL. DEEP CRUSTAL MELT PLUMBING 8792



References
Acocella, V., and M. Neri (2003), What makes flank eruptions? The 2001 Etna eruption and its possible triggering mechanisms, Bull. Volcanol.,

65(7), 517–529, doi:10.1007/s00445-003-0280-3.
Ágústsdóttir, T., J. Woods, T. Greenfield, R. G. Green, R. S. White, T. Winder, B. Brandsdóttir, S. Steinthórsson, and H. Soosalu (2016), Strike-slip

faulting during the 2014 Bárðarbunga-Holuhraundike intrusion, central Iceland,Geophys. Res. Lett., 43, 1495–1503, doi:10.1002/2015GL067423.
Alfaro, R., B. Brandsdóttir, D. P. Rowlands, R. S. White, and M. T. Gudmundsson (2007), Structure of the Grímsvötn central volcano under the

Vatnajökull icecap, Iceland, Geophys. J. Int., 168(2), 863–876, doi:10.1111/j.1365-246X.2006.03238.x.
Bell, A. F., and C. R. J. Kilburn (2012), Precursors to dyke-fed eruptions at basaltic volcanoes: Insights from patterns of volcano-tectonic

seismicity at Kilauea volcano, Hawaii, Bull. Volcanol., 74(2), 325–339, doi:10.1007/s00445-011-0519-3.
Brandsdóttir, B., and F. Pálsson (2014), Unrest within Bárðarbunga and Grímsvötn 1838-1903, Jökull, 64, 91–106.
Brandsdóttir, B., W. Menke, P. Einarsson, R. S. White, and R. K. Staples (1997), Faroe-Iceland ridge experiment 2. Crustal structure of the Krafla

central volcano, J. Geophys. Res., 102(96), 7867–7886, doi:10.1029/96JB03799.
Chanceaux, L., and T. Menand (2014), Solidification effects on sill formation: An experimental approach, Earth Planet. Sci. Lett., 403, 79–88,

doi:10.1016/j.epsl.2014.06.018.
Dahm, T. (2000), Numerical simulations of the propagation path and the arrest of fluid-filled fracture in the earth, Geophys. J. Int., 141,

623–638.
Darbyshire, F. A., I. T. Bjarnason, R. S. White, and Ó. G. Flóvenz (1998), Crustal structure above the Iceland mantle plume imaged by the

ICEMELT refraction profile, Geophys. J. Int., 135(3), 1131–1149, doi:10.1046/j.1365-246X.1998.00701.x.
Drew, J., R. S. White, F. Tilmann, and J. Tarasewicz (2013), Coalescencemicroseismic mapping, Geophys. J. Int., 195(3), 1773–1785, doi:10.1093/

gji/ggt331.
Einarsson, P., and K. Saemundsson (1987), Earthquake epicenters 1982–1985 and volcanic systems in Iceland: Upptok Jardskjalfta 1982–1985

Og Eldstodvakerfi a Islandi, Menningarsjodur.
Einarsson, P., B. Brandsdóttir, M. T. Gudmundsson, H. Björnsson, K. Grínvold, and F. Sigmundsson (1997), Center of the Iceland hotspot

experiences volcanic unrest, Eos, Trans. Am. Geophys. Union, 78(35), 369–375, doi:10.1029/97EO00237.
Font, Y., H. Kao, S. Lallemand, C. S. Liu, and L. Y. Chiao (2004), Hypocentre determination offshore of eastern Taiwan using the maximum

intersection method, Geophys. J. Int., 158(2), 655–675, doi:10.1111/j.1365-246X.2004.02317.x.
Gebrande, H., H. Miller, and P. Einarsson (1980), Seismic structure of Iceland along RRISP profile I, J. Geophys. Fur Geophys., 47(1–3), 239–249.
Green, R. G., T. Greenfield, and R. S. White (2015), Triggered earthquakes suppressed by an evolving stress shadow from a propagating dyke,

Nat. Geosci. Lett., 8, doi:10.1038/NGEO2491.
Green, R. G., K. F. Priestley, and R. S. White (2017), Ambient noise tomography reveals upper crustal structure of Icelandic rifts, Earth Planet.

Sci. Lett., 466, 20–31, doi:10.1016/j.epsl.2017.02.039.
Greenfield, T., and R. S. White (2015), Building Icelandic igneous crust by repeatedmelt injections, J. Geophys. Res. Solid Earth, 120, 7771–7788,

doi:10.1002/2015JB012009.
Greenfield, T., R. S. White, and S. Roecker (2016), The magmatic plumbing system of the Askja central volcano, Iceland as imaged by seismic

tomography, J. Geophys. Res. Solid Earth, 121, 2235–2257, doi:10.1002/2016JB013163.
Gronvold, K., S. A. Halldorsson, G. Sugurdsson, G. Sverrisdottir, and N. Oskarsson (2008), Isotopic systematics of magma movement in the

Krafla central volcano, north Iceland, Geochim. Cosmochim. Acta, 72, 331.
Gudmundsson, M. T., et al. (2016), Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow, Science,

353(6296), 262, doi:10.1126/science.aaf8988.sciencemag.org.
Hartley, M. E., E. Bali, S. A. Halldórsson, J. Maclennan, D. A. Neave, and D. W. Peate (2017), Holuhraun 2014–2015: Geochemical constraints on

magma storage and transport during a major volcano-tectonic episode, Jt. Assem. TSG-VMSG-BGA, Liverpool, 108. [Available from:
https://www.liverpool.ac.uk/media/livacuk/tsg-vmsg-bga/documents/Joint-Assembly_web-version.pdf.]

Jónsdóttir, K., et al. (2017), Bárðarbunga volcano - post-eruption trends following the Holuhraun eruption in 2014–2015, Geophys. Res. Abstr.,
19, 12,535.

Karlstrom, L., J. Dufek, and M. Manga (2009), Organization of volcanic plumbing through magmatic lensing by magma chambers and vol-
canic loads, J. Geophys. Res., 114, B10204, doi:10.1029/2009JB006339.

Kavanagh, J. L., T. Menand, and R. S. J. Sparks (2006), An experimental investigation of sill formation and propagation in layered elastic media,
Earth Planet. Sci. Lett., 245(3–4), 799–813, doi:10.1016/j.epsl.2006.03.025.

Key, J., R. S. White, H. Soosalu, and S. S. Jakobsdottir (2011), Multiple melt injection along a spreading segment at Askja, Iceland, Geophys. Res.
Lett., 38, L05301, doi:10.1029/2010GL046264.

Kiser, E., I. Palomeras, A. Levander, C. Zelt, S. Harder, B. Schmandt, S. Hansen, K. Creager, and C. Ulberg (2016), Magma reservoirs from the
upper crust to the Moho inferred from high-resolution Vp and vs models beneath mount St. Helens, Washington State, USA, Geology,
44(6), 1–4, doi:10.1130/G37591.1.

Klügel, A., M.-A. Longpré, L. García-Cañada, and J. Stix (2015), Deep intrusions, lateral magma transport and related uplift at ocean island
volcanoes, Earth Planet. Sci. Lett., 431, 140–149, doi:10.1016/j.epsl.2015.09.031.

Lin, G., and P. G. Okubo (2016), A large refined catalog of earthquake relocations and focal mechanisms for the island of Hawai’i and its
seismotectonic implications, J. Geophys. Res. Solid Earth, 121, 5031–5048, doi:10.1002/2016JB013042.

Lomax, A., and J. Virieux (2000), Probabilistic earthquake location in 3D and layered models, in Advances in Seismic Event Location, Ser. Mod.
Approaches Geophys., vol. 18, pp. 101–134, Springer, Dordrecht, Netherlands.

Pálmason, G. (1971), Crustal Structure of Iceland from Explosion Seismology, p. 187, Prentsmidjan Leiftur, Reykjavik.
Power, J. A., S. D. Stihler, B. A. Chouet, M. M. Haney, and D. M. Ketner (2013), Seismic observations of redoubt volcano, Alaska: 1989–2010 and

a conceptual model of the Redoubt magmatic system, J. Volcanol. Geotherm. Res., 259, 31–44, doi:10.1016/j.jvolgeores.2012.09.014.
Pugh, D. J., R. S. White, and P. A. F. Christie (2016), A Bayesian method for microseismic source inversion, Geophys. J. Int., 206(2), 1009–1038,

doi:10.1093/gji/ggw186.
Rubin, A. M. (1993), Dikes vs. diapirs in viscoelastic rock, Earth Planet. Sci. Lett., 117(3–4), 653–670, doi:10.1016/0012-821X(93)90109-M.
Shelly, D. R., and D. P. Hill (2011), Migrating swarms of brittle-failure earthquakes in the lower crust beneath Mammoth Mountain, California,

Geophys. Res. Lett., 38, L20307, doi:10.1029/2011GL049336.
Shelly, D. R., T. Taira, S. G. Prejean, D. P. Hill, and D. S. Dreger (2015), Fluid-faulting interactions: Fracture-mesh and fault-valve behavior in the

February 2014 Mammoth Mountain, California, earthquake swarm, Geophys. Res. Lett., 42, 5803–5812, doi:10.1002/2015GL064325.
Sigmundsson, F., et al. (2015), Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland, Nature, 517(7533),

191–195, doi:10.1038/nature14111.

Geophysical Research Letters 10.1002/2017GL074749

HUDSON ET AL. DEEP CRUSTAL MELT PLUMBING 8793

Acknowledgments
Seismometers were borrowed from the
Natural Environment Research Council
(NERC) SEIS-UK (loans 968 and 1022)
and the NERC British Antarctic Survey.
Funding was by research grants from
the NERC and the European
Community’s Seventh Framework
Program grant 308377 (Project
FUTUREVOLC), and a number of gradu-
ate studentships from the NERC. We
thank Sveinbjörn Steinthórsson, Heidi
Soosalu, Ágúst Þór Gunnlaugsson,
Magnús Tumi Gudmundsson, Finnur
Pálsson, the Icelandic Glaciological
Society, and many others who have
assisted with fieldwork in Iceland. We
thank Jonathon Smith for contributions
to the supporting information. Margaret
Hartley kindly provided details of her
geochemical analyses of Holuhraun
lavas in advance of publication. The
Icelandic Meteorological Office, Chris
Bean (Dublin Institute for Advanced
Studies) and the British Geological
Survey kindly provided additional data
from seismometers in northeast Iceland;
data delivery from IMO seismic data-
base 20151001/01. Hypocenter loca-
tions of deep events are listed in Table
S2, along with phase information for
each event (Table S3) and station loca-
tions (Table S4). Seismic waveform data
are deposited in the SeisUK archive. We
thank David Hill and an anonymous
reviewer for contributions that helped
improve the manuscript. Department of
Earth Sciences, University of Cambridge,
contribution ESC4000.

https://doi.org/10.1007/s00445-003-0280-3
https://doi.org/10.1002/2015GL067423
https://doi.org/10.1111/j.1365-246X.2006.03238.x
https://doi.org/10.1007/s00445-011-0519-3
https://doi.org/10.1029/96JB03799
https://doi.org/10.1016/j.epsl.2014.06.018
https://doi.org/10.1046/j.1365-246X.1998.00701.x
https://doi.org/10.1093/gji/ggt331
https://doi.org/10.1093/gji/ggt331
https://doi.org/10.1029/97EO00237
https://doi.org/10.1111/j.1365-246X.2004.02317.x
https://doi.org/10.1038/NGEO2491
https://doi.org/10.1016/j.epsl.2017.02.039
https://doi.org/10.1002/2015JB012009
https://doi.org/10.1002/2016JB013163
https://doi.org/10.1126/science.aaf8988.sciencemag.org
https://www.liverpool.ac.uk/media/livacuk/tsg-vmsg-bga/documents/Joint-Assembly_web-version.pdf
https://doi.org/10.1029/2009JB006339
https://doi.org/10.1016/j.epsl.2006.03.025
https://doi.org/10.1029/2010GL046264
https://doi.org/10.1130/G37591.1
https://doi.org/10.1016/j.epsl.2015.09.031
https://doi.org/10.1002/2016JB013042
https://doi.org/10.1016/j.jvolgeores.2012.09.014
https://doi.org/10.1093/gji/ggw186
https://doi.org/10.1016/0012-821X(93)90109-M
https://doi.org/10.1029/2011GL049336
https://doi.org/10.1002/2015GL064325
https://doi.org/10.1038/nature14111


Tape, W., and C. Tape (2012), A geometric setting formoment tensors, Geophys. J. Int., 190(1), 476–498, doi:10.1111/j.1365-246X.2012.05491.x.
Tarasewicz, J., B. Brandsdottir, R. S. White, M. Hensch, and B. Thorbjarnardottir (2012), Using microearthquakes to track repeated magma

intrusions beneath the Eyjafjallajokull stratovolcano, Iceland, J. Geophys. Res., 117, B00C06, doi:10.1029/2011JB008751.
Vinet, N., andM. D. Higgins (2010), Magma solidification processes beneath Kilauea volcano, Hawaii: A quantitative textural and geochemical

study of the 1969–1974 Mauna Ulu Lavas, J. Petrol., 51(6), 1297–1332, doi:10.1093/petrology/egq020.
Waldhauser, F., and W. L. Ellsworth (2000), A double-difference earthquake location algorithm: Method and application to the Northern

Hayward Fault, California, Bull. Seismol. Soc. Am., 90(6), 1353–1368, doi:10.1785/0120000006.
Wech, A. G., and W. A. Thelen (2015), Linking magma transport structures at Kilauea volcano, Geophys. Res. Lett., 42, 7090–7097, doi:10.1002/

2015GL064869.
White, R., and W. McCausland (2016), Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions,

J. Volcanol. Geotherm. Res., 309, 139–155, doi:10.1016/j.jvolgeores.2015.10.020.
White, R., and D. McKenzie (1989), Magmatism at rift zones: The generation of volcanic continental margins and flood basalts, J. Geophys.

Res., 94(B6), 7685–7729, doi:10.1029/JB094iB06p07685.
White, R. S., J. Drew, H. R. Martens, J. Key, H. Soosalu, and S. S. Jakobsdottir (2011), Dynamics of dyke intrusion in the mid-crust of Iceland,

Earth Planet. Sci. Lett., 304(3–4), 300–312, doi:10.1016/j.epsl.2011.02.038.
Wright, T. L., and F. W. Klein (2006), Deepmagma transport at Kilauea volcano, Hawaii, Lithos, 87(1–2), 50–79, doi:10.1016/j.lithos.2005.05.004.

Geophysical Research Letters 10.1002/2017GL074749

HUDSON ET AL. DEEP CRUSTAL MELT PLUMBING 8794

https://doi.org/10.1111/j.1365-246X.2012.05491.x
https://doi.org/10.1029/2011JB008751
https://doi.org/10.1093/petrology/egq020
https://doi.org/10.1785/0120000006
https://doi.org/10.1002/2015GL064869
https://doi.org/10.1002/2015GL064869
https://doi.org/10.1016/j.jvolgeores.2015.10.020
https://doi.org/10.1029/JB094iB06p07685
https://doi.org/10.1016/j.epsl.2011.02.038
https://doi.org/10.1016/j.lithos.2005.05.004


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


