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Abstract 

Cellular microenvironments are an important area of study, and their 

implications with regard to development, tissue function, and disease, mean that 

they have particular relevance in tissue engineering. The development of tissue 

engineered therapeutics is underpinned by the understanding of how the cells 

exist in their natural environment. A fundamental lack of insight into the 

signalling mechanisms within microenvironments, due to in part a lack of 

appropriate technologies, has meant that the therapeutic potential of tissue 

engineering is limited. To this end, the development of a micropatterning 

technology that enables control over solute signalling dynamics on the micron 

scale has been investigated. 

A bespoke holographic optical tweezers (HOTs) system was used to precisely 

position cells and controlled release vehicles into three-dimensional 

arrangements that resemble basic cellular micro-architectures. Via optical 

manipulation, release vehicles could be patterned to create solute release patterns 

to mimic signalling events in vitro. 

A proof of concept was established to demonstrate fluorophore release from 

microparticles positioned with high precision, into previously unobtainable 

micron-scale patterns. Such developments required optimisation of the system 

and protocols, for use with cell and microparticle manipulation and, creating a 

tool-set suitable for address unsolved biological questions. 

Biological investigations were completed to demonstrate how the HOTs can be 

used to control zonal cell differentiation and migration. These processes are 
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paramount to cell microenvironment function, and this study has shown that the 

HOTs patterning setup is capable of achieving such signalling models in vitro. 

Herein is presented compelling evidence that optically manipulated release 

sources can achieve new levels of precision over signalling dynamics, over the 

length scales suitable for even the smallest cell microenvironments.  

It is hoped that through the better in vitro modelling of such cellular 

microenvironments and other signalling events, investigators will be able to 

elucidate new mechanisms through which cells proliferate and function. 
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1. Introduction 

1.1 General introduction 

This thesis details the development of a micropatterning tool-set capable of 

fabricating complex cell models. Furthermore, the thesis explores the many 

applications of such a technology, demonstrating its benefits to the fields of 

tissue engineering and stem cell research. This chapter serves to discuss the 

current literature of relevance to this thesis, explaining how this project fits into 

the wider research effort.  

1.2 Tissue engineering 

Tissue engineering and stem cell research comprise the broader field of 

regenerative medicine 1. Through the combination of engineering, materials 

science, and cell biology, tissue engineering was born. With a broad set of aims, 

including the development of functional biological analogues for replacing 

damaged tissues, and to restore, maintain or improve tissue function 2,3.  

The concept of tissue engineering was first conceived in 1933, when it was 

shown that murine tumour cells could survive on a biocompatible polymer 

membrane, be implanted into a chick embryo and proliferate 4. Almost 50 years 

later, and the fabrication of artificial skin was demonstrated. Through the seeding 

of fibroblasts onto collagen scaffolds, a treatment for extensive burn injury was 

developed 5. The use of stem cells to regenerate tissues and organs through 

implantation of cell-laden matrices predominates the current goals of tissue 
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engineering 6,7.The progress of various tissue engineering technologies is 

comprehensively reviewed by Kim and Evans (2005) 8. 

It has, however, become increasingly evident that the organisation of cells, stem 

cells in particular, within these tissue-engineered architectures is more complex 

than previously thought. Thus, further basic research is required to understand 

how these cells function in their native environment. Without such research, the 

therapeutic potential of tissue engineering is limited. 

1.3 Stem cell research 

The current definition of a stem cell is any cell that has the capacity for self-

renewal, and the ability to differentiate into several cell types; however, this 

working definition also recognises the important aspects of clonality and potency 

specifically associated with such cells 9. Stem cells have an integral role in 

development from the very beginning of embryogenesis, and found in the inner 

cell mass of most eutherian organisms 10 are the embryonic stem (ES) cells 11 

(Figure 1.1).  

1.3.1 Embryonic stem cells 

ES cells are termed ‘pluripotent’, able to differentiate into all of the somatic cells 

types from the three primary germ layers (endoderm, mesoderm, and ectoderm) 

12. These pluripotent cells are observed after the development of the blastocyst 

from the ‘totipotent’ morula, able to differentiate into all of the somatic and 

placental cells, and it is well-reported that ES cells play an integral part in 

embryogenesis. The blastocyst is made up of three main architectures, the 
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trophoblast, blastocoel, and ES-cell-composed inner cell mass (Figure 1.1). 

Human ES cells are commonly used in embryological research as they offer an 

in vitro model of development where direct in vivo experiments would not be 

possible due to ethical considerations 13.  

ES cells are isolated from pre-implantation embryos, and then cultured to the 

blastocyst stage of development 14. The isolation process often results in the 

destruction of the embryo, however, recent developments have reduced the 

incidence of embryo damage 15. In the natural embryonic development, there are 

many interactions involved in maintaining pluripotency that are highly complex, 

to replicate this suppression of differentiation in vitro, leukaemia inhibitory 

factor (LIF) can be used. LIF forms a heterodimer between the LIF receptor and 

gp130, and, through the Janus kinase/signal transducers and activators of 

transcription (JAK/STAT) pathway, pluripotency is maintained 16. Both murine 

and human ES cells can divide many times in culture so long as they retain their 

pluripotency 17, pluripotency being identified by the presentation of cell surface 

markers Oct-3/4, Sox2, and NANOG18. 
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Figure 1.1 Embryonic stem cell and embryonic development 

Diagrammatic representation of the formation of the compacted morula from a zygote (A), and 

the development of pluripotent embryonic stem cells up until Gastrulation. Then as pluripotency 

decreases and cells begin differentiating through the stages of embryonic development leading 

to the formation of the three primary germs layers. Images are not to scale.   
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1.3.2 Somatic stem cells 

Somatic stem (SS) cells do not possess pluripotency, but are instead multipotent, 

meaning that they can differentiate into the cell types of the tissue from which 

they are isolated. Examples include mesenchymal, haematopoietic, and 

umbilical cord stem cells. SS cells can be directly derived from an individual, 

and then expanded for autologous re-implantation 19. It is this property that 

makes them an attractive area of research for the development of tissue-

engineered therapies. Furthermore, these cells are less ethically controversial 

than ES cells, as their extraction does not lead to the destruction to the organism 

from which they are derived.  

As SS cells have been used for clinical applications for many years, the best-

known example being the use of bone marrow for transplantation. Within the 

bone marrow lies the haematopoietic stem cells that are capable of differentiating 

into both the myeloid and lymphoid lineages that make up the blood 20. Another 

widely studied SS cell type is the mesenchymal stem cell, shown in vitro to 

differentiate into multiple mesodermal lineages, including myocytes, neurones, 

chondrocytes, osteoblasts, and adipocytes 21,22. Mesenchymal stem cells have 

been investigated for their capacity to regenerate bone and other tissues, but, like 

other SS cells, their clinical applications are heavily restricted 23. 

1.3.3 Induced pluripotent stem cells 

Although in nature adult stem cells cannot revert to a pluripotent state, they can 

be regenerated by nuclear reprogramming. This is the technique that alters gene 

activity by the introduction of nuclei/genes into a cell’s cytoplasmic environment 
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24. Induced pluripotent stem (iPS) cells were first created by the retroviral 

delivery of five key genes, Oct-3/4, Klf4, Sox2, and c-Myc, into mouse 

fibroblasts 25. This technique was later developed through the selection for 

Nanog that left ‘germ line competent’ iPS cells 26,27,28. Soon after the generation 

of mouse iPS cells, human iPS cells were formed 29. Again coming out of Kyoto 

University, this discovery offered new opportunities for studying various 

disorders (e.g. blood disorders and neurodegenerative conditions) using these 

cells derived from donors afflicted with these disorders 30,31. 

1.3.4 Stem cell niche 

All stem cells are found within a specific ‘niche’, the microenvironment that 

provides instructive cues for differentiation and regulation of quiescence. Simple 

experiments co-culturing ES cells with bone marrow stromal cells have resulted 

in increased levels of differentiation to haematopoietic stem cells 32, thus 

demonstrating the importance of the environment around stem cells (Figure 1.2). 

As well as other cell types having an effect upon the niche, diffusible signals of 

growth factors and morphogens play an integral role in regulating self-renewal 

and cell fate commitment in adult stem cells. These signals can be released in a 

paracrine manner from cells within the niche, by the juxtacrine route of cell-

contact-dependent signalling, and by the autocrine signal through which the cell 

signals to itself. Signals from outside the niche are also of the utmost importance; 

paracrine signals mediated by cytokines, pH, ATP, metabolites, etc., associated 

with tissue damage and other stresses, are necessary for triggering specific 

differentiation when new cells are required. Using the aforementioned signalling 
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mechanisms, the stem cell niche and its diverse components are able to influence 

stem cell behaviour.  

The extracellular matrix (ECM) is also an important part of most cell niches; it 

is well-known that integrins, major receptors that permit communication 

between the ECM and cells, are involved extensively in crosstalk with the 

growth factors and morphogens mentioned above 33. The ECM has an integral 

role in stem cell determination via cell adhesion 34, and so plays an important 

part in the development and maintenance of the niche. The components of almost 

all ECMs comprise proteoglycans, non-proteoglycan polysaccharides, fibres, 

and other glycoproteins. However, the complexity and integration of these 

components is still far from being understood 35. 

Diffusible signals are of great importance for the development of certain niches, 

and represent, in the model organism Drosophila melanogaster, highly active 

areas of research. The development of the germline stem cell (GSC) niche that 

forms within a well-defined environment is an excellent model for studying 

niche development 36. Early work demonstrated how somatic cells, like the cyst 

progenitor cells found within the Drosophila GSC niche, produce cyst cells that 

‘nurture’ the GSCs within the normally functioning niche 37. Diffusible TGF-β 

signalling is also important in the upkeep and development of this niche 38,39, 

showing just how multifactorial niche development can be. Mammalian 

organisms rely upon diffusible signalling just as much, in the human intestine, 

highly specialised villi are required to increase surface area for absorption of 

digested foods. Their complex structures and cell organisation are formed and 

maintained by stem cells residing in an intestinal crypt that provides the 

specialised cell types required during intestinal lining homeostasis. Cellular 
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organisation and development within a crypt relies heavily upon diffusible 

signals, with Wnt and Notch signalling providing a proliferative signal 40 and 

BMP and TGF-β providing the differentiative compartment 41. Through dynamic 

signalling events involving these factors, adult stem cells in the bottom of the 

crypt proliferate as transit amplifying cells which then undergo differentiation 

into paneth, goblet, and entero-endocrine cells that make up the various types of 

villi along the intestinal tract 42. Other important signalling molecules include; 

Hedgehog, which is capable of transmitting information over several cell 

diameters and has been extensively studied for its role in the formation of the 

wing imaginal disc 43. Wnt/Wg ligands, that act over long range and are known 

to be regulated in a spatiotemporal manner to elucidate specific developmental 

patterning events 44. RTK growth factors, including Epidermal Growth Factor 

(EGF), Fibroblast Growth Factor (FGF), and Platelet-derived Growth Factor 

(PDGF) that are required for morphogenesis, growth and patterning 45. 
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Figure 1.2 Stem cell niche factors 

Schematic showing the various factors (Physical, ECM, Inflammatory, Secreted, cell-cell, other 

factors) and examples of which, that interact in the dynamic stem cell niche. Adapted from Lane 

et al. (2014) 46. 
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1.4 In vitro cell modelling  

Mammalian cell culture involves the dispersal of tissues into single cells or 

aggregates, grown in conditions that resemble the natural conditions of the body. 

The growth of cells in this way began in glass bottles or plates, hence the term 

‘in vitro’ was coined from the Latin ‘vitrum’, meaning glass. However, even 

today, cell culture methods are yet to mimic exactly the natural conditions of a 

living organism, or ‘in vivo’, from the Latin ‘vivere’, to live. As such, all cell 

culture systems, basic to advanced, are termed ‘model systems’ 47. In vitro cell 

modelling has provided investigators with a means to assess cellular function, 

development, and disease progression. 

Two-dimensional (2D) cell culture, or monolayer culture, has been widely used 

to investigate many different biological functions. Such culture models are 

generally easy and convenient to set-up, and yield highly viable cells, however, 

by definition they lack the three-dimensional (3D) microenvironment of intact 

tissues. The use of 2D culture has been reported to provide misleading and 

nonpredictive data for in vivo responses 48–50, and as such, 3D micropatterning 

technologies are highly sought after. Monolayer culture models have been used 

with great success, furthering understanding of the natural cell environment, 

however, this introduction mainly focusses on more advanced 3D cell culture 

models.  

1.4.1 Disease modelling 

The development of tissue-engineered models of disease shows great promise. 

Great advances have been made through the development of animal disease 
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models, including transgenic mice that to some degree recapitulate human 

conditions. However, it remains difficult to isolate the cellular or molecular 

aetiology of a disease in animal models. This challenge has led to an effort from 

tissue engineers to develop better in vitro models of disease. 

One such example of a successful cell-based disease model is the fabrication of 

diseased cardiac stem cell assays to overcome substantial differences between 

human and animal genomes. A successful model for the inherited 

cardiomyopathy long QT syndrome, characterised by a prolonged QT interval 

and delayed repolarisation resulting in a lethal polymorphic ventricular 

tachycardia. Human iPS cells were generated from dermal fibroblasts obtained 

from a long QT syndrome sufferer. iPS-derived cardiomyocytes were developed 

that presented with the same prolonged action potential as seen with the disease 

51. This model has since been employed to assess drugs that may be suitable as 

treatments for the disease. 

Whilst these cell models hold great promise, and are advantageous over animal 

models, they are still subject to limitations. The iPS-cell-derived cardiomyocytes 

are usually immature and not representative of those from adult cardiac muscle 

52, and the cell-based assays do not fully reflect the environmental and epigenetic 

factors of the disease. A solution to this is the construction of cardiac tissues that 

mimic the native microenvironment. Tissue engineers have demonstrated the 

construction of aligned cardiac muscle cells that better replicate the structure and 

function observed on the tissue level 53,54. Such an appreciation of the single cell 

organisation and the environment around it is seen as the clear path to achieving 

successful in vitro disease models. Further analysis and review of the current 
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technologies involved in the development of better in vitro cell models for 

disease have been completed by Benam et al., 2015 55.  

1.4.2 Developmental biology 

Embryonic development is known to occur through highly complex and tightly 

regulated cell-cell and diffusible signalling interactions. One of the most 

commonly studied in vitro cell models for embryonic development is the 

embryoid body (EB). Named for their likeness to post-implantation embryos, the 

morphogenic events in EBs have been shown to bare close resemblance to 

multiple aspects of embryonic development. EBs have been shown to be able to 

form a primitive endoderm 56,57, exhibit epithelial to mesenchymal transition 58, 

and form all three primary germ layers 59,60. Furthermore, the process of mouse 

embryo cavitation has also been examined using EBs 61. 

EBs have been used as a unique tool to investigate developmental biology due 

to their mimicry of post-implantation embryos as discussed above. Furthermore, 

the establishment of this model has contributed to a reduction in the number of 

animal experiments required for pharmacological testing 62. Whilst much of the 

development made in the elucidation of embryogenesis was achieved by virtue 

of EB research, the limitations of EBs must be acknowledged. A phenomenon 

of EB formation that brings into question the use of EBs as in vitro models is the 

reported stochastic patterning and development that occurs during this process. 

The signalling environment within an EB is thought to lead to this chaotic 

development, and, as such, EB-based embryogenesis-like development requires 

further clarification. 
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A recent in vitro cell model breakthrough was the formation of organoids for a 

wide range of different tissues. The term organoid encompasses all 3D 

organotypic culture systems, said systems being derived from ES cells, iPS cells, 

cell lines and organ explants63. Unlike EBs, most organotypic culture relies upon 

artificial ECM and soluble factor supplementation to facilitate self-organisation 

into structures that resemble native tissues. Following the development of an 

intestinal organoid culture system, comprising matrigel supplemented with key 

endogenous niche signals (Wnt, Noggin and R-Spondin)64, many other 

organoids have been successfully developed. The discussion of these innovative 

in vitro model systems is not discussed here, but it is well reviewed by Fatehullah 

et al., 201663. 

1.5 Micropatterning 

In the biological world, patterns exist in a range of complexity; they form the 

building blocks of life itself65. Pattern formation, the generation of this complex 

ordering66, has been scrutinised by many scientists in the fields of molecular 

biology, tissue engineering, developmental biology, and other disciplines. 

Theoretical models have been constructed to explain the organising behaviours 

of biological systems67, however, there is still much to be learnt about how cells 

are organised into tissues during development and repair68. As was previously 

discussed, cells are organised within their niche by a variety of different signals, 

the combinations of these complex interactions can bring about pattern 

formation within the niche or throughout the tissue. Organised structures of 

stripes 69, waves 70, and perhaps of most interest, branching patterns can be 

formed 71. Branching patterns are essential in many areas of development, uteric 
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bud branching has been investigated; to engineer a functional kidney this 

branching pattern must be replicated exactly 72,73.  

Recreating pattern formation is a major goal for tissue engineers that are hoping 

to induce pattern organisation in regeneration. To reach this goal, it is necessary 

to understand how stem cells in certain patterns and topological configurations 

can develop into functional tissues. Research into the development of complex 

stem cell patterns is currently very popular, and there are a number of methods 

that can be utilised to create such patterns.  

There are a variety of different techniques used by researchers to investigate the 

importance of patterning in development and tissue engineering. These include 

micropipette aspiration, atomic force microscopy (AFM), lithography, stencils, 

microfluidics, magnetic tweezers, acoustic tweezers and optical tweezers. For 

the purpose of this literature review these methods are discussed in varying 

degrees of depth depending on how relevant they are to this project. More in-

depth comparisons of these techniques are available elsewhere 74. 

Micropipette aspiration involves using a glass pipette with a variably sized bore 

and tip, suction can be applied to the pipette to allow the manipulation of single 

cells by manually moving them from one position to another 75. This process can 

be highly time consuming and is technically demanding, however, recent work 

has incorporated a robotic system that can track and capture single cells 76. AFM 

works by running a sharp tip over a surface, any movements made by deflections 

from the surface are recorded by laser scanning analysis, thus showing the 

biophysical properties of the surface sample. AFM has many uses, commonly it 

is used as a microscope, but other tasks, including spectroscopic analysis, surface 
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modification, force measurements, and manipulation are also possible 77. Using 

an AFM probe, simple 2D movements can be achieved by pushing or pulling 

cells, however, more complex tasks like positioning or patterning require 

multiple probes. There are a variety of lithographic methods of patterning 

available at present, the premise for this method is that surfaces can be shaped 

into complex high-resolution patterns, such that cells then populate these 

modified areas in accordance with the commanded pattern 78. This technique 

would be good for patterning cells upon a variety of different surfaces; however, 

the patterns could only be manipulated in 2D. Microfluidics is a standalone 

method for cellular manipulation 79,80, but it can be used alongside lithographic 

techniques to provide nutrient-containing media for longer-term patterning, and 

also to introduce a 3D aspect to patterning in ECM biopolymers. The 

manipulation of cells via microfluidics systems is usually less precise than other 

patterning techniques, however, it does allow the formation of co-culture 

spheroids through hydrodynamic cellular patterning, an important technique for 

the manipulation of interactions between different cell types in 3D 80. 

Lithographical techniques have been used to alter the topography of surfaces to 

evaluate their effect on cells. Using controlled micro- and nano-topographies, it 

has been shown that cell migration, differentiation and even consistent genetic 

changes can be brought about by altering the material surface morphology 81. 

Using different topologies can be used to micropattern cell patterns by providing 

specific areas for the cells to adhere to. Using these techniques, many cells can 

be positioned onto micron-scale surface patterns, however, resolution is 

generally low and 2-dimensional due to random seeding of the cells onto these 

attachment areas 82. 
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Magnetic 83,84, acoustic 85,86, and optical tweezers 87 are all direct patterning 

techniques involving the positioning of cells into complex patterns or arrays. 

However, the forces they utilise to achieve this are quite different for each 

technique, consequently, different limitations and advantages apply to each. 

Therefore, the nature of the application determines which approach is most 

appropriate. Magnetic tweezers are an important tool for investigating the tensile 

strength or forces exerted by cells and molecules 88. Due to their simple design, 

magnetic tweezers are popular in the field of biophysics, and can be easily 

modified to fit the experiment. As the name suggests, they are equipped with 

magnets, and, guided by the use of microscopy, they can be used to manipulate 

cells and particles laden with magnetic beads 89. The major limitation associated 

with this simple setup is that patterns can only be made in 2D, and is thus 

incapable of the 3D patterning towards which modern tissue engineering is 

advancing. There are now magnetic tweezer systems that utilise the power of 

several electromagnets to crudely control cell/particle position in 3D space 88, 

however, the simplicity and robustness of the original system is lost with this 

development. Acoustic tweezers also are limited to 2D, however, if patterns are 

created within a gel or semi-solid structure, they can be stacked to create 3D 

configurations. Acoustic tweezers have the ability to create complex arrays of 

patterns comprised of many cells across a surface 90. They work by propagating 

a sound wave along a surface, generating leakage waves which cause pressure 

fluctuations in the medium 91. This in turn leads to the propagation of acoustic 

radiation forces that act upon the suspended cells or particles, moving them to 

areas of high pressure nodes 92. Acoustic tweezers are able to move objects 

seamlessly whilst only introducing a low level of mechanical vibration to the 
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suspension 93. The low level of disturbance that acoustic manipulation has been 

shown to evoke makes this method of patterning highly desirable for tissue 

engineering purposes. For cellular patterning, a high level of precision is 

required; acoustic tweezers achieve such a level, however, the optical tweezers 

are yet more precise. MacDonald et al. (2002) illustrated this precision with the 

manipulation of high-refractive-index silica particles using the optical tweezers. 

His team were able to create high-resolution 3D patterns whilst simultaneously 

rotating the whole silica particle structure; the team proffered the use of optical 

tweezers to create extended crystalline complex structures 94, previously 

requiring unimaginable meticulousness. Optical tweezers have also been used to 

pattern surfaces, an operation required for a variety of different applications, and 

the nanoscale fabrication of advanced materials requires the precision that 

optical tweezers offer. One such application is the production of templates for 

the 3D self-assembly of materials used in advanced optics. Colloidal particles, 

the building blocks for such material assemblies, can be patterned and affixed to 

surfaces using optical manipulation. 95 Advanced materials like colloidal crystals 

can be precisely formed in such a way 96. Guffey and Scherer (2010) used optical 

trapping to manipulate and pattern individual gold nanoparticles fastidiously, a 

great achievement in the field of nanotechnology. The group calculated that the 

patterning precision they achieved had less than 100nm of standard deviation, 

optical manipulation alone is capable of such precision 97. Optical tweezers have 

proved to be an effective tool for certain applications of micro-manipulation, and 

show promise as a biological patterning device.  
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1.6 Concentration gradients 

As previously discussed, soluble factor signalling and, in some cases, gradient 

formation is of known biological importance. In the field of stem cell research, 

solute signalling can direct processes such as cellular migration 98–101, stem cell 

differentiation 102,103, and cellular development 104,105. Soluble factor signalling 

within the in vivo environment is complex, and involves molecular recognition 

between soluble molecules and ECM components in addition to spatiotemporal 

interactions. This complexity is limiting to the in vivo study of soluble transport, 

and is therefore one of the many areas that benefits from the use of well-defined 

in vitro modelling platforms. A large proportion of modelling platforms are 

based around mimicking the native ECM with synthetic hydrogels. Investigators 

have developed means by which to study soluble transport and the formation of 

gradients within these hydrogels 106. 

Early attempts to understand the influence of soluble signalling on cells used 

platforms such as the Boyden chamber 107,108, Zigmond chamber 109, and Dunn 

chamber 110. These techniques permitted the observation of cellular behaviour in 

response to a linear concentration gradient, with gradient stability lasting for 

many hours. Whilst these methods were highly suitable for certain cellular 

applications, the study of in-vivo-like concentration gradients at the single-cell 

level was not possible. Recent developments towards this goal include the use 

of the agarose/petri dish and micro-aspirator to recreate chemical environments 

on much smaller scales 111. These different technologies have led to a much 

greater understanding of how cells respond to various signalling pathways, 
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however, they are yet to recreate the diminutive scale of relevance to many cell 

types and models 112. 

One technology that is more suitable for developing and maintaining stable 

micron-scale chemical gradients is microfluidics. Microfluidic devices are 

typically fabricated in polydimethylsiloxane (PDMS) using soft lithography 113 

to create a series of channels suitable for the receiving the injection of small 

volumes through inlets. The injection, typically controlled by syringe pumps, 

and channel design can be used in such a way as to mix signalling chemicals and 

buffers to yield controlled linear and non-linear gradients with spatial flexibility 

across a sample. Using microfluidics, cellular chemotaxis can be studied 

effectively and efficiently 114. Whilst the benefits of microfluidics are well-

documented, there still exists disadvantages of using the technique with cells. 

Flow within microfluidic devices generates shear stress that has been reported to 

adversely affect cell health, and this has limited the use of microfluidics for cell-

based experimentation 115. Recently, developments have been made to reduce 

the intensity of shear stress within microfluidic devices 116, and these are seen as 

the way forwards for cell-based uses of this technology. 

1.7 Microparticles - Controlled and localised release 

Controlled release microparticles are a well-established means by which to 

deliver encapsulated molecular cargo to cells and tissues 117. By altering the 

polymer formulation and encapsulation method employed, control over the 

microparticle release characteristics can be achieved. Microparticle 

physicochemical properties related to biocompatibility have been thoroughly 

investigated 117–120. 
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Microparticles have been used in vivo to deliver systemic drug therapies in the 

case of certain cancer treatments. In one case, the therapeutic molecule, retinoic 

acid, was encapsulated into polymer microparticles subsequently administered 

to mice with head-and-neck tumours. Tumour volume was later measured and 

compared to that of a control group, showing the local delivery of retinoic acid 

to have led to a 53% reduction in tumour volume121.  

Various in situ tissue engineering applications122,123 have utilised microparticles 

to promote cell survival in vivo by providing a temporary substrate for cell 

adhesion and locally delivering morphogens 124–126. Those involved in these 

successful studies herald microparticles as a suitable technology for delivering 

instructive cues and signalling molecules to their immediate vicinity. Perhaps 

they could be used in a similar manner, to mimic autocrine signalling and 

influence cellular differentiation. 

1.8 Optical manipulation 

In the early 1970s, a new field of laser-based optical trapping was born; its 

pioneer was Arthur Ashkin of the AT&T Bell Laboratories. Ashkin showed that 

‘optical forces’ could displace and levitate dielectric particles at the micron scale 

127, and he developed the ‘optical levitation trap’ 128 to demonstrate this. He went 

on to develop 3D traps based on counter-propagating laser beams, and then the 

single-beam gradient optical trap, or ‘optical tweezers’ as they are now known, 

capable of trapping particles of 25 nm in diameter 87. He employed these optical 

tweezers in a wide range of experiments, including the manipulation of live 

bacteria and viruses 129,130,131.  
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In order to describe the forces generated by these optical tweezers, it is first 

essential to understand how forces of light may be compared. Photons carry both 

energy and momentum; if these photons are absorbed by an object, the 

momentum from the photon beam of power P, is transferred to a reaction force 

F on the object, given by: 

𝐹 =
𝑛𝑃

𝑐
 

,where c is the speed of light and 𝑛 is the refractive index of the surrounding 

medium 87. 

The reaction force necessary allows the optical tweezers to trap high-refractive-

index objects (n particle < n media) 132, however, this reaction force creates traps 

for small objects (particles smaller than the applied wavelength of light) in a 

different manner to that observed with larger objects. When the trapped particle 

is much smaller than the laser wavelength, the conditions for Raleigh scattering 

are satisfied and the ‘small particles’ develop an electric dipole moment in 

response to the light’s electric field. The light’s electric field is most intense at 

the point of focus, and so the small object is drawn into the focal point and 

trapped by the Lorentz force due to the laser’s electric field gradient 133. The 

intricacies of trapping such small particles are discussed further by Molloy and 

Padgett134, in this literature review the trapping of larger objects is focussed on, 

those of the micron scale. 

If the object to be trapped is larger than the wavelength of the light, then 

refraction of the light rays is observed, causing a redirection of the momentum 

transferred to it by the photons. The resulting forces, or recoil, draws the object 
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towards the higher flux of particles at the point of focus 135. Two main forces 

that result from the transfer of energy and momentum from photons to an object 

are antagonistic to one another, and are termed the ‘gradient’ and ‘scattering’ 

forces. The scattering force occurs due to the absorption of momentum from 

photons in a beam and the resulting Fresnel reflections 136; it acts like a fan 

blowing the particles down the optical axis. In order to create a stable optical 

trap, the axial gradient force must dominate; this occurs when the beam separates 

quickly away from the focal point, the use of a microscope objective with a high 

numerical aperture that focuses the light as much as possible achieves this 137. 

These axial forces create the stable trap, and any small displacement of the object 

results in a ‘restoring force’ back towards the focal point 87,135. The stable optical 

trap created by the aforementioned forces is shown in the diagram below (Figure 

1.3). 
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Figure 1.3 Optical trapping 

Simple diagrammatic representation of the optical trapping of a dielectric particle, of greater size 

than the laser wavelength, the gradient forces allow xy-axis movement of the particle and the 

scattering force acts against gravity to permit z axis movement. Figure adapted from Gouesbet 

et al. (1999) 138.  
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The scattering force is known to be isotropic, its momentum is the same when 

measured in different directions, and the net momentum of the scattering force 

is transferred in the forward direction. This can be pictured on the quantum level, 

as photons from the laser beam are all travelling in the forward direction, then 

being scattered isotropically. By applying Newton’s second and third laws, the 

conservation of linear momentum can be deduced, by which the object must 

receive the photon’s original momentum thus applying a forward force upon the 

object 139. 

Optical tweezer development since 1986 87 has mainly been driven towards 

tailoring the original design to specific purposes in the fields of physics 140 and 

biology. However, in the early 1990s, a method for trapping multiple objects by 

the scanning of one single beam trap along a variable number of positions was 

developed 141. This research was of particular importance as it allowed for the 

manipulation of objects that were previously not trappable. The work of Koen 

Visscher prompted the development of the truly multi-trap-creating optical 

tweezers commonly used today. Eric Dufresne and David Grier from the 

University of Chicago developed this ‘hexadeca tweezer’ 142; optical tweezers 

which creates multiple traps from a single laser beam using diffractive optical 

elements. Their work demonstrated the first arrays of traps, and the formation of 

complex 3D patterns made from sub-micron silica spheres.  

The aforementioned diffractive optical elements can either be static and etched 

into glass, or in the reconfigurable form of a spatial light modulator 

(SLM)143,132,144, a phase hologram that can be controlled in real-time. Although 

there are various types of SLM, the most commonly used variety will be 

focussed on, the phase-only, liquid crystal, reflective SLM. Liquid crystal SLMs 
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are available as either electrically- 145 (Boulder), or optically- 146 (Hamamatsu) 

addressed, the character of the liquid crystal governs the properties of the SLM 

as a whole147. The SLM works by applying small well-defined voltages to an 

array of areas spread across the layer of liquid crystals, to which the liquid 

crystals respond by realigning themselves. This realignment changes their 

optical properties, allowing the controller to create selected phase shifts upon the 

incident beam that in turn control the beam angle and divergence 146. This feature 

defines the modern optical tweezers, known as holographic optical tweezers 

(HOTs), which permit the formation of complex patterns of cells and particles 

alike via optical manipulation. Such control of multiple elements makes the 

HOTs a promising tool for the future of niche biomimicry and the replication of 

developmental models. The configuration of the modern HOTs varies depending 

on their use, but it is generally based upon the schematic shown in Figure 1.4. 
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Figure 1.4 HOTs schematic 

The schematic above shows a simplified standard HOTs setup. The 1064 nm laser beam is 

widened through a beam telescope to illuminate the spatial light modulator. The diffracted beam 

of the first order passes through the Fourier lens. The back focal plane must be perpendicular to 

the optical axis which passes through the front and rear focal points. 
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1.9 Optical manipulation of cells 

The first optical manipulation of living cells was demonstrated by Ashkin in 1987, here, 

damage to the samples was clearly apparent 131. This led to the use of a longer 

wavelength Nd:YAG laser to avoid such short wavelength induced damage 130,131, and 

later biological experiments used a similar laser source. There have been a variety of 

experiments using the ‘long wavelength’ 1064 nm infrared laser to test the viability of 

biological material. Early Escherichia coli experiments tested the laser’s effect with up 

to 3 W of power from source. It was discovered that the longer wavelength lasers (1064 

nm) caused far less thermal damage to biological objects compared to the 

aforementioned shorter wavelength sources130. Further viability studies, with E. coli 

encapsulated within a gelatin structure, showed the effect of optical manipulation upon 

bacteria using 200 mW for 10 minutes, then 100 mW for a further hour. Their results 

showed that a small number of the bacteria were damaged (qualitatively shown via 

propidium iodide staining), however, the majority of the bacteria could be recovered 

from the structure and cultured148. Methods of reducing the exposure of the living cells 

to the laser have been suggested; one such technique used optically-trapped objects to 

push cells. The premise was that the object being trapped, rather than the cells, would 

experience the laser energy, and could be used to manipulate the cells in a gentler 

manner 149. This group of researchers reported increased cell survival with the use of 

this indirect method compared to direct optical manipulation.  

From the current literature, it appears that the optical tweezers cause minimal, if any, 

damage to cells manipulated for short periods (~1 hour) 150. However, it remains to be 

seen what other effects might occur. The aforementioned studies of Adam Engler (2006) 

neatly demonstrated how surface elasticity affects stem cell differentiation. The effect 

pressure has upon osteogenesis has been well covered 151,152. 
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1.10 The Project 

1.10.1 Aims and objectives 

This thesis will present the work completed towards three main aims. The first 

main aim was to develop the HOTs into a micropatterning setup suitable for 

creating micron-scale cell and release source patterns, the second was to 

demonstrate the HOTs-based positioning of localised release sources to mimic 

diffusible cell niche signalling, and the third was to use the HOTs patterning 

setup to investigate cellular differentiation and migration models. These three 

aspects were compiled to create an overarching aim: Establishment of a 

micropatterning tool to facilitate the creation of user-defined biology-

inspired microenvironments with directed control over the signalling 

dynamics. 

 Development of the HOTs micropatterning setup 

The HOTs represent the crux of this thesis, and as such, it was important to show 

that the HOTs can be used to position small cells and delivery sources in patterns 

that would be suitable for producing basic cell microenvironments.  

Specific objectives included: 

o Simple cell-based pattern formation 

o Optimisation of polymer microparticles for optical manipulation 

o Obtaining quick release microparticles 

o Cell and microparticle co-patterning 

o Stabilisation of HOTs-patterned arrangements 



Chapter 1  Introduction 

29 

 

 

 Positioning of release sources for localised release 

With the objective of having a micropatterning setup capable of mimicking cell 

niche solute signalling, it was necessary to show that the HOTs patterning setup 

was capable of achieving this with the previously developed quick release 

microparticles. 

Specific objectives included: 

o Assessing the mobility of fluorophores across hydrogels 

o Encapsulation of fluorophores  

o Proof of concept localised delivery of fluorophores 

o Demonstrating release and uptake of calcein AM 

o Zonal delivery to cell aggregates 

 

 Investigating differentiation and cellular migration with the HOTs 

patterning setup 

The final aim was based on the application of the developed technology from 

this thesis, whilst also developing the proof of concept of the HOTs patterning 

setup as a tool for patterning localised delivery sources. The third sub-objective 

was to investigate cellular differentiation and migration in response to zonally 

delivered signalling molecules. 

Cellular differentiation 

Specific objectives included: 
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o Encapsulation of retinoic acid into microparticles 

o Selection of a suitable biological response with which to test the 

HOTs patterning setup 

o Selection of highly-loaded retinoic acid microparticles for HOTs 

patterning 

o Demonstration of HOTs-controlled zonal differentiation of 

embryonic stem cell aggregates 

Cellular migration 

Specific objectives included: 

o Isolation and culture of chemotactically-active primary osteoblasts 

o Optimisation of ‘simple’ delivery sources HOTs patterning 

o Use of PDGF-BB-loaded agarose beads for directing osteoblast 

chemotaxis 

o Using advanced analysis techniques to quantify chemical 

concentrations following localised release 
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2. Materials and Methods 

This chapter provides a detailed description of the materials and fundamental 

methodologies that were employed in this thesis. Any additional details going 

beyond the general materials and methods will be discussed in the relevant 

chapters. 

Materials 

2.1 Cell Culture 

2.1.1 Cell Types 

2.1.1.1 Mouse Embryonic Stem Cells 

Feeder-free mouse embryonic stem (mES) cells (cell line – CGR8) at passage 8 

were predominately used for this project. They are a germ-line competent cell 

line derived from the inner cell mass of a 3.5 day male pre-implantation mouse 

embryo. Their initial establishment is described by Nichols et al. (1990) 153. 

2.1.1.2 Primary mouse calvarial cells 

Primary mouse calvarial cells were isolated as part of this project and this is 

detailed in Section 6.3.1 and Chapter 6. 
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2.1.2 Cell culture medium 

Relevant cell culture medium was prepared in a sterile environment, with all 

components being passed through a 0.22 µm sterile filter. Medium was then 

stored at 4oC and kept for up to two weeks. 

2.1.2.1 General cell culture medium 

mES cell passage and differentiation experiments used general cell culture 

medium, that comprised of: Dulbecco's Modified Eagle Medium (DMEM) with 

10% (v/v) FCS, Penicillin (100 U/mL) / streptomycin (100 µg/mL) (15070-063, 

Gibco, Invitrogen, UK), 1% L-glutamine (2 mM) and 100 µM 2-

Mercaptoethanol (50 mM) (31350-010, Gibco, Invitrogen, UK). 

2.1.2.2 mES cell culture medium 

General cell culture medium was supplemented with LIF (106 U/mL) (ESGRO® 

ESG1106, Millipore, UK) (mES medium); 500 U/mL LIF was added to CGR8 

mES cells for continuous culture maintaining pluripotency. 

2.1.2.3 Retinoic acid differentiation medium 

Serum starvation was completed to ‘prime’ mES cells for retinoic acid 

differentiation, it comprised mES cell-culture medium without the FCS 

component. 

2.1.2.4 mPC cell culture medium 

mPC cells were cultured in Minimum Essential Medium Alpha (αMEM, Lonza) 

with 10% (v/v) FCS, Penicillin (100 U/mL) / streptomycin (100 µg/mL) (15070-

063, Gibco, Invitrogen, UK), 1% L-glutamine (2 mM). 
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2.1.2.5 Cryopreservation medium 

Cells were prepared and stored in liquid nitrogen (-196°C to -210°C) in 

cryopreservation medium containing FCS and 10% (v/v) dimethyl sulfoxide 

(DMSO) (D5879, Sigma-Aldrich, UK).  

2.1.2.6 Aggregation Medium 

Aggregation media was used for Avidin Biotin crosslinking, and comprised; 

DMEM, 1% FCS, 2 mM L-glutamine and 1% Penicillin (100 U/mL) / 

streptomycin (100 µg/mL). 

2.2 Delivery Vehicles 

2.2.1 Polymer microparticles 

Microparticles were fabricated with the following materials and chemicals: 

Poly(lactic-co-glycolic acid) (PLGA) 50:50 DLG 4A, molecular weight 56 kDa 

(Lakeshore Biomaterials, USA) and Triblock copolymer PLGA-PEG-PLGA 

(Mw 7500) (TBIIF) were used for microparticle formulations used in this 

project. TBIIF was a kind gift from Omar Qutachi (University of Nottingham, 

UK) and it was synthesised as previously described120,154. Dichloromethane 

(DCM) (Fisher Scientific, UK) was used for a solvent and polyvinyl alcohol 

(PVA) (Sigma-Aldrich, UK) was used as an emulsifier.  

Polymer microparticles were used to encapsulate the following molecular 

cargos: Rhodamine-123 (R302, Thermo Fisher Scientific, UK), Calcein Green 

AM (C1430, Thermo Fisher Scientific, UK), Calcein Blue AM (C1429, Thermo 

Fisher Scientific, UK) and all-trans Retinoic acid (R2625, Sigma Aldrich, UK). 
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2.2.2 Agarose Beads 

Agarose beads (Agarose Bead Technoloiges, UK) were used for creating simple 

points of localised solute release sources, by soaking the dried beads in different 

solutions. Soak solutions used, included: Calcein green AM (C1430, Thermo 

Fisher Scientific, UK) and Platelet-derived growth factor BB (PDGF-BB) 

(P3201, Sigma Aldrich). 

2.3 Consumables 

General lab ware used for this project included: tissue culture flasks (T25, T75, 

T175 and T450 cm2) (Nunc, Thermo Fisher Scientific, UK), tissue-culture 

treated and non-tissue-culture treated plastic well-plates (Falcon, BD 

Biosciences, UK), filter tips (TipOne StarLab, UK), universal tubes (20 mL), 

Eppendorf tubes (Sarstedt Ltd. UK), glass bottom dishes (35 mm) (CELLView, 

Greiner bio-one, UK, plugged serological pipettes, sterile glass aspirators, assay 

plates (96-well) (Costar, Thermo Fisher Scientific, UK), petri dishes, cryo-vials 

and filters (0.22 µm) and parafilm (Thermo Fisher Scientific, UK). 

2.4 Additional Materials 

2.4.1 Chemicals 

All chemicals were purchased from Sigma-Aldrich, UK unless otherwise stated. 

The following chemicals were used throughout this project: formalin solution 

(HT501128), paraformaldehyde (PFA) (P6148), Triton X-100 (X100), bovine 

serum albumin (BSA), and polyHEMA (P3932). 
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2.4.2 Antibodies 

For immunocytochemistry analysis of cells, the following antibodies were used: 

Table 2.1 List of primary antibodies 

Antibody Host 

species 

Dilution Manufacturer 

Stra8 Rabbit 1:100 Abcam 

(ab49602) 

DAZL Rabbit 1:100 Abcam 

(ab34139) 

Anti-phospho-Histone 

H2A.X 

Rabbit 1:400 Cell Signalling 

Technology 

(#2577_ 

Brachyury Goat 1:100 R&D Systems 

(AF2085) 

Nestin Chicken 1:1000 Abcam 

(Ab81755) 

GATA-4 Rabbit 1:1000 Abcam 

(Ab63398) 

Oct-3/4 Rat 1:100 R&D Systems 

(MAB1759) 

Table 2.2 List of Secondary antibodies 

Antibody Host 

species 

Dilution Manufacturer 

 

Anti-Goat IgG Polyclonal, 

Alexa-Fluor 546 

(Ex/Em:556/573 nm) 

Donkey 1:200 Invitrogen 

(A11056) 

Anti-Rabbit IgG Polyclonal, 

Alexa-Fluor 488 

(Ex/Em:495/519 nm) 

Goat 1:200 Invitrogen 

(A11008) 

Anti-Rabbit IgG Polyclonal, 

Alexa-Fluor 546 

(Ex/Em:556/573 nm) 

Goat 1:200 Abcam 

(ab175471) 

Anti-Chicken IgG Polyclonal, 

Alexa-Fluor 546 

(Ex/Em:556/573 nm) 

Goat 1:200 Invitrogen 

(A11040) 

Anti-Rat IgG Polyclonal, Alexa-

Fluor 546 

(Ex/Em: 556/573 

Goat 1:200 Invitrogen 

(A11081) 
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Methods 

2.5 Cell Culture 

All cell culture was performed in a class II microbiological safety cabinet 

(Envair, UK) with high efficiency particulate air (HEPA) filters, and cell cultures 

were kept in 37oC humidified 5% CO2 containing incubators (Sanyo Electric, 

USA).  

2.5.1 Embryonic stem cells 

Embryonic stem cells were used for the bulk of this project, for the optimisation 

and proof of concept biological investigation. The mES cell line, CGR8, was 

used for this project and they were grown directly onto pre-treated gelatin coated 

T25 flasks. These ‘feeder-free’ cells were maintained in 5 mL of mES cell 

culture medium, with medium changes daily until 80-90% confluency was 

reached. For passage, the cells were detached with trypsin/EDTA solution at 

room temperature for 5 minutes. The trypsin/EDTA was then neutralised with 

General cell culture medium and centrifuged to form a cell pellet. The 

supernatant was aspirated and the pellet of cells resuspended in a volume of mES 

cell culture medium, determined by the appropriate cell seeding required. Fresh 

gelatin coated T25 flasks were then prepared, with excess gelatin solution being 

aspirated and the required cell density was seeded. Cells were passaged every 1-

2 days and splitting ratios of 1:2 or 1:4 were used depending on how quickly 

confluency needed to be reached. 



Chapter 2  Materials and Methods 

37 

 

2.5.2 Hanging Drop 

To create uniformly sized cell aggregates, mES cells were suspended in cell 

culture medium following detachment from the cell culture surface by 

trypsin/EDTA treatment. Cells were grown in mES medium with or without FCS 

dependent upon the application. So called, serum starved cells, were cultured for 

24 hours in serum-free mES medium. Cell suspensions were diluted to 2 x 104 

cells/mL in aggregation medium (Section 2.1.2.6) and then, using a multi-flow 

pipette (8 tips), 25 µL volumes were deposited onto the underside of a 60 mm 

petri dish lid to form 8 rows. The resulting 64 isolated cell suspension droplets 

were then inverted as the petri dish lid is placed on the petri dish containing PBS. 

This allows the droplets to hang from the lid, and the roughly 500 cell suspension 

to collect at the bottom of the droplet. Hanging droplets were cultured for 24 

hours and then the resulting cell aggregates were collected from the individual 

droplets.  

2.5.3 Surface modification of embryonic stem cells 

mES cells were engineered to increase aggregation by creating reactive residues 

on the mES cell surface. Naturally occurring sialic acid residues were 

biochemically altered through a periodate oxidation step to exhibit reactive 

aldehyde groups 155. Using biotin hydrazide, these groups are biotinylated 

facilitating the subsequent cross-linking with free or coated avidin protein. 
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2.5.4 Cryopreservation and reanimation 

Confluent cells were cryopreserved for storage by detaching the cells using 

trypsin/EDTA solution, neutralising in cell culture medium (cell type 

appropriate) and centrifugation. The cell supernatant was then aspirated and the 

cells of the pellet resuspended in cryopreservation medium at a density of 1 x 

106 cells/mL. 1mL cell suspension aliquots were then added to cryovials and 

added to a CoolCell cell freezing container. The cell freezing container, once 

full, was cooled to -80oC for 48 hours before containing cryovials could be 

transferred to liquid nitrogen storage tanks. 

Reanimation of cells stored in liquid nitrogen was accomplished by removing 

the required cell containing cryovials from the liquid nitrogen storage tank and 

then rapid thawing in a water bath at 37oC. Thawed cell suspensions were then 

transferred to 9 mL of cell culture medium (cell type appropriate) and 

centrifuged to pellet the cells. The DMSO containing supernatant was removed 

and replaced with fresh cell culture medium and seeded into the appropriate 

flasks. 

2.5.5 Isolation and culture of mouse primary calvarial cells 

Murine primary calvarial (mPC) cells have been well described in terms of their 

response to bone remodelling recruitment and osteogenic differentiation 

signalling 156,157. mPC cells were isolated from 1-to-3-day old CD-1 mice pups 

using a collagenase digestion technique. Neonatal mice calvariae were extracted 

and washed in PBS containing 100 U/mL penicillin, 25 µg/mL amphotericin B 

and 100 µg/mL streptomycin. A laminar flow hood (Envair, UK) and sterilised 
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dissection equipment were used to prevent any contamination of the isolated 

cells. 

The calvariae from each litter of pups were collected in antibiotic and antifungal 

containing PBS, and placed in a class II microbiological safety cabinet. The 

calvariae were then cut into many pieces using sterilised scissors to increase the 

total surface area for digestion. Digestion was completed with a solution of 1.4 

mg/mL collagenase IA and 0.5 mg/mL trypsin II S for 12 minutes on a roller 

(Stuart Roller Mixer SRT6) at 37oC. Cells released from the first round of 

digestion were discarded via aspiration. Fresh digestion solution was added and 

incubated for a further 12 minutes. This second round of digestion was also 

discarded via aspiration. The digestion process was repeated once again and the 

cell population was collected with an equal volume of FCS and placed on ice. 

Two further populations were collected in this manner and were pooled together. 

The pooled suspension was then filtered through a 70 µm cell strainer and 

centrifuged (MSE Mistral 1000, Scientific Laboratory Supplies Ltd, UK) for 5 

minutes at 300 g. The resulting cell pellet was resuspended in mPC medium 

containing Minimum Essential Medium Alpha (αMEM) (Lonza, UK) with 10% 

FCS, 100 U/mL penicillin, 100 µg/mL streptomycin and 2 mM L-glutamine. 

Cells were then seeded in T75 cm2 flasks (15 pups / T75 cm2 flask), and 

incubated at 37oC for 24 hours. At 24 hours, non-adherent haematopoietic cells 

were removed by washing twice with PBS before the medium change. For 

cryopreservation cells were grown to 80% confluence before standard 

cryopreservation (detailed in Section 2.5.4) at a density of 1x106 cells/mL. 
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2.5.6 Mouse primary calvarial cell culture 

Cells were reanimated from cryopreservation and maintained in cell culture 

flasks of varying size containing primary calvarial cell medium. Cells were 

passaged in the same manner previously described (Section 2.5.6), and used up 

to passage 3. 

2.5.7 Cell viability analysis 

To assess cell viability, the LIVE/DEAD® cell assay (Sigma, UK) was used The 

kit contains two probes; calcein AM and ethidium homodimer-1 (EthD-1) that 

recognise intracellular esterase activity and plasma membrane integrity, 

respectively. “Viable”, metabolically active cells are distinguished by the 

enzymatic conversion of the non-fluorescent calcein AM to florescent calcein 

via intracellular esterase activity. Calcein is a polyanionic dye available in a 

number of different fluorescing colours with different excitation and emission 

(exc/em) wavelengths; green (495/515), blue (322/445) and (577/590). Non-

viable cells are distinguished using EthD-1. EthD-1 enters cells with damaged 

membranes, fluorescing red; excitation/emission wavelength of 495 to 635 nm, 

upon binding to nucleic acids. Cell cultures were incubated in pre-warmed 

LIVE/DEAD® solution containing 2 μM calcein AM and 4 μM EthD-1 in 

medium (appropriate for cell type) for approximately 20 minutes at 37°C with 

5% CO2 and 95% humidity. Cells were then washed with PBS before fluorescent 

image analysis. LIVE/DEAD® solution was prepared fresh each use. 
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2.5.8 Cell proliferation 

To assess cellular proliferation, the CellTiter 96 AQ one solution cell 

proliferation assay was used. Changes in cell number could be assessed by 

colourimetric detection of soluble coloured formazan. Formazan, with an 

absorbance peak at 490 nm, is formed as a result of bio-reduced tetrazolium 

compound [3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium, inner salt] (MTS) with an electron coupling 

reagent phenazine ethosulfate (PES). Actively metabolising cells are able to 

achieve this bio-reduction through dehydrogenase enzymes producing NADPH 

or NADP. The formation of MTS product is directly proportional to the number 

of metabolically active cells. For experimental use, 100 µL MTS reagent was 

added to cell cultures containing 1000 µL cell culture medium and incubated for 

1 hour at 37oC. Following incubation, 100 µL of MTS/cell culture medium 

solution was transferred to 96-well plates, typically multiple repeat wells were 

used for each sample (n=6). Absorbance was then measured at 490nm using a 

Tecan i-control Infinite 200 plate reader (Tecan). To assess proliferation over 

time, time-points were taken and the mean absorbance for each sample was 

calculated, blank control readings were subtracted from experimental readings. 

2.5.9 Senescence β-Galactosidase Staining Kit (Cell Signalling Technology) 

This kit is designed to detect β-Galactosidase activity, a known characteristic of 

senescent cells that is not found in pre-senescent, quiescent or immortal cells 158. 

Growth media was removed from the cells to be tested and then washed with 

PBS. The washed cells were then fixed in 1x fixative solution (#11674) for 15 

minutes at room temperature, and then washed with PBS twice. β-Galactosidase 
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staining solution that contains the reactive substrate X-Gal was added to the 

fixed cells and incubated at 37oC in a dry incubator without CO2
 that might affect 

the pH levels. With the staining solution still on the plate, the cells were assessed 

under a microscope to identify a development of blue colour, the positive 

staining for β-Galactosidase. 

2.5.10 Sample fixation 

Cell fixation was essential for immunocytochemistry and other histology based 

analyses, to ensure that the cell morphology and internal cellular architecture are 

preserved. Formalin (10% v/v in dH20) was used for fixing monolayers for 

alizarin red staining, discussed in Chapter 6, but for the most part, 

paraformaldehyde (PFA) (3.7% w/v in PBS) was used. Use of both fixatives 

required medium removal from the cellular sample and three PBS washes. 

Formalin was then added to cell samples for at least 30 minutes to ensure 

complete fixation. Samples were then washed and then stored in PBS at 4oC. 

PFA, which is polymerised formaldehyde is a larger molecule than formalin, 

creating a strong and highly linked network. This allows for better permeability 

and it is why PFA is more suitable for immunocytochemistry, allowing better 

ingress of antibodies into cell aggregates and tissues. PFA was added to samples 

for 20 minutes so as to prevent over fixation of the sample. Again, PFA was 

removed and then the sample was washed in PBS before sample storage. 

2.6 Hydrogels and preparation 

Bovine (G1393, Sigma-Aldrich, UK) and porcine (G9136, Sigma-Aldrich, UK) 

gelatin were purchased as a lyophilised powder and then dissolved in dH2O at 



Chapter 2  Materials and Methods 

43 

 

80oC. The resulting pre-gel solutions were then incubated at 37oC until needed 

for cell encapsulation. For gelation, the pre-gel solutions were cooled to 4oC for 

at least 30 minutes to achieve complete gelation. 

Collagen type I, (high concentration) from rat tail (Corning, UK) was prepared 

on ice by diluting the stock concentration of 9 mg/mL with a solution of sterile 

10X PBS, sterile dH2O, and 1N NaOH to create the desired final working 

concentration. Collagen concentrations of 3 mg/mL were typically used, unless 

otherwise stated. The collagen solution was then incubated at 37oC to gel for 30 

minutes. 

BD Matrigel (Matrix Growth Factor Reduced) (BD Biosciences, Oxford, UK) 

was melted at 4oC on ice, and then diluted as required. The matrigel solution was 

then incubated at 37oC to gel for 15 minutes.  

Type IX Ultra Low Gelling Temperature (ULGT) agarose (Sigma-Aldrich, UK) 

was prepared in PBS at the required percentage by weight, and autoclaved at 

126oC for 20 minutes using a Prestige Medical Classic portable autoclave. The 

resulting solutions were stored at 37oC, and cooled to ~23oC for 5 minutes to 

allow for gelation before use. 

Gelatin methacrylate (GelMA) that was synthesised in-house by Pritesh Mistry 

and Elisabetta Prina (University of Nottingham, UK) as described previously 

159,160. Briefly, type A porcine skin gelatin was mixed at 10% (w/v) into PBS at 

60°C and stirred until fully dissolved. Methacrylic anhydride (Final 

concentration 8% v/v) was added until the target volume was reached at a rate 

of 0.5 mL/min to the gelatin solution under stirred conditions at 50 °C and 

allowed to react for 1 hour. The fraction of lysine groups reacted was modified 
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by varying the amount of MA present in the initial reaction mixture. Following 

a 5X dilution with additional warm (40 °C) PBS to stop the reaction, the mixture 

was dialysed against distilled water using 12–14 kDa cutoff dialysis tubing for 

1 week at 40 °C to remove salts and methacrylic acid. The solution was 

lyophilised for 1 week to generate a white porous foam and stored at −80 °C 

until further use.  

2.7 Immunocytochemistry 

To assess cell surface proteins and other antigens present within cells, 

immunocytochemistry approaches were employed so that subtle changes in 

cellular differentiation and development could be visualised by fluorescence 

microscopy. 

2.7.1 Sample preparation  

Fixed cell samples were permeabilised in 0.1% (w/v) Triton X-100 (diluted in 

PBS) for 40 minutes at room temperature for cell monolayers, and 90 minutes 

for cell aggregates. Following permeabilisation, samples were covered in 

blocking solution for 30 minutes at room temperature. The blocking solution 

comprised of 1% BSA (w/v) (in PBS) and 3% (v/v) serum from the animal in 

which the secondary antibody was raised. Thusly, the blocking step prevents 

non-specific binding of the secondary antibody. 

2.7.2 Antibodies 

The list of primary antibodies used in this project is detailed in Table 2.1. 

Antibodies were reconstituted in 1% BSA (w/v) (in PBS) as indicated in the 
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supplier’s guidelines. Following the removal of the blocking solution, the sample 

was washed in 1% BSA (w/v) (in PBS) with 3 5-minute washes and then samples 

were incubated with sufficient primary antibody solution to cover the entire 

sample, and left overnight at 4oC. 

Secondary antibodies used have been listed in Table 2.2 , all secondary 

antibodies used were conjugated to Alexa-Fluor molecules and diluted in 1% 

BSA (w/v) (in PBS) at concentrations indicated by the suppliers. Following 3 5 

minute washes in 1% BSA (w/v) (in PBS) to ensure complete removal of the 

unbound and excess primary antibody, the samples were incubated with the 

required secondary antibody at room temperature for 2 hours in the dark. 

Samples were then washed in 1% BSA (w/v) (in PBS), again 3 5 minute washes. 

2.7.3 Hoechst co-staining 

In some cases, counter staining of the samples was employed, for this, 5µg/mL 

Hoechst solution was added to the sample and incubated for 15 minutes at room 

temperature. Samples were either imaged immediately, or Prolong Gold 

Antifade mountant (Thermo Fisher Scientific, UK) was applied for sample 

storage. Samples were imaged within 48 hours if ProLong was used. 

2.8 Optical manipulation 

2.8.1 Technical setup and optical trapping procedure 

The HOTs used for this research is based on a Nd:YAG, solid state, infrared 

(1064 nm), 3 W maximum output, continuous wave, class 4 3.2 mm beam 

diameter laser adapted for biological applications (Laser Quantum). Optical 
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manipulation with multiple optical traps is achieved by expanding the laser beam 

so that it overfills the aperture of the spatial light modulator (SLM) chip 

(512x512 pixel – Ferroelectric liquid crystal (FLC) array) (Laser 2000). This is 

then coupled into the optical tweezer system by imaging the SLM on to the back 

aperture of a high numerical aperture oil immersion microscope objective lens 

(40x 1.3 NA Zeiss, Plan-NeoFluar). The resulting traps can then be focussed 

anywhere within the field of view, controlled by the computer controlled 

holograms generated by the SLM giving full axial and lateral control over the 

trapping beam161.The control of phase shift permits 3D control outside of the 

focal plane. 

Samples are then mounted onto a motorised stage (ASI, MS-2000) allowing for 

accurate control over a large area, including well-plates and large patterning 

gaskets. Illumination of the sample is provided by a LED and condenser, which 

can be imaged using a complementary metal–oxide–semiconductor (CMOS) 

camera connected to a computer. All laser light is reflected back into the 

objective by a polarising beam-splitter while transmitting the bright field 

illumination onto the sample, creating a visible image of the sample field of view 

(164x123µm).  

The hardware is simply controlled by the ‘red tweezers’162,163 control program 

(OpenGL engine and LABVIEW interface) (National Instruments) designed by 

M.Padgett’s group (University of Glasgow, UK). Figure 2.1 (below) shows a 

screenshot of this interface. 
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Figure 2.1 Screenshot of the Red Tweezers Labview interface and HOTs platform 

LabView software interface (A) for operating the HOTs pictured (B), optical traps, shown by 

red circles allow the simultaneous manipulation of multiple objects (mES cells pictured). The 

field of view is 164 x 123 µm. Figure created with help from Dr. Emily Britchford (University 

of Nottingham).  
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2.8.2 Environmental Chamber 

To facilitate live cell manipulation experiments on the HOTs, an insulated 

environmental chamber was built around the microscope stage of the HOTs. The 

chamber was supplied with a gas mixture of 5% CO2, 10% O2
 and 85% balanced 

N2 (BOC industrial gases, UK) to generate ‘incubator-like’ conditions. Ambient 

air temperature was maintained at 37oC using a thermostatic heater. A cooling 

loop containing mineral oil was passed around the microscope stage to enable 

sample temperature reduction for temperature-based cross-linking of hydrogels. 

2.8.3 Basic patterning gasket 

The basic patterning gasket comprised a coverslip glass bottomed 35mm culture 

dish, a polyHEMA coating, and medical grade silicone micro-wells 

(CultureWell chambers). The micro-wells were stuck to the polyHEMA coated 

glass with silicone adhesive to yield low volume single chambers for HOTs 

patterning.  

2.8.4 Multi-lobed patterning gasket 

Developments to the basic patterning gasket are discussed later in Chapter 4, but 

briefly, the use of a makerbot (replicator 2) 3D printer to form exclusion molds 

are described. Thermoplastic poly(lactic acid) (PLA) was extruded to fabricate 

the 3D mold for the multi-lobed gasket, the design was developed using 

TinkerCAD. 

The gasket was fabricated using a Sylgard 184 elastomer kit, briefly the two 

components were mixed in a 10:1 ratio and left to degas for an hour. The PLA 
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mold was then attached to the base of a petri dish with silicone adhesive and the 

degassed sylgard elastomer was poured around it. The petri dish was left on a 

flat surface at room temperature for at least 72 hours before the cross-linked 

elastomer could be removed. The resulting elastomer gasket was then attached 

to coverslips via electrostatic interaction to form the multi-lobed gasket. 

PolyHEMA could then be added to the gasket to create an anti-biofouling 

surface. 

2.8.5 Surface coatings 

PolyHEMA is biomaterial that has a number of attractive properties for use as a 

surface coating, it is optically transparent and acts as an anti-biofouling agent 

such that it prevents electrostatic interactions and cellular adhesion164,165. It is for 

these reasons that PolyHEMA was used to coat the coverslip glass slides used 

for patterning, the surface coating was initially applied by dip coating the glass 

coverslips into PolyHEMA solution (See Material Preparation) and then air dried 

for two hours prior to use. To prevent delamination of the PolyHEMA coated 

glass, coatings were not kept for longer than 24 hours prior to use. 

2.9 Microparticles 

2.9.1 Fabrication 

Microparticles were fabricated using both a single (Oil in Water) and double 

emulsion system (Water in Oil Water), whereby polymer and loaded molecule 

were dissolved in dichloromethane (DCM) 166. The polymer was a blend of 

triblock TBIIF with PLGA at a range of different ratios. 
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The fabrication of double emulsion PLGA microparticles was accomplished by 

using the water in oil in water emulsion method (W/O/W), previously described 

by Bible167. A PVA solution was prepared by adding 3g of PVA to 1 litre of 

distilled water and was then left overnight stirring gently. Before use, the PVA 

solution was filtered using a 0.2 µm Nalgene filter unit attached to a vacuum 

pump. 200 mL of the filtered PVA was then added to a 250 mL beaker. 

Microparticles were made with and without TBIIF copolymer, so the polymer 

composition varied depending on the microparticles required, this was weighed 

out to give a total of 1g into a screw top PTFE vial and the necessary volume of 

DCM was added using a glass pipette. The PTFE vial was then sealed, and 

placed on an orbital shaker for 30 minutes until the polymer was fully dissolved. 

If loading was required, this was prepared in a 100µL aliquot with HSA (100 

mg/mL); generally it was possible to load up to 5% protein/molecular cargo. The 

100µL aliquot was then added to the polymer/DCM mix and homogenised for 2 

minutes at a specific speed to yield certain microparticle sizes creating the 

primary emulsion. The primary emulsion was then added to the filtered PVA in 

the 250mL beaker and further homogenised for 2 minutes to form the secondary 

emulsion. The beaker was then carefully positioned on a magnetic stirrer plate, 

and a glass magnetic stirrer bar was added, the beaker was stirred at 300RPM 

for 4 hours in the fume hood to allow for the DCM to evaporate. The 

microparticles were then collected by centrifugation achieved by splitting the 

beaker contents evenly between four 50mL centrifuge tubes, spun at 3000 RPM 

for 3 minutes. The supernatant is removed and the particles were washed with 

50mL distilled water three times, the contents of the four tubes were then 

transferred to one tube and given a final spin. The supernatant was carefully 
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removed; the tube was covered in blue roll, snap frozen in liquid nitrogen and 

freeze dried (Edwards Modulyo D, IMA Edwards, UK) for 2 days. For long term 

storage, the particles were vacuum packed and kept frozen (-20oC). 

The Water in Oil (W/O) single emulsion method can be used if the active agent 

to be encapsulated in soluble in the oil phase. Unlike the W/O/W method, the 

polymer and agent to be encapsulated are dissolved in the required amount of 

DCM and added to 200 mL of 0.3% (w/v) PVA and homogenised at the required 

speed (4000 rpm unless otherwise stated) for 2 minutes. The resulting single 

emulsion is then treated in the same manner as previously described for W/O/W 

microparticles to form W/O microparticles. 

2.9.2 Sizing by Laser Diffraction 

To assess the size of the microparticle batches, a Coulter LS230 machine was 

used; this entailed suspending a small mass (~25 mg) of the particles in ultra-

pure water in the coulter cell. The particles were then stirred gently and an 

obscuration value was calculated, this is the percentage of light that is attenuated 

by the scattering and absorption of the suspended particles. An obscuration value 

between 8-12% was required for appropriate laser diffraction. When this was 

achieved, an expanded laser beam (750 nm) is passed through the microparticles 

scattering the light, the light was then focussed by a Fourier lens onto a detector 

array. An inversion algorithm using a Garnett optical model (Micromeritics 

ASAP 2000) was then employed to calculate the particle size distribution in the 

sample. 
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2.9.3 Scanning Electron Microscopy (SEM) 

In order to assess the morphology of the microparticles, SEM imaging was 

required. A dusting of microparticles was attached to an adhesive conductive 

carbon disk. The disks were then gold sputter coated for 5 minutes at 30 mA 

using a Balzers SCD 030 sputter coater. Electron microscopy was completed 

using a JSM 6060LV SEM with an accelerating voltage ranging from 10-15 kV, 

micrographs were taken at various magnifications depending upon the size of 

the particles being imaged. 

2.9.4 Encapsulation Efficiency of Microparticles 

Microparticles were made containing protein/molecules for delivery and to fully 

characterise them, a measure of the encapsulation efficiency was required. Using 

an adapted version of the method published by Sah (1997)168, the loading could 

be determined. 15 mg of loaded PLGA microparticles were dissolved in 750 µL 

of DMSO and 2150 µL of 0.02 % (w/v) SDS in 0.2 M NaOH for 1 hour at room 

temperature. 

2.9.5 BCA assay 

150µL aliquots of each solution were added to a well plate and a bicinchoninic 

acid assay was performed using a micro BCA protein assay kit. The results of 

this kit are observed as a colourimetric change when Cu 2+ is reduced to Cu 1+ 

which is chelated by BCA, the level of reduction corresponds to the 

concentration of protein in the sample. Appropriate standards of HSA were 

created, and after 2 hours of incubation at 37oC, the plate was scanned at 562 nm 
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on a plate reader. The total protein content was then calculated via a polynomial 

equation of the standard curve, and the encapsulation efficiency was calculated 

from the theoretical expected loading of the microparticles. 

2.9.6 In Vitro Release Study 

To ascertain the release kinetics of the microparticles created, release studies 

were set up (25 mg in 1.5 mL PBS) in triplicate. The tubes were then placed on 

a gyrotwister and gently rocked at 5 RPM at 37oC. At defined time intervals, 

usually daily, the tubes were centrifuged at 3000 RPM for 3 minutes. The 

supernatant was then carefully removed and stored at -20oC. The microparticles 

were then resuspended in 1.5 mL PBS and returned to the incubator; this process 

was repeated over 12 days to ensure complete release from the microparticles. 

2.10 Microscopy 

Generally, Hoffman contrast microscopy with a Nikon Eclipse TS100 inverted 

microscope (Nikon Instruments, UK) was used to view cells through culture and 

for any non-fluorescent imaging of cells. For lower magnification imaging, the 

analysis of alizarin red staining (Section 6.2.2), a Nikon SMZ1500 

stereomicroscope (Nikon Instruments, UK) was used, and images were captured 

using an imaging screen and Nikon Digital Sight DS-Fi2 imaging system. 

Fluorimetric analysis and phase contrast time-lapse imaging was completed with 

a Leica DMRBE inverted microscope (Leica, UK). Image processing and time-

lapse acquisition was accomplished using Velocity imaging software 

(Improvision, UK). Confocal imaging was used for fluorescence imaging of 
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immuno-stained cellular aggregates using a Zeiss LSM880 confocal laser 

scanning microscope and accompanying Zen imaging software (Zeiss, UK). 

2.10.1 Confocal image acquisition and post-image processing 

Cell aggregates were imaged using confocal microscopy, detailed in Section 

2.10, using the following acquisition settings. A step size of 0.8 µm was used to 

image a 50 µm section of the cell aggregate, yielding 63 frames. To correct for 

signal variation through the aggregate, due to poor light penetration, final 

comparable images were processed from the slices averaged. The microparticles 

and FITC signal were averaged through a smaller number of sections to preserve 

the signal and permit better visualisation whilst maintaining their xy position 

relative to the aggregate. However, their z position was most likely different to 

the focal point viewed for the cell aggregate, and so the merged images (Figure 

5.13) purely representative as it falsely shows the microparticles on the same 

plane as the aggregate.   
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3. Results – Optimisation of 

HOTs for Micropatterning Cells 

and Microparticles  

3.1 Introduction 

Cell and tissue development is dependent upon the physicochemical 

microenvironment. In the case of stem cells, cell fate can be determined by the 

cells’ positioning within the microenvironment and, amongst other things, its 

exposure to certain chemical stimuli. The ability to replicate such positioning of 

cells and delivery of chemical signals has a plethora of different applications in 

the fields of biophysics, developmental biology and tissue engineering. 

However, most current micropatterning technologies are unable to provide the 

required precision and accuracy to fabricate such microenvironment signalling 

and cellular patterning. 

As discussed in Chapter 1, HOTs can be used to position dielectric objects with 

micrometre precision. As such, HOTs are a tool that could be developed into 

precision micropatterning technology for fabricating complex cellular 

microenvironments. Current methods of micropatterning biological materials 

include: bioprinting, micro-contact printing and microinjection. However, as 

previously mentioned, these technologies are generally unable to achieve a 

single-cell patterning resolution of <100 µm 74. Current micropatterning 
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technologies are effective for a number of applications, and great progress has 

been made in the fabrication of macroscale architectures. However, they fail to 

accurately recreate the complex micron-scale arrangement required to 

appropriately recreate the functionally-critical tissue/niche minutiae. 

One instance of this functionally-critical micrometre-scale patterning is in early 

embryogenesis. Precise architectural cellular arrangements and spatially defined 

morphogen signalling are vital to ensuring appropriate development. In the 

developing embryos, cell fates and body plan are defined. The development of 

axis and polarity by geometric positioning are thought to be essential to this 

process 169. Acquiring cellular polarity requires chemical, and spatial cues from 

the small number of cells that make up the early embryo. The initial blastomere 

formation comprises only 2 cells dividing twice to form the 4-cell and 8-cell 

stages, these structures both have an approximate diameter of 80 µm 170. Further 

to this, there are many examples of adult microenvironments where micron-scale 

cellular organisation is imperative for appropriate development and function of 

the tissue. The hematopoietic stem cell niche exemplifies this phenomenon, as 

haematopoietic stem cells (HSCs) differentiate and develop according primarily 

to their surrounding microenvironment. Micron-scale biological and chemical 

organisation within the HSC niche allows for proper differentiation into both the 

lymphoid and myeloid components of blood 171. 

To attempt to recreate these structures with any of the aforementioned current 

micropatterning techniques would not be possible. This underscores the need for 

better micron-scale patterning platforms that can accurately replicate natural 

tissue. To address this need, the present thesis demonstrates the patterning of 

cells and release sources of biochemical factors using HOTs, and reports HOTs 
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development into a viable micropatterning tool. The aim of this research is to 

provide a means to create and study complex biomimetic cellular architectures 

and the important chemical signals that they require. This approach utilises the 

HOTs ability to directly position microscopic cells and release sources with great 

spatial resolution and accuracy in 3D 172–175. 

This chapter describes the application of HOTs to manipulate cells and release 

sources into basic patterns. These basic patterns serve as a proof of concept for 

the development of small cell microenvironments, showing how both biological 

and chemical cues can be tailored. Blank PLGA microparticles were used to 

demonstrate the principles of setting-up local release sources for the controlled 

delivery of diffusible molecules. In this chapter the means by which release 

sources were developed and optimised for optical manipulation, and basic cells 

and microparticle patterning are described. The chapter culminates with a 

discussion of the approaches employed to the stabilisation of such patterns, with 

a mind to extended cell culture and temporally-controllable diffusible molecular 

delivery.  



Chapter 3  Results I 

58 

 

3.2 Chapter experimental overview 
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3.3 Materials and Methods 

3.3.1 Patterning with the holographic optical tweezers 

See Section 2.8.1 for the technical setup and trapping procedure. 

3.3.2 Optical trapping study  

During the optimisation of the microparticle formulation process, it was 

necessary to assess whether a given batch of microparticles was suitable for 

optical manipulation. To be suitable for optical manipulation, the object’s 

refractive index must be sufficiently different to that of the surrounding medium. 

Typically, 1 mg of each microparticle batch was suspended in 10mL of cell 

culture medium to create a dilute suspension to be added to a patterning gasket. 

This gasket containing the dilute suspension of microparticles was then observed 

using the HOTs. A single trap was then made, under standard operating 

conditions (Section 2.8.1), and manipulation of a single microparticle in turn 

attempted in the x, y and z planes. If the optical trap created was amenable to the 

easy manipulation of the microparticle, then the optical properties of that batch 

of microparticles were deemed suitable for basic optical manipulation. Further 

to this, the stability of the trap was assessed by its ability to move microparticles 

across the surface of the glass coverslip. The optical trap was moved at a set 

speed of 32 µm/s (The minimum velocity that permits efficient patterning), and 

if the microparticle stayed within the trap it was deemed that the microparticle 

formulation was appropriate for optical manipulation and patterning. This simple 

test allowed the distinguishing of both strong and weak optical traps, a 
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distinction that is important for deciding with which microparticle formulation 

to proceed. 

3.3.3 Encapsulation of rhodamine 123 into PLGA microparticles 

As previously described, the rhodamine 123-laden microparticles were 

fabricated according to the w/o/w emulsion technique described in Section 2.9.1. 

A loading of 1.6% (w/w) was achieved by using 16 mg of calcein green AM in 

1 g of polymer. 

3.3.4 Rhodamine 123 release study 

The in vitro release study for rhodamine -123-laden microparticles was 

completed as described in Section 2.9.6. Rhodamine 123 was quantified using a 

KC4 plate reader (Labtech International, UK), and fluorescence was read at 

530nm following excitation at 480nm. 

3.3.5 Biotinylation of ES cell surfaces 

mES cells (CGR8) were surface-modified to create reactive residues to facilitate 

biotin binding. This process makes use of the naturally occurring sialic residues 

exhibited on the surface of mES cells 176. Sodium periodate was used to 

biochemically alter sialic acid through oxidation to form reactive aldehyde 

groups 155. These reactive groups were then able to link to biotin hydrazide, 

yielding a cell surface that is biotinylated and can be cross-linked with free 

avidin protein 177,178, or avidin localised on other objects (see Section 3.3.6). 
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3.3.6 Avidin-coating of microparticles 

Polymer microparticles were suspended in an avidin solution of 80 µg/mL at a 

density of 4x105 microparticles/mL. The resulting suspension was left for 6 

hours on a Stuart Roller Mixer SRT6D (Scientific Laboratories Supplies, UK) at 

15 rpm. Microparticles were then collected by centrifugation for 5 minutes (200 

g, Sigma 1-16K). Collected microparticles were then suspended in aggregation 

media prior to patterning. For long-term storage, the microparticles were freeze-

dried and then stored at -80oC. 

3.3.7 Patterning with avidin-coated microparticles 

The standard patterning procedure detailed in Section 2.8.1 was adapted to 

facilitate the stabilisation of cell and microparticle patterns with the avidin-biotin 

interaction. mES cells (CGR8) were chemically modified with sodium periodate 

and then incubated with biotin, modifying the cell surface and allowing for cross-

linking via the avidin bridge as described in Section 3.2.4. These cells were 

suspended in avidin-containing aggregation medium and added to polyHEMA-

coated glass-bottom culture dishes. Avidin-coated microparticles were prepared 

as described in Section 3.3.6 and were added to the patterning gasket. Cells and 

microparticles were trapped and positioned in predefined arrangements, utilising 

the avidin-biotin interaction to stabilise the created patterns as they are formed. 

3.3.8 Preparation of hydrogels 

As described in Section 2.6. 
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3.3.9 Patterning with agarose ULGT 

The standard patterning procedure detailed in Section 2.8.1 was adapted to 

facilitate the stabilisation of cell and microparticle patterns within an agarose 

hydrogel. mES cells (CGR8) were suspended in a 1.0% (w/v) solution of type 

IV ULGT agarose at 37oC, and the suspension was added to polyHEMA-coated 

glass-bottom culture dishes. Cells and microparticles were trapped and 

positioned in previously defined arrangements. Once the desired patterns had 

been formed, the HOTs cooling setup was used to lower the temperature on the 

microscope stage to ~23oC. After the temperature had been lowered, the 

hydrogel formed a gel, and the created pattern was locked into place without the 

need for optical trapping. Cell culture medium was then added to the culture dish 

if required for culture. 

3.3.10 Spin coating polyHEMA onto glass coverslips 

The polyHEMA surface coating was applied to a No. 1 round glass coverslip 

(22mm diameter) using a Laurell WS 650 Spin Coater. The glass coverslip to be 

coated was added to the centre of the microscope slide adapter within the 

protector of the spin coater. A vacuum was applied to the system that holds the 

coverslip in place on the microscope slide adapter, and the protector was closed. 

500µL of polyHEMA solution (5, 6, or 10% [w/v]) was then pipetted onto the 

coverslip through the access point in the protector. A coating programme 

consisting of a 500rpm start phase (15s), spreading phase of either 30 or 400 g 

(30s), and finally a slowdown phase of 8 g (15s) was initiated. Once the 

programme was complete, the vacuum was turned off and the coated coverslip 

removed. Coated coverslips were kept in a slide box at room temperature for no 
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longer than 1 week, in most cases the coverslips were studied without 

intervening storage. 

3.3.11 Water contact angle assessment 

Surface wettability, or the hydrophilicity of a surface, can be studied by static 

water contact angle measurements. Using the sessile drop technique, a liquid 

sample is vertically deposited as a droplet onto a surface; the contact angle is 

then defined as the angle between the tangents at the solid-liquid and liquid-

vapour interfaces. Hydrophilic surfaces with high wettability have a low water 

contact angle, whilst hydrophobic surfaces with low wettability have a high 

water contact angle. To assess the wettability of the PolyHEMA-coated glass 

surfaces, droplets of ultra-pure water (18.2 mΩ cm-1 at room temperature) were 

deposited onto each air-dried coverslip. Static contact angles were then recorded 

using an optical contact angle meter (CAM 200) (KSV Instruments, Finland). 

Droplet profiles were calculated in triplicate and defined using the well-known 

Young equation (Equation 3.1) that describes the balance at the 3-phase contact 

of solid, liquid, and vapour 179. 

Equation 3.1 The Young equation  

A static contact angle is obtained when the surface tension forces; γsv (solid-vapour), γsl (solid-

liquid), and γlv (liquid-vapour) are in equilibrium. 

𝛾𝑠𝑣 − 𝛾𝑠𝑙 =  𝛾𝑙𝑣 cos 
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3.4 Results and Discussion 

3.4.1 Simple cell patterning  

HOTs can generate multiple individually controllable optical traps, and precision 

pattern cells and other objects with the bespoke click-and-drag ‘Red Tweezers’ 

software (University of Glasgow). To demonstrate this, mES cells were 

patterned into pre-specified cluster sizes, ranging from 2 to 9 cells, and then more 

complex arrangements (Figure 3.1). The mES cells typically measure 10-15 µm 

in diameter, and could be manipulated easily in micrometre increments and 

positioned into arbitrary 2D structures.  
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Figure 3.1 Simple cell patterning with HOTs.  

A. Micrographs showing the formation of differently sized CGR8 mES cell clusters, from 2-9 

cell in size, created using the HOT platform B. i. Micrographs showing the ‘8-cell ring’ and the 

‘figure of 8’ cell patterns, held in place by 8 and 14 optical traps respectively. ii. Cell patterns 

retaining their geometric position and pattern once the optical traps are removed, but only for a 

short while, ~5minutes. Cell patterning was limited to a maximum of 30 minutes. The scale bars 

represent 20µm. 
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Figure 3.1 also demonstrates the HOTs level of precision and control. Such 

direct cellular patterning can be used to investigate cellular interactions to 

determine how they affect cellular behaviours such as differentiation. In addition 

to monoculture patterning, multiple cell type patterning has been demonstrated 

150, offering the potential for further investigations. 

3.4.2 Optimisation of polymer microparticles for optical trapping 

Polymer microparticles have been used with optical tweezers previously 180, 

however, it was understood that different fabrications would not be suitable for 

forming a stable optical trap and allowing optical manipulation. Initial optical 

trapping studies were completed on various microparticle formulations that 

could be used for future experiments. The microparticle batches used in this 

trapping study were characterised to determine why certain microparticles are 

better for optical manipulation than others. 

3.4.3 Microparticle fabrication 

Previous work by Dr Helen Cox (Thesis, 2013, University of Nottingham, UK) 

(Table 3.1) informed the choice of homogenisation speed and polymer 

percentages used for the W/O/W double emulsion preparation of blank 

microparticles. Using a range of polymer percentages we were able to fabricate 

3 microparticles sizes that could be used for subsequent experiments.  
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Diameter size 

description 

(µm) 

DCM volume 

(PLGA % 

[w/v]) 

Primary 

rpm 

Secondary 

rpm 

Diameter size 

achieved (µm) 

1-3 50.00mL (2%) 9000 9000 1.8 ± 0.6 

1-5 20.00mL (5%) 4000 9000 2.5 ± 0.8 

5-10 10.00mL (10%) 4000 9000 6.8 ± 5.6 

10-20 6.67mL (15%) 4000 9000 13.8 ± 7.5 

20-30 5.00mL (20%) 4000 9000 26.2 ± 13.5 

50-100 5.00mL (20%) 4000 2000 86.6 ± 24.6 

 

Table 3.1 Fabrication of differently-sized PLGA microparticles. 

The complete range of microparticle sizes that can be fabricated using the W/O/W double 

emulsion method of manufacture and Silverson homogeniser, up to 100µm in size. A mean 

particle diameter was recorded from 3 microparticle batches for each formulation, with standard 

error of the mean also calculated.  
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Figure 3.2 Characterisation of blank PLGA microparticles.  

Assessment of the microparticle diameter size distribution across the batch and SEM 

micrographs to show morphology of 3 different PLGA microparticle batches, 5, 10, and 15% 

PLGA polymer % (w/v). 
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The 3 batches fabricated (Figure 3.2) had the expected median diameters, and 

displayed a spherical non-porous morphology. The sizes obtained were 

considered to be suitable for demonstrating different microparticle release 

sources for the optimisation and proof of concept for HOTs as a micropatterning 

platform. The 3 size ranges of microparticle batches fabricated were intended to 

show that release sources could be used that were smaller than the cells that were 

to be used with the development of the HOTs. The mES cells (CGR8) were 

generally 10-15 µm in diameter, so the average 5% PLGA microparticles were 

smaller, the 10% PLGA microparticles were of a similar size and the 15% PLGA 

microparticles were larger.  

3.4.4 Optical trapping study 

To form a stable optical trap capable of manipulating the controlled release of 

microparticles, the object being manipulated must have a suitably different 

refractive index to that of the surrounding medium. The forces required to hold 

the object in place are attained through the adequate refraction of the focussed 

laser through the object creating the optical trap. If the degree of refraction and 

summation of the refractive forces are not sufficient to overcome the forces 

within the liquid medium and gravity, a stable trap will not form. The simplest 

way to test whether the formulations were yielding trappable microparticles was 

to suspend the formulation in an appropriate cell culture medium and attempt the 

trapping of single particles. Figure 3.3 shows the results from the trapping study 

for the formulations tested.  
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Figure 3.3 Microparticle trapping study.  

A. A table showing the microparticle batches tested for their ability to be optically manipulated. 

Also listed is whether the microparticle batch could be manipulated at a velocity of 32 µm/s 

without falling out of the trap. The minimum velocity of 32 µm/s was chosen due its efficient 

patterning speed and ease of selection through the use of the HOTs controlling joystick. B. 

Showing how the ‘minimum velocity achieved’ test was completed, by assessing the distance a 

microparticle could be manipulated in 1.5 seconds the average velocity could be calculated.  
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Figure 3.3 shows that various formulations of PLGA microparticle do not trap 

well and that some do not trap at all. Those that do not trap are thought to have 

an insufficiently dissimilar refractive index to that of the surrounding medium. 

This prevents an optical trap forming, and the microparticle is rapidly expelled 

from the trapping area. This issue was alleviated by the addition of human serum 

albumin (HSA) to the aqueous phase; the hypothesis behind this is that the 

albumin protein will have an elevated refractive index and will permit the 

formation of an optical trap. All of the HSA-containing microparticles were able 

to be manipulated, but the 5% polymer batch was not suitably stable when 

moved at 32 µm/s (chosen as the minimum velocity for efficient patterning). 

However, the larger microparticles formulated in the same way were able to be 

manipulated easily. The integration of TBIIF copolymer at a ratio of 90:10 

(PLGA:TBIIF) yielded a full size range of microparticles that were all suitable 

for optical manipulation.  

3.4.5 Optimising release kinetics 

One of the major advantages that polymer microparticles have to offer is their 

amenability to the modification of release kinetics by changing the fabrication 

process. To achieve the desired release kinetics for the preliminary concept 

studies, very quick release over 7 days with a low burst release, the PLGA:TBIIF 

copolymer ratio was modified. Using HSA and rhodamine 123 as the 

encapsulated cargo, we tested a range of polymer:copolymer ratios to identify a 

suitable formulation. Rhodamine 123 is a small fluorophore that would serve 

well as a reference small molecule with a molecular weight of 320 g/mol, while 
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HSA is a reference large protein with a molecular weight of 66.5 kDa and an 

isoelectric point of pI 4.7.  

A range of microparticle batches were fabricated and characterised prior to the 

completion of in vitro release studies. Due to the suitable trapping and size of 

the PLGA:TBIIF 5 µm microparticles, all release optimisation was completed 

using this method of fabrication. 

Figure 3.4 shows the characterisation of different PLGA:TBIIF blends loaded 

with rhodamine 123, as  the ratio of TBIIF to PLGA is increased, polydispersity 

within the microparticle batch sizing increases slightly. Observed in the coulter 

sizing and SEM micrographs, microparticle polydispersity is a common problem 

associated with the emulsion fabrication technique. However, for this 

application it was not an issue, as particular microparticle sizes can be selected 

with HOTs through image-based sizing. Handling the higher 80:20 and 70:30 

ratio microparticles was slightly more difficult due to the elevated TBIIF, 

yielding ‘sticky’ microparticles, as seen in the SEM micrographs. The 

incorporation of TBIIF slightly improved the encapsulation efficiency of active 

rhodamine 123 (Figure 3.5) indicating that it either preferentially incorporates 

with the TBIIF, or that the activity of the fluorophore is better-maintained with 

TBIIF. This observation, whilst not important at this stage of development, 

would be useful for later encapsulation of bioactive molecules and proteins that 

can be damaged in the encapsulation process 181.  
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Figure 3.4 Characterisation of PLGA:TBIIF rhodamine 123 microparticles.  

Assessment of the microparticle diameter size distribution of different rhodamine 123 

microparticles with different ratios of PLGA:TBIIF, ranging from 100-70% PLGA with the rest 

being made up of TBIIF copolymer. Coulter analysis showed the size distribution of the 

microparticle batches and SEM was used to image the dry microparticles to assess their 

morphology and confirm sizing analysis.  
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Figure 3.5 Encapsulation efficiency of rhodamine 123. 

Graph comparing the percentage efficiency of rhodamine-123-loading into 4 different 

microparticle batches with varying ratios of PLGA to TBIIF copolymer. Dry microparticles were 

dissolved so that their contents could be analysed for estimated loading of rhodamine-123 Error 

bars show standard error of the mean from 3 separate batches for each formulation. Statistical 

analysis was completed to show significant difference of estimated loadings between 100 PLGA 

and batches containing TBIIF. T-test analyses were performed and the significant difference was 

indicated accordingly, *** = 0.01 and ** = 0.0045. 
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Figure 3.6 Release study for rhodamine 123 microparticles.  

Individual plots and a combined plot showing the percentage of encapsulated rhodamine 123 

released from each microparticle batch over 15 days of an in vitro release study. Error bars show 

the cumulative standard error of the mean calculated for triplicate samples from each 

microparticle batch. 
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The greatest change expected by altering the ratio of PLGA:TBIIF was to the 

release kinetics, TBIIF as a hydrophilic molecule has previously been shown to 

increase release through the enhancement of water ingress into the microparticle 

120. In vitro release studies were completed over a 15-day period (Figure 3.6), 

and showed the expected increase in rhodamine 123 release with the increase in 

TBIIF. The incorporation of TBIIF decouples the release rate from the polymer 

degradation time, the effect of TBIIF would be more profound if the PLGA used 

(50:50) had a slower degradation rate as standard. 

At this stage in the HOTs development, these fast-releasing microparticles were 

suitable for all pilot experiments, however, through the use of different PLGA 

polymers, slow-release microparticles for much longer experiments could be 

developed. By altering the lactic to glycolic acid ratio in PLGA, one can achieve 

a wide range of degradation times, and hence release rates, for encapsulated 

molecules 182. 

3.4.6 Patterning cells and microparticles using HOTs 

In order to demonstrate the HOTs ability to precisely position cells into 

predefined 2D arrangement, simple patterns were formed in a cell culture 

medium suspension. Cells were diluted to low seeding densities to allow 

adequate surface space to create distinct cell patterns. In these initial studies, 

single patterning gaskets (fabrication described in Section 2.8.3) were used, 

meaning that the patterns created were surrounded by other un-patterned cells 

and release sources. To ensure that the patterned structure of cells, or the 

arrangement of microparticles, is the only stimulus, the patterned structure must 

be isolated; a solution to this problem was developed later (Section 4.4.10). 
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Initial experiments were designed to test the potential applications of certain cell 

and microparticle patterns, and as a proof of concept for future experiments 

involving the controlled release of stimuli.  
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Figure 3.7 Cell and microparticle patterning.  

A. Micrographs showing the creation of cell and microparticle lines using the HOTs platform to 

position 5% PLGA (w/v) microparticles. B. Simple cell and microparticle patterns created with 

10% PLGA (w/v) microparticles. C. Different cell patterns formed on an arrangement of large 

15% PLGA (w/v) microparticles. The scale bars represent 20 µm in length. 
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Figure 3.7 demonstrates the use of small, medium and large microparticles as 

potential release sources for a HOTs-formed microenvironment. It was 

important to show that the release source could be built within a structure as well 

as at a particular point outside of the pattern to prove the versatility of the 

optically-manipulated release sources. 

3.4.7 Stabilising cell and microparticle structures 

In this chapter the optimisation of some the first steps in developing the HOTs 

as a micropatterning tool have been demonstrated and discussed, including 

manipulating cells into small patterns, fabricating a selection of microparticles 

suitable for optical manipulation and the encapsulation of a variety of different 

molecules, and then the optimisation of the microparticle release kinetics. 

Another aspect to be addressed is the HOTs capacity to maintain a 

micropatterned cell and microparticle pattern for extended periods of time. All 

patterning heretofore discussed was locked into position by the presence of 

optical traps on the HOTs setup. To permit the culture of such cell patterns or to 

observe molecular release from microsources over days, the created patterns 

must be moved to a cell culture incubator. Any movement of the patterning 

gasket would disturb the created structure, and patterns would be lost.  

3.4.8 Optical manipulation of avidinated microparticles 

The first approach to stabilising the fabricated microparticles and cells structures 

was to use a well-described avidin-biotin interaction. Avidin protein is derived 

from avians and amphibians, and has a high affinity for the co-factor biotin. 

These binding proteins have been utilised for many purification and detection 
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applications, and recently has been used to form large multicellular aggregates 

by selectively adding biotin to the cell surface 155. When biotinylated cells are 

suspended in avidin-containing medium, they have the ability to bind to one 

another, as demonstrated in Figure 3.8. In order to stabilise the cell and 

microparticle structures created with the HOTs, with help from Dr. Omar 

Qutachi (University of Nottingham, UK) the microparticles were coated in 

avidin solution and biotinylated the cells as described in Section 3.3.6. By doing 

this, it was hypothesised that cell and microparticle aggregates could be formed 

with the HOTs and then bound together via the biotin-avidin interaction. 
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Figure 3.8 Avidin-biotin interaction.   

A diagrammatic representation of the avidin-biotin interaction and the interaction between 

avidin-coated microparticles and biotinylated cells.  
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Figure 3.9 Avidinated microparticle patterning.  

A. Micrographs showing the attachment of avidin-coated microparticles to a single CGR8 mES 

cell using the HOTs patterning platform. B. A micrograph showing the formation of a 2D pattern 

of 4 CGR8 mES cells around two avidin-coated microparticles. C. A set of 3 micrographs 

showing the bottom, middle and top planes (left to right) of a 3D avidin-biotin stabilised cell and 

microparticle structure. The scale bars represents 20 µm.  
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Figure 3.9 A shows 2 avidin-coated microparticles being positioned on the 

surface of a single mES cell; the microparticle seems to fix to the cell within 

seconds as it cannot be separated by trapping. The interaction is so strong that 

the HOTs force is insufficient to separate the cell from the microparticles. Figure 

3.9 B shows how the avidinated microparticles can be incorporated into a 2D 

cell pattern: the cells are locked with one another utilising free avidin in the 

medium, and the microparticles are directly bound to the biotinylated cells. The 

use of avidinated microparticles even permits the creation of simple 3D cell 

structures, Figure 3.9 C demonstrates this with the fabrication of a 6-cell ‘sphere’ 

containing 2 avidinated microparticles. The whole structure was stable, and 

optical trapping was not necessary after the avidin-biotin interactions had 

formed. 

Whilst the avidin-biotin interaction was strong and was able to preserve 

structural integrity of a pattern, it was still free to move around in the liquid 

medium. This was both an advantage and disadvantage, to wit, it was 

advantageous that the technique offered the creation of stable non-adherent 

structures, giving more flexibility to the choice of cells used for micropatterning 

e.g. marrow mesenchymal stem cells 183. However, for the establishment of 

different release profiles, patterned cells might need to be positioned at specific 

distances from the release source, and hence they would not be in direct contact 

- such patterning would not be stabilised by the avidin-biotin interaction. 

3.4.9 Optical manipulation within a hydrogel 

The next approach to maintain patterned structures was to use a hydrogel system 

to lock the micropattern in place once it has been fabricated, allowing 
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transportation of the patterning gasket for extended culture and more complex 

imaging not possible on the HOTs setup.  

The setup requirements of this hydrogel were quite restrictive when it came to 

choosing one that would be suitable for the micropatterning tool. There are a 

wide variety of different cell-culture-suitable hydrogels available for sustaining 

cell growth and development, however, for use with the HOTs, many were 

unsuitable. The hydrogel would need to be cross-linked in such a way that it 

would not damage the cells, the pre-gel solution that the cells would be patterned 

in must not be too viscous to prevent optical manipulation, the hydrogel must be 

optically suitable (suitable refractive index for optical trapping and transparency 

for imaging), and the gel must be as bio-inert as possible.  

The need for a bio-inert pattern-locking mechanism was based on the fact that 

the HOTs were being developed to create cellular microenvironments from the 

‘bottom up’. The aim of the HOTs patterning platform was to allow the creation 

of such microenvironments with complete control over the cues within them. If 

the hydrogel contained a potent cue or stimulus, it would be impossible to 

discern what was affecting cellular development. 

There are a number of cell-culture-suitable hydrogels which undergo cross-

linking following a change in temperature. So long as that temperature change 

was suitable for the cells within the gel, such a temperature-sensitive hydrogel 

seemed like the least invasive method of cross-linking. A selection of 

thermosetting hydrogels commonly used in cell culture applications was 

assessed and the results are shown in Table 3.2. 
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Table 3.2 Hydrogel selection for use with the HOTs. 

The selection criteria for stabilisation hydrogel are outlined below and the table shows how 

Agarose ULGT was initially chosen as a front runner hydrogel. 
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The type IX, ULGT agarose was chosen as the most suitable hydrogel tested, 

although Matrigel and collagen had suitable properties, the well-reported 

bioactivity of these extracellular matrix (ECM) hydrogels 184 precluded them 

from use at this stage. After choosing to proceed with agarose for the hydrogel 

patterning experiments, a range of concentrations were tested to assess their 

capacity to permit cell proliferation (Figure 3.10). The different hydrogels were 

seeded with mESCs, and then proliferation was assessed via the MTS assay as 

described previously (Section 2.5.8). For this assay, readings were taken at 24-, 

48-, and 72-hour time points. 
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Figure 3.10 Proliferation of mES cells encapsulated within agarose (ULGT) 

Proliferation of CGR8 mES cells cultured in a range of agarose ULGT agarose hydrogel 

concentrations (1.0 – 2.0% (w/v)). Metabolic activity of the cells at 24, 48, and 72 hours was 

measured by MTS assay (absorbance 490 nm). Data are expressed as the mean ± SD of triplicate 

samples and significant differences were assessed by ordinary one-way ANOVA. Statistical 

significance was expressed as **** (P<0.0001). 

  



Chapter 3  Results I 

88 

 

The proliferation assay showed the expected reduction in proliferation rate of the 

mES cells when seeded into agarose as compared to those cultured on gelatin-

coated tissue culture plastic 48. When comparing the different concentrations of 

agarose, the data showed that the higher percentage hydrogels had a restrictive 

effect upon the proliferation of CGR8 mES cells. Following this study, lower 

percentage agarose hydrogels (<1.0% w/v) were tested; however these did not 

form a stable gel when cooled using the HOTs cooling setup (data not shown). 

Previous work completed by Dr. Emily Britchford (University of Nottingham, 

UK) characterised agarose gelation kinetics by rheological investigations. 

Viscosity curves and optimised oscillatory amplitude and frequency sweeps 

were completed to measure sample viscosity and study the solution-gel, gel-

solution transition, respectively. It was determined that the agarose remained a 

liquid at 37oC and then gelled rapidly at temperatures below 25oC, and once the 

hydrogel structure was formed, melting would not occur below 55oC (Appendix, 

Figure 8.1). These gelation characteristics were deemed highly compatible for 

gel-based optical manipulation and subsequent culture at 37oC. 

3.4.10 Cell patterning in agarose ULGT 

The standard polyHEMA-coated coverslips were prepared with patterning 

gaskets mounted onto them, and the HOTs patterning was completed in the 1.0% 

agarose ULGT solution. Cells were patterned into an 8-cell ring structure and, 

using the water-based cooling system, the patterning gasket and hydrogel 

medium were cooled to ~23oC. By removing the optical traps individually, it 

was determined whether the hydrogel had gelled sufficiently and locked the cell 

pattern in place.   
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Figure 3.11 Hydrogel stabilised cell pattern.  

A. Shows 2 micrographs, one is the 8-cell ring held into position with 8 optical traps in a solution 

of agarose ULGT at 37oC (left) using the HOTs patterning platform, and the other is after cooling 

the environmental chamber to ~23oC and the stabilised cell pattern held in position by the agarose 

hydrogel (right). B. A micrograph showing the same pattern created in A after transportation to 

a cell culture suite and imaged at a lower magnification. The scale bars represent 20 µm in length. 
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The thermo-responsive agarose hydrogel cross-links quickly (Appendix, Figure 

8.1), and the intricate cell pattern is locked in place after only short-term 

exposure to the optical trap (all trapping completed under 15 minutes). Figure 

3.11 B shows the mES cell pattern after transportation to the cell culture lab; 

there appears to have been some movement of the cells, but the general pattern 

has been retained. 

3.4.11 Improving the anti-biofouling surface for patterning in hydrogels 

The HOTs ability to manipulate objects relies upon the generation of a force 

sufficient to overcome the forces holding said object in place. Such competing 

forces include shear and tensile stress, corresponding to the viscosity of the 

medium and the interactions between the object and the surface they settle on. 

As previously described, the glass coverslips used for patterning were coated in 

a layer of polyHEMA to reduce the possible electrostatic interactions between 

the cells and the hydrophilic glass surface. Various other surface coatings were 

previously tested (Table 3.3) by Dr Glen Kirkham and Dr Emily Britchford 

(University of Nottingham, UK), however, polyHEMA was deemed to be the 

best choice, with the greatly reduced ‘sticky cell’ issues.  
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Table 3.3 Optimisation of surface coatings 

A table showing the surface coatings tested previously, and whether certain surfaces led to cell 

sticking during HOTs based patterning. Cell sticking was assessed by eye and through not being 

able to optically manipulate cells that had settled on the surface of the patterning gasket. 

 

Surface coating Coating Method Cell sticking (Yes/No) 

Pluronics-F68 Passive adsorption Yes 

Pluronics-F127 Passive adsorption Yes 

PDMS Passive adsorption Yes 

Sialinated glass Purchased Yes 

Alginic acid Passive adsorption Yes 

Hyaluoronic acid Passive adsorption Yes 

Pectic acid Passive adsorption Yes 

PolyHEMA Passive adsorption No 
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In the early stages of this project, patterning was only completed in low-viscosity 

cell culture medium, in which cells and microparticles could be manipulated 

easily. However, when using agarose hydrogel, the increased viscosity posed a 

problem to optical manipulation and patterning, cells were sticking down and 

could not be manipulated. PolyHEMA is able to prevent cell adhesion by two 

main mechanisms, firstly, a structure formed of many long chains that sterically 

prevents contact between molecules and the surface it is coated on, and secondly, 

due to its being highly hydroxylated, it is very hydrophilic 164,165. The 

polyHEMA surface becomes highly hydrated, increasing the energetic 

requirements of removing water for cells to attach. To address the issue of cells 

sticking in agarose, the hydrophilicity of polyHEMA-coated surfaces fabricated 

using different methods was assessed.  
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Figure 3.12 Hydrophilicity of different polyHEMA coatings 

The graph shows the water contact angle formed with the sessile drop technique. Error bars 

represent the standard error of the mean from triplicate readings. A 1-way ANOVA statistical 

test was performed to assess variance between the mean WCA for each water-surface interface. 

The means were significantly different across the dataset to a P value of 0.0013 (**).  
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Figure 3.12 shows that regardless of the method chosen to coat the polyHEMA 

to coverslip glass, the use of 5% polyHEMA achieves the most hydrophilic 

coating. High-speed spin coating, however, does improve the hydrophilicity of 

the surface; the 5% polyHEMA solution, when applied via spin coater at 

4000rpm, created the most hydrophilic surface coating with a water contact 

angle of 33 ± 1.3o. Using this fabrication method, the cell patterning in agarose 

was improved; far fewer cells became stuck to the surface. This result was 

surprising, as previous work with polyHEMA had shown that thicker coatings 

were just as effective as thin coatings 185. That the high-speed spin coating did 

increase hydrophilicity and reduce cell-sticking issues may have been due to 

the topography of the surface coating, as smooth surfaces have been shown to 

reduce cell adhesion and interface interactions 186. 

3.5 Conclusions  

The aim of this chapter was to report the optimisation of the various aspects of 

the HOTs patterning platform, and to demonstrate how they will be used to 

create micropatterns representative of a dynamic cell microenvironment. Cells 

can be manipulated with high precision into complex micrometre-scale 

arrangements with release sources. Polymer-based microparticles have been 

optimised for optical manipulation and adapted to provide a wide range of 

desirable sizes and release kinetics. The developments in this chapter are used in 

subsequent chapters to permit more complex proof of concept work that shows 

how release sources can be used with the HOTs platform to create biomimetic 

representations of the solute signalling to cells in development. This chapter 

describes possible methods for stabilising such cell and microparticle structures 
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and has yielded options to suit different needs and applications. The pattern 

stabilisation offered by hydrogels was exploited often in the experiments which 

informed the next chapter.  

Throughout the early stages of this project, as detailed in this chapter, new 

challenges have been observed that must be overcome before HOTs can perform 

effectively as a micropatterning tool. It has been described just how the 

optimisation of the polyHEMA surface coating was important in improving 

patterning outcomes with the agarose hydrogel. However, certain issues remain, 

for instance, the patterning of a small subset of cells and microparticles within a 

suspension of cells and microparticles is problematic. Surrounding ‘unpatterned’ 

cells and microparticles in effect contaminate the intricately patterned cell and 

microparticle arrangement. To address this, the patterned cells and 

microparticles must be isolated so as to be sure that there are no external factors 

affecting the patterned cellular behaviour and arranged release points. The 

importance of this issue, and the proposed solution, are discussed in the next 

chapter. 
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4. Results - Proof-of-concept 

delivery of molecular signals to 

micropatterned cells 

4.1 Introduction 

In this chapter the two aspects of delivery relating to this thesis are discussed; 

firstly, the delivery of solute signals as a proof of concept for morphogen 

signalling, and secondly, the delivery of isolated release sources to the patterning 

area in a controlled manner.  

The former of these two aspects is essential to the core concept of the HOTs 

patterning system being developed. There is a great need for innovative 

technologies that can recreate molecular gradients that occur in nature. 

Morphogen signalling is important for many biological processes, including the 

polarization of tissues and cells during embryogenesis, and the coordination of 

adult cells via chemotactic cues. For any investigations into the subtleties of 

these phenomena to occur, there must be a tool-set capable of controlling the 

chemical environment, and of tailoring molecular gradients at the micrometre 

scale. In this chapter the development of HOTs to create such molecular signals 

with spatial and temporal flexibility is discussed. 
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With regard to spatial flexibility, it is important to isolate the patterned release 

sources from the unpatterned, so that there is no unwanted or background 

signalling occurring in the patterning area. This chapter details how a simple 

development of the HOTs patterning gasket can achieve this isolated patterning, 

and how it permits the formation of spatial signalling control. 

The development of the HOTs patterning setup to achieve spatio-temporally-

controlled signalling is imperative to a number of different developmental 

models. One such model that exemplifies the importance of diffusible signalling 

for both cell development and guidance is the nervous system. Axons are guided 

on very specific routes, and their neuronal fate is differentially determined based 

principally on morphogen signalling. As previously discussed, a morphogen is 

classically defined as a signalling molecule that elicits a differential cell response 

depending on its concentration. Morphogens are typically secreted or released 

molecules that drive the organisation of cells into patterns 187, and in the case of 

axon guidance these morphogens determine both the neuronal fate and path of 

the developing neurons 188–190. A gradient of Sonic Hedgehog (Shh) and bone 

morphogenetic proteins (BMP) act in the early neural tube to specify ventral and 

dorsal neurons respectively. The complex interplay of these gradients and others 

is essential in the development of the nervous system, and it is this complexity 

that is required for recreating the aforementioned developmental models.  

The HOTs patterning setup was developed with these complex mechanisms in 

mind, and this chapter details the early proof of principle experiments that show 

how the release of molecules can be visualised, accomplished with multiple 

signals and spatio-temporal control. Demonstration of these proof of principle 

experiments was only possible after overcoming several key difficulties 
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associated with the system. The ability to visualise or quantify solute gradients 

is an area of study in itself, and has proven difficult to accomplish even without 

the added complications of HOTs-based patterning. In some cases, investigators 

have had to rely on computational modelling 191, particularly where solute 

concentrations are too low to visualise. The difficulties encountered and 

approaches to solving them are described in this chapter, detailing how proof-

of-principle solute delivery experiments were conducted.  
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4.2 Chapter experimental overview 
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4.3 Materials and Methods 

4.3.1 Rhodamine 123 release from microparticles into a hydrogel 

A 1.4% ULGT agarose solution was prepared, as previously described (Section 

2.6), and was poured into 60mm dishes. The hydrogel was then left to cool at 

room temperature for 10 minutes, or until gelled. With the use of a 4 mm bore 

biopsy punch, a hole was removed from the centre of the agarose gel. 

Rhodamine-123-laden microparticles were then suspended at a concentration of 

1 mg/mL and were added to the 4mm void within the agarose. Bright-field and 

fluorescence microscopy were used to image the dishes daily, a Nikon dissection 

microscope was used (Section 2.10). 

4.3.2 Encapsulation of calcein AM into PLGA microparticles 

As previously described, the calcein-AM-laden microparticles were fabricated 

according to the w/o/w emulsion technique described in Section 2.9.1. A loading 

of 0.1% w/w was achieved by using 1 mg of calcein green AM in 1 g of polymer. 

4.3.3 Calcein AM release study 

The in vitro release study for calcein-AM-laden microparticles was completed 

as described in Section 2.9.6. Calcein AM was quantified using a NanoDrop 

spectrophotometer (ND-1000, Labtech) at 384 nm to measure calcein green AM 

and 322 nm for calcein blue AM related absorbance. 
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4.3.4 Post-encapsulation bioactivity of calcein AM 

To assess the effect encapsulation has upon calcein AM bioactivity, 25 mg of 

0.1%-loaded calcein-AM-laden microparticles were suspended in 1mL of 0.1% 

DMSO and incubated at room temperature for 10 days on a GyroTwister 3D 

Shaker (Labnet International Inc., Dorset, UK). The solution was then 

centrifuged for 5 minutes at 3000 rpm (MSE, Mistral 1000) and the supernatant 

was carefully removed. 100 µL of the supernatant was then added to 1mL of cell 

culture medium to yield an estimated concentration of 2 µM calcein green AM 

(0.01% DMSO) based on complete release of calcein green AM from 

microparticles and 100% loading efficiency. The resulting post-encapsulation 

calcein green AM solution was then added to a confluent monolayer of mES 

cells (CGR8) grown under standard culture conditions. The cells were incubated 

in this solution for 45 minutes at 37oC and then imaged by fluorescence 

microscopy. 

4.3.5 Cell viability assessment 

After the analysis of calcein green AM and calcein blue AM dual release 

experiments, cell viability was assessed to ensure that the cell structures were 

not dead and leading to false positive green fluorescence signals. A negative 

control pattern of cells and microparticles was fabricated and then irradiated with 

ultraviolet (UV) light for 30 minutes to ensure cell death. The pattern was then 

assessed for cell viability using the LIVE/DEAD® cell assay as described in 

Section 4.3.5. For the experimental patterns, just ethidium homodimer 1 (EthD-

1) was added. Viability was determined as previously described (Section 2.5.7). 
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4.3.6 Patterning with gelatin methacrylate 

The GelMA was prepared as described in Section 2.6 and then dissolved in 80oC 

photoinitiator (Irgacure 2959 0.5% (w/v)) to yield a 10% (w/v) GelMA solution, 

and stored in the dark at 4oC until use. This solution was warmed to 37oC and 

then added to the patterning gasket to a maximum volume of 100µL. Cells and 

microparticles to be patterned were added directly to the patterning gasket as 

required under sterile conditions. Once patterning was completed, the GelMA 

solution was cross-linked with a 5 second burst of UV light from a distance of 

5cm resulting in an output of 30 W/cm2 using a UV lamp (Omnicure S2000, 

JentonUV, UK) The GelMA was left for 5 minutes to ensure complete cross-

linking. If prolonged cell culture was required, cell culture medium was added 

on top of the cross-linked GelMA before incubation at 37oC with 5% CO2. 

4.3.7 Formation of the PDMS lobed patterning gasket 

To create the lobed patterning gasket, an internal mould was made for the gasket 

to be cast around it. The internal mould was designed using a simple open source 

Computer Aided Design (CAD) approach (Tinkercad). The design was then 3D 

printed with polylactic acid (PLA) filament using a MakerBot Replicator 2. The 

printed internal mould was then glued to a 60 mm petri dish (using a non-toxic 

silicone rubber compound). Sylgard 184 silicone elastomer was prepared as 

described previously and was left to degas for 4 hours at room temperature. The 

degassed solution was then carefully added to the internal-mould-containing 

petri dish up to a depth of 5mm so as not to cover the mould and to create a 

suitable volume patterning gasket. The petri dish was covered with its 

corresponding lid and left for 5 days at room temperature to fully cure. Once 
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cured, the PDMS was removed from the petri dish and cut to size to leave the 

internal-mould-shaped area surrounded my PDMS. The PDMS lobed patterning 

gasket is then glued to polyHEMA-coated coverslip glass and stored at room 

temperature until required. Before use in cell patterning, the PDMS lobed 

patterning gasket was UV sterilised for 1 hour. 
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4.4 Results and Discussion 

4.4.1 Visualising release in agarose 

In Chapter 3 the fabrication of rhodamine-123-encapsulated PLGA:TBIIF 

microparticles was described, in vitro release studies were completed to show 

that through the addition of TBIIF, release can be accelerated. For the purpose 

of these studies, a plate reader was used (as detailed in Section 2.9.6) to record 

the levels of rhodamine 123 fluorescence signal in supernatants so that the 

concentration could be quantified from a standard curve. For creating a proof of 

concept for the delivery of loaded molecules from microparticles to patterned 

cells, this method would not be appropriate. In order to track the delivery of a 

fluorophore from release point (microparticle) to target (patterned cells) 

fluorescence microscopy was deemed the best option. Pilot experiments were 

designed to show the principle of release of rhodamine 123 from a microparticle 

release point to a surrounding agarose gel.  

Further to the visualisation of a rhodamine 123 fluorescence signal over time, 

two microparticle batches were tested alongside one another. PLGA 

microparticles without the addition of TBIIF were compared to the PLGA:TBIIF 

(70:30) batch, each with the same rhodamine 123 loading (Section 3.3.3). The 

comparison was important as it would test the ability to qualitatively assess 

subtle differences in fluorescence signal. 
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Figure 4.1 Mass release of rhodamine 123 from PLGA microparticle suspension into 

agarose hydrogel  

The release of rhodamine 123 from PLGA and PLGA:TBIIF (70:30) fabricated microparticles 

in a suspension localised in bored-out holes in agarose hydrogel (1.4% w/v). A disc of agarose 

hydrogel was formed and 2mm holes were created as a source chamber for containing the 

suspension of microparticle. Daily fluorescence micrographs were taken using the Nikon 

dissection microscope to visualise release of rhodamine 123 into the surrounding hydrogel. The 

scale bars represent 2 mm.  
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Figure 4.1 shows the bright-field micrographs of the two bored-out holes from 

the agarose disks with barely visible microparticle suspensions filling the voids. 

The fluorescence images show the rhodamine 123 signal over the following 2 

days. Even with fluorescent imaging, the diffuse rhodamine 123 signal can be 

seen around the original bore site by day 1 when compared with day 0 of the 

TBIIF-containing microparticles. All imaging was completed with the same 

acquisition settings for each sample at the same focal plane, however, the day 1 

and 2 signals for the TBIIF microparticles seems over-exposed. This was most 

likely due to the expectedly elevated mobilisation of free rhodamine123 in this 

sample, allowing a greater fluorescence signal to be observed at that focal plane. 

Regardless of this, two clear observations can be made: a greater amount of 

rhodamine 123 has been released from the microparticles containing TBIIF, and 

that the mobile rhodamine 123 is able to diffuse into the surrounding hydrogel.  

This pilot experiment supports the idea that the planned delivery of fluorescent 

molecules can be visualised using conventional fluorescence microscopy. 

However, for the proof of principle HOTs experiments a much lower signal was 

expected to be present due to the small number of microparticles being used. For 

this reason, more advanced microscopy may be required for the adequate 

visualisation of a delivered signal. Confocal microscopy lends itself to such 

analysis because of its ability to remove out-of-focus signal and image discreet 

optical sections in thick samples such as the hydrogels being used 192. The thick 

hydrogel samples represent an especial issue for the conventional wide-field 

optical microscopy used in Figure 4.1, because as the sample increases in 

thickness, fine detail is more difficult to resolve due to the abundance of out-of-

focus light in the planes above and below the focal plane. 
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4.4.2 Patterning rhodamine 123 microparticles in agarose 

Following on from the visualisation of bulk rhodamine 123 fluorescence signals 

shown in Figure 4.1, microparticle pattern was fabricated using the HOTs and 

stabilised it using ULGT agarose as described in Section 3.3.9. For this test, no 

cells were incorporated into the pattern to reduce any possible auto-fluorescence 

in the samples. Figure 4.2 shows the formation of a PLGA:TBIIF (70:30) 

rhodamine-123-loaded microparticle pattern and the subsequent agarose-

stabilised pattern. This figure further demonstrates one’s ability to distinguish 

between the differently sized microparticles within each batch, and in this case 

a complex pattern has been formed with four 10 µm and eight 5 µm 

microparticles.  
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Figure 4.2 Patterning PLGA microparticles in agarose hydrogel 

The figure shows the development of a microparticle pattern in the pre-gel 1.4% ULGT agarose 

at 37oC with the HOTs patterning platform, and the subsequent thermally sensitive gelation and 

stabilisation of the pattern. Gelation was accomplished in 5 minutes with a temperature of 23oC 

and the optical traps could be removed from the microparticles. The scale bar represents 20 µm.  
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Figure 4.3 Observing rhodamine 123 release from a microparticle pattern 

Figure 4.3 shows a ring of nine PLGA:TBIIF (70:30) rhodamine-containing microparticles 

fabricated using the HOTs and stabilised in 1.0% ULGT agarose hydrogel. Fluorescence 

micrographs are shown for the following four days of assessment to visualise the rhodamine 123 

within the microparticles and surrounding the pattern during release. The Scale bar represents 

20µm.   
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By day 1, a weak but clearly discernible fluorescence signal is observable outside 

of the ring and filling the inside. This surrounding halo of fluorescence signal is 

retained until day 4 where it is reduced significantly. This observation coincides 

with the initial burst phase release of the microparticles, as shown in Figure 3.6. 

The lag phase of release observed with these microparticles (Figure 3.6) starts at 

around day 3 where release rate is greatly reduced after the initial burst release. 

This reduction of release rate could explain why the fluorescence becomes less 

visible at day 4. Mobile rhodamine 123 that has been released will be drawn into 

the surrounding agarose until an eventual equalisation of the concentration 

throughout the entire hydrogel. Therefore, the elevated and visible signal 

observed on days 1-3 could be reliant on a high release rate that is constantly 

replacing the mobile fraction of previously released rhodamine 123.  

This observation is reinforced by the literature data for rhodamine 123 mobility 

193,194, where the diffusion coefficient is 2.8x10-10m2s-1 in water 195. The loss of 

a rhodamine signal after 3 days does not necessarily mean that there is not 

enough being released, it could be that it is just suboptimal for visualisation. The 

high mobility of this small molecule is not representative of larger growth factor 

proteins, but it does show that there is a rapid delivery of encapsulated molecules 

to the surrounding area of the release point. However, it is not sufficient as an 

adequate proof of principle for delivery of molecules to cells, as the molecule is 

not retained by cells like growth factors and signalling molecules that will bind 

to recognition sites on the cell-surface to elicit signal transduction.  
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4.4.3 Delivery of molecules to cells 

One of the issues with the observation of rhodamine 123 release is the fact that 

it is intrinsically fluorescent and so there is a strong signal present in the 

microparticles that makes weaker surrounding signals harder to visualise. A 

better method of showing delivery from microparticles to cells would be the use 

of a fluorescent cellular reporter that is activated in the presence of a delivered 

signal. This is, however, rather complex and is potentially fraught with obstacles 

to be surmounted, delaying the development of the HOTs and not necessarily 

required for future biological investigations. A simpler option that achieves a 

similar outcome is the use of acetoxymethyl viability dyes such as calcein AM. 

The acetoxymethyl derivative of fluorescent calcein can be transported through 

the cellular membrane into live cells. The acetoxymethyl group occludes the 

chelating site on calcein so that it cannot bind Ca2+, Mg2+, or other ions which 

induce its fluorescence emission. Calceins chelating ability and resulting 

fluorescence explain its historical use as a fluorescent Ca2+-indicator 196. Calcein 

AM’s main application is now for labelling live cells 197, it is able to enter the 

cell due to the acetoxymethyl ester conferring a neutral charge on the molecule. 

Once inside a living cell and in the presence of esterase activity, the 

acetoxymethyl group is cleaved to reveal the chelator region, thus permitting 

fluorescence emission after excitation at 495 nm.  
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4.4.4 Fabrication of calcein green AM microparticles 

Calcein green AM was seen as an ideal candidate for encapsulation and use as a 

proof of concept for delivery from release sources and uptake by cells. As with 

the rhodamine 123 dyes, calcein green AM was loaded with HSA at a loading of 

0.1% (w/w) into PLGA:TBIIF (70:30) polymer solution. The desirable release 

kinetics demonstrated in Figure 3.6 should be also seen with calcein green AM 

due to the similar molecular weight and molecular properties, however, subtle 

chemical differences could lead to vastly different kinetics so it would have to 

fully characterised.  
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Figure 4.4 Characterisation of calcein green AM laden microparticles  

A. Microparticle size distribution by differential volume. B. SEM micrograph of the 

microparticles allowing for analysis of their morphology. C. Average estimated encapsulation 

efficiency of calcein green AM and HSA into this batch of microparticles. D. Representative 

fluorescence micrograph of each condition for the post-encapsulation bioactivity assessment, 

whereby, mES cells were incubated with different calcein AM solutions. From left to right, fresh 

“Calcein AM Green 2 µM”, fresh “Calcein AM Green 1 µM” and the calcein AM solution 

extracted from a suspension of calcein AM containing microparticles, estimated by microparticle 

mass and estimated encapsulation efficiency, to yield 2 µM Calcein “Encapsulated Calcein AM 

Green”. The scale bar represents 50 µm.  
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The calcein-AM-encapsulated microparticles were prepared as described in 

Section 4.3.2, and were fully characterised in Figure 4.4. Their expected 5 µm 

diameter was measured, as previously described, using dynamic light scattering. 

SEM imaging was once again employed to assess microparticle morphology; the 

microparticles were non-porous and were prone to aggregating with one another 

as observed previously with PLGA:TBIIF (70:30) blends.  

To assess the encapsulation efficiency of calcein AM, the microparticles were 

digested as described in Section 2.9.4 and the supernatants were analysed using 

a NanoDrop spectrophotometer (Section 4.3.3). The NanoDrop was required due 

to the absorbance peak for calcein green AM was in the UV spectrum (384nm); 

the plates used in the Tecan plate reader would create false positive absorbance 

as the polystyrene well-plates also absorbed short wavelength light. Using the 

NanoDrop, standard curves were prepared and the concentration of calcein green 

AM could be accurately measured alongside the HSA concentration (Section 

2.9.5). Figure 4.4 C shows the encapsulation efficiency of calcein green AM is 

fairly high at 66.1 ± 1.3%, whereas the HSA encapsulation is 80.1 ± 1.4%. The 

discrepancy in encapsulation efficiency between the two molecules could have 

been due to the preferential adsorption of negatively charged HSA on the surface 

of the microparticle as well as being encapsulated. 

An important consideration when encapsulating a bioactive molecule like 

calcein green AM is that its functionality cannot be assessed by simply recording 

its presence by absorbance. Damaged and non-functional molecules could still 

yield absorbance but not be able to function as intended. During the 

encapsulation there are various conditions that can be particularly damaging to 

molecules, and particularly proteins, including the shear forces of 
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homogenisation and the exposure to solvents 198. Therefore, the functionality of 

the encapsulated molecule or protein should be tested prior to use. To assess the 

activity of calcein AM, working concentration (2 µM) and half working 

concentration of calcein green AM was added to mES (CGR8) cells as described 

in Section 4.3.4. Fluorescence micrographs of the cells showed a strong 

fluorescence signal for the 2 µM concentration and a weaker response with the 

1 µM concentration (Figure 4.4 D). An appropriate mass of calcein-AM-

encapsulated microparticles (based on loading) were digested to yield a 2 µM 

solution of post-encapsulated calcein green AM as described in Section 4.3.4. 

This solution was also added to a monolayer of mES cells and imaged in the 

same way as with the known concentrations of calcein AM. The post-

encapsulated calcein green AM stained cells and yielded a fluorescence signal 

that was less than the 2 µM-treated cells but slightly more intense than the 1 µM-

treated cells. We did not expect a full response as seen in the 2 µM sample, as 

the encapsulation efficiency was 66.1 ± 1.3% (Figure 4.4 C). The fact that the 

signal was greater than the 1 µM sample led us to believe that minimal damage 

was occurring to the calcein green AM due to the encapsulation process. This 

assay was only a qualitative assessment, but it supported the case that there was 

a suitable proportion of active calcein green AM being encapsulated within the 

microparticles. 
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Figure 4.5 Calcein-AM-loaded microparticle in vitro release study 

A. Release kinetics of HSA from calcein-AM-loaded microparticles assessed by BCA assay. B. 

Calcein green AM release from the same batch of microparticles. Calcein green AM 

concentration was analysed by NanoDrop spectrophotometry from the daily supernatants. The 

release studies for both HSA were analysed simultaneously from the same release study 

completed over 10 days. The error bars represent the cumulative standard error of the mean for 

triplicate. 

 

  



Chapter 4  Results II 

117 

 

Release studies were completed for the calcein-AM-encapsulated 

microparticles, and as before both HSA and calcein green AM concentration was 

assessed from the daily supernatants of the in vitro release study. Figure 4.5 

shows a plot for both HSA (Figure 4.5 A) and calcein green AM (Figure 4.5 B) 

describing the released percentage mass of the total HSA estimated to be 

encapsulated. As expected, the release curve for calcein green AM is very similar 

to the release of rhodamine 123 (Figure 3.6) for the PLGA:TBIIF (70:30) 

microparticle batch. Interestingly, there is a significant burst release recorded for 

HSA which backs up the theory that the protein was preferentially adsorbing to 

the surface of the polymer microparticles as discussed earlier. The surface-

located-HSA would be released rapidly over the first 24 hours contributing to 

the observed ~35% burst release (Figure 4.5 A). 

4.4.5 Patterning calcein green AM microparticles in agarose 

The microparticles were fabricated with the same formulation as those which 

tested suitable for optical trapping (Figure 3.3), and therefore it was assumed 

that this batch would trap just as well. Manipulation was possible and a mES cell 

ring structure was formed (Figure 4.6), once the cell ring had been formed, 

calcein-AM-loaded microparticles were added to its centre. The cell and 

microparticle structure was then positionally stabilised with ULGT agarose as 

previously described. The micropattern-containing hydrogel could then be 

incubated and cultured to assess for fluorescent calcein signal indicating a 

successful release of calcein green AM from the microparticles and uptake by 

the surrounding cells. 
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Figure 4.6 Patterning calcein-AM-laden microparticles with mES cells stabilised in agarose 

The fabrication of a mES cell ring containing four calcein-AM-laden microparticles in liquid 

pre-gelled ULGT agarose (1.0%). Microparticles were sequentially positioned from the 

surrounding pre-gel solution into the centre of the mES cell ring. The patterns were then 

stabilised by gelling the agarose hydrogel through a temperature reduction to 23oC, yielding a 

stabilised HOTs-fabricated pattern. The scale bar represents 20 µm.  
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Figure 4.7 Calcein green AM delivery to a HOTs-patterned cell ring 

The figure shows an agarose-hydrogel-stabilised microparticle pattern made up of four calcein-

AM-laden microparticles positioned within an 8-cell mES ring and stabilised in agarose. The 

pattern formation of a similar cell-microparticle structure is shown in Figure 4.6. Fluorescence 

microscopy was used to visualise calcein fluorescence signal in the surrounding cells. The scale 

bar represents 20 µm.  
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Cell rings containing calcein green AM microparticles were fabricated as shown 

in Figure 4.6 and then cultured for 6 days. The patterns were imaged daily to 

observe the successful uptake of calcein green AM by the surrounding cells 

(Figure 4.7). By day 2 a very weak calcein signal can be seen in the surrounding 

cells when fluorescently excited at 495 nm. This signal increased slightly and 

reaches a maximal signal at day 6. This gradually increasing signal was not seen 

with the rhodamine 123 release (Figure 4.3) as there was nothing retaining the 

fluorophore, and so it dissipated into the surrounding hydrogel sink. With 

Calcein AM, cells are able to retain the esterase-modified calcein within their 

cell membrane, and hence the signal increases. The signal was expected to be 

observed by day 1 according to the rapid burst release kinetics of this batch of 

microparticles (Figure 4.5), however there was no signal over the background 

(data not shown). This is most likely explained by the insufficient delivery of 

calcein green AM over the first 24 hours, as although the release rate is at its 

greatest, only a small mass of calcein green AM is present and for an adequate 

signal to propagate, at least 48 hours of release was required. 48 hours of release 

equates to 34% release of calcein green AM from the microparticle batch, and 

by day 6, 70% will have been released, thus explaining the increase in 

fluorescence signal. 

The cell pattern in Figure 4.7 does not seem to be proliferating, something that 

would be expected over the 6-day culture period. The use of calcein green AM 

as a reporter for delivery from the microparticles also assesses the cells’ 

metabolic state. The fact that a fluorescence signal is formed indicates that the 

cells are alive (with esterase activity) 199, however they are not dividing. 

Something in the HOTs patterning process was detrimental to cell proliferation, 
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and more investigation was required to explain it. Regardless of the detriment to 

cellular proliferation, the use of calcein AM was a suitable proof of principle for 

showing that precisely patterned microparticles could be used to deliver 

molecular cargo to cells in a temporally-controlled manner.  

In order to develop this proof of concept for the HOTs system being able to 

control the diffusible signalling of a cell microenvironment it was required that 

multiple signals be delivered. Commonly in cell and tissue development, 

multiple signals are required to ensure both specific and appropriate cell 

differentiation. In the case of the developing spinal cord, the specific order of the 

dorso-ventral axis is determined by the antagonistic activities of diffusible Shh 

and Wnt proteins 44. In order to develop the HOTs into a valuable 

micropatterning tool, such dual soluble signalling models must be achievable. 

4.4.6 Fabricating calcein blue AM microparticles 

To demonstrate the ability of the HOTs to deliver multiple signals to a patterned 

cell organisation, the calcein green AM method was used once again. Calcein 

blue AM is a similar probe to that of the previously used green-emitting calcein 

AM, but its emission spectrum is in the blue wavelength region (450 nm) and it 

is excited at 360 nm. The delivery of two differently coloured probes was 

deemed suitable as a proof of concept for multiple signal delivery, and so calcein 

blue AM microparticles were fabricated. Due to the mechanism of calcein AM, 

blue or green, the microparticles containing each probe will be indistinguishable 

with the acetoxymethyl group intact. Therefore, to be able to distinguish between 

the two batches of microparticle when patterning on the HOTs, the calcein-blue-

AM-laden microparticles were formulated in such a way that they would be 
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larger than the calcein-green-AM-laden microparticles. By altering the 

polymer:DCM ratio as previously described (Table 3.1), differently sized 

microparticles can be fabricated. The optical trapping study discussed in Chapter 

3 (Figure 3.3) offered a suitably sized microparticle formulation that could be 

easily manipulated. PLGA:TBIIF (70:30) was dissolved in DCM to yield a 15% 

polymer solution known to produce 10-20 µm sized microparticles when used 

with the aforementioned emulsion-based preparation of microparticles (Section 

2.9.1). Calcein blue AM microparticles were fabricated at a loading of 0.1% 

(w/w) according to this method and were fully characterised (Figure 4.8).  
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Figure 4.8 Characterisation of calcein blue AM microparticles 

A. Microparticle size distribution by differential volume, comparing the sizing for calcein AM 

Green microparticles (Black) to Calcein AM Blue microparticles (Blue). B. SEM micrograph of 

the microparticles allowing for analysis of their morphology. C. Average estimated 

encapsulation efficiency of calcein blue AM and HSA into this batch of microparticles. D. 

Representative image of each condition for the post-encapsulation bioactivity assessment. From 

left to right, fresh “Calcein AM Green 2 µM”, fresh “Calcein AM Green 1 µM” and the calcein 

AM solution extracted from a suspension of calcein AM containing microparticles, estimated by 

microparticle mass and estimated encapsulation efficiency, to yield 2 µM Calcein “Encapsulated 

Calcein AM Green”. The scale bar represents 50 µm.  
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Figure 4.8 A shows the sizing of the microparticle batches obtained for the 

calcein-blue-AM-laden microparticles as compared to the standard calcein-

green-AM microparticles. This new batch was shown to be larger than the 

calcein green AM batch and would be easily distinguishable on the HOTs system 

during patterning. SEM imaging (Figure 4.8 B) shows the microparticle 

morphology to be non-porous and with high polydispersity in terms of sizing. 

The encapsulation efficiency of calcein blue AM was high at 71.5 ± 0.74%, and 

similarly to the calcein green AM microparticle analysis (Figure 4.4 C), there 

was an elevated encapsulation of HSA over calcein blue AM. The important 

assessment of the functionality of bioactive molecules after encapsulation, as 

previously discussed, was repeated with the calcein-blue-AM-laden 

microparticles. The post-encapsulation bioactivity of calcein blue AM is shown 

in Figure 4.8 C; the 2 µM calcein blue AM gives a strong fluorescence signal in 

mES cells. A similarly strong response is also observed in the post-encapsulation 

and 1 µm sample wells. It may be the case that the calcein blue AM requires less 

calcein to yield a suitable fluorescence signal, and with this in mind we can 

deduce that the encapsulation process is not particularly affecting calcein blue 

AM function.   
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Figure 4.9 Calcein-blue-AM-loaded microparticles in vitro release study 

A. Release kinetics of HSA from calcein-blue-AM-loaded microparticles assessed by BCA 

assay. B. Calcein blue AM release from the same batch of microparticles. Calcein blue AM 

concentration was analysed by NanoDrop spectrophotometry from the daily supernatants. The 

release studies for HSA were simultaneously assessed from the same release study completed 

over 10 days. The error bars represent the cumulative standard error of the mean for triplicate 

batches of each microparticle formulation.  
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Release studies were completed for the calcein blue AM microparticle batch as 

described previously (Section 2.9.6). As before, the calcein green AM molecule 

was loaded with HSA as a carrier protein, and the release of HSA was also 

assessed. Figure 4.9 shows the plots for HSA (Figure 4.9 A) and calcein blue 

AM (Figure 4.9 B) release over 10 days. The HSA shows a similar release curve 

to that of calcein green AM release, however there is an elevated burst release 

over the first 24 hours up to almost 50%. This could be explained by the 

increased internal porosity of larger polymer microparticles during drug release 

200,201, leading to elevated hydration of the microparticle, and hence the higher 

burst release. However, it was initially thought that the smaller microparticles 

(calcein-green-AM-laden) would have a faster release rate due to their increased 

surface area to mass ratio. From these two conflicting theories it was 

hypothesised that the size difference was less of a factor with respect to the, 

expected to be greater, internal porosity of the larger microparticles. Future 

development of the microparticles would be required for tailoring their release 

kinetics to fit desirable delivery profiles, however these would need to be 

specific to the molecular cargo being delivered. 

The calcein blue AM release follows a similar trend to that of the calcein green 

AM, with a burst release of 30.2 ± 3.4% followed by a sustained release over the 

following 9 days. The sustained release was shown to be important in the 

formation of a visible fluorescence signal in Figure 4.7, and it was necessary that 

this batch also presented with such release kinetics. 
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4.4.7 Multiple signal patterning 

As previously discussed, two differently labelled (green and blue emission 

spectra) calcein green AM dyes were loaded into separate microparticle 

formulations. Calcein-green-AM-laden microparticles that were ~5 µm in 

diameter (Figure 4.4) and a larger sized batch laden with calcein blue AM 

(Figure 4.8) sized ~20 µm in diameter. These particles were patterned around 

the standard eight mES cell ring with four of each microparticle batch. The 

differently loaded microparticles were differentiated from one another by size. 
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Figure 4.10 Dual signal HOTs patterning 

A. ULGT agarose hydrogel gelled pattern of eight mES cells surrounded by four calcein-green-

AM- and four calcein-blue-AM-laden microparticles positioned using the HOTs patterning 

platform. B. Fluorescence micrographs showing calcein fluorescent signals from the mES cell 

ring, thus indicating successful delivery of the dual calcein AM signals from the microparticles 

to the cells where the acetomethoxy group of calcein AM is cleaved, yielding fluorescent calcein. 

The scale bar represents 20 µm.  
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Figure 4.10 A shows the cell and microparticle structure as stabilised in ULGT 

agarose with the differently loaded microparticles labelled by coloured arrows. 

The gelled structure was moved to an incubator and cultured for 6 days, and 

during this culture period the pattern was imaged every 48 hours. Figure 4.10 B 

shows the development of both green and blue fluorescence signal after 3 days 

and the stronger signals on day 6. As previously observed, the development of a 

visible signal takes longer than the in vitro release study would indicate; a 

fluorescence signal is first seen at 48 hours after a significant burst release in the 

first 24 hours, and then the signal intensifies gradually as the microparticles 

break down further. 

Cell proliferation is once again not occurring, but by virtue of calcein AM 

conversion it was possible to conclude that the cells were alive (possessed of 

esterase activity and retaining cell membrane integrity). If the cells were dead at 

day 0, there would be no fluorescent calcein signal due to a lack of esterase 

activity needed to facilitate hydrolysis of the acetoxymethyl group. If the cells 

were initially alive and able to convert the calcein AM to fluorescent calcein, 

and then died, the calcein would have been free to leak out of the cell as the cell 

membrane broke down. Neither of these possibilities seemed likely, given the 

strong fluorescence signal, but it was prudent to check the cell viability with 

another method to reduce the likelihood of false positives. Figure 4.11 shows 

two cell patterns formed in the same way, the experimental pattern is the same 

as in Figure 4.10 at day 6. The negative control pattern was irradiated after 

gelation, as described in Section 4.3.5, and then Live/Dead Cell Viability Assay 

probes were added. 
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Figure 4.11 Post-culture HOTs-patterned cell viability assessment 

Fluorescence micrographs of two HOTs-fabricated cell and microparticle patterns. The 

experimental pattern is from the previous figure (Figure 4.10), and the negative control was an 

irradiated (UV 30 minutes) cell pattern to confirm that the Live/Dead Cell Viability Assay was 

functional. The red cells are EthD-1-positive (dead), while the green cells are calcein-positive 

(alive). Scale bar represents 50 µm. 
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The experimental pattern only had the EthD-1 added, as the calcein AM had 

already been added (Figure 4.10) and no red fluorescence was observed, 

indicating membrane integrity. However, the negative control cells showed a 

strong EthD-1 fluorescence signal, indicating that the cell membranes had been 

disrupted. Damage to the cell membrane, one of the key indicators of cell death, 

permits the ingress of EthD-1 into the cell where it then binds to DNA, increasing 

in fluorescence intensity 202. Further evidence to suggest that calcein staining is 

specific to living cells is shown by the lack of any fluorescence signal with the 

negative control cell pattern. 

These data inspire confidence in the calcein AM delivery experiments, and 

suggest that the cells are not dying in the current HOTs procedure. However, 

they do not explain the lack of cellular proliferation previously shown in these 

agarose hydrogels (Figure 3.10). 

4.4.8 Explaining the lack of cellular proliferation 

Previous literature suggests that the capacity for cell proliferation can be reduced 

by cell stress; one of the mechanisms to combat various stressors is the adoption 

of a permanent cell-cycle arrest that is termed senescence 203. The hallmarks of 

senescence include: permanent growth arrest 204, increase in cell size 205, 

expression of senescence-associated β-galactosidase 206, and the release of 

cytokines and growth factors 207. In order to assess cellular senescence, the 

expression of β-galactosidase can be stained for 208. Initially, the ULGT 

agarose’s effect on cellular senescence was tested. Given the previous work 

showing that proliferation of mES cells in 1% ULGT agarose did occur, cellular 

senescence was not expected. Further to this, another hydrogel, GelMA was 
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tested following its reported successful use with cell culture systems 159. Figure 

4.12 shows three mES cell monolayers grown and then stabilised in either 10% 

GelMA or 1% ULGT agarose, and a negative control without hydrogel 

stabilisation.   
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Figure 4.12 β-galactosidase assay for hydrogel-associated senescence 

Representative bright-field micrographs of mES cell monolayers grown without hydrogel 

stabilisation (Negative control) with 10% GelMA and 1% ULGT agarose. The two hydrogels 

were gelled according to the methods previously outlined. The blue regions show the β-

galactosidase, indicating cellular senescence, in the samples stabilised by agarose. The scale bar 

represents 20 µm.  
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The negative control (-ve) and GelMA-stabilised cell monolayers show no 

positive β-galactosidase staining, whereas those stabilised with ULGT agarose 

show significant blue staining. The ULGT-agarose-stabilised monolayer showed 

areas of β-galactosidase positive blue staining, whilst other more densely 

populated areas were unstained (data not shown). This result was seen in all the 

replicate wells (n=3) and led to the following hypothesis. Whilst the mES cells 

were able to proliferate when seeded at a suitably high cell density, as shown in 

Figure 3.10, when isolated, like when subjected to HOTs patterning or under the 

conditions of the ULGT-agarose-stabilised cells of Figure 4.12, cells do not 

proliferate and enter senescence. 

Work completed by Dr Emily Britchford (Thesis (2015), University of 

Nottingham, UK) showed that HOTs-patterned mES cells could proliferate 

without ULGT agarose stabilisation. From these data and the agarose-linked 

induction of β-galactosidase (Figure 4.12), it was deduced that agarose was the 

cause of cellular proliferation’s arrest among HOTs-patterned cells.  

4.4.9 Cell patterning in GelMA 

GelMA’s reported use for 3D cell culture 160,209–211 and demonstrated ability to 

support even sparsely seeded cell growth (Figure 4.14) made it a strong and 

candidate for stabilising HOTs-patterned structures. The pre-gel solution of 

GelMA was tested for its suitability for the patterning and stabilisation of cell 

structures (Figure 4.14). GelMA is cross-linked by UV light, as described in 

Section 4.3.6, and as such cell viability assessment was required to show that 

this exposure to potentially damaging short wavelength light was not detrimental 

to cellular viability. 
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Figure 4.13 Live/dead assessment of mES cells grown with cross-linked GelMA (10%) 

Live/dead assessment and fluorescence micrographs of the live (calcein-AM-positive) and dead (EthD-1-positive) mES cells after exposure to different doses of UV crosslinking 

(0, 5 and 30 seconds). Imaging was completed directly after exposure (0 hours) and after 24 hours. The scale bars represent 50 µm. 
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Figure 4.13 shows the results of a LIVE/DEAD© viability assessment that 

qualitatively shows the effect of UV exposure on mES cells in GelMA. Cells 

exposed for 5 seconds received the dose required for the complete cross-linking 

of a volume suitable for HOTs patterning. Cells exposed for 30 seconds received 

six-times the HOTs patterning dose, a dose far higher than they would receive 

for any future experimentation. Cells were analysed directly after exposure and 

after 24 hours to assess direct cell death and any delayed effects. Such delayed 

cell damage could be through the action of UV-induced mutagenesis leading to 

lethal mutations that might not be observed directly after UV exposure. For these 

proof of concept experiments, such potential mutations are not relevant, but they 

may detrimentally affect biological development, a consideration that is 

addressed at a later point in this thesis. In all of the samples, including the 

negative control, few dead cells were evident, as is typically the case. With the 

exposure to UV there was no significantly elevated rate of cell death observed, 

and it can be concluded that the minimal exposure to UV and cross-linking 

within GelMA was not causing the death of the mES cells. 

As with the agarose hydrogel, it was important to show that cells can be 

manipulated within the GelMA pre-gel solution and that the resulting patterns 

can be stabilised for culture. Further to this, analysis of the patterned cells’ 

proliferation was undertaken to show that GelMA could support HOTs-patterned 

cell growth.  
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Figure 4.14 Proliferation of a mES cell ring stabilised by GelMA 

Formation of a mES cell ring in pre-gel GelMA with the HOTs patterning platform, and 

subsequently gelled and stabilised via UV crosslinking. The stabilised cell structure was then 

cultured as usual and imaged to assess proliferation over a 7 day period of normal cell culture. 

The scale bars represent 50 µm.  
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Figure 4.14 shows that the pre-gel solution was suitable for the HOTs optical 

manipulation of cells into the ring pattern. This pattern could then be rapidly 

cross-linked, yielding a GelMA-stabilised cell ring. The cell ring was cultured 

for 7 days and its proliferation was imaged. The ring pattern was lost after 24 

hours as the cells divided and reorganised themselves to form a small cell 

aggregate. This aggregate can be seen to grow for 7 days after pattern formation 

into a large rounded cell aggregate typical of 3D-cultured mES cells. 

The GelMA offers binding motifs for the mES cells to recognise and supports 

their growth, whereas the bio-inert agarose does not. Whilst the agarose provides 

a blank canvas to create cell microenvironments, the GelMA permits cell growth. 

Through the demonstration of GelMA- and ULGT-agarose-patterning two 

systems for HOTs patterning have been detailed, each with different advantages 

and disadvantages. The bioactive nature of GelMA, arising from its derivation 

from collagen, means that RGD (L-arginine, glycine, and L-aspartic acid) bind 

sites 212 and MMP (matrix metalloproteinase)-sensitive degradation sites are 

retained 213. These recognition sites support cell proliferation, as shown in Figure 

4.14, but they could also influence cellular development detracting from the 

HOTs based signalling. The initial idea of the HOTs patterning platform was to 

develop a means to control every aspect of the patterned microenvironment. The 

use of GelMA prevents this and demonstrates the importance of being able to 

use bio-inert agarose as an alternative.  

4.4.10 Development of the patterning gasket 

Heretofore, HOTs patterning was done according to the methodology outlined 

in Section 2.8.1. This approach was suitable for achieving early proof of 
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principle experiments and founding the basis for delivering small molecules to 

HOTs-fabricated cell patterns. However, due to the mobility of these delivered 

molecules, even the low numbers of unpatterned release sources surrounding a 

cell pattern of interest become an issue. To accurately control the spatial 

characteristics of a diffusible molecular signal, we need to ensure that the 

patterned signal origin is the only source of release. To achieve this, the 

patterning gaskets were adapted from a simple cell culture dish, as detailed in 

Section 2.8.3, to a more complex multi-lobed gasket. Figure 4.15 explains the 

development and use of the multi-lobed gasket. It describes how experimental 

through-put can be increased whilst simultaneously providing a means to isolate 

cell patterns from unpatterned release sources. 
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Figure 4.15 The design and approach for patterning with the lobed patterning gasket 

How the lobed patterning gasket was designed (A), fabricated (B) and used (C). A. Internal 

mould design created with Tinkercad. B. 3D-printed PLA mould. C. Steps taken to use the lobed 

patterning gasket: 1) in a petri dish (see B), the PDMS gasket was formed around the internal 

mould; 2) the PDMS gasket was removed from the petri dish and glued to a glass coverslip; 3) 

the lobed patterning gasket was filled with pre-gelled hydrogel; 4) release sources were added to 

the central reservoir and cells to the outer lobes; 5) individual release sources were then 

translocated as required via optical manipulation to each cell-containing lobe and patterned; 6) 

the hydrogel was crosslinked and the central reservoir and channels excised. The scale bars 

represent 20 mm.  
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Figure 4.15 A shows the CAD-designed (Tinkercad) 3D model for the six-lobed 

patterning gasket mould. This design was printed as described in Section 4.3.7, 

using Makerbot’s Replicator 2 3D printer. Figure 4.15 B shows the PLA mould 

mounted onto a petri dish and ready for the addition of silicone elastomer and 

formation of the six-lobed patterning gasket. Figure 4.15 C explains the steps 

taken when using the patterning gasket for HOTs patterning, and how release 

source patterning can be achieved so that experiments are isolated from the 

surrounding unpatterned release sources.  

The development of this patterning gasket enabled the HOTs to manipulate 

objects, including microparticles, from a reservoir to an experimental area much 

like a microfluidics system. Once the required number of microparticles have 

been positioned in one of the six surrounding lobes, and the hydrogel medium is 

cross-linked, the reservoir containing unpatterned microparticles can be excised. 

This removal of unintended signalling means that spatio-temporal control over 

the signals being developed from patterned microparticle release sources can be 

achieved. 

To demonstrate this spatio-temporal control, PLGA:TBIIF (70:30) rhodamine-

123-loaded microparticles, characterised in Figure 3.4, were added to the 

reservoir, and individual microparticles were translocated to each of the four 

lobes of the four-lobed patterning gasket. The agarose hydrogel was cross-linked 

and the reservoir region excised, yielding an individually patterned release 

source in each of the surrounding lobes (Figure 4.16).  
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Figure 4.16 Demonstration of the four-lobed patterning gasket 

A bright-field and fluorescence micrograph of the four-lobed gasket after individual rhodamine-

123-laden microparticles (Indicated by arrows) were translocated from the central reservoir and 

isolated in the outer lobes of crosslinked GelMA using the HOTs patterning platform. The central 

reservoir was excised to separate it from the external lobes before any rhodamine-123 diffused 

out. The scale bar represents 5mm.  
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4.4.11 Spatio-temporal control of solute delivery 

It was important to confirm the lobed patterning gasket’s functionality with 

actual cell experiments, to demonstrate usability and to identify a spatially 

controlled response to a delivered molecule. It has previously described how 

signals delivered from controlled-release microparticles can be tailored to create 

different signalling characteristics. This aspect of the HOTs micropatterning 

platform is highly important to its unique selling point, precisely recreating the 

signalling conditions of cell niches. However, temporal control represents just 

one facet of the HOTs unique selling point. The ability to position release sources 

in specific configurations, offering spatial control over the signal, is also a 

defining feature of the HOTs platform. It was hoped that with the patterning 

gasket and the removal of any contaminating unpatterned release sources, spatio-

temporally-controlled signalling could be attained.
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Figure 4.17 Calcein green AM delivery to mES cell aggregates using the lobed patterning gasket 

A. GelMA-stabilised mES cell aggregates with one (Left) and two (Right) calcein-green-AM-laden microparticles optically positioned in close proximity to them using the 

HOTs patterning platform and the multi-lobed patterning gasket. B. Subsequent imaging of the cell aggregates, including fluorescence microscopy to analyse calcein 

fluorescence signals over 4 days. A false colour Lookup Table (LUT) has been applied to a 32-bit version of the fluorescence micrographs to emphasise the subtle calcein 

signal produced in the two microparticle sample. The scale bars represent 50 µm. 
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To best show the formation of a spatially controlled delivery, a larger cell 

structure was used. Due to the basic nature of these proof-of-principle 

experiments, it was deemed unnecessary to pattern this cell structure, and so 

small mES cell aggregates were formed as described in Section 2.5.2. These 

small cell aggregates could be injected into the surrounding lobes of a patterning 

gasket individually, and then the required microparticles could be brought to 

them as described in Figure 4.15.  

Figure 4.17 A shows two small cell aggregates with one and two calcein-green-

AM-containing microparticles positioned around them. Figure 4.17 B shows the 

subsequent imaging of these two aggregates, the cell aggregate (Left) with one 

microparticle shows no green fluorescence signal after 4 days. However, the 

two-microparticle cell structure yields a low but discernible calcein signal at day 

4 across the whole structure. False colour Fire LUTs were used to help identify 

the signal over the background. 

The halo of low level fluorescence surrounding the day 4, two-microparticle 

structure was most likely an artefact from the fluorescing cell structure. This was 

observed previously when using longer exposure times, and was thought to be 

due to reflected light from the calcein-containing cell structure. 

This work showed that the patterning gasket could be used to fabricate isolated 

release experiments, however it did not show that control over spatial 

characteristics of the delivery was possible. The signal at day 4 must have been 

developing over the first few days before reaching an adequate level for 

observation at the set acquisition settings. From this work, it was deduced that a 

greater signal would be required in order to observe a spatial response across a 
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cell aggregate. With the small mass of calcein green AM delivered in Figure 

4.17, the released solutes would diffuse all around the aggregate well before the 

signal was visible and, as such, no zonal response could be visualised. In an 

attempt to identify such a zone of delivery, slightly larger cell aggregates were 

grown and a greater number of release sources were used. 
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Figure 4.18 Spatio-temporal control of calcein AM signalling 

Proof of concept for evoking a zonal cellular response to calcein AM using the HOTs patterning 

setup. A. A mES cell aggregate with calcein-AM-laden microparticles positioned in close 

proximity to one side of the cell aggregate. B. Subsequent fluorescence micrographs of the cell 

aggregate, analysing calcein fluorescence signal over 3 days. C. The same cell aggregate with a 

red circle showing the position of the mES aggregate relative to the fluorescence signal on day 

1 and 2, and then the post-image analysis plot of the grey values (false colour LUT) in the red 

circle. The scale bars represent 50 µm.  
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Six calcein-AM-containing microparticles were patterned in close proximity (5 

µm) to a 50 µm diameter mES cell aggregate using the lobed patterning gasket 

(Figure 4.18 A). The patterned microparticles were completely isolated from 

unpatterned release sources and other cell aggregates and stabilised in GelMA 

(10%). Figure 4.18 B shows a strong calcein signal forming over 3 days of cell 

culture, and with the whole aggregate fluorescing by day 2. A very weak signal 

can be seen at day 1, and this is better represented in Figure 4.18 C showing the 

day 1 and 2 fluorescence images with a red ring indicating the aggregates 

position relative to the signal. As before, a Fire LUT was used to better identify 

the calcein signal over the background, and this signal was graphically 

represented to display the grey value of each pixel within the red circle. The day 

1 plot shows that an elevated signal was measured on the side of the release 

source, resulting in a gradient of fluorescence intensity across the aggregate. By 

day 2, this gradient was no longer visible and the entire aggregate was 

fluorescing.  

One potential explanation for this may lie in the fact that during the microparticle 

burst release, there is sufficient concentration of calcein green AM only within 

the direct zone about the release source (microparticles). Such temporally linked 

peaks in concentration yield responses only in close proximity, however over 

time and normalisation of the concentration through the gel, the rest of the 

aggregate responds.  

The identification of this zonal response to a delivered molecule gives strong 

evidence that the HOTs platform can achieve spatially tailored molecular 

signalling. To further demonstrate the power of this novel micropatterning 

platform, biologically relevant experiments must be developed. Delivery of 
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larger molecules and proteins would potentially introduce further difficulties, 

and these need to be addressed before the technology can be claimed a fully 

functioning micropatterning tool-set.  
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4.5 Conclusions  

In this chapter it is discussed how we overcame initial difficulties met when 

attempting to create a proof of concept for the delivery of molecules using 

HOTs-patterned microparticles. By adapting the method from involving an 

intrinsically fluorescent released molecule, rhodamine 123, to a delivery-

dependant fluorophore, calcein AM, it was possible to create models of 

molecular delivery to a patterned cell architecture. As previously discussed, the 

capability to control multiple signals would be necessary to replicate even the 

most basic developmental models, and so we showed how this could be achieved 

with calcein blue AM and differently sized release sources. 

Whilst developing these demonstrations of the HOTs patterning potential, a 

drawback with the agarose stabilisation method was observed. Although it was 

highly effective at stabilising patterns, and almost completely biologically inert, 

it was not permissive of cellular proliferation. One alternative approach 

discussed was the functionalisation of the agarose hydrogel, but a simpler option 

availed itself. The use of GelMA provided a cell supportive pattern-stabilising 

matrix that was shown to be highly suitable for HOTs patterning. As described 

previously, gelatin is derived from collagen, a commonly used biomaterial in 

tissue engineering. Whilst it is far less bioactive than growth-factor-containing 

Matrigel, it is not as bioinert as agarose. The choice to proceed with GelMA was 

based on the fact that it offered a compromise as a hydrogel that can promote 

cellular interaction whilst being less bioactive than other extracellular-matrix-

derived hydrogels. 
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This chapter also detailed how the patterned microparticle release sources can 

be isolated from those that are unpatterned. As discussed, the isolation of 

patterned release sources permits the control of the signalling in the patterning 

area, without any background signalling from unpatterned release sources. 

Through the development of the lobed patterning gasket it became possible to 

fabricate multiple isolated experiments in the same gasket. Using the lobed 

gasket we were able to show the expected zonal response of calcein fluorescence 

on the proximal side of the mES cell aggregate to the release source. 

4.5.1 Hypothesis of proximity release zone mechanism 

The presence of this zone of calcein fluorescence at a specific time-point could 

explain how the microparticle release system is achieving zonal delivery. Whilst 

it is unlikely that the mobility of the calcein AM molecule is the causal factor in 

the proximity zone of fluorescence because of its estimated high diffusivity 

through the hydrogel. The proximity zone most likely had a suitably high 

concentration of calcein AM at certain time-points (24 hours (Figure 4.18)) 

permitting the visualisation of cell-containing esterase-cleaved calcein AM in 

this zone but not others. The timing of this proximity release zone coincides with 

the burst release phase for the microparticles, further supporting this theory.  

For further development of the HOTs platform, biologically significant models 

were recreated, and a zonally differential response to released factors was 

demonstrated. These advancements are discussed in the following chapters, 

where the HOTs patterning setup was used to investigate biological questions.  
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5. Results – HOTs based directed 

differentiation of embryonic 

stem cells 

5.1 Introduction 

This chapter will describe the approaches taken to demonstrate the HOTs 

patterning setup’s capability to deliver bioactive molecules to a cell-based 

structure to yield a specific biological response. The developments described 

explain how the technology can be applied to cell models of differentiation and 

how the protocol has been improved over earlier approaches. Chapter 4 

demonstrated the delivery of fluorophores to cells to provide a working 

principle. Calcein AM was successfully delivered and converted to fluorescent 

calcein by intrinsic esterase activity within the cell. To develop this concept and 

the HOTs pattering setup, a more complex model for delivery and response was 

devised. A distinction was clearly recognised in Chapter 4 that such work with 

fluorophores is not a suitable representative of the biological investigations that 

the HOTs patterning setup is being developed for. In order to bring about a 

specific biological response via solute signalling, an effector molecule must be 

presented to responsive cells at an adequate concentration (dependent upon the 

binding affinity). Generally speaking, the molecule will bind to a surface 

molecule for further downstream signalling or entry into the cell. Cells provided 
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with the appropriate signal bring about transcriptional change and then 

subsequent protein expression occurs as a response. 

The ability to show such transcriptional modulation through patterned, spatio-

temporal solute signalling is of great interest to many researchers wanting to 

understand cellular developmental processes. As previously discussed, other 

technologies are available for delivery of molecular gradients 214–218, however, 

none can achieve such control of diffusible signalling at the length scales 

described in this thesis.  

This chapter describes the development of a suitable model for directed 

differentiation of cells exposed to a single molecular signal. Embryonic stem 

cells are highly prone to undergoing differentiation when grown in culture. As 

previously discussed, their undifferentiated state is maintained by the presence 

of LIF in cell culture medium 219,220. However, upon removal of LIF from the 

medium, spontaneous and random differentiation occurs 221. Typically, 

differentiation is towards germ layer commitment but the overall gene 

expression pattern can change dramatically within days of LIF removal. 

Furthermore, development of cellular aggregates or embryoid bodies has been 

shown to lead to cell populations that are comprised of the three germ layers 

(ectoderm, mesoderm, and endoderm) 222. The heterogeneous mixture of cells 

within embryoid bodies makes the characterisation of defined differentiation 

events difficult. Whilst monolayer culture is sometimes seen as being more 

amenable to directed differentiation 223, small and early stage cellular aggregates 

are a basic but effective representation of a developing embryo.  
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Use of small cell aggregates, despite their heterogeneous nature, to demonstrate 

diffusible signalling control with the HOTs platform was seen as appropriate for 

creating the advanced proof of concept. To achieve any form of directed 

differentiation or biological response from a mES cell aggregate a highly potent 

stimulus will be required that yields a significant cellular response. To observe 

the spatial control of the signalling, the response must also be rapid and only 

present after exposure to the molecular signal. 

Whilst one aspect of this chapter deals with the optimisation of a biological 

model to suit the HOTs platform. The other tranche focusses on the fabrication 

of microparticles that were suitable for delivering a bioactive molecule in such 

a way to illicit the appropriate response. A hypothesis had been developed 

following the work with calcein AM delivery that zonal delivery around the 

microparticle release source occurs due to the burst release kinetics associated 

with these microparticles. The high mobility of the small molecule calcein AM 

means that it will be diffusing great distances away from the release source 

quickly. However, during the rapid release stage a sufficiently high 

concentration of released molecule will be present around the microparticles 

yielding a zone of calcein response on one side of the mES cell aggregate (Figure 

4.18) (Section 4.5.1). If the hypothesis is correct, a similar zonal response could 

be observed with a bioactive signalling molecule released during the burst phase. 
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5.2 Chapter Experimental Overview 
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5.3 Materials and Methods 

5.3.1 Double Strand Break assay 

mES cells at passage 10 were cultured on gelatin coated 6-well plates until 80% 

confluent. Cell containing wells were then exposed to a UV source as described 

in Section 4.3.6 for a range of exposure times (0-300 s) (n=3 wells/exposure 

time), following exposure the cell culture medium was removed and replaced 

with fresh medium. Cell samples were incubated at standard culture conditions 

for 24 hours. Samples were then fixed with PFA (3.4%) for 20 minutes and 

immunocytochemistry was completed for using anti γH2AX antibody (Table 

2.1) and the method previously detailed (Section 2.7). 

5.3.2 Differentiation media 

Retinoic acid differentiation medium without LIF, as previously described in 

Section 2.1.2.3, was used for initial differentiation protocols. Serum starvation 

was applied in certain differentiation experiments detailed in this chapter. 

5.3.3 Retinoic acid based differentiation of mES cells 

CGR8 mES cells were reanimated from cryostorage at passage 8 and were 

cultured until passage 10. mES cells were then plated onto tissue culture coated 

plastic well-plates at a seeding density of 5x103 cells/cm2 and grown until 80% 

confluent (~48 hours) in the required cell culture medium (Section 2.1.2). 

Retinoic acid (RA) (R2625, Sigma-Aldrich, UK) is dissolved in DMSO to create 

a stock solution of 1mM concentration. For RA differentiation of mES cells, 

working concentrations of 10-1000 nM are achieved by diluting the stock 
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concentration in fresh ‘RA differentiation medium’. Cells were typically 

exposed to RA for 24 hours unless otherwise stated. 

5.3.4 Cell differentiation analysis 

Cells were differentiated by exposure to soluble RA and were assessed by 

immunocytochemistry described previously (Section 2.7). At the end of the 

differentiation period, samples were fixed, immunocytochemically stained, and 

analysed by fluorescence based optical or confocal microscopy as described in 

Section 2.10. 

5.3.5 Retinoic acid encapsulation 

RA was encapsulated into PLGA microparticles using both single and double 

emulsions as described in Section 2.9.1. Single emulsion (W/O) microparticles 

were formulated accordingly, 700 mg PLGA and 300 mg TBIIF were dissolved 

in DCM containing 2 mg RA and 10 mg HSA. Double emulsion (W/OW) 

microparticles were formulated accordingly; a concentrated solution of RA and 

serum albumin (HSA or BSA) was made up (2 mg RA + 100 µL of HSA (100 

mg/mL)) and added to the polymer solution (700 mg PLGA and 300 mg TBIIF 

dissolved in DCM). Fabrication of double emulsion microparticles was 

completed as described in Section 2.9.1.  

5.3.6 Fluorescent retinoic acid-laden microparticles 

FITC-BSA RA microparticles were formulated as described in Section 5.3.6 

with the exception that FITC-BSA was used instead of HSA at the same 

concentration. 
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5.3.7 HOT patterning 

Patterning was completed according to Section 2.8.1 using multi-lobed 

patterning gaskets as previously described in Section 2.8.4. Stabilisation of the 

HOTs fabricated microparticle structures was achieved using the GelMA (10%) 

system as previously described in Section 4.3.6. 

5.3.8 Fluorescence-associated cell sorting (FACs) 

FITC-BSA RA, non-fluorescent RA microparticles and 5 µm reference beads 

were suspended in PBS (25 mg/mL) and sonicated for 30 seconds to break up 

aggregates before being added to separate 5mL FACS tubes under sterile 

conditions. Sorting and analysis were performed using a MoFlo Astrios Cell 

Sorter (Beckmann Coulter, UK) equipped with a 488 nm laser at 100 mW of 

power. Forward scatter (FSC1) and side scatter (SSC) were collected through a 

filter and the FITC signal was collected in the FL1 channel through a 513/26 

bandpass filter. A light scatter gate was drawn in the SSC vs FSC1 plot to include 

microparticles of a similar size to 5 µm reference beads. Cells within the gate 

were displayed within a SSC vs 488 513/26 intensity plot allowing a 

visualisation of the fluorescence intensity distribution within the microparticle 

batches. Final selection gating was applied to sort based on fluorescence 

intensity.  

Microparticles were sorted over several sessions in separate batches to reduce 

the time spent suspended in PBS and were freeze dried for long term storage.   
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5.4 Results and Discussion 

This chapter details the use of HOTs for directing differentiation-based 

development of cells through a local delivery of chemical factors. Cellular 

differentiation can be analysed through the changes in protein expression by 

using immunocytochemistry to assess certain resultant surface protein markers. 

This method of assessment relies upon the direct relationship between effector 

signal and response where there is a limited potential for non-specific induction.  

5.4.1 Assessment of GelMA associated mutagenicity 

One such possible variable being introduced is through the cellular exposure to 

UV light, when cross-linking GelMA. To ascertain whether any DNA damage 

is occurring, that could be leading to mutations, a double strand break (DSB) 

assay was completed. To assess the effect that the UV exposure was having on 

the mES cells, cells were exposed to the UV source exact manner that they 

would, for cross-linking. Using an antibody for phosphorylated histone H2AX, 

the earliest indicator for DNA DSB 224, DNA damaged cells can be labelled and 

then visualised by immunocytochemistry.  
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Figure 5.1 Assessment of DNA damage following UV exposure 

mES cell monolayers were exposed to a range of different UV exposure times and then cultured 

for 24 hours, and then the cells were fixed and stained, Hoechst staining permits nuclear 

visualisation with γH2AX staining overlaid to show potential DNA damage that has occurred.  
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Figure 5.1 shows that the mES cells are susceptible to DNA damage, with greatly 

increased γH2AX staining following >60 seconds UV exposure and at 120s 

almost all of the cells in the field of view are γH2AX positive. However, at UV 

levels of 5 seconds, the exposure required for complete cross-linking of GelMA 

(20 µL), there is no clear increase in γH2AX staining over the control (0 

seconds). Whilst this result seems to suggest that at the levels of UV exposure 

relevant to GelMA cross-linking are not detrimental, the presence of γH2AX 

even at 0 seconds is interesting. This basal level could be explained by the 

karyotype instability exhibited by mES cells following long-term culture 225, 

however, reports have suggested that γH2AX may also be present at low levels 

involved in stem cell proliferation 226. Regardless, the assay is still able to 

suggest that the UV exposure used for GelMA cross-linking is not leading to 

excessive DNA damage, and combined with its favourable cell proliferation and 

suitability for patterning, it is the lead choice of hydrogel for this project. 

5.4.2 Directed mES differentiation using HOTs 

Before any HOTs based biological investigations could be conducted, a robust 

developmental model had to be chosen to further the technology’s proof of 

principle. A comprehensive literary search yielded lots of potential signalling 

models to replicate with the HOTs patterning approach. However, the model 

needed to meet certain criteria, including: high sensitivity to the released 

molecule, sufficiently strong biological response, and a developmental response 

that could be assessed by immunocytochemistry. The HOTs patterning 

procedure had been optimised to work well with cells of embryonic origin, and 
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so for these initial biological investigations, the proven mES cell line (CGR8) 

was used.  

5.4.3 Retinoic acid dependent expression 

One such developmental mechanism found to meet the requirements discussed 

above was the response of mES cells to retinoids. Recent work had shown a 

robust response of mES cells to low concentrations of RA, displaying 

considerable elevations of two Retinoic Acid Responsive Elements (RAREs), 

Stimulated by retinoic acid gene 8 (Stra8) and Deleted in azoospermia-like 

(Dazl). Recent work has shown that the protein expression of these two RAREs 

are tightly linked to RA concentration and <800 fold increases have been 

reported after just 24 hours of exposure 227,228. These two reporter proteins were 

also shown to be very lowly expressed without RA supplements. This was an 

important requirement for these initial experiments as it would allow for even 

subtle changes in protein expression to be visualised through 

immunocytochemistry.  

To assess the response of mES cells to RA at different concentrations, and 

optimise the staining procedure, mES cells were exposed to different 

concentrations of RA for 24 hours and were then fixed and stained for both 

DAZL and Stra8 protein.  
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Figure 5.2 Dose response of mES cells to RA 

DAZL and Stra8 immunocytochemistry staining showing the response of mES cell monolayers to a range (0-1000 nM) of RA with Hoechst counter-staining. Scale bar represents 

100 µm. 
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The mES cells were shown to respond to RA, with more fluorescence staining 

seen in the 100 and 1000 nM samples for both Stra8 and DAZL. However, the 

negative control wells with 0 nM RA supplement also showed with fluorescence 

staining signal, indicative of high basal Stra8 and Dazl protein expression. This 

result was not representative of the previous literature and would prove 

detrimental to HOTs patterning expression due to the similarity in staining 

intensity. It would make the analysis of low level RA supplemented cells 

difficult to distinguish between unstimulated cells.  

5.4.4 Serum associated expression of RAREs 

Previous work with RA stimulated embryonic cells had utilised low serum media 

to reduce the level of non-specific retinoids in the basal medium. Because the 

response was so sensitive, even the low levels of retinoids in FCS could be 

stimulating mES in negative controls. This hypothesis was tested by growing 

mES monolayers in 0% FCS supplemented medium for 24 hours prior to 

differentiation. Cells were then given medium supplemented with different 

concentrations of FCS (Section 5.3.2) and were cultured as normal.  
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Figure 5.3 Serum starvation of mES cells 

Immunocytochemistry showing the staining of DAZL and Stra8 protein, present when mES cells cultured in media containing 10, 1 or 0% FCS and cultured for 24 hours. Scale 

bar represents 100 µm. 
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Figure 5.3 shows the different Stra8 and DAZL staining in low passage mES 

monolayers cultured in 0, 1, and 10% FCS. In the DAZL stained wells, staining 

is clearly seen at each serum concentration. This indicates that the DAZL protein 

is not reducing sufficiently after removal of serum and that it would not be a 

suitable reporter for HOTs based RA delivery. However, the Stra8 response can 

be reduced dramatically following culture in 0% serum. The stark difference in 

fluorescence staining between 0 and 1% serum demonstrates just how tightly 

Stra8 protein is linked to RA concentration. The 0% well shows that Stra8 

protein can be reduced sufficiently to yield very low numbers of positive cells in 

the sample when compared to cells cultured in 1% serum. This result reflected 

the reported observations with these cells, and would prove suitable for HOTs 

delivered RA concept experiments. The starvation of serum is common place in 

differentiation protocols 31,229, however it was necessary to show that these 

conditioned mES cells were still responsive to RA after serum starvation as they 

would be used for future HOTs experiments. 

The serum starvation was only effective at reducing Stra8 protein levels, DAZL 

was still present in high levels post serum starvation. This may have been due to 

the slow turnover of DAZL protein, resulting in high DAZL protein even after 

gene expression has stopped. For this reason, DAZL was dropped as a readout 

for the RA response. The presence of Stra8 would be a sufficient marker for RA 

delivery and mES cell development brought about by HOTs signal patterning. 
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5.4.5 Dose dependant response to retinoic acid 

RA has signalling functions throughout the whole body and at various stages in 

development, and in 2006 the Page lab showed that external RA signalling led 

to the expression of the Stra8 gene 230. The interesting aspect about RA signalling 

is that a seemingly nonspecific chemical signal is capable of bringing about 

vastly different effects. The Page group later demonstrated the role that DAZL 

protein plays in preparing the cell to respond to the RA when required 231. Further 

specificity can be encoded by a signals spatio-temporal characteristics and it is 

well reported that RA signalling is no exception 232,233. If the Stra8 response to 

RA occurs is a dose dependent manner, a zonal response could be seen by an 

area of higher Stra8 protein. 
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Figure 5.4 Dose reponse of condfitioned mES cells to RA 

Stra8 immunocytochemistry staining showing the response of conditioned (serum starved) mES 

cells to a range (0-1000 nM) of RA with Hoechst counter-staining following serum starvation. 

Scale bar represents 100 µm.  
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The dose response experiment in Figure 5.5 shows the response of conditioned 

mES cells to a range of RA concentrations. As previously described, cells were 

fixed after 24 hours of RA exposure and stained for Stra8 protein. The 

fluorescence intensity gives a relating to the amount of Stra8 protein that has 

been expressed is clearly seen to increase with the increase in RA concentration. 

Once again, the negative control shows very little fluorescent signal indicating 

that there are only small numbers of cells expressing Stra8 at a low level. The 

fluorescence staining intensity observed using 10 nM is visibly greater that the 

negative control and it gives confidence that the model will be suitable for future 

delivery experiments. 

5.4.6 Retinoic acid dependant response in mES aggregates 

Following on from the promising results seen with zonal delivery of calcein AM 

to mES aggregates, the Stra8-RA response was assessed with serum starved mES 

cell aggregates. During the aggregation process there are numerous different 

signalling stimuli occurring that could be altering the response so it was 

necessary to repeat the dose response experiments again. A dose response assay 

was completed for the mES aggregates as described in Section 5.3.3.  
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Figure 5.5 Dose response of conditioned mES cell aggregates to RA  

Stra8 immunocytochemistry staining showing the response of three conditioned mES cell 

aggregates with and without RA (10 nM), with Hoechst counter-staining. Scale bar represents 

100 µm.  



Chapter 5 Results III 

171 

 

Figure 5.5 shows Stra8 staining in permeabilised mES cell aggregates exposed 

to either 0 or 10 nM RA for 24 hours. A strong fluorescent signal can be seen in 

the aggregates posed to 10 nM whereas a negligible signal is present is the 

negative controls (0 nM), this result supports the case for mES aggregates being 

used for RA release experiments. The aggregated mES cells are still specifically 

responsive to added RA. The permeabilisation, detailed in Section 2.7.1, was 

key for observation of the cells deeper into the cell aggregate. Fluorescent signal 

can be assessed almost all the way through the aggregates, permitting the 

observation of any zonal responses throughout the aggregate. 

5.4.7 Retinoic acid encapsulation 

RA has a molecular weight of 300 g/mol and is hydrophobic but soluble in DCM 

and other organic solvents. The chemical characteristics of RA make it suitable 

for single emulsion encapsulation (W/O), as previously described 234,235. 

Accordingly, RA was encapsulated using the method detailed in Section 5.4.7, 

and the microparticles were assessed for ‘trappability’ as described in Section 

3.3.2. The RA-laden W/O microparticles were not suitable for optical 

manipulation at the sizes required (~5, ~10, or ~15 µm) (Supplementary data). 

Further methods for encapsulating RA into PLGA microparticles were 

researched, including the precipitation method 198,236. However, considering the 

previous optimisation of W/O/W PLGA microparticles for optical trapping, RA 

was encapsulated accordingly. A batch of RA-laden microparticles was 

formulated as described in Section 5.4.7 by the methods detailed in Section 2.9.1 

and were fully characterised (Figure 5.6). 
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Figure 5.6 Characterisation of RA laden microparticles 1.0 

A. Microparticle size distribution by differential volume across the batch as assessed by coulter analysis B. SEM micrograph of the microparticles allowing for analysis of their 

morphology and validating the coulter analysis data. C. In vitro release study of RA over 10 days completed in triplicate (Error bars mark cumulative standard error of the 

mean) D. Representative fluorescence micrograph of each condition for the post-encapsulation bioactivity assessment comprising fresh solutions of 100 and 10 nM RA and 

solution extracted from a suspension of RA-containing microparticles, estimated by microparticle mass and estimated encapsulation efficiency, to yield 100 nM RA “Post-

encapsulation 100 nM”. The scale bar represents 100 µm.  
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The RA laden microparticle 1.0 batch fabricated (Figure 5.6) showed similar 

characteristics as previously seen with the calcein AM laden microparticles 

fabricated in the same way. The microparticles were around 5 µm in size 

calculated by coulter particle sizing, and SEM showed that the expected 

spherical and non-porous morphology was formed. An in vitro release study was 

completed for the batch over 10 days, the release kinetics were, as expected, 

similar to those seen with calcein AM laden microparticles formulated in the 

same manner. The high burst release that was shown to be favourable for 

yielding zonal release was observed with the RA laden microparticles. As 

previously discussed, it was important to complete a post encapsulation 

bioactivity assay to show that the encapsulation process had not disrupted the 

activity of RA. The bioactivity assay (Figure 5.6 D) showed that 100 nM of 

encapsulated RA yielded a greater response to 10 nM of fresh RA but a lower 

response to that of 100 nM fresh RA. This response was lower than expected and 

could have been indicative of damage to the RA during microparticle fabrication. 

The encapsulation efficiency was calculated to be 60.6 ± 4.3%, slightly lower 

than the calcein AM encapsulation efficiencies (Calcein green AM 66.1 ± 1.3%), 

and it was assumed that this reduced encapsulation efficiency was the cause of 

the weaker response observed in the post encapsulation bioactivity assay (Figure 

5.6 D).  

5.4.8 Improving retinoic acid encapsulation efficiency 

To address this reduced encapsulation efficiency, differently formulated RA 

laden microparticles were fabricated (Batch 2.0) with the aim of creating 

microparticles with a loading efficiency of >80%. This was important for two 
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reasons. For these experiments the higher the RA loading the greater the 

likelihood of a positive response, and for future experiments using expensive 

growth factors, it was important to obtain higher encapsulation efficiencies to 

reduce costs of the method.  

It has been shown previously that an increase in polymer solution viscosity e.g. 

by increasing polymer concentration, molecular weight, and lactide content may 

be advantageous to encapsulation efficiency 237. However, by modifying the 

polymer molecular weight or lactide content in a manner to suit encapsulation 

efficiency, release kinetics would be altered dramatically. Increasing polymer 

concentration however, would lead to an increase of particle size as shown by 

Helen Cox (Thesis, 2013, University of Nottingham, UK) previously and 

potentially and increase in encapsulation efficiency. Changes in release kinetics 

could still occur and this would have to be assessed.  
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Figure 5.7 Characterisation of optimised formulation RA microparticles 2.0 

A. Microparticle size distribution by differential volume for each of the formulations fabricated 

by way of coulter analysis. B. SEM micrograph of each formulation to assess morphology and 

validate the particle sizing data. C. Average estimated encapsulation efficiency of RA into each 

formulation of microparticles.  
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RA laden microparticles (Batch 2.0) were formulated with different polymer 

percentages (10, 15, and 20%).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 shows the characterisation of these batches,  
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Figure 5.7 A shows the different sizes yielded with these new formulations and 

their SEM imaging ( 
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Figure 5.7 B). As previously shown, with an increase in polymer %, 

microparticle diameter also increases. Further to this, it has been reported that 

by increasing the polymer %, the encapsulation efficiency also increases 117,201,  
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Figure 5.7 C displays this relationship. The increase in encapsulation efficiency 

reaches 82.1 ± 5.6% with 15% polymer, an increase of <20% over the initially 

fabricated 5% polymer batch (Figure 5.6). The 20% polymer batch resulted in 

the greatest estimated encapsulation of 84.5 ± 2.5%. These highly loaded 

microparticles were chosen over the 20% polymer batch because the sizing was 

deemed more appropriate for creating a smaller and better defined release point.  

As previously mentioned, the increased polymer concentration may lead to 

different release kinetics that could prevent a high concentration RA zone from 

forming. For this reason a 24-hour in vitro release study was completed for each 

of the hour polymer concentration batches fabricated.   
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Figure 5.8 24-hour RA release study to assess effect of polymer concentration on release 

kinetics 

A. In vitro retinoic acid release plots for each of the formulations characterised in Figure 5.6 (5, 

10, 15, and 20% Polymer concentration).over 24 hours with time-points every 6 hours. B. The 

four formulations release plots compiled on one plot to allow for comparison. All plots are 

calculated as a mean from triplicate batches with error bars representing cumulative standard 

error of the mean. 
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The release studies completed in Figure 5.8 show that the increase in polymer 

solution viscosity has a minimal effect on the burst release kinetics of RA from 

these batches. The plots assess the release as a percentage of the estimated 

encapsulated RA so normalising the release rate between batches. The release 

studies were only completed for 24 hours as the HOTs RA experiment was only 

that long, however the release kinetics between the different batches may vary 

when comparing complete release plots. 

5.4.9 HOTs patterning retinoic acid-laden microparticles  

Following on from the observation of the highly dose dependent nature of the 

Stra8 RA response, HOTs patterning experiments were assessed using this 

responsive marker. 

.



Chapter 5 Results III 

182 

 

 

 

 

 

 

 

 

 

Figure 5.9 HOTs patterned RA microparticles for zonal stimulation of Stra8 in mES aggregates 

A. Bright-field micrographs showing the GelMA stabilised 6- and 8-microparticle patterns around mES cell aggregates with a HOTs patterning platform. B. Fluorescence 

micrographs of the Stra8 immunocytochemistry stained mES cell aggregates seen in A with Hoechst counter-staining. Scale bars represent 50 µm 
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Figure 5.9 shows two HOTs patterned RA microparticle experiments; using a 

six and an eight microparticle release source pattern respectively. The mES 

aggregates were fixed and stained according to the method detailed in Section 

2.7. The figure shows the Stra8 staining identifying the cells that have responded 

to the released RA. The figure shows that variable success was observed with 

the experiment, the success of the experiment was not dependent on the number 

of microparticles used but in experiments that gave positive results, the Stra8 

linked fluorescent signal was elevated in close proximity to the microparticle 

release source. This positive result gave us confidence that the general principle 

of the experiment was working, but that another element of the mechanism was 

causing problems and variable results. The initial plan was to vary the 

microparticle number to achieve different responses, however, results were 

observed irrespective of microparticle number (Figure 5.9), and this approach 

was changed. 

Figure 5.8 details two representative experiments using HOTs to position RA-

laden microparticles in close proximity to the mES cell aggregate. The 6-

microparticle pattern was repeated (n=4) and a Stra8 response was only 

visualised 2 in the 4 experiments. Due to the basic fluorescence based optical 

microscopy used to analyse the immunocytochemistry staining, it was difficult 

to assess cell aggregates effectively due to the thickness of the sample. 

Furthermore, comparison between the aggregates was difficult because Stra8 

varied depending on the focal plane being viewed. These issues were addressed 

and were discussed later in this chapter and detailed in Section 2.10.1.  
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5.4.10 RA microparticle optimisation 

The conventional regimen of polymer microparticles for drug delivery is 

typically accomplished with large numbers of microparticles giving a bulk 

release. Estimation of encapsulation efficiency, one common tool for analysing 

microparticle batch characteristics, is only appropriate for providing details on 

the quantity of loaded cargo within a given mass. However, for the uses 

detailed in this project, microparticles have been used in much smaller 

numbers. The use of conventional estimation of encapsulation efficiency tests 

may not be suitable for such individual microparticle use ( 
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Figure 5.7) as it relies upon all the microparticles being used having the average 

molecular cargo loading as the entire batch. The current assessments for protein 

content by BCA assay (as described in Section 2.9.5) and RA by absorbance 

worked well for calculating supernatant concentrations, however these 

techniques would not be sensitive enough to analyse such low concentrations as 

released from the singular microparticles used for HOTs patterning.  

A solution was devised that would allow calculation of loaded molecule, in this 

case RA, by fluorescence intensity of a co-loaded fluorophore. As previously 

described, the RA microparticles were formulated with HSA to increase 

refractive index and act as a carrier for active cargo. Instead of adding a further 

component to the formulation, a fluorescent albumin was used, FITC-BSA. The 

hypothesis was, that the level of fluorescence would be proportional to the level 

of co-loaded active cargo (RA). Even very low concentrations of FITC-BSA can 

be detected by flow cytometry and advanced microscopy techniques so even an 

individual microparticle should yield a measurable fluorescence.  

5.4.11 Fluorescence-based analysis of individual microparticle encapsulation 

PLGA:TBIIF (70:30) microparticles loaded with FITC-BSA and RA were 

fabricated as previously described (Section 2.9.1) and were fully characterised 

(Figure 5.10). 
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Figure 5.10 Characterisation of FITC co-loaded RA microparticles 

A. Microparticle size distribution by differential volume assessed by coulter analysis of the RA 

microparticle batch B. SEM micrograph of the FITC co-loaded RA microparticles to show 

morphology and to validate the coulter analysis data C. 24 hour in vitro release study with time-

points every 6 hours, points are the mean from triplicate samples of the microparticle batch with 

error bars relating to cumulative standard error of the mean. D. Confocal micrograph of the FITC 

co-loaded RA microparticles in an attempt to quantify the FITC loading within each 

microparticle in the field of view.  
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Figure 5.10 A shows that the batch had an average diameter of 13.5 µm, and as 

before ( 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 C), the 15% polymer formulation batch yielded a similar estimated 

encapsulation efficiency, in this case 79.2 ± 1.3%. As expected, SEM (Figure 

5.10 B) and in vitro release studies yielded similar results to the characterisation 
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of the RA batch 1.0 (Figure 5.6) showing that the incorporation of FITC-BSA 

made no profound effects of the microparticle morphology and release kinetics. 

Figure 5.10 D shows a confocal fluorescence based micrograph of the FITC-

BSA co-loaded RA microparticles, and the encapsulated FITC-BSA is clearly 

visible as shown by the green fluorescence. The level of fluorescence was very 

low for all of the microparticles and long 2 second exposures were required for 

visualisation. The long exposure requirements meant that calculation of 

fluorescence intensity by microscopy would not be suitable.  

5.4.12 FACS selection of highly loaded microparticles 

However, the levels of fluorescence within the microparticles would be easily 

assessed by flow cytometry and the method would significantly raise through 

put of the analysis. From the microscopy of the FITC-BSA laden microparticles, 

it was observed that there were great differences in fluorescence intensity within 

different microparticles of the same diameter. This observation supported the 

idea that microparticle loading was variable and that some microparticles 

contained less than the required amount of FITC-BSA for microscopy-based 

visualisation.  

Flow cytometry is commonly used in cell biology to assess the fluorescent 

labelling of cells, cells can be characterised into different sub groups or 

populations by antigen based fluorescent labelling. Different cell populations 

can then be sorted from a heterogeneous mix based on the levels of fluorescence 

intensity relating to expressed protein markers. Such cell sorting is completed by 

FACS and the principles of it could be used to separate the fluorescent FITC-

BSA laden RA microparticles based on their individual fluorescent intensity. As 
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described in Section 5.3.8, flow cytometry analysis and subsequent sorting of 

the microparticles was completed.  
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Figure 5.11 Analysis and sorting of the FITC co-loaded RA microparticles 

FITC co-loaded RA microparticles were analysed using FACS, A. FACS analysis by means of 

SSC vs FSC1 to gate for appropriately sized microparticles based on the 5 µm reference beads. 

B. The R4 gating plotted as SSC vs fluorescent intensity (488-513/26nm) C. Representative 

images of the sorting gating were used to yield high, medium and low fluorescent intensity 

microparticle groups.  
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Figure 5.11 outlines the analysis and selecting the FITC co-loaded RA 

microparticles to yield 3 different groups of microparticle fluorescence intensity 

(‘High’, ‘Medium’ and ‘Low’). The microparticles were initially gated based on 

their size vs 5 µm reference beads, assessed by forward and side scatter (Figure 

5.11 A). As a means of comparison, the non-fluorescent RA laden microparticles 

were also analysed to provide base line fluorescence intensity. The use of these 

microparticles as a control ensured that any RA or polymer autofluorescence 

would be normalised from the FITC labelled batch. When comparing these two 

batches in the ‘Batch fluorescent intensity distribution’ (Figure 5.11 B) it can be 

seen that the FITC co-loaded batch yield a much greater fluorescence intensity. 

Interestingly, there is still an overlap with a small proportion of the FITC co-

loaded batch yielding very low and no fluorescence. This result supports the 

theory that the loading of these microparticles is non-uniform and could have 

been the cause for earlier reduced success rate in HOT patterned RA laden 

microparticle experiments (Figure 5.9). The range of fluorescence intensity 

recorded from the FACS analysis of the FITC co-loaded RA microparticles was 

significant. In order to test whether the fluorescence readout was reporting 

appropriately on RA loading, further gating was applied. Three separate groups 

were created to select for ‘High’, ‘Medium’ and ‘Low’ fluorescence 

microparticles, as shown in the representative plots (Figure 5.11 C). Then by 

running a high density suspension of the FITC co-loaded batch through the 

FACS process, the 3 separate suspensions (‘High’, ‘Medium’ and ‘Low’) and 

any sub-‘Low’ microparticles were separated. 



Chapter 5 Results III 

193 

 

5.4.13 Analysis of the FACS selected ‘high’ loading microparticles 

The separate suspensions sorted by FACS were digested as described in Section 

2.9.4, and were assessed for both RA and BSA loading as previously described. 

If the hypothesis that RA loading would occur in a proportional manner to that 

of FITC-BSA, the sorted groups would yield corresponding levels of RA and 

FITC-BSA.   
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Figure 5.12 Post-sorting encapsulation analysis of the FITC co-loaded RA microparticles 

A plot showing the estimated encapsulation efficiency by means of protein (FITC-BSA) and RA 

loading of the four sorted microparticle groups. Bars relate to the mean encapsulation efficiency 

from triplicate with error bars showing standard error of the mean. T-test analyses were 

performed and the significant difference was indicated accordingly, **** = <0.001, *** = 

0.0045, *** = 0 01 and * = 0.0253.  
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Following FACS based sorting of the FITC co-loaded RA microparticle batch 

(Figure 5.11), the plot above (Figure 5.12) shows that FITC fluorescence is 

paired with encapsulation efficiency of both BSA and most importantly RA. 

Where sub-‘Low’ fluorescence was observed, only very low encapsulation was 

recorded. With increased FITC fluorescence, greater RA is estimated to be 

encapsulated within the batch. The triplicate results obtained gave to low 

standard error about the mean, especially for the ‘Medium’ and ‘High’ groups, 

indicating that variation within these groups is low. Furthermore, the ‘High’ 

group is estimated to have an encapsulation efficiency of 89.5 ± 1.8%, almost 

10% higher that the unsorted batch encapsulation efficiency.  

With both the increased encapsulation efficiency and the selection of ‘High’ 

loading microparticles, a more robust and refined release was expected that 

would benefit future HOT patterning experiments. 

5.4.14 HOTs patterning ‘high’ loading retinoic acid microparticles 

Following on from the first attempt to observe a biological zonal response to a 

HOT patterned microparticle based delivery of RA to a mES cell aggregate, a 

repeat experiment was designed. Using the ‘High’ loading FITC-BSA RA 

microparticles developed previously, HOTs patterning shown in Figure 5.9 was 

repeated as described in Section 2.8.1. In this round of HOTs patterning, only 6-

microparticle triangular patterns were formed using either FITC BSA RA 

microparticles or ‘Blank’ BSA microparticles as a negative control. Further to 

optimisation of the release source, the method of analysis was adapted. Figure 

5.9 demonstrated, amongst other things, the need for more advanced microscopy 

to properly analyse the mES aggregates. As described in Section 2.10, confocal 
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microscopy was used to obtain multi-stacked images of the mES aggregates 

labelled with nuclear staining (Hoechst) and AlexaFluor conjugated secondary 

antibodies. Initially, AlexaFluor488 was used for binding anti-Stra8 antibodies 

as shown previously, however the penetration of short wavelength light (405nm) 

to excite the fluorophore would not penetrate well through the dense mES 

aggregate leading to falsely weaker signals on the underside of the aggregate. To 

improve this, a longer wavelength AlexaFluor546 was used for aggregate 

staining that improved the issue. Image acquisition was completed as described 

in Section 2.10.1.  
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Figure 5.13 Zonal delivery of retinoic acid to an mES cell aggregate 

A. Plot of the in vitro release study completed over 24 hours for the release of retinoic acid from 

retinoic acid encapsulated microparticles. Error bars represent the cumulative standard error of 

the mean. B. Micrographs showing the positioning of 6 retinoic-acid-laden microparticles 

arranged into a triangular structure in close proximity of the mES cell aggregate with the HOTs 

patterning platform, and the subsequent immunocytochemistry analysis of the Stra8 protein 

expression at 24 hours and then a 48-hour time-point. For clarity, the fluorescence images have 

been adjusted, including brightness, contrast and colour balance processing applied to the whole 

image. * ‘Merge’ images are purely representative, the FITC channel was acquired from a 

slightly different z position. Scale bars represent 50 µm.  
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The RA zonal patterning experiment (Figure 5.13) was designed to show that a 

source of RA can be encapsulated in controlled released microparticles, and then 

positioned in such a way to create a zone of RA. Figure 5.13 A is a plot showing 

the release of RA from the FITC-BSA co-loaded RA microparticles (Pre-sorted) 

over 24 hours. By the 24-hour point 39.5 ± 5.9% of the loaded RA will have 

been released, and it was estimated that in the small volume surrounding the 

release source, concentrations would be sufficient to illicit a Stra8 response. 

Whilst the FITC selection of these microparticles has improved the uniformity 

of the microparticle loading, further variation could still be uncontrolled. The 

microparticles were initially suspended in PBS for FACS for up to an hour, this 

hydration of the microparticles would have initiated breakdown and release of 

RA. During optimisation of the sorting protocol, the ‘suspension time’ was 

reduced to 30 mins; however it would still be negatively affecting the release 

kinetics. Due to the high cost associated with FACS and the relatively slow 

throughput (~30,000 microparticles/second), it was not deemed appropriate to 

complete in vitro release studies post sorting. Figure 5.13 A displays the pre-

sorted release study, and shows that the ‘suspension time’ of 30 minutes would 

account for an estimated loss of ~3% of the encapsulated RA.  

Using Stra8 as a marker for successful RA response, it is shown that mES Stra8 

protein is being highly expressed on the proximal sides of the aggregate to that 

of the RA release source. In the representative bright field based micrographs 

(Figure 5.13 B), 4 differently positioned 6-microparticle triangular RA release 

patterns are formed in close proximity (>20 µm) to the mES cell aggregate. The 

pattern is stabilised by means of GelMA cross-linking as described in Section 

4.3.6. Fluorescence microscopy (Figure 5.13 B) shows the Hoechst stained mES 
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cell aggregate with either the absence of FITC fluorescence in the case of the 

negative control (Blank) or fluorescent FITC labelled RA laden microparticles 

in the experimental samples. Anti-Stra8 AlexaFluor546 antibody fluorescence 

(Magenta false colour LUT) represents the location of Stra8 protein. The 

presence of magenta fluorescence corresponds with the position of the RA 

release point indicating that the RA has been delivered in a zonal manner. The 

ability to control the regional expression of Stra8 protein by means of HOTs 

based patterning of a RA signal is proof of concept for the technology. Figure 

5.13 B shows that delivery of small bioactive molecules in a highly spatially 

controlled manner can be achieved. The implications of this are profound, 

complex spatial and temporal characteristics of developmental signalling can be 

controlled using this technology. Through the use of sorted ‘High’ loading RA 

microparticles, experimental success was raised greatly from the 50% (n=4) to 

80% (n=5) Stra8 responding aggregates with the use of FITC sorted RA 

microparticles. Longer wavelength fluorophores (AlexaFluor546) and a refined 

confocal imaging protocol yielded zonal responses in 80% of experimental 

replicates. 

Whilst the experiment (Figure 5.13) demonstrates the potential of the technology 

for use as a tool for patterning molecular gradients, there are still areas that need 

to be developed. The figure details the outcome of zonal delivery at the 24-hour 

time-point and it as expected this zonal delivery was not be maintained for longer 

culture periods. In the 48-hour time-point there is complete staining across the 

whole aggregate, showing that the static system of release will be suitable for 

certain applications but not others where a stable and long-term gradient is 

required. Whilst this is not a drawback of the experiment, it means that use of 
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the technology for different applications could require new delivery vehicles to 

be optimised to suit the specific signalling dynamics. 

The visualisation of RA-induced Stra8 protein on the proximal side to the release 

source is a good validation of the zonal release of RA. Further work to quantify 

the solute gradients formed would provide a greater level of control over the 

formation of spatio-temporal signalling. However, the quantification of such 

gradients has been a great challenge. Certain mathematical modelling work has 

shown great promise in understanding how solute gradients are formed within a 

hydrated environment 238. Use of such modelling approaches would be 

appropriate for understanding the HOTs delivery of solutes from microsources, 

but such development was not within the scope of this thesis. 

5.5 Conclusions  

This chapter details the development of the HOTs platform as a means to 

micropattern signalling dynamics in small cell architectures. Previous proofs of 

concept have shown that the local delivery of fluorescent molecules that simply 

rely upon the viability of the cells is possible. Now the ability to precisely deliver 

molecules that bring about the induction of protein expression in response to a 

bioactive molecular gradient has been demonstrated. This developmental 

progression is significant as it shows that the platform can be adapted to suit the 

highly specific signalling dynamics of different cell models. 

The development of a FACS based screening method for assessing individual 

microparticle loading has been essential for the development of the HOTs 

patterning setup. Use of this selection method ensures that appropriate amounts 
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of release source are used, and the reduced variability in microparticle loading 

ensures that replicated experiments are comparable.  

Whilst the RA induced mES Stra8 model demonstrated in Figure 5.13 is not of 

direct biological significance in itself, the ability to successfully deliver a 

diffusible signal to a precise area of a cellular aggregate is highly relevant. As 

previously discussed, appropriate regulation of the developing embryo requires 

exquisite control over the signalling dynamics and gradient. The HOTs 

patterning setup development discussed in this chapter details how such zonal 

signalling can be achieved to fabricate in vitro developmental models. This 

technological advancement is directly appropriate for investigating such 

developmental microenvironments. 

The successful and robust zonal response supports the hypothesis discussed in 

Section 4.5.1 relating to burst kinetics forming a zone of concentrated signalling 

molecule around the patterned molecule. Whilst this is a highly suitable 

characteristic for certain applications, it may not be suitable for models requiring 

constitutive signalling. To enable longer term signalling (>48 hours) different 

blends of PLGA, including PLGA 85:15 119 could be used for sustained release 

profiles. Alternative encapsulation methods could also be used to deliver tailored 

signalling dynamics so long as they are suitable for optical manipulation. An 

alternative encapsulation method is described later in this thesis (Chapter 6). 
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6. Results – HOTs based 

chemotactic coordination of 

primary osteoblasts 

6.1 Introduction 

The flexibility of polymer microparticles for tailoring release kinetics to suit the 

specific needs of an experiment make their use with the HOTs very interesting. 

However, as previously discussed, there is a great amount of optimisation 

required to fabricate them appropriately. The demand for better methods to 

develop localised signalling for developmental biology and tissue engineered 

cell models is great. Principally, this is due to the known importance of locally 

secreted molecules in early development and during cell migration 187,214,239 . 

The state-of-the-art in this field is defined by the use of simple hydrogel-based 

release simple hydrogel-based release sources such as agarose, alginate, and 

gelatin beads. These hydrogel beads can be soaked in the molecule of interest, 

and then used as a point of release for an investigation as the encapsulated 

molecule leaches out by diffusion. Whilst there are many drawbacks to this 

method of delivery, its simplicity has meant that it is often used by investigators 

wanting to demonstrate a basic localised release model 240,241. Agarose beads 

have been used with great effectiveness in in vitro studies of cell signalling, their 

use was essential in elucidating of the role FGF9 plays in testis development 
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242,243. In this chapter, it is described describe how such simple localised delivery 

systems can be used with the HOTs platform to achieve greater control over 

signalling precision. 

6.1.1 Bone remodelling and localised release 

Every bone in the body is metabolically active, and undergoes continuous 

remodelling throughout life. Remodelling of the bone involves the osteoclast-

mediated removal of mineralised matrix, followed by the formation of new 

mineralised bone, facilitated by osteoblasts 244. Bone remodelling is required to 

repair the skeleton and adjust the skeletal architecture to meet new mechanical 

needs. Osteoblasts and osteoclasts regulate the homeostatic process of bone 

remodelling through the formation of a basic multicellular unit with one another 

245,246. The recruitment of these cells to areas requiring remodelling occurs 

predominantly by localised signalling within the trabecular bone. The interplay 

between osteoblasts and osteoclasts is an interesting area of study, particularly 

from a localised-release point of view. Recent research has shown that 

osteoclasts control the recruitment of osteoblasts via chemotaxis and the release 

of various signalling molecules, including PDGF-BB 247.  

The study of chemotaxis-driven cellular migration is often accomplished using 

a Boyden chamber 107. This method assesses the proportion of cells that migrate 

through a matrix to an area of chemoattractant. Use of the Boyden chamber gives 

a high-throughput analysis of cellular migration, and it is suitable for many 

investigations. However, it is not capable of performing in-depth analysis of 

single cell migration and chemotaxis. Furthermore, there is currently no 

technology available that would be suitable for enabling the control of soluble 
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molecule delivery on the micron scale. The HOTs platform would be a highly 

suitable technology to facilitate the investigation of single cell chemotaxis to 

precisely positioned release sources.  

6.1.2 HOTs platform for directing osteoblast chemotaxis 

As well as showing that HOTs-based positioning is capable of working with 

simplistic localised delivery sources, the HOTs platform has not yet been 

demonstrated to direct cellular migration. The technology is highly suited to 

replicating the precise signalling dynamics required to direct cellular 

chemotaxis. The osteoblast recruitment model is one biological event that could 

be recapitulated with the HOTs patterning setup, demonstrating its breadth of 

applicability to in vitro cell-based model creation. A patterning tool that can 

create biomimetic microenvironments closely approximating natural conditions 

is a greatly sought-after technology. Whilst the HOTs can improve the current 

options for micropatterning resolution and the propagation of dynamic 

signalling, this thesis has not discussed the use of more representative cell types 

of the in vivo environment. It has been shown that even the most representative 

MC3T3 cell line 248 of pre-osteoblastic cells do not accurately represent the 

behaviour of primary osteoblast cells 249.  Therefore, for the work in this chapter, 

primary cells were used to demonstrate the applicability of the HOTs with more 

sensitive cell types that are more representative of the in vivo environment. 

6.1.3 Concentration gradient analysis 

An ongoing limitation for the development of the HOTs patterning platform for 

creating localised delivery models is the inability to quantitatively measure the 



Chapter 6 Results IV 

205 

 

concentration of released solutes. The difficulty is predominantly due to the very 

low solute concentrations being present in a highly dynamic environment. This 

makes it difficult to assess at the resolution required. Recent work has shown 

that solute gradients can be assessed on the mesoscopic scale by taking frozen 

sections from the area around the release source to assess exact concentration at 

different distances and time-points 215. However, this method would not be 

suitable for the resolution required here. There have been attempts to model the 

solute gradients formed from individual polymer microparticle release, and these 

methods have shown great promise over the micron-scale assessment 238. 

However, such modelling needs to be developed further to factor in the mobility 

of solutes over longer time periods. In this chapter the approach to assess protein 

gradients in hydrated hydrogels using Time-of-Flight Secondary Ion Mass 

Spectrometry (ToF-SIMS) is discussed. ToF-SIMS measurements give 

molecular information from the surface of solid materials with an ultimate spatial 

resolution of less than 0.1 µm. ToF-SIMS is accomplished by exciting a sample 

with a finely focused ion beam which yields secondary ions and clusters to be 

emitted from the sample. A time-of-flight analyser then measures the exact mass 

and intensity of the emitted secondary ions and clusters. From these 

measurements, the identity of the molecular fragments can be determined, and 

then their concentration can be calculated. Classically, only thin hydrogels and 

polymers are analysed via ToF-SIMS, however, new innovative methods have 

been devised that allow the analysis of thick hydrated samples 250. In this chapter, 

the application of this new method for the purpose of analysing the solute content 

in hydrogels following agarose bead localised release. 
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Chapter Experimental Overview  
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6.2 Materials and Methods 

6.2.1 Osteogenesis differentiation 

mPC cells were reanimated from cryopreservation and cultured to passage one 

or two, as required in standard tissue culture flasks. Trypsin/EDTA was used to 

detach the cells, and they were counted using a Neubauer haemocytometer, as 

described previously 251. mPC cells were then seeded into tissue-culture-treated 

well-plates at a density of 1.1 x104 cells / cm2 and incubated overnight at 37oC 

to ensure adherence. The culture medium was then changed to osteogenic 

medium by supplementation of mPC medium with 50 µg/mL ascorbate-2-

phosphate, 50 mM β-glycerophosphate disodium salt hydrate and 1 µM 

dexamethasone. Cells were incubated for the desired time-period (typically 7, 

14, or 21 days) with medium changes every 2-3 days. 

6.2.2 Mineralisation assay 

The mineralisation of cell-secreted matrix was assessed by alizarin-red staining 

of calcium deposits. Formalin (10% w/v) was used to fix cell monolayers for 

storage prior to the mineralisation assay. Fixed monolayers were washed twice 

in dH2O before being treated with alizarin-red staining solution (TMS-008-C, 

Merck Millipore, UK) for 5 minutes before the alizarin-red solution was 

removed and cultures were washed repeatedly in dH2O until no colour was 

leached out. Staining was then imaged according to Section 2.10. 
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6.2.3 IBIDI chemotaxis 

The µ-Slide Chemotaxis 2D (Thistle Scientific, UK) was used for assessing 

chemotaxis of mPC cells to PDGF-BB gradients. Cells were trypsinised and 

counted as usual, before dilution to 3x106 cells/mL. Of the resultant suspension, 

6 µL was added to one of the filling ports while the reservoir ports were plugged. 

The cell suspension was flushed across the entire observation channel by 

aspirating 6 µL from the other filling port. All filling ports were then covered 

with cultivation caps and incubated at 37oC for 4 hours, allowing cells to attach 

to the tissue-culture-treated surface of the slide. The reservoirs were then filled 

with 80 µL of mPC culture medium before 18 µL of PDGF-BB was added to 

one chamber. To achieve a concentration of 10 nM PDGF-BB in one of the 

chambers, 18 µL of 25 nM PDGF-BB was added to yield a 10 nM solution in 

stable gradient equilibrium. 

6.2.4 Tracking and analysis software 

The loaded µ-Slide Chemotaxis 2D was then imaged using phase contrast time-

lapse microscopy in an environmental chamber, as detailed in Section 2.10, with 

acquisition settings of a micrograph every 15 minutes over and 8-hour time-

period. Time-lapse experimental data were assessed in ImageJ (NIH) and the 

MTrackJ plugin was used to manually track the cells within the field of view. 

Track data was then input into the Chemotaxis and Migration Tool (IBIDI 

GmbH, Germany) to analyse the net migration and Forward Migration Index 

(FMI) (Figure 6.1) 252. 
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Figure 6.1 Calculation of the Forward Migration Index 

Diagram showing how a typical cell migration track can be analysed to rank the migration 

towards a point. The equations show how the x- and y- Forward Migration Indexes can be 

calculated.  
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6.2.5 Optimisation of agarose beads for optical manipulation 

Agarose beads (Agarose Bead Technologies, UK) were lyophilised using a 

freeze dryer (Edwards Modulyo D, IMA Edwards, UK) and were then washed 

in dH2O to remove any hydrochloric acid preservative. The washed beads were 

then lyophilised once more and re-suspended in different soak solutions. 

Initially, dH2O-soaked beads were tested, but for optimisation purposes beads 

were also soaked in either BSA, calcein green AM or α-chymotrypsin depending 

on their use.  

A range of BSA concentrations were used to optimise optical trapping of agarose 

beads, ranging from 0-10 % (w/v) BSA. For the release study, α-chymotrypsin 

was used as a soak at a concentration of 5 or 10% (w/v); α-chymotrypsin was 

used as a reference protein for the expensive PDGF-BB. 5% (w/v) BSA and 25 

µM calcein green AM solution was used as a soak for visualising the release of 

HOTs-patterned agarose beads. 

6.2.6 Agarose bead in vitro release study 

The agarose bead in vitro release study was completed in the same manner as 

previously described for polymer microparticle release studies (Section 2.9.6). 

25 mg of lyophilised agarose beads were soaked and then washed as previously 

described (Section 6.2.6). The washed beads were pelleted once more and re-

suspended in 1.5 mL of dH2O before incubation at 37oC. Hourly, supernatant 

was removed and frozen, and fresh dH2O was added in its place. Supernatants 

were analysed for protein content by BCA assay as previously described (Section 

2.9.5). 
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6.2.7 Agarose bead preparation for TOF-SIMS analysis 

Agarose beads were lyophilised using a freeze dryer (Edwards Modulyo D, IMA 

Edwards, UK) and were then separated into 5 mg aliquots. These aliquots were 

suspended in a solution of 5 mg/mL α-chymotrypsin in dH2O for soaking. Beads 

were left for 24 hours, soaking at room temperature to ensure complete diffusion 

into the beads. Prior to the use of the α-chymotrypsin-soaked agarose beads, they 

were pelleted by microcentrifugation (Sigma 2-16K, Scientific Laboratory 

Supplies Ltd.) at 3000 g for 1 minute. Supernatant was removed and the bead 

pellet was washed in dH2O, a process then repeated twice further. 

6.2.8 Hydrogel preparation for TOF-SIMS analysis 

An aliquot of BSA-soaked agarose beads was washed as detailed in Section 

6.2.5, and pelleted again at 3000 g for 1 minute. The beads were then re-

suspended in 100 µL of polyethylene glycol dimethacrylate (PEGDA) solution. 

For the TOF-SIMS analysis of hydrogel proteins gradients, PEGDA (10%w/v) 

and Irgacure D2959 photoinitiator were kindly gifted by Mr Michael Taylor 

(University of Nottingham, UK). The suspension was vortexed (Stuart Scientific 

SA8, Scientific Laboratory Supplies Ltd.) to ensure an equal distribution of 

beads through the PEGDA solution. 10 µL of the suspension was then pipetted 

onto the hydrogel curing apparatus (described in Section 6.2.9), and a 12 mm 

diameter circular coverslip was added on top of the PEGDA suspension droplet. 

The coverslip was then held in place by a single piece of masking tape, and the 

hydrogel curing apparatus was inverted and placed on a UV lamp (Figure 6.2) 

for 2 minutes to allow agarose beads to settle onto the coverslip. The UV lamp 

was turned on for 5 minutes to ensure complete cross-linking of the PEGDA, 
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then the hydrogel sample was delicately removed from the hydrophobic Teflon 

surface to yield a pre-determined-depth (200 µm unless otherwise stated) flat 

hydrogel disc containing agarose beads distributed across the coverslip surface. 

6.2.9 Hydrogel curing apparatus 

The hydrogel curing apparatus was designed to create hydrogel disc samples that 

were suitable for TOF-SIMS analysis of BSA diffusion via a top-down approach. 

Agarose beads were distributed across the bottom of a hydrogel disc with gel 

above the agarose bead level to be analysed.  

The base of the apparatus was a piece of Teflon that would yield a flat surface 

for the hydrogel disc, whilst permitting its removal once the PEGDA had been 

cross-linked. On top of the piece of Teflon, two sets of two 100-µm-thick glass 

slides were attached with masking tape to form a 200-µm-deep channel on top 

of the Teflon base. The channel was sufficiently wide to support the 12 mm 

circular coverslip. The 10 µL of PEGDA solution was then pipetted onto the 

Teflon base to form a droplet, and then the 12 mm circular coverslip was added 

on top, held 200 µm above the Teflon base, creating a column of PEGDA 

solution between the base and the coverslip, ready to be cross-linked to form a 

hydrogel disc of 200 µm in depth.   
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Figure 6.2 The hydrogel curing apparatus 

A. Diagrammatic representation of the hydrogel curing apparatus and how hydrogel disks are 

UV-cured. The gel drop is placed on the Teflon sheet with the agarose beads, the coverslip is 

then placed on the drop and the apparatus is turned over so that the beads settle on the coverslip. 

B. Photos of the hydrogel curing apparatus; B1. The un-crosslinked hydrogel held in place on 

the hydrogel curing apparatus B2. Inverting the gel and placement onto the UV-source B3. 

Waiting for beads to settle on the surface of the coverslip B4. The hydrogel disk post-UV-

crosslinking.  
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6.2.10 Agarose bead release study within hydrogel discs 

Hydrogel discs were prepared with α-chymotrypsin-soaked agarose beads as 

described in Sections 6.2.9 and 6.2.10. The cross-linked hydrogel discs were 

then hydrated with dH2O and left for the required time for that sample. Samples 

were collected hourly over a 6-hour release study to assess the diffusion of 

protein within the disc. Samples were snap-frozen and then analysed with ToF-

SIMS to assess the protein content of the gel emanating from the release point 

(agarose bead layer). A standard curve was obtained by analysing PEGDA gels 

saturated with a known range of α-chymotrypsin concentrations (0.05, 0.5, 5, 50, 

and 500 µg/mL) and analysed in the same manner as previously described. 

6.2.11 ToF-SIMS analysis 

ToF-SIMS data were collected using a ToF-SIMS IV instrument (Münster, 

Germany) equipped with a bismuth liquid metal ion gun (LMIG) and argon 

cluster sputter gun. The analysis beam for this study was generated by a 25 keV 

bismuth source liquid metal ion gun utilising a Bi3
++

 rastered over an area of 

100×100 µm with 128×128 pixels. The target current was measured as 0.3 pA, 

with a total primary ion dose of 9.2x1010
 ions/cm2. A 10 keV Ar1455 cluster ion 

source was employed to etch through the sample over a 400×400 µm area. 

Rastering was performed in a non-interlaced mode with one frame of analysis 

and 3 seconds for sputtering per cycle. The corresponding beam dose was 

determined to be 6.84×1012 ions/cm2. An argon beam target current of 9 nA was 

employed for all samples. A low energy electron flood gun was employed for 

charge neutralisation. Data processing was done with SurfaceLab6 (ION-TOF 

GmbH, Germany). Secondary ion assignments were selected by referring to a 
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reference database of secondary ions related to the components of the material 

analysed 253.  
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6.3 Results and Discussion 

6.3.1 Primary osteoblast culture 

Recent work has shown that primary osteoblasts are highly receptive to various 

chemoattractants involved in the bone remodelling process 247,254,255. The first 

part of this chapter details the development of batch-tested mPC cells for HOTs 

patterning experiments. The mPC cells were extracted from the calvarial bone 

of 2-day-old mouse pup litters, and the osteoblast population of cells was 

separated as described in Section 2.5.5. To ensure that the cells obtained had 

osteoblastic properties and were suitable for culture and experimentation, quality 

checking was completed in the form of a mineralisation assay. The cells were 

differentiated as described in Section 6.2.1, and were assessed at the endpoint 

(21 days) for colony formation and mineralisation by alizarin-red staining 

(Section 6.2.2). Alizarin-red staining is a biochemical assay that indicates the 

presence of calcific deposition by cells. Alizarin forms precipitates with free 

calcium, allowing the identification of matrix mineralisation, a crucial step 

towards the formation of the calcified extracellular matrix associated with bone 

development. The presence of positive alizarin staining specific to areas of 

colony formation indicates that the mPC cells have osteogenic potential.  
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Figure 6.3 mPC quality check by mineralisation assay 

Micrographs showing alizarin-red staining in three mPC batches (2015-1, 2015-2 and 2015-3) 

cultured under osteogenic conditions for 21 days. Cells from each batch were used at either 

passage 1 or 2 with or without osteogenic medium. Orange precipitate indicates the presence of 

osteogenesis-associated calcium deposits in areas of colony formation. The scale bar represents 

0/5 mm.  
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Figure 6.3 shows the mineralisation assay that was used for quality control of 

the extracted mPC cell batches. Two passages were tested for each batch, a 

passage 1 and 2 sample was tested to show whether expansion through sub-

culture would be suitable. The presence of weak orange staining for batches 

2015-1 and 2015-2 passage 1 shows that these cells were not very responsive 

to osteogenic differentiation. However, batch 2015-3 yielded moderate staining 

well above the negative control, even at passage 1. All three batches gave 

strong mineralisation responses when differentiated from passage 2, as shown 

by the strong orange staining across the field of view. 

The differential response observed between passage 1 and 2 mPC cells was most 

likely due to a culture-based priming of the pre-osteoblast population towards an 

osteoblast cell fate. Cell culture can have profound effects on the population as 

it is a form of selection for cells that survive those particular culture conditions. 

There may have been a greater percentage of these cell-culture-suitable cells in 

passage 2 compared to passage 1. 

The responsiveness of these batches to osteogenic differentiation indicates that 

they are likely of pre-osteoblast or osteoblast origin. Although, their tendency 

to differentiate is not absolute proof of their chemotactic propensity, it is 

merely a positive sign. If the cells are of pre-osteoblast or osteoblastic lineage, 

as evidenced (Figure 6.3), it is likely that they will respond to bone 

remodelling recruitment signalling. 
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6.3.2 Cell viability of mPC cells during UV exposure 

As previously described, the GelMA hydrogel system utilises potentially 

harmful UV light to cross-link the gelatin fibres into a hydrogel matrix, 

stabilising the HOTs-fabricated pattern. To ensure that the UV exposure is not 

detrimental to cell viability, a Live/Dead Cell Viability Assay assay was 

performed using a range of exposure times and assessment time-points.  
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Figure 6.4 Cell viability of mPCs after UV exposure 

Fluorescence micrographs of green live (calcein AM) and red dead (Eth-D1) mPC cells in a 

monolayer after exposure to UV light either 60s, 5s or 0s (-ve). Live/Dead viability assessment 

was completed at both the 0- and 48-hour time-point. The scale bar represents 50 µm.  
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The cell viability assay ( 

Figure 6.4) shows that cells remain viable at both the 0- and 48-hour time-

points, even with the maximal UV exposure of 60 seconds. There are a large 

number of viable cells in all samples, however the number of dead cells does 

increase after UV exposure at each time-point with respect to the negative 

control. For all HOTs-based GelMA (10%) stabilisation, a 5-second exposure 

was sufficient to cross-link the small volumes in the patterning gaskets. If the 

GelMA volume was greater for the mPC cell patterning, a longer UV exposure 

time (~60 seconds) would have been required.  

Figure 6.4 shows that this would lead to increased cell-death, as per the ‘60s 48 

hrs’ sample.  

At 0 and 24 hours, samples were assessed to identify any latent cell-death caused 

by UV exposure. UV induces double strand breaks that can lead to lethal 

mutations. Such mutations can be repaired to prevent cell death, but they may 

still introduce mutations that could alter the cell genotype. Such genetic damage 

cannot be assessed by the LIVE/DEAD© cell viability assay, and so further 

assessment was required. 

6.3.3 Mutagenicity assay after UV exposure 

As previously described (Section 5.3.1), the mutagenicity assay by means of 

immunocytochemistry for γ H2A.X (phosphor S139) protein presence was 

completed for mPC cells exposed to a range of UV doses. 
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Figure 6.5 Mutagenicity assay for mPC cells 

Fluorescence micrographs of anti-γ H2A.X (AlexaFluor488) staining in UV-dosed mPC cell 

monolayers at a range of different exposure times (0, 5, 30, 60, 120, and 300s). Hoechst was 

used as a co-stain to show localisation of the γ H2A.X to the nuclear region of UV-damaged 

cells. Merge column shows micrographs overlayed. The scale bar represents 50 µm.  
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The mutagenicity assay was completed at the 24-hour point, and a range of UV 

exposures were assessed. Figure 6.5 shows that DNA damage repair was 

occurring at a UV exposure of 30 seconds, with increasing presence of γ-

H2A.X as the UV dose increased. Importantly, at 5 seconds there was no 

significant presence of DNA damage repair. The mPC cells were shown to be 

undamaged at the UV doses used for GelMA (10%) cross-linking, and so 

further use of the hydrogel stabilisation method could be employed. However, 

the results for  

Figure 6.4 and Figure 6.5 show that such UV exposure can be highly detrimental 

to the mPC cells with respect to both cell viability and mutagenicity. Care must 

be taken when conducting further experiments with the cross-linking method, as 

UV-induced damage could greatly affect results. 

6.3.4 Primary osteoblast chemotaxis 

Following the successful assessment of the quality and viability of the mPC 

batches, it was important to show that they were responsive to chemoattractant 

signals. The HOTs investigation planned was to show that the HOTs can be used 

to position release sources containing osteoblast recruitment signals to control 

osteoblast chemotaxis. Therefore, it was necessary to show that the cells being 

used were capable of responding to such a signal.  

As previously discussed, there are other methods available to test chemotaxis on 

a large scale, one such method that was deemed appropriate for this optimisation 

was the µ-Slide Chemotaxis 2D. This method was chosen because the 

optimisation experiment could be completed in a similar manner to the planned 
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HOTs patterning investigation. Chemotaxis is measured across a collagen-

coated surface from a sink to an area of chemoattractant that yields a gradient.  

The mPC cell batches that yielded strong mineralisation after osteogenic 

induction (Figure 6.2) were used for subsequent chemotaxis experiments. The 

primary cells used in this investigation were likely to have comprised a 

heterogeneous mix of pre-osteoblast and osteoblast cells. For the chemotaxis 

optimisation, nascent non-induced cells were used at passage 2 and tested for 

their chemotactic response. Further to this, mPC cells were induced with 7 days 

of osteoinduction, as described in Section 6.2.1, to yield a more ‘osteoblastic’ 

population of cells. These ‘7-day differentiated’ cells were also assessed for their 

chemotactic response, to compare it to the nascent mPC cellular response. This 

test was conducted to ascertain some basic information on the developmental 

state of the mPC cells, enabling a more informed investigation with the HOTs-

patterned delivery of osteoblast recruitment signalling. 

As previously discussed, the importance of PDGF-BB as a signalling molecule 

for the recruitment of osteoblasts to sites of bone remodelling is an interesting 

area of study. The ability to study how such recruitment signals are able to recruit 

the required cell types on a single-cell level would be beneficial to the research 

effort. This chapter details the demonstration of the HOTs patterning setup as a 

tool for creating controlled molecular signals that can direct osteoblast 

chemotaxis. For the initial chemotaxis optimisation, a concentration of PDGF-

BB known to be potent (10 nM) 254,256 was used to recruit the mPC cells across 

the chemotaxis chamber. 
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Figure 6.6 Analysis of PDGF-BB-associated chemotaxis 

mPC cells were either used as undifferentiated (Nascent) cells or ‘7-day differentiated’ and 

cultured into a chemotaxis chamber with PDGF-BB chemoattractant on the right hand side. 

Migration plots showing the net migration of the mPC cells from their point of origin in the 

chemotaxis chamber, represented by point 0,0. Red tracks indicate a migration towards the 

chemoattractant (10 nM PDGF-BB) (Right) and black tracks are towards the sink (Left). The 

blue cross represents the average migration point (AMP) from all of the cells analysed (n=30). 
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The mPC cells were cultured in the chemotaxis chamber as described in Section 

6.2.3, the observation section of the chamber was imaged using time-lapse 

bright-field microscopy to observe and track cellular migration over an 8-hour 

period. As described in Section 6.2.4, an ImageJ plugin (MTrackJ) was used to 

track individual cellular migration over the time-period. The tracks were then 

compiled and analysed to create the plots in Figure 6.6 that show a representative 

number of cell tracks over the 8-hour period. The full dataset of 30 cell tracks 

was then analysed to give the AMP, as indicated by the blue cross in each plot.  

The ‘Negative control’ plots show the cells that were not exposed to a PDGF-

BB gradient; the nascent cells are highly mobile, going long distances (~250-

300 µm) in random directions. This result is demonstrative of the cellular 

response when there is no chemoattractant signal present. When you introduce a 

chemoattractant, such as 10 nM PDGF-BB established as a gradient from a 

source, you see a directed migration towards that source. This is seen in the 

nascent mPC response in the nascent 10 nM PDGF-BB plot, as the tracks are 

predominantly red and thus moving towards the release source. The position of 

the AMP is 75 µm away from the origin, and towards the release source, and 

shows that the nascent cells were attracted towards the PDGF-BB signal. 

Comparing the responses of the 7-day differentiated and nascent cells, a similar 

degree of directed migration is evident in each case upon introduction of the 

PDGF-BB chemoattractant. Comparing the AMP of the two PDGF-BB plots, 

the 7-day differentiated cells exhibit a much greater degree of migration towards 

the release source. This result suggests that the 7-day differentiated cells are 

more responsive to the chemoattractant signal, as was hypothesised previously.  
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To confirm this observation, the chemotaxis experiments were repeated to give 

a larger dataset and compared using further ImageJ analysis. 
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Figure 6.7 Analysis of mPC migration with and without chemoattractant 

A. Representative rose plots for one of three repeats (n=30), showing the distance and direction 

of mPC migration paths. B. Plot showing the average x-FMI values calculated from the full 

dataset of mPC cells tracked for each condition (n=90). T-test analyses were performed and the 

significant difference was indicated accordingly, **** = <0.001, ** = 0.0045, and * = 0.0253. 
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Figure 6.7 shows the effect of providing a chemoattractant signal (PDGF-BB) 

to both nascent and 7-day differentiated mPC cells. The representative rose 

plots of Figure 6.7 A illustrate the migratory distance and directions of the cells 

analysed (n=30) per repeat. With the chemoattractant signal (‘10 nM PDGF-

BB’), cells were directed towards the signal origin (right of plot (0,500)) in 

great numbers for both the nascent and 7-day differentiated cells. In the case of 

the 7-day differentiated cells, almost all analysed were migrating directly 

towards the chemoattractant signal, with only a few cells migrating in other 

directions. 7-day differentiated cells were migrating over 100 µm towards the 

signal over the 8-hour time-period, whereas maximal migration was just over 

50 µm for the chemoattractant nascent cell samples. In the absence of a 

chemoattractant signal (‘Negative control’) there was no clear directional 

movement of the nascent cells. The 7-day differentiated cells in the negative 

control showed no clear directionality in their migratory paths, however there 

was elevated migration along the observation channel of the chemotaxis 

chamber. This outlier result was most likely due to extra growth space at one 

end of the observation channel, providing a stimulus for cells to migrate 

towards it to divide. The cells were seeded in such a way that they were equally 

distributed across the horizontal plane. Control over the vertical plane was 

difficult to control due to the injection of cells through the chemotaxis chamber 

caps. This was an important observation as it reinforced the need for ensuring 

uniform cellular distribution allowing plenty of space for cells to divide 

without the need for migration.  

Cells were equally distributed along the horizontal plane that was being analysed 

for directed migration, and vertical migration was not as significant a cue as the 
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chemotactic signal was in affecting cellular migration. This is shown by 

comparing the negative control samples with the 10 nM PDGF-BB samples - 

even when the same cellular distribution is present, cells preferentially migrate 

towards the chemoattractant. 

Analysis of the data by rose plot permitted a certain level of assessment of the 

general direction each cell migrated in, however, it was not a good measure to 

statistically compare chemotaxis between the various samples. Figure 6.7 B 

shows the analysis of the full dataset of tracked mPC cells (n=90) and ranks their 

average migration using the FMI along the x-axis (horizontal plane). The 

calculation of the χ -FMI is explained in Figure 6.1 and Section 6.2.3. By 

compiling the χ -FMI values for each of the cells assessed in each sample, 

average χ-FMI values were calculated as a mean and compared by T-test. With 

the nascent mPC cells there was a significant difference between the average χ-

FMI values (P=0.0045), the chemoattractant sample yielded a much greater 

average χ-FMI of 0.29 ± 0.08 compared to -0.07 ± 0.09 without chemoattractant. 

A similar result was seen with the 7-day differentiated cells, the chemoattractant 

sample yielded an even greater average χ-FMI of 0.53 ± 0.05 compared to 0.11 

± 0.05 without chemoattractant. The difference between these two samples was 

significantly different, with a P value of <0.0001. A further comparison to be 

made was the difference in chemotactic response by nascent and 7-day 

differentiated cells. There was no significant difference between the average χ-

FMI values when no chemoattractant was used. However, the 7-day 

differentiated cells yielded a significantly greater average χ-FMI with a p-value 

of 0.0253. 
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The difference in response between the nascent and 7-day differentiated mPC 

cells was profound, and it indicated that the 7 days of osteogenic differentiation 

were yielding more chemotactically-responsive cells. It was hypothesised that 

this was due to a greater proportion of osteoblasts being present after stimulating 

the precursor osteoblasts in osteogenic medium.  

6.3.5 Alternative release source development 

Developmental biologists have previously described the use of hydrogel beads 

of various sorts, including agarose and gelatin, for use as simple release sources. 

Beads could be prepared at the required size and with appropriate-concentration 

hydrogels and then soaked in the molecule or protein required to be released. 

The beads would retain this ‘cargo’ and then release it through simple diffusion 

into the surrounding medium. Whilst this method of delivery offers fairly low 

control over the release kinetics, its simplicity is appealing to many 

investigators. If such a technology that is readily available to many researchers 

could be optimised to work with the HOTs patterning setup, the technology 

would be even more valuable. 

To this end, agarose beads (Figure 6.8) were suspended in GelMA 10% and 

optical trapping was attempted. The beads were 50 µm in diameter, much larger 

than the microparticles patterned previously, and their optical properties were 

very different to those of the PLGA microparticles used previously. Agarose 

optical manipulation was attempted in GelMA 10% pre-gel solution, PBS, and 

cell culture medium, none of these attempts were successful and the beads could 

not be patterned. Whilst completing the trapping assessment, it was observed 

that after about 30 minutes of trying to manipulate the beads in cell culture 
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medium, the beads did permit optical trap formation (data not shown). The 

agarose beads in cell culture medium were not suitable for patterning, but the 

formation of an optical trap was encouraging. It was hypothesised that the issue 

with the beads was that their refractive index was too similar to that of the 

surrounding media, thus preventing optical trap formation. This theory was 

further supported by the fact that the beads became trappable after suspension in 

FCS-containing cell culture medium. The FCS was likely absorbed into the 

beads and bound to non-specific binding sites 257, creating a slight refractive 

index mismatch with the surrounding medium. This mismatch was not sufficient 

to facilitate optical trapping for manipulation of the bead, but it was compelling 

evidence for the issue’s cause. 

6.3.6 Agarose beads for HOTs patterning 

In order to raise the refractive index of the agarose beads for optical 

manipulation, something with a different refractive index needed to be added to 

the beads. BSA was loaded into the beads at a range of different concentrations 

to assess its effect on optical trapping potential. The trapping assessment was 

completed as described in Section 3.4.4. 
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Figure 6.8 Optical trapping assessment – Agarose beads 

A. Micrograph of 4.0% (w/v) agarose beads manipulated by HOTs in cell culture medium 

suitable for optical manipulation via the HOTs patterning platform. B. A tabulation of the results 

of the trapping assessment using differently soaked beads assumed to have increasing levels of 

BSA as the soak concentration is increased.  
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A trapping assessment was completed for the BSA-laden agarose beads that 

tested the optical trap strength formed when different concentrations of BSA 

were loaded into agarose beads. Figure 6.8 A shows the beads suspended in 

GelMA 10%, the medium that would be used for subsequent chemoattractant 

HOTs patterning experiments. Figure 6.8 B shows a table presenting the results 

of the trapping assessment; 0, 1, and 3% BSA loading was not sufficient to 

permit optical trap formation that would enable movement of the beads 

(‘Manipulation possible?’). 5 and 10% BSA loading permitted the formation of 

optical traps that were suitable for moving the beads in a controlled manner that 

would be suitable for simple patterning experiments. However, none of the 

concentrations tested led to beads that could be manipulated at 32 µm/s (The 

minimum acceptable manipulation speed, Section 3.3.2). To enable better 

optical trapping, a greater concentration of protein could have been used, but this 

could potentially lead to reduced uptake of the active molecular/protein cargo if 

the beads were already saturated with BSA. 

6.3.7 Calcein-AM-laden agarose beads 

To demonstrate the basis for release from HOTs-patterned agarose beads, the 

beads were soaked in α-chymotrypsin and calcein green AM solution as 

described in Section 6.2.6. Agarose beads were soaked in solutions of α-

chymotrypsin and then prepared for an in vitro release study to assess release 

kinetics. α-chymotrypsin is a good reference protein by which to assess the 

release kinetics of PDGF-BB due to its similar molecular weight (α-

chymotrypsin = 25 kDa, PDGF-BB = 24.5 kDa) and isoelectric point (α-

chymotrypsin = 9.1, PDGF-BB = 9.8) 258.  
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Figure 6.9 Agarose beads for delivery of calcein green AM to cells 

A. An in vitro release study for 5 and 10% (w/v) α-chymotrypsin-soaked agarose beads into PBS, 

over a 24-hour time period. Errors bars display the cumulative standard error of the mean from 

three batches of soaked beads. B. Micrographs showing the release of calcein green AM from a 

single soaked agarose bead positioned in close proximity to mES cells (White arrows) with the 

HOTs patterning platform. Fluorescence micrographs at 4-hour intervals show the calcein-

positive cells around the agarose bead fluorescing at a progressively greater distance away from 

the bead source with increasing time. The scale bar represents 50 µm.  
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Figure 6.9A shows the results of an in vitro release study using agarose beads 

soaked in α-chymotrypsin and calcein AM. To assess the release kinetics, a BCA 

assay was completed as previously described (Section 2.9.5). The released α-

chymotrypsin was assessed at 48 hours. The total release was calculated to give 

the estimated total loading of α-chymotrypsin following each solution soaking. 

For both the 5 and 10% α-chymotrypsin-soaked beads, rapid release was 

observed over the first 6 hours with 55 and 58% (of the total estimated loading) 

of α-chymotrypsin released respectively. Following the rapid release, a slower 

release rate was observed until the 10-hour point. These release kinetics would 

be difficult to modulate with the agarose bead delivery system. It was 

hypothesised that by increasing the agarose concentration, release would be 

prolonged due to the decreased diffusion rate through the higher concentration 

agarose. For the delivery of PDGF-BB, to stimulate mPC chemotaxis, the release 

kinetics of the 4% (w/v) agarose beads tested in Figure 6.9 were suitable. Figure 

6.9 B shows a single agarose bead soaked in α-chymotrypsin and calcein AM, 

surrounded by mES cells. After stabilisation using the GelMA hydrogel system, 

the cells were imaged using time-lapse microscopy, and the calcein fluorescence 

was observed to develop in cells in close proximity to the agarose bead. Using 

HOTs, two α-chymotrypsin and calcein-AM-soaked agarose beads were 

positioned in close proximity to one another, over a monolayer of mES cells.  
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Figure 6.10 HOTs positioned agarose beads for the delivery of calcein green AM to mES cells 

A. Bright-field micrograph showing the HOTs-based positioning of two calcein-AM-soaked agarose beads (Indicated by white dotted lines), surrounded by a monolayer of 

mES cells. Fluorescence micrographs were taken at 30-minute intervals to show the increased number of calcein-positive mES cells fluorescing at a progressively greater 

distance away from the bead source with increasing time over 9 hours. The scale bar represents 50 µm.
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Figure 6.10 shows the micrographs from the HOTs-positioned α-chymotrypsin 

and calcein-AM-soaked agarose bead experiment. Fluorescence-based 

microscopy was used to show the release and uptake of calcein green AM by 

mES cells in close proximity to the agarose bead. The agarose beads were able 

to retain enough calcein green AM in order to successfully yield intensely 

stained calcein fluorescent cells. This simple method of delivery proved 

suitable for HOTs manipulation and positioning. Figure 6.10 shows that cells at 

different distances from the point of origin respond at different times. This 

release characteristic is of great relevance to the investigation of bone 

remodelling recruitment signalling. Individual osteoblast responses to 

recruitment signalling could be investigated using the HOTs patterning setup 

and agarose bead release.  

6.3.8 HOTs-patterned PDGF-BB signalling  

As shown in Figure 6.9 A, the release of the reference protein α-chymotrypsin 

occurs by a rapid release phase over the first 6 hours and then a slower release 

rate until the 10-hour point. This period of release is sufficient to permit mPC 

migration if the signal concentration propagated is great enough. The mPC cells 

have been shown migrate great distances in the 8-hour experiments conducted 

earlier (Figure 6.6 and Figure 6.7). Figure 6.10 gives a good representation of 

released molecules eliciting a response in cells at different time-points 

depending on their distance from the source. It must be acknowledged however, 

that the small molecule calcein green AM will diffuse at a higher rate through 

the GelMA matrix than will PDGF-BB. Furthermore, Figure 6.10 can be used as 

a crude measure of the calcein green AM ‘diffusion front’ formed over the 9-
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hour time-period. At 2 hours, cells within a 50 µm zone of the agarose beads 

were calcein fluorescent, at 4 hours, cells within a 100 µm zone responded, and 

at 7 hours, cells as far as 150 µm away from the release source responded to the 

calcein green AM signal.  

Although calcein AM does not serve as an accurate reference for large proteins, 

such as PDGF-BB, it does provide a means by which to estimate the diffusion 

front for PDGF-BB. It may be assumed that PDGF-BB is less mobile in the 

hydrated GelMA matrix, principally because of its size, compared to calcein 

AM. However, PDGF-BB elicits its recruitment effects at much lower 

concentrations (1-10 nM) than calcein AM (2 µM). Whilst this, and the α-

chymotrypsin release study (Figure 6.9 A), serve as an estimation of the release 

kinetics for PDGF-BB, further analysis is required to fully understand the signals 

created by HOTs-positioned release sources. Later in this chapter, the 

development of such analysis is detailed. 

An experiment was devised to show that individual mPC cells can be recruited 

to HOTs-patterned agarose beads. Utilising the patterning precision that the 

HOTs platform offers, it was possible to position PDGF-BB-loaded agarose 

beads at defined distances from the mPC cells such that any differential 

chemotactic responses might be observed.  
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Figure 6.11 HOTs-patterned PDGF-BB-soaked agarose beads 

A. Images of PDGF-BB- or un-soaked agarose beads and their effect on mPC migration. The red 

track shows the movement of the mPC cell from the imaged point of origin. Scale bar represents 

50 µm. B. A plot displaying the average net migration with respect to the agarose bead release 

source. Errors bars display the standard error of the mean. T-test analyses were completed to 

statistically compare the results, ** = 0.0045 and * = 0.0253.  
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Single agarose beads soaked in PDGF-BB were positioned at specific distances 

from individual mPC cells. The cells were imaged and tracked over an 8-hour 

period to assess their migration. Figure 6.11 A shows micrographs of HOTs-

positioned agarose beads and an individual mPC cell’s response to it. Agarose 

beads were soaked in either α-chymotrypsin (‘Negative control’) or PDGF-BB 

to assess the chemotaxis of mPC cells. Negative control beads were required to 

ensure that the agarose beads were not stimulating chemotaxis in any way. As 

previously described (Section 6.2.4) ImageJ’s MTrackJ plugin was used to track 

the movements of the mPC cell over the 8-hour experiment. The red tracks 

shown on the micrographs (Figure 6.11 A) indicate the migration of the cells 

from their initial positions (as shown). From the representative micrographs and 

overlaid tracks, it is clear that the PDGF-BB-soaked beads are directing 

chemotaxis of the mPC cells towards them.  

The agarose beads were positioned at different distances from the mPC cell in 

an attempt to identify any different responses based on the concentration of 

PDGF-BB at different distances from the agarose bead release source. If a 

PDGF-BB concentration gradient was established across the 150 µm zone, 

emanating from the agarose bead, the mPC cells would theoretically migrate 

differently depending on their proximity to the bead, due to the distance-

dependent gradation of PDGF-BB concentrations. To assess the effect of source 

distance upon mPC chemotaxis, the net migration with respect to the release 

source was assessed. Figure 6.11 B shows the plot of the assessment, showing 

clearly that the presence of released PDGF-BB led to significant chemotaxis 

towards the release source with respect to the negative control. However, when 

we compare the different PDGF-BB source distances, migration of the mPC cells 



Chapter 6 Results IV 

242 

 

is fairly similar, and there is no significant difference in migration using the 

different source distances tested. This result suggests that either the migration of 

mPC cells in response to PDGF-BB does not occur in a dose-dependent manner, 

or that there is no significant concentration gradient being formed over the 

distances tested. There are, however, many publications that have shown cellular 

migration to be tightly linked to PDGF-BB concentration 247,254, and so it must 

be accepted that no significant concentration gradients were formed over the 

distance assessed.  

To further optimise the delivery of signalling molecules by means of the agarose 

beads or polymer microparticles discussed previously, a method with which to 

assess hydrated gels such as GelMA was required.  

6.3.9 Analysis of solutes in hydrated hydrogels 

In order to effectively assess the solute concentrations around a release source, 

in this case a protein-soaked agarose bead, the dynamic hydrogel environment 

must be ‘paused’ to obtain a snapshot of the distribution of protein throughout 

the hydrogel. By doing this at various time-points, an understanding of how 

solutes are able to diffuse through the hydrogel matrix to propagate a 

concentration gradient may be obtained. ToF-SIMS can be utilised to assess the 

surface chemistry for material characterisation very effectively 259. These 

methods were further developed to provide subsurface chemical analysis using 

Ar cluster ions with a liquid metal ion analysis source, a form of polyatomic 

sputtering beam. Through the sputtering of the surface of material, secondary 

ions are ejected and analysed as a function of etch time, permitting the formation 

of a depth profile throughout the material 260,261. Difficulties, however, arise in 
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the preparation of hydrated samples for analysis. The SIMS technique requires 

a vacuum environment, and this reduced pressure causes mechanical stress and 

the rapid removal of volatile compounds, such as water. Therefore, the analysis 

of hydrated protein-containing hydrogels without sample preparation would not 

be appropriate for characterising solute distribution in the native hydrated state. 

Methods of sample preparation have been developed to closely maintain the 

hydrogel’s native state in a high-vacuum environment, including the effective 

frozen-hydrated sample preparation 262.   

In collaboration with Mr Michael Taylor and Prof. Morgan Alexander 

(University of Nottingham, UK), analysis of agarose-bead-containing hydrogels 

was completed using the aforementioned frozen-hydrated sample preparation. 

Agarose beads were prepared as described in Section 6.2.8, and hydrogel disks 

were prepared as described in Section 6.2.10. ToF-SIMS characterisation and 

analysis of all samples was completed by Mr Michael Taylor (University of 

Nottingham, UK). PEGDA was used as a reference hydrogel in the place of 

GelMA to yield better analysis outcomes due to its ‘cleaner’ composition and 

lack of organic molecules that would contribute to high levels of background 

signal. PEGDA was used at 10% concentration to best represent the 

characteristics of GelMA. Initially, a surface spectrum of the PEGDA hydrogel 

with absorbed α-chymotrypsin was completed to show the secondary ions to 

indicate PEGDA and α-chymotrypsin (Figure 6.12).  
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Figure 6.12 Surface analysis of PEGDA and marker secondary ions 

A. Plot showing surface analysis of PEGDA hydrogel by ToF-SIMS with areas signifying 

components of interest circled in red. B. Secondary ion species as indicated by the red circles in 

A, emboldened and numbered (1-3) species are the secondary ions that are used for component 

identification. C. Chemical structures (1-3) of the ions used as signifying components.  
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Figure 6.12 shows the selection of secondary ions for markers of both PEGDA 

and the solute, α-chymotrypsin. Figure 6.12 B shows the two secondary ions that 

were chosen to signify the presence of α-chymotrypsin. Selection of markers for 

α-chymotrypsin was simple due to the cysteine-rich nature of the protein and the 

complete absence of organic chemistry within the PEGDA hydrogel. Figure 6.12 

C shows the chemical structures of each of the three secondary ions selected. 

Once the secondary ions were selected as suitable markers for both PEGDA and 

α-chymotrypsin, a standard curve was developed so as to assess the secondary 

ion intensity versus concentration. This enabled the calculation of α-

chymotrypsin concentration throughout the gel.  
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Figure 6.13 Surface analysis of α-chymotrypsin-soaked PEGDA standards 

A selection of surface analysis plots of PEGDA hydrogel disks soaked in different concentrations 

of α-chymotrypsin. Secondary ion intensity plots are shown for HS-, C4H5NO2S-, C2H3O-, and 

the total.  
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Figure 6.13 shows intensity plots of the 100x100 µm area assessed for the 

intensity of the marker secondary ions. As the α-chymotrypsin concentration 

increases, greater intensities of HS- and C4H5NO2S- ions are recorded. The 

intensity of the PEGDA secondary ion (C2H3O-), however, does not seem to 

change with α-chymotrypsin concentration, confirming that the analysis was 

taken from within the PEGDA hydrogel. Peak shapes for both HS- and 

C4H5NO2S- were analysed to show that the peaks quantified for each sample 

were correct (Appendix, Section 8.3). Due to the use of ‘clean’ PEGDA 

hydrogel, the background noise was very low, and so the peak shape fitting was 

only required for complete assurance. 

6.3.10 Chemical depth profiling release study 

In order to assess the concentration of α-chymotrypsin being released from the 

agarose beads at different time-points, depth profiles from the top of the hydrogel 

disk (furthest point from source (~200 µm)) down to the agarose beads were 

made. Analysis took place after a 400x400 µm area of hydrogel had been etched 

away using the 10keV Ar1455 cluster ion source. The 25keV bismuth source was 

then rastered over an area of 100x100 µm with 128x128 pixels. Rastering 

through the gel was completed according to Section 6.2.11. To obtain the 

concentration gradient at various times from initial release, multiple samples 

were prepared for analysis as described in Section 6.2.11.  
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Figure 6.14 Chemical depth profiling at 1 hour 

A chemical depth profile for the 1-hour release time-point of α-chymotrypsin-soaked agarose 

beads. The plot shows both C2H3O- (PEGDA) and C4H5NO2S- (α-chymotrypsin) log ion 

intensity against etch time (s). This plot is representative of all of the six time-points assessed, 

so these additional data are not shown.  
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Figure 6.14 shows the chemical depth profile of a hydrogel disk after 1 hour of 

incubation and α-chymotrypsin release. The C2H3O- trace shows that the etched 

area was completely within the PEGDA hydrogel. The largely unvarying 

C4H5NO2S- ion intensity, however, indicates that the PEGDA hydrogel was 

completely equilibrated with α-chymotrypsin. Only one plot of the chemical 

depth profiling is included for the 6-hour release assessment as it is 

representative of those made for all other time-points. The reference protein, α-

chymotrypsin, is so mobile that it is able to diffuse through the whole gel and 

equilibrate before the first time-point. At later time-points the α-chymotrypsin 

concentration did increase slightly (data not shown) in line with the release study 

shown previously (Figure 6.9). 

6.3.11 Implications for mPC chemotaxis 

The assessment of α-chymotrypsin release from agarose beads gives a good 

representation of what was happening in the HOTs-positioned PDGF-BB-

soaked bead work shown in Figure 6.11. The results from this assessment are in 

line with the biological data (Figure 6.11) that showed no differential mPC cell 

migratory response over 150 µm from the agarose beads.  

The technology used to analyse these hydrogels discussed here shows great 

promise for characterising hydrogels and solute distribution, however the current 

methodology limits the depth to which analysis is possible. Furthermore, 

although the sample preparation does retain the molecular organisation within 

the hydrogel so that time-points can be assessed. It would be highly laborious to 

obtain the number of time-points required to observe the quick changes in solute 
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concentration that it is hypothesised to have occurred in the earlier microparticle-

based release experiments of Chapter 5.  

Recent advances in the field of mid-infrared (MIR) imaging provide a 

technology that might be capable of analysing such subtle concentration changes 

within a hydrogel environment. Chris Sammon’s group (Sheffield Hallam, UK) 

have developed a method of analysing chemical signatures from MIR imaging 

263,264, developing it to such a point that they have shown the release of 

encapsulated protein into surrounding water from a single microparticle 265. Such 

a technology could be very useful for further analysis of the release of PDGF-

BB/α-chymotrypsin from agarose beads during the first hour of release. 
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6.4 Conclusions  

This chapter has shown that, with a degree of simplicity, agarose beads can be 

optimised for use with the HOTs patterning setup to create a localised delivery 

of bioactive signals. The principle of optical manipulation based on the 

formation of an optical trap requires the object to have a sufficient refractive 

index mismatch with the surrounding medium. The addition of proteins to the 

agarose beads creates this mismatch, permitting optical trapping. Although not 

tested in this thesis, the same principles should permit optical trapping of other 

similar hydrogel-based beads that are typically used for this application. The 

outcome of this is that the HOTs system can be easily used with many release 

sources currently used for localised solute delivery, thus increasing accessibility 

of the technology. 

The use of primary osteoblasts in this study showcased the ability to conduct 

HOTs-based experiments with cell types of varied origin to suit the needs of the 

investigation. Here, it is described how primary osteoblast migration can be 

controlled and directed towards a PDGF-BB-releasing agarose bead precisely 

positioned by means of HOTs-based patterning. Having demonstrated this model 

of recruitment, the investigation could be developed to probe the osteoclast-

osteoblast relationship further through multicellular patterning experiments as 

previously described. Whilst the precise positioning of agarose beads at different 

distances was shown to not significantly affect the migration rate of mPCs, the 

experiment did effectively demonstrate the basis for controlling the location of 

localised release sources to observe the directed chemotaxis of cells. 
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Over the course of this project, the need to quantify solute gradients released 

from either polymer microparticles or agarose beads was recognised. In this 

chapter we discussed the difficulties associated with this analysis. A newly 

improved method of characterising solutes within hydrated hydrogels was tested 

for its ability to characterise concentration gradients surrounding agarose bead 

release sources. The Tof-SIMS analysis of the agarose-bead-based α-

chymotrypsin release into PEGDA indicated that a concentration gradient of 

PDGF-BB was unlikely to be present in the mPC recruitment experiments. As 

previously discussed, this result was in line with the biological data. To further 

investigate the signalling dynamics formed from agarose bead or microparticle-

based delivery, new technologies must be pursued. As previously discussed, the 

use of MIR imaging could be one such suitable approach. 

This chapter detailed an alternative release method for use with the HOTs 

patterning setup, describing how it can be used to direct mPC cells to localised 

points of release. The HOTs have been demonstrated to be effective at 

mimicking recruitment signals observed in nature, highlighting how yet another 

area of research could benefit from this innovation and project. 
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7. Final Conclusions and Future 

Developments 

7.1 Conclusions 

From the advent of stem cell engineering, thousands of studies concerning stem 

cells and their potential therapeutic potential have been published. This is in stark 

difference to the real progress that has been made in the application of cell 

therapies in a clinical setting. It can be concluded that there remains a large 

amount to be learnt about stem cell biology, their differentiation and the 

mechanisms that underpin their function. The regulation, survival, proliferation 

and development of stem cells is determined by a number of factors, both 

intrinsic to the cells themselves and extrinsic signals received from their 

microenvironment. With the need for greater understanding of these cellular 

microenvironments to elucidate mechanisms that may hold solutions to 

unlocking the true potential of cell therapies and tissue engineered therapeutics, 

this thesis details the use of a novel new tool and approach to investigate this 

basic science that is so clearly sought. 

This thesis details the development of HOTs from a predominately biophysics 

based tool, to a micropatterning tool-set capable of controlling some of the key 

aspects of cell microenvironment signalling. Early attempts to manipulate cells 

with the HOTs within a liquid medium was shown to be non-problematic, 

however, attempts to manipulate polymer microparticles led to issues relating to 
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refractive index similarity. This resulted in the microparticles being propelled 

away from the field of view, not congruent to successful positioning. Following 

optimisation of the formulation, three differently sized microparticle batches 

were developed and used for demonstrating basic positioning and pattern 

formation. Optimisation of the release kinetics and loading of the microparticles 

was relatively simple by comparison to the optical trapping optimisation due to 

in-house expertise (Dr. Omar Qutachi, University of Nottingham, UK). 

However, the process of optimising microparticle formulations was noted as a 

potential bar to the wider scientific community taking up the eventual 

micropatterning tool set, Chapter 6 addresses this issue which is discussed later. 

Co-patterning of microparticles and cells was achieved and discussed in Chapter 

3, with two methods of stabilisation proposed. Whilst the stabilisation of cell and 

microparticle patterns with crosslinked hydrogels was focussed on in this thesis, 

the developments with avidinated-microparticle stabilisation showed great 

promise and could be further investigated. The stabilisation of HOTs patterns 

did lead to new difficulties to overcome, the increased viscosity was shown to 

be permitting cell and surface interactions leading to the so called “sticky cell” 

problem. Further optimisation of the polyHEMA surface coating proved to be 

the solution and concluded the initial cell and microparticle patterning proof of 

concept work. 

The early concept work gave sufficient evidence to support the case that 

controlled release microparticles, positioned in close proximity to cell patterns, 

could serve as a model of localised solute delivery. The HOTs positioning would 

permit great precision over the point of release and the formulation of the 

microparticle could be tailored to suit the require release kinetics. Chapter 4 
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investigated this theory further, utilising fluorophores to visualise release and 

with the use of acetoxymethyl dyes (Calcein AM), the cell-uptake-dependent 

fluorescence. Experiments with calcein AM provided a good basis for 

developing the patterning tool-set further, and with the design of multiple spoke 

patterning gaskets, the first visualisation of zonal signalling was demonstrated. 

The basis for the spoke design was influenced by microfluidics channels, a 

method applied to cell and solute patterning in its own right 266,267, using the 

manipulation power of the HOTs instead of fluid movement.  

Chapter 5 was based around the developments of Chapters 3 and 4, the 

demonstration of the how the HOTs patterning platform can be used to direct 

cellular differentiation was a great leap forward in terms of technological 

development. A sufficient concentration had to be released and delivered to 

responsive cells that were supported in the stabilising hydrogel matrix. The 

experiment relied upon the supportive nature of GelMA and the high loading of 

retinoic acid-laden microparticles. Chapter 5 details the steps taken to reach 

obtain these key aspects of the biological investigation proof of concept. 

Through innovative methods of obtaining highly loaded microparticles, using 

FITC co-loading to  report on retinoic acid encapsulation and FACS, this was 

achieved. Through these developments, previously unobtainable control over 

solute signalling was achieved that led to a tightly controlled zonal response in 

a mES cell aggregate. The ability to control diffusible signalling is particularly 

beneficial to a number of basic biology investigations; it is well known that 

diffusible factor signalling is paramount in embryonic development. 

Furthermore, new anti-cancer therapeutics have even looked towards the cancer 

cell microenvironments for way of tackling their establishment and uncontrolled 
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growth. Whilst this is a very different area to of study to the work detailed in this 

thesis, it shows that there is a widespread need to better understand cellular 

microenvironments, especially their growth control mechanisms 268–270. 

An important consideration mentioned earlier, was the difficulty in formulating 

and fabricating microparticles, that were an essential aspect of the HOTs 

controlled signalling described previously (Chapter4 and 5). The use of hydrogel 

beads, however, enables a much simpler method of loading and are readily 

available. In order to develop a method by which hydrogel beads are used as a 

localised release source, a new biological investigation was attempted with the 

HOTs patterning setup. Bone remodelling is the process by which the skeletal 

system grows and repairs following damage, there exists a complex interplay 

between osteoblasts and osteoclasts. The former lays down new bone matrix and 

the latter is required to resorb bone tissues for structure changes. These cells are 

known to signal to one another via growth factor and chemokine signalling over 

short distances, facilitating chemotactic migration towards sites of bone 

remodelling. Using the HOTs it was shown that by soaking agarose beads in a 

solution of PDGF, and then positioning the beads at distances away from primary 

osteoblasts, cellular chemotaxis could be controlled. Further to this, a novel 

technology was employed to assess the growth factor distribution at different 

time-points from agarose beads in a hydrogel. Although, the ToF-SIMS analysis 

suggested that there was no clear diffusion front of chemoattractant in the gel, 

agreeing with the HOTs experiments, it proved itself to be a powerful tool for 

quantifying solutes in hydrated environments. A further development of the 

HOTs patterning tool-set would certainly revolve around the quantification of 

solute gradients following microparticle based delivery. 
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7.1.1 Implications of this research 

This thesis describes how we have developed and demonstrated an entirely novel 

method of mimicking solute signalling to control the differentiation and 

migration of cells. The toolset allows the user to create release zones or points 

of release that can, and have been used in meaningful biological investigations. 

The ability to do this, gives the investigator the possibility to control cellular 

microenvironment signalling with previously unobtainable levels of precision. 

Using this technology, in vitro developmental models can be mimicked that are 

more faithful to the natural conditions, chemotaxis can be investigated to 

understand the role that spatio-temporal signalling has upon the recruitment of 

many different cell types. The ability to manipulate solute signalling permits a 

vast number of possible investigations into how cells communicate with their 

surroundings and vice versa. This offers a technology to permit new 

understanding into the world of cellular biology and the mechanisms that may 

prove essential for the successful therapeutic applications of cell therapies. 

7.2 Future Developments 

The proof of concept work and biological investigations described in this thesis 

demonstrate the significant potential of the HOTs patterning setup as a tool to 

generate complex in vitro microenvironment models of development. Control 

over the solute signalling dynamics has been demonstrated, and shown to be able 

to direct cellular differentiation and migration. To develop this further, use of 

multiple signalling factors, as demonstrated in the two dye calcein AM proof-of-

concept work would be highly impactful. Initial studies could include the use of 

antagonistic or inhibitory signals like those of the embryonic dorso-ventral axis 
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specification. BMP4 is responsible for ventral specification and it is inhibited by 

chordin, noggin, and follistatin that are released on the dorsal side to create an 

axis 44,271. 

To be able to fully control the cell microenvironment, all relevant cues must be 

included, one such aspect not addressed in this project is the effect of physical 

forces upon cellular development. An example of this, relevant to this thesis is 

the differentiation of osteoblasts that become trapped within bone matrix that 

they are forming, increased pressure and other factors are thought to lead to its 

differentiation into osteocytes. The impact that different forces have upon cells 

could be further studied using the HOTs to pattern cells on surfaces with varying 

elasticity, similar to the classic experiment completed by Adam Engler (2006) 

272. 

One area of the patterning process that requires further development is the 

application of automation, currently the process of patterning is labour intensive. 

The appropriate implementation of LabView based automation could 

significantly improve this, raising throughput and reducing labour for patterning 

experiments.  

Furthermore, the incorporation of different technologies to compliment the 

HOTs patterning system, including the Nanokick technique, whereby 

mesenchymal stem cells are stimulated with high frequency vibrations, leading 

to differentiation into osteoblasts 273. The combination of the HOTs patterning 

setup with such pioneering technological developments will ensure that it 

continues to be used as a cutting edge micropatterning tool. 
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8. Appendix 

8.1 Rheology of ULGT agarose 

8.1.1 Methods 

The visco-elastic gelation properties of agarose were determined by rheological 

measurements across a given temperature range. All measurements were 

performed using an Anton Parr Modular Compact Rheometer (MCR302) using 

PP50 (parallel plate of 50 mm diameter) (SN16858) set at 0.5 mm gap. 1.0% 

(w/v) Agarose type IX-A ULGT was prepared in PBS and autoclaved at 126°C 

for 22 minutes prior to use using a prestige medical classic portable autoclave. 

8.1.2 Results 

Figure 8.1 shows the rheology data for agarose ULGT hydrogel (1.0%), it was 

determined that the agarose remained a liquid at 37oC and then gelled rapidly at 

temperatures below 25oC, and once the hydrogel structure was formed, melting 

would not occur below 55oC.  
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Figure 8.1 Rheology temperature sweep 

A temperature sweep from 65-2oC and then back up to 65oC at 4% γ and 2 rad/s ω for a 1% 

agarose solution (n=3). Heating and cooling rate was 1oC/min and to prevent solvent evaporation, 

samples were surrounded by silicone oil DC 200/200cs fluid prior to measurements.  
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8.2 FCS batch testing 

8.2.1 Methods 

Five batches of serum were tested as detailed in. mES cells were induced to form 

embryoid bodies (EBs) by a mass suspension method containing each serum. 

Cells were detached and passaged under standard trypsinisation procedures. 

After centrifugation, the pellet was resuspended in standard cell culture medium 

and seeded to a non-adherent 60 mm petri dish at 200,000 cells/mL density. After 

3 days, the EBs were imaged (Figure 8.2) and then dissociated, using 

trypsin/EDTA treatment, to yield a cell suspension.  

Cells were then seeded in tissue-culture-treated plastic 6-well plates coated with 

0.1% gelatin as described previously (Section 2.5.1), and were then cultured for 

7 days in standard culture medium for germ layer analysis (Section 2.7). Cells 

were also differentiated in osteogenic medium as per Section 6.2.1, with added 

dexamethasone (10 µM) for 21 days. 

8.2.2 Results 

Table 8.1 shows the five new sera batches tested and then Figure 8.2, the quality 

testing of the cells cultured in each serum containing medium.  
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Table 8.1 Sera for batch testing 

  

Serum Supplier Lot number 

Old Sigma-Aldrich 091M3397 

A Sigma-Aldrich 034M3398 

B Life technologies 07F1686K 

C Labtech 500-31003H 

D Labtech 500-30502 

E HyClone SYL20005 
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Figure 8.2 Serum batch testing results 

Sera (A-E) used for the culture of CGR8 mES cells, ability to form embryoid bodies (EBs), 

differentiate into the three germ layers, and form bone nodules following osteogenic 

differentiation (bone nodule formation shown by alizarin red staining. Figure created with help 

from Dr. Emily Britchford (University of Nottingham, UK). 
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8.3 ToF-SIMS peak shape 

 

Figure 8.3 Peak shapes used for ToF-SIMS sample analysis 

A. shows the peak shape for the HS peak and B. the C4H5NO2S, with each of the samples 

displayed from top to bottom. 
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