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Abstract

TIME-OF-FLIGHT SECONDARY ION MASS SPECTROMETRY (TOF-SIMS) has proven its

ability to characterise (in)organic surfaces, and is increasingly used for the charac-

terisation of biological samples such as single cells. By combining ion imaging and

molecular depth profiling it is possible to render 3D chemical images, which provides

a novel, label-free way to investigate biological systems. Major challenges lie, however,

in the development of data analysis tools and protocols that preserve the cell morphol-

ogy. Here, we develop and employ such tools and protocols for the investigation of

neuronal networks.

One of the reasons 3D ToF-SIMS imaging of cells is underused is the lack of power-

ful data analysis tools as 3D ToF-SIMS measurements generate very large data sets.

To address this issue, we developed a method that allows the application of principal

component analysis (PCA) to be expanded to large 3D images making 3D ToF-SIMS

image processing of whole, intact cells and cellular networks with multivariate analy-

sis now accessible on a routine basis. Using this method, we are able to separate cellular

material from the substrate and can then correct z-offsets due to the cells’ topography

resulting in a more accurate surface heightmap. The method also facilitates differen-

tiation between cellular components such as lipids and amino acids allowing the cell

membrane, the cytoplasm and the extracellular matrix (ECM) to be easily distinguished

from one another.

These developments permit us to investigate the intracellular localisation of specific

native and non-native compounds label-free, not just in single cells but also in larger

cellular networks. The visualisation of the cellular uptake of non-native compounds,

namely fluorescent dyes, in primary rat cortical neurons and the chemical differentia-

tion between cell types, namely primary rat cortical neurons and retinal pigment ep-

ithelium (RPE) cells, are presented as applications. Even though the dyes have distinct

fragment ions in the high mass range, it was not possible to detect the fluorophores by

3D ToF-SIMS imaging of freeze-dried cells. However, it was possible to detect distinct

differences in the kind of ions detected for freeze-dried primary rat cortical neurons
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and RPE cells albeit in the low mass range.

To obtain meaningful results, however, it is paramount that sample preparation does

not induce significant physical or chemical changes. We present the first compre-

hensive comparison between large 3D ToF-SIMS images of freeze-dried and frozen-

hydrated cells using PCA to facilitate the data analysis of these large data sets. A

higher degree of colocalisation of the K+ signal with cell regions is observed for frozen-

hydrated cells, which indicates a lower degree of membrane damage and migration of

diffusible chemical species. Frozen-hydrated cell samples are therefore considered to

best reflect the native cell state, but freeze-dried cell samples allow far easier sample

handling. The mass spectrum of frozen-hydrated cellular material also has increased

ion intensities for higher-mass fragments, which is an additional advantage, because

the poor signal-to-noise ratio of molecular species with m/z > 200 is a major bottle-

neck in the advancement of ToF-SIMS imaging as a diagnostic tool.
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CHAPTER 1

Introduction

Major advances in cell biology are tightly linked to innovations in microscopy. In fact,

cell biology is innately tied to it as the cell was first discovered by Robert Hooke using

a coarse, compound microscope and described in his book Micrographia published in

1665 under the auspices of the Royal Society. The subsequent discoveries of organelles

such as the cell nucleus by Brown in 1833, mitochondria by von Kölliker in 1857 and

the Golgi apparatus by Golgi in 1898 are all due to optical microscopy. The advent of

the electron microscope, built by Ernst Ruska in 1931, led to the revelation of previ-

ously unresolvable organelles as well as the first visualisation of viruses by his brother

Helmut Ruska. In 1941, Albert Coons labelled antibodies with FITC, thus giving birth

to the field of immunofluorescence. Today, these techniques are the workhorses of cell

biology and continue to lead to new discoveries every day.

1.1 3D Imaging of Cells

The goal of biological microscopy is to image life in its most natural form. As it hap-

pens, life occurs in three dimensions so to truly understand what is happening at a

single cell level it needs to be viewed and analysed in 3D. There are several techniques

available that allow 3D imaging of whole cells. The most widely used technique in the

biological field is confocal fluorescence microscopy, where the cells are made fluores-

cent by labelling them with fluorescent stains [1]. However, many fluorescent stains

are toxic to cells or require cells to be fixed and permeabilised for their entry into the

cells [1]. Alternatively the cells can be genetically modified to produce a fluorescent

protein. However, not all cells are readily transfected and one cannot assume that

the transfected cell is entirely normal [1]. Even with fluorescent dyes that can enter

cells, allowing the cells to be imaged non-destructively, fluorescence microscopy can
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be challenging. If more than one cell type is present, it is necessary to separately label

the different cells. Overlap of the broad emission spectra of conventional dyes lim-

its the number of fluorescent probes that can be used for simultaneous imaging in a

single experiment [2]. Furthermore, the autofluorescent properties of various extra-

cellular matrix proteins, the dilution of fluorescent dyes following cell division and

photobleaching also often hinder the imaging of cells [1]. Inherently, one is also limited

to seeing what is labeled. There is therefore a need for label-free imaging technologies.

A less common, but still widely used technique for 3D imaging of cells is electron mi-

croscopy (EM) using serial section reconstructions. The development of serial block-

face imaging SEM (SBF-SEM) and focused ion beam SEM (FIB-SEM) has led to a dra-

matic increase in 3D EM studies [3]. SBF-SEM uses an automated ultramicrotome lo-

cated in the SEM chamber to remove thin sections (≥ 20 nm) from the block-face and

FIB-SEM uses a focused ion beam to mill away thin sections (≥ 5 nm) of the sample

surface [3]. Depending on the instrument, a lateral resolution of 2 nm can be achieved

[1] with Z contrast information [4]. If equipped with energy-dispersive spectroscopy

(EDS), it is even possible to obtain elemental maps [4]. Unfortunately, this is a terminal

technique as the samples have to be imaged in an ultra-high vacuum. Such a vacuum is

incompatible with biological samples such as cells and samples are therefore prepared

by fixation and dehydration in room-temperature EM techniques or frozen in the case

of cryo-electron microscopy.

A new technique is confocal Raman microscopy, which allows for non-invasive, label-

free imaging of cells under normal physiological conditions [5, 6]. As Raman spec-

troscopy detects the vibrational frequencies of different functional groups, this tech-

nique provides chemical bond information, which can be used to discern different

chemical compounds within the cells such as proteins, lipids and DNA [6]. Pascut

et al. [7] exploited molecular markers specific to cardiomyocytes derived from human

embryonic stem cells (hESC) in order to discriminate individual live cardiomyocytes

within a heterogeneous population of other hESC-derived cells.

Finally, imaging mass spectrometry such as time-of-flight secondary ion mass spec-

trometry (ToF-SIMS) carries the greatest information depth as it is able to provide full

molecular information. ToF-SIMS has proven its ability to characterise surfaces and

coatings of (in)organic materials, and is increasingly used for biological applications

[8]. The combination of label-free, molecular 2D imaging with a resolution comparable

to a bright-field microscope image (≈ 500 nm [9]) and the development of novel ion

beams [9, 10] that allow beam sputtering with a depth resolution of 30 nm [11] makes

it possible to render label-free 3D chemical images, which provides a novel way to
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investigate single cells.

This generates exciting possibilities such as label-free chemical differentiation between

intracellular components and differentiation between cell types in a culture. Label-

free 3D chemical imaging is especially attractive for drug studies or toxicological risk

assessment [12] and can visualise the cellular uptake of various non-native chemical

species. It can also be used to characterise the extracellular matrix (ECM). The extracel-

lular matrix tightly controls early tissue development and alterations of the extracellu-

lar matrix are responsible for (or accompany) cancer progression and the progression

of many diseases associated with fibrosis [13, 14]. Characterizing the composition of

extracellular matrices could therefore lead to the identification of novel biomarkers for

these pathologies [14]. Once such disease-specific ECM proteins are identified, they

could serve as anchors for imaging molecules or therapeutics coupled to anti-disease-

specific ECM protein antibodies for example [14].

In the next section, an overview of the ToF-SIMS technique will be given for the unfa-

miliar reader in order to make the following discussion concerning the research on 3D

TOF-SIMS imaging of single cells and its challenges (see section 1.3) easier to under-

stand.

1.2 ToF-SIMS

Secondary ion mass spectrometry (SIMS) is a ultra-high vacuum (UHV) technique. In

the case of SIMS, a solid sample is bombarded with a focussed ion beam of ‘primary’

ions (e.g. Ar+, O+
2 , Ga+, Cs+, . . . ) accelerated with an energy between 1 and 25 keV.

Desorption of sample ions is caused by a collision cascade induced by the impact of

the primary ions on the sample surface (see Figure 1.1). The emitted ‘secondary’ ions,

which can be both positively or negatively charged, are extracted to the mass analyser

using a static electric field.

1.2.1 Analysis Modes

There are four analysis types possible in ToF-SIMS:

• mass spectrum (0D);

• depth profiling (1D);

• 2D imaging;

3
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Figure 1.1: Collision cascade in a solid sample (grey) covered by a monolayer (black)

initiated by the impact of an energetic primary ion (red). Figure obtained

from [15].

• 3D imaging;

In order to generate ion images, the primary ion beam is rastered over the sample sur-

face and a full mass spectrum is recorded for every pixel. The resolution of the images

is determined by the diameter of the primary ion beam, because the pixel size needs to

match the size of the beam spot. Afterward, ion images are reconstructed by showing

the intensity of specific ions per pixel. The ion images visualise the distribution of com-

ponents at the surface. Low secondary ion yields limit the ion intensity and therefore

the contrast of the ion images.

One of the methodological problems in static SIMS is that the ion intensity is not only a

function of the nature and concentration of the analyte, but also the local incidence an-

gle of the primary ion beam and the location in the extraction field [16]. This means the

detected ion intensity is dependent on the sample topography, making quantification

of the surface concentration in ion images difficult.

1.2.2 Liquid Metal Ion Gun

A frequently used primary ion source is the liquid metal ion gun (LMIG), because of its

small beam spot and high ionisation yield. A low boiling metal such as Ga for example

is heated under a nozzle in a high extraction field, causing a needle shaped tip or Taylor

cone to be formed and field ionisation produces the primary ions. The LMIG can be

used as a cluster ion source, when for example Bi is used as a metal. The low energy per

incident atom in an ion cluster limits the depth of the collision cascade and improves

4



CHAPTER 1: INTRODUCTION

both the ion yield and the depth resolution [17]. The Bi-LMIG delivers an intense beam

of Bi+, Bi+2 , Bi+3 and Bi2+
3 . A magnetic field or Wien filter separates and selects the

primary ions.

1.2.3 Static and Dynamic SIMS

The primary ion dose (ions/cm2) is an important parameter, because it leads to two

distinct modes in SIMS: static SIMS (low primary ion dose) and dynamic SIMS (high

primary ion dose). The 1-25 keV energy of the primary ion, which is deposited into the

sample by the collision cascade, is sufficient to break any chemical bond. The collision

damage of a keV primary ion is estimated to stretch an area of several nm around its

trajectory [18]. The molecular structures within this volume therefore no longer match

that of the original sample [18]. By bombarding the surface with a limited number of

primary ions in order to avoid hitting the same area more than once, the mass spec-

tra retain molecular information. The so-called ‘static limit’ is determined empirically

and is estimated at 1012 primary ions/cm2 for organic samples [19]. The technique is

capable of characterising the top monolayer of a solid sample with a lateral resolution

of 150 nm [20]. In the case of dynamic SIMS, fast erosion of the surface occurs so depth

profiling becomes a possibility, but only elemental information is obtained [21].

1.2.4 Gas Cluster Ion Beam

For depth profiling and 3D imaging, a second ion beam source (C60
+, Arn

+) can be

used for sputter removal of material [22]. In this case, sputtering is interleaved by 2D

imaging with metal cluster beam (Bin
+) within the static limit. Gas phase sources are

low-brightness and good spatial resolution (∼= 100 nm) is only possible using small

apertures. Small apertures, however, degrade the current resulting in longer acquisi-

tion times.

1.2.5 Time-of-Flight Mass Analyser

Time-of-flight (ToF) mass analysers are especially suited for static SIMS. Only a limited

amount of secondary ions are produced so the high transmission of a ToF mass analyser

is a major advantage. The inherent panoramic detection and the wide detectable mass

range (from 1 to 10 kDa) are advantages as well. A ToF-MS uses the simple priciple

that ions with different m/z but the same kinetic energy will separate according to

their m/z in a field-free zone. An attractive quality of ToF-MS is the simple design.
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Ions are accelerated in a static electric field via an electric potential difference V and

all ions acquire the same kinetic energy. If the ions travel a field-free distance D to the

detector , their flight time is given by:

t =
D
v

= D
√

m
2zeV

(1.2.1)

with m the mass of the ion, v its velocity, z the number of charges of the ion and e the

electric charge of an electron. The distance between the potentials is typically about

0.5 cm and the length of the flight path D can range from 15 cm to 8 m [23]. Accelera-

tion voltages range between 3 kV to 30 kV and the flight time amounts 100 µs during

standard analysis. Time is converted to m/z by:

m
z
= 2eV

(
t
D

)2

(1.2.2)

In practice, a mass spectrum is calibrated by determining the constants a and b in the

equation below based on a few known ions:

m
z
= at2 + b (1.2.3)

A simple, linear ToF-MS has a mass resolution of about 300 to 400 [23]. Uncertainty

of the time of ion formation, its place in the extraction field and the initial kinetic en-

ergy all reduce the mass resolution. To reduce the time interval of the ion formation,

short ionisation pulses are required (< 10 ns). In SIMS, ‘passive’ pulsionisation of the

primary ion beam can be obtained with deflector plates. An ‘active’ form is bunching,

where the ions of the continuous primary ion beam drift between two plates and the

back reflector plate is pulsed with a repulsive potential. The ions in the vicinity of the

back reflector plate are accelerated and catch up with the other ions so they arrive at the

sample simultaneously. This increases the ion density in each pulse, but broadens the

kinetic energy distribution, making focussing of the primary ion beam more difficult.

As a result, a compromise has to be made between mass and lateral resolution. Bunch-

ing improves the mass resolution by decreasing the pulse duration without a loss in

counts at the cost of the lateral resolution (1-2 µm beam spot). Sub-micrometer beam

spots can be achieved in a non-bunched mode like ‘burst-alignment’ (300-500 nm) or

the ‘extreme cross-over mode’ (≈ 150 nm), but at the cost of mass resolution. To re-

duce the uncertainty of the place of ion formation in the extraction field, a flat surface

is required. Surface topography therefore has a negative effect on the obtainable mass

resolution [21]. To reduce the effects of a spread in initial kinetic energy, a high ex-

traction voltage (≈ 2000 V) is applied and a reflectron (ion mirror) is used (see Figure
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(a) Linear TOF. (b) One-stage ion mirror.

Figure 1.2: Schematics of the ion optics of a linear TOF and a TOF with a one-stage

ion mirror. The potentials are visualised along the ion optical axis. Figures

obtained from [24].

1.2). A reflectron is a post-source compensation method for energy inhomogeneity and

consists of a retarding electric field that reverses the direction of the ions. Ions with a

higher kinetic energy will have a larger penetration depth so their travel distance also

increases and they arrive at the same time at the detector as less energetic ions.

1.2.6 Flood Gun

During the primary ion bombardment not only secondary ions are emitted from the

sample surface, but also an excess of electrons. This causes positive charging of dielec-

tric samples. The change in surface potential alters the local extraction voltage, which

disrupts the measurement. The electron flood gun compensates the positive charging

via a beam of low energy electrons during the mass separation when the extraction

voltage is absent (see Figure 1.3) [21].

1.2.7 Ion Formation in SIMS

In most MS techniques, ion formation occurs in the gas phase from neutrals. The

transition to the gas phase and ionisation (electron ionisation, chemical ionisation, . . . )

are physically separated processes. SIMS, however, is a desorption-ionisation method,

where ions appear to be directly emitted from solid samples through the use of a highly

energetic ion beam [25]. SIMS spectra have the following characteristics:

• at high m/z, adduct ions such as [M+H]+, [M+Na]+, [M+K]+, etc. and occasion-

ally M+• are found, i.e. the analytes remain intact despite the destructive energy

regime;

• a large amount of fragments (depends on the used conditions, e.g. primary

7



CHAPTER 1: INTRODUCTION

Figure 1.3: Schematic of the TOF-SIMS experiment. The duty cycle of the extractor

and analysis gun is shown as well as those for the flood and sputter guns.

Figure obtained from [21].

ions, energy, sample, . . . ) that are usually even-electron, but can also be uneven-

electron systems;

• both organic and inorganic analytes are ionised.

The desorption-ionisation model, put forth by Cooks and Busch [26], introduces the

concept of desorption by vibrational excitation. It is suggested that, regardless of the

initial form of energy deposition, the energy is transformed into thermal/vibrational

motion as far as the molecules are concerned. This is apparent from the similarity

between spectra from S-SIMS, FAB, laser and plasma desorption. An important feature

is that the desorption and ionization processes can be considered separate, i.e. there is

no net creation of ions during desorption.

Alternatively, one could say the collision cascade, induced by the initial impact of the

primary ion, creates a heat distribution as the kinetic energy of the atoms in the cascade

can be recalculated into temperature using Ekin = 3
2 NkBT. In the central zone, atomisa-

tion takes place releasing radicals, element ions and electrons. Further away from the

point of impact, the temperature decreases allowing fast thermal processes that gives

rise to intact desorption of analytes. Some preformed ions (e.g. salts) existing at the

surface prior to primary ion bombardment may be directly emitted. The majority of

such ions will traverse the selvedge unperturbed and may be observed in high abun-

dance in the spectrum; no ionization step occurs. It is suggested that neutral molecules

are desorbed in high yield but to be detected must undergo an ionization step in the
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gas phase of the selvedge. Even further away, thermal degradation and a long-lasting

emission of for example Na+ and K+ occurs. In other words, the selvedge is filled with

neutrals, electrons and ions.

To generate secondary ions from the neutrals, the model suggests that their desorption

is followed by: i) ionization by fast ion-molecule reactions such as cationisation (i.e.

adduct ionisation) in competition with ionization by the emitted secondary electrons

(i.e. electron ionisation) in the gas phase of the selvedge; ii) uni-molecular fragmenta-

tion in the free vacuum, governed by the internal energy of the parent ion giving rise

to the detected fragment ions. Adduct ionisation (AI) is a lower energy process than

electron ionisation (EI) so most of the fragments arise from EI causing the molecular

ion to disappear.

Just above the sample there is a zone of higher density (good for AI) and farther up the

pressure is similar to that of the free vacuum (cf. classical gas phase EI). The density

of the selvedge1 is determined by the desorbability of the sample. In other words, a

‘volatile’ analyte will give rise to a larger proportion of AI.

Another important consideration is the time window of ion formation with respect to

that of the used mass analyser. At first (< 15 ns), a lot of [M+H]+, M+• and matching

fragments are formed. Later on (0.1-1 µs), thermionic emission of Na+ and K+ takes

off. As a TOF analyser captures the ions formed during the first 15 ns, few [M+Na]+

ions are observed.

The desorption-ionisation model [26] is of course just a model and there are other mod-

els such as the nascent ion-molecule model proposed by Gerhard and Plog [27, 28]. It is

also merely a qualitative model. However, it does provide an insight and helps the ana-

lyst explain the characteristics of S-SIMS mass spectra using the well-known principles

of EI and AI.

1.3 Previous Work Regarding 3D SIMS Imaging of Single Cells

In 2004, Chandra [29] published 3D dynamic SIMS ion microscopy images of flash-

frozen, fractured and freeze-dried T98G glioblastoma cells, spatially resolving elemen-

tal information in the X-, Y-, and Z-dimensions. Two years later, Kozole, et al. [30]

illustrated the potential for 3D SIMS imaging of cells using model multilayer struc-

tures.
1The selvedge is defined as the point above which only uni-molecular fragmentation of metastable

ions - generating the detected ion fragments - takes place [26].
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One of the first examples of molecular 3D TOF-SIMS imaging of single cells was per-

formed in 2007 by Fletcher, et al. [31] on freeze-dried Xenopus laevis oocytes (≈ 1 mm

in size, see Figure 1.4 a); this group has since then performed 3D TOF-SIMS imaging

of freeze-dried/frozen-hydrated benign prostatic hyperplasia (BPH) cells, HeLa cells,

and human cheek cells as well with their J105 - 3D Chemical Imager (Ionoptika Ltd.,

UK) [32, 33]. Also in 2007, Breitenstein, et al. [34] published 3D TOF-SIMS images of

chemically fixed and air-dried normal rat kidney (NRK) cells and Nygren, et al. [35]

published 3D TOF-SIMS images showing the distribution of phosphocholine, sodium

and potassium ions in freeze-fractured thyroid tumor cells.

In 2008, Ghosal, et al. [36] mapped the 3D elemental distribution present within micrometre-

sized, air-dried Bacillus thuringiensis israelensis spores with nanometer-scale spatial res-

olution using a NanoSIMS 50 (Cameca Instruments, Geneviers, France). In 2010, Sza-

kal, et al. [37] investigated freeze-dried HeLa cells using a conventional TOF-SIMS

instrument combined with cross-sectioning using focused ion beam milling, demon-

strating in-plane resolutions of approximately 400-500 nm.

Breitenstein, et al. [38] followed with an update in 2008, where they also attempted

to localise xenobiotic fluorophores. Brison, et al. [39] were able to image a non-native

bromodeoxyuridine (BrdU) within chemically fixed and air-dried single HeLa cells in

2013 (see Figure 1.4 b) and Passarelli, et al. [40] similarly investigated the cellular up-

take of the antiarrhythmic agent amiodarone in NR8383 cells, an immortalized cell

line derived from a lung macrophage (Sprague-Dawley rat), in 2015 (see Figure 1.4 c).

Graham, et al. [41] showed that ToF-SIMS 3D depth profiling is capable of localizing

polymer nanoparticles within HeLa cells (see Figure 1.4 d).

Major strides have thus been made over the past decade and it has been shown that

3D ToF-SIMS imaging provides a novel way to investigate single cells. Label-free 3D

chemical imaging is especially attractive for drug studies or toxicological risk assess-

ment [12] and the research on 3D ToF-SIMS imaging of single cells has progressed to

the point where the intracellular uptake and location of non-native compounds [39, 40]

and nanoparticles [41] can be visualised. In this thesis, however, we strive for ToF-

SIMS imaging with a large field of view containing multiple neuronal cells to eventu-

ally correlate this with other imaging techniques and multielectrode arrays (MEAs) in

particular. The focus so far has been on high resolution imaging of single cells.

In spite of the progress made, there are still limitations present, which will be discussed

in the following subsection.
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1.3.1 Encountered Challenges

It is observed in literature that TOF-SIMS has a few fundamental issues that challenges

the data acquisition and interpretation of complex samples such as cells. One of the

principal difficulties encountered is that of biological sample handling within the vac-

uum required for SIMS analysis [42], but this will be further discussed in section 1.4.

Furthermore, biological samples such as cells show topography. This means that 3D

images created from stacked 2D images are distorted in the vertical direction. This

problem has been addressed by Wagter et al. [43] who measured the topography be-

fore and after SIMS imaging using AFM and then corrected the 3D SIMS image by

interpolation of the two AFM images. Breitenstein et al. [34] on the other hand verti-

cally shifted the data points taking the substrate interface as a constant reference height

and assumed a constant sputter yield in cells, demonstrating excellent agreement be-

tween AFM topography and that of the corrected 3D SIMS images. Graham et al. [44]

developed a freely available MATLAB algorithm based on the latter method.

Another issue is the intrinsic incompatibility to achieve both high mass resolution and

high spatial resolution. Because of the nature of the TOF mass analyser, short (< 10 ns)

primary ion beam pulses are needed for high mass resolution. Such short pulses are

achieved through bunching, which results in a less highly focused ion beam (reduced

lateral resolution). Furthermore, the low duty cycle of the pulsed ion beam implicates

that imaging and depth profiling experiments take a very long time.

Finally, the static limit prevents sampling more than 1 % of the surface monolayer with

the analysis beam (typically a LMIG source) and the subsurface damage from the anal-

ysis beam then needs to be removed by the sputtering beam (C+
60 or Ar cluster source)

so most sample material is not analysed, severely limiting the sensitivity [9]. How-

ever, polyatomic ion projectiles, particularly Ar GCIBs, allow analysis at an ion fluence

higher than the static limit while maintaining molecular information due to the low

damage cross section and damage accumulation associated with these beams thus en-

abling 3D molecular imaging [45]. Additionally, ToF-SIMS data of molecular species

m/z > 500 have a poor signal-to-noise ratio [10]. This leads to low count ion images

making data interpretation even more challenging. An experimental method of in-

creasing ionisation yields of secondary species is the current ‘holy grail’ in ToF-SIMS

development [10]. With these limitations in mind, good data processing and analysis

is of the essence [42] and will be further discussed in section 1.5.
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(a) (b)

(c) (d)

Figure 1.4: Examples of 3D ToF-SIMS imaging of cells in the literature: a) 3D biochem-

ical image of freeze-dried oocyte, showing the distribution of the combined

signal from amino acid fragments (m/z 30, 44, 70, 120, 130, 159, 170 and

171), attributable to proteins. Reprinted (adapted) with permission from

[31]. Copyright (2007) American Chemical Society. b) Z-corrected 3D over-

lay image of BrdU localized within cells obtained from the HMR bunched

mode with the BrdU signal shown in blue and the sum of the CxHyOz sig-

nals in red. The image is 202× 202 µm2 and contains 24 slices. Reprinted

(adapted) with permission from [39]. Copyright (2013) American Chemical

Society. c) 3D rendering of macrophages dosed with amiodarone: amio-

darone (m/z 646.0, green), lipid marker (m/z 184.1 , blue) and nuclear-

marker (m/z 81.0, red). Reprinted (adapted) with permission from [40].

Copyright (2015) American Chemical Society. d) Three-dimensional re-

constructed ToF-SIMS data of nanoparticles in cells. Red indicates cell and

green indicates nanoparticles. Figure obtained from [41].
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Figure 1.5: This ToF-SIMS data of milled, agricultural straw with extreme topogra-

phy in excess of hundreds of µm illustrates the effect of topography. The

H+ peak is split into three separate peaks corresponding to three different

heights in the sample.

Figure 1.6: Trade-off between mass resolution and lateral resolution illustrated with

16 µm Au microarrays with 24 µm spacing on a glass substrate. Top: The

extreme cross-over mode allows for high lateral resolution, but low mass

resolution as illustrated by the broad Na+ peak. Bottom: The high current

bunched mode provides much better mass resolution, but sacrifices lateral

resolution as illustrated by the fuzzy total ion image.
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1.4 Sample Preparation Methods

Because ToF-SIMS is an ultra-high vacuum technique, analysis of biological materials

such as cells in a close-to-native state pose a formidable challenge due to the high water

content of the samples. Consequently, sample preparation is a crucial aspect for ToF-

SIMS analysis of biological samples. To obtain meaningful results, it is paramount that

sample preparation does not induce significant physical changes in the sample. In this

area much can be learned from the field of electron microscopy (EM) that has been

developing methods to measure biological samples as far back as the 1950’s [46]. In

addition, ToF-SIMS analysis also requires that the sample preparation procedure does

not cause any significant chemical changes.

Most cell preparation techniques for ToF-SIMS (and EM) involve dehydration of the

sample. Commonly used procedures are cryofixation or chemical fixation followed

by freeze-drying, alcohol drying or air-drying [47–49]. A major advantage of these

techniques is that the sample can be kept at room temperature, allowing convenient

sample handling and the use of complementary techniques to visualize and select well-

preserved cells and to measure their topography prior to analysis to allow height cor-

rection of the ToF-SIMS data.

Fixation is necessary to bring about rapid cessation of cell activity, to immobilize cellu-

lar components and to en-able the sample to withstand further processing procedures

[50]. With cryofixation, it is imperative to freeze the cells rapidly enough so that they

are vitrified (i.e. only contain amorphous ice) as the formation and growth of ice crys-

tals during the freezing process may dehydrate surrounding cytoplasmic areas, dis-

place cellular structures or even penetrate membranes [50]. Vitrification of aqueous

solutions is estimated to take place at cooling rates in excess of about 3× 106 K/s [51].

This can be achieved by plunge freezing: immersing the sample in a suitable liquid

cryogen such as liquid ethane or propane [52]. The maximum sample depth where

sufficiently rapid freezing occurs is only 10-15 µm. Cells below this top layer typi-

cally experience the formation of ice crystals that are large enough to distort the cell

structure, essentially restricting cryofixation to thin films [50]. Chemical fixatives will

penetrate at least 0.5 mm into a sample, but the fixation is much slower and can for that

reason be inferior to cryofixation [50] in terms of rapid cessation of cell activity and im-

mobilization of cellular components. A study by Malm et al. [48] compared chemical

fixation and cryofixation as cell preparation techniques for ToF-SIMS and showed that

the distribution of diffusible ions such as K+ is not retained in cells that were chemically

fixated and that they have less well preserved membrane integrity. They also showed

that alcohol drying specifically reduces phosphocholine secondary ion yields and in-
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ferred that the polar membrane phospholipids are extracted from the cell membrane

by ethanol. Cryofixation followed by freeze-drying clearly constitutes the best dehy-

drated cell preparation method with regard to maintaining the cells’ physical structure

[48, 53].

In the aforementioned cell preparation techniques, the dehydration step induces dras-

tic compositional changes in the sample due to the complete removal of volatile com-

ponents. This subjects the cells to mechanical stresses not present in the hydrated state

which can lead to undesired sample alterations such as membrane damage [48, 54–56].

These issues may be overcome by imaging the cell in its native hydrated state by vitri-

fying the cells and performing the ToF-SIMS measurement with a cryogenically cooled

stage at a temperature below which recrystallization does not occur (< -120 ◦C [57]).

This is referred to as cryo-ToF-SIMS, a conceptually analogous approach to cryo-EM.

Cryo-ToF-SIMS can either be performed on freeze-fractured or frozen-hydrated sam-

ples. The freeze-fracture technique consists of physically breaking the frozen sample

and subsequent surface analysis of the exposed fracture plane. However, the position

of the fracture plane within the cell varies [58] and generally cells tend to fracture be-

tween the leaflets of the membrane bilayer [59], making intact cellular characterization

difficult, especially on the cell surface.

Frozen-hydrated measurements keep the cells intact, but pose the greatest challenge

for sample handling and measurement [60]. Rabbani et al. [61] showed that dried

cells (both after chemical fixation and cryofixation) have a more diffuse distribution

of the m/z 184 mass fragment of the phosphocholine head group compared to freeze-

fractured cells. The observation that the drying process causes molecule rearrangement

(seen as more diffuse spatial distributions) was also made by Lanekoff et al. [58] when

2D imaging freeze-fractured cells and subsequently freeze-drying them inside the in-

strument by raising the temperature in the chamber from -115 ◦C to -70 ◦C. It is clear

that the risk of membrane damage and chemical redistribution as observed with dry-

ing are minimized when measuring a cell in a frozen-hydrated state. Lanekoff et al.

also observed a decrease in ion intensity for certain mass fragments attributed to phos-

phatidylcholine (m/z 184), phosphatidylethanolamine (m/z 124 and 142) and sphin-

gomyelin (m/z 184 and 224) after freeze-drying compared to the frozen-hydrated state.

It has been hypothesized that this difference in ion yields could be due to the abundant

proton sources in the matrix of frozen aqueous samples [62] as well as the decreased

sample temperature [63]. In spectra from frozen-hydrated cell surfaces compared to

freeze-dried ones, Robinson et al. [64] observed no differences in ion yields for most

low mass ions, but an increased yield for higher mass fragments. This is consistent with
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Table 1.1: Cells in the literature investigated using SIMS 3D imaging and their prepa-

ration.

Cell Preparation Reference

Xenopus laevis oocyte freeze-dried [31]

HeLa frozen-hydrated [32, 33]

freeze-dried [33, 37]

chemically fixed and air-dried [39]

prostatic hyperplasia (BPH) cells frozen-hydrated [32]

human cheek cells freeze-dried [32]

normal rat kidney (NRK) cells chemically fixed and air-dried [34, 38]

epithelial MDCK II cells chemically fixed and air-dried [38]

thyroid tumor cells freeze-fractured [35]

chemically fixed and air-dried [65]

pig thyrocyte cells fractured freeze-dried [65]

Bacillus thuringiensis israelensis spore air-dried [36]

T98G glioblastoma cell fractured freeze-dried [29]

NR8383 cells freeze-dried [40]

NIH/3T3 fibroblasts air-dried, freeze-dried and frozen-hydrated [64]

the reduced damage cross section mechanism produced by analysis at cryogenic tem-

peratures, which would reduce fragmentation of larger ions. This increased yield for

higher mass fragments potentially demonstrates an additional advantage of studying

biological samples in a frozen-hydrated state.

Table 1.1 gives an overview of the different cell types and preparation methods inves-

tigated using SIMS 3D imaging.

1.5 Data Processing and Analysis

Secondary ion mass spectra are notoriously complex to interpret and informatics meth-

ods have had very little progress in the SIMS field [9]. For this reason, the SIMS com-

munity adopted multivariate analysis techniques early on, but a major issue for 3D

imaging is that the data sets are too large for analysis using modern desk top comput-

ers [9].

One multivariate technique of special interest for (3D) TOF-SIMS imaging is princi-

pal component analysis (PCA). Other multivariate analysis methods that have been

applied to ToF-SIMS data include partial least squares (PLS) [66], multivariate curve
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resolution (MCR) [67, 68], maximum auto-correlation factors (MAF) [69, 70] and neural

networks (NN) [71]. Graham et al. [72] provide an excellent summary of ToF-SIMS

studies that have been carried out using at least one MVA method. PCA, however, is

the most widely applied method, because of its established history and wide availabil-

ity [69]. PCA also does not assume an underlying causal model and thus forms an

excellent starting point prior to applying many of the other methods to process ToF-

SIMS data [72]. In the following subsections the concept of PCA is explained and its

applicability to (3D) ToF-SIMS image data is discussed.

1.5.1 Principal Component Analysis (PCA)

Because the sheer volume of multivariate data makes it difficult to see patterns and re-

lationships, the aim of many methods of multivariate analysis is data reduction [73]. If

there is some correlation between the variables, however, some of the information is re-

dundant. Principal Component Analysis (PCA) is a technique that allows the variables

in a data set to be reduced to a few, interpretable linear combinations of those variables,

if there is correlation present. It was invented by Karl Pearson in 1901 [74], but its use

as a multivariate analysis method was developed in the field of psychometrics in the

1930s by Harold Hotelling [75, 76]. Several decades later natural scientists caught on

and PCA as a chemometric tool became widespread in the 1970s [77].

Consider a data matrix X, where each of the n rows represents a different repetition of

the experiment and each of the p columns represents a particular kind of variable that

has been ‘mean-centered’ (see equation 1.5.1). Mean-centered means the columns of X

have sample mean equal to zero2.

X =



x1

x2

x3
...

xn


=



x1,1 x1,2 x1,3 · · · x1,p

x2,1 x2,2 x2,3 · · · x2,p

x3,1 x3,2 x3,3 · · · x3,p
...

...
...

. . .
...

xn,1 xn,2 xn,3 · · · xn,p


(1.5.1)

PCA transforms the original multi-dimensional dataset X to a new dataset T, called

the principal components scores. The principal components decomposition of X can

therefore be given as:

2When performing a principal components analysis by eigendecomposition of the covariance or cor-

relation matrix, mean-centering is somewhat superfluous as the covariance matrix automatically centers

the data.
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T = XW (1.5.2)

where W is an orthogonal p-by-p matrix, called the principal components loadings,

which describe the relation between the original and new datasets.

Every p-dimensional column of weights wk converts the original dataset X in a vector

of principal component scores tk, given by

tk = Xwk =



x1

x2

x3
...

xn





w1,k

w2,k

w3,k
...

wp,k


(1.5.3)

in such a way that these new variables of T successively inherit the maximum possible

variance from the original dataset X with each loading vector w constrained to be a

unit vector (w′kwk = 1) and being uncorrelated with the previous loading vectors. It

can be shown that the loading matrix W consists of the eigenvectors of XTX, which is

proportional to the covariance matrix Q of the original dataset X.

Q ∝ XTX = WΛWT (1.5.4)

with Λ the diagonal matrix of eigenvalues λk, which are equal to the sum of the squares

over the dataset associated with each component k. The amount of variation explained

by a principal component is thus defined as the eigenvalue for that component divided

by the trace of the eigenvalues matrix tr(Λ).

There are in principle as many principal components as there are original variables and

they describe the same information as the original data; the total variance is the same.

However, the principal components, unlike the original variables, are not correlated

with each other3. They are also chosen so that the first principal component (PC1) ac-

counts for most of the variation in the data set, the second (PC2) accounts for the next

largest variation and so on. Hence, when there are significant correlations between the

original variables, the number of useful PCs L is much less than the number of original

variables [73]. Therefore, we only need to retain the first L principal components, pro-

duced by using only the first L loading vectors. On the one hand, we want L to be as

small as possible in order to obtain the simplest possible interpretation. On the other

3It is possible to obtain an oblique solution with correlated components, but we will only discuss

orthogonal solutions [78].
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hand, it is important not to lose information so the proportion of variation explained

by the first L principal components needs to be as close to one as possible:

λ1 + . . . + λL

tr(Λ)
∼= 1 (1.5.5)

Alternatively, a scree plot can be used to determine the number of principal compo-

nents to consider. A scree plot displays the eigenvalues in descending order versus the

number k of the component. The useful number of components L is chosen at the point

beyond which the remaining eigenvalues are all small and comparable.

1.5.2 Interpretation of the Principal Components

Interpretation of the principal components is based on finding the variables which are

most strongly correlated with each component. If the coefficients given by the loading

vectors have a high absolute value, there is a strong correlation between component

and variable. Which values are considered sufficiently large is of course a subjective

decision. Variables whose coefficients have the same sign are positively correlated and

variables whose coefficients have the opposite sign are negatively correlated, but the

sign itself is not important.

The values of the principal component scores of each experiment can now be calculated

and will be dependent on the values of the original variables. If the score value of a

sample is very high for a particular principal component, you would expect to find

high values for the variables with strong correlation. The scores are usually visualised

in scores plots. A scores plot is a scatter plot of the scores of two principal components

and may reveal that the experiment repeats can be clustered into distinct groups, which

were not readily apparent from the original data.

At this point, it is worth noting that PCA does not assume an underlying causal model

in contrast to factor analysis for example [73]. It is simply a variable reduction proce-

dure that allows the variables in a data set to be reduced to a few, interpretable linear

combinations that account for most of the variance. The primary purpose of PCA is

descriptive.

1.5.3 PCA by Eigendecomposition of the Correlation matrix

PCA by eigendecomposition of the covariance matrix will tend to give more weight

to variables with higher sample variances in the first few principal components. This

means that the PCA is sensitive to the scaling of the variables. This also means that
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PCA is somewhat arbitrary, when variables have different units of measure. Scaling

the data so as to give all variables unit variance can be done by standardising the data

or simply by carrying out the PCA by eigendecomposition of the correlation matrix

instead of the covariance matrix. For standardised data, the total variance is equal to

the number of variables: tr(Λ) = p. Principal component analysis should only be used

with non-scaled data, if all variables have the same unit and only if you wish to give

variables with higher variances more weight.

1.5.4 Applying PCA to ToF-SIMS Data

Because principal component analysis is a powerful tool for reducing the number of

observed variables in a data set into a smaller number of principal components that

account for most of the variance, PCA has been applied to a very large number of an-

alytical methods and problems in recent years. In the case of ToF-SIMS images, the

mass peaks can be regarded as variables and each pixel of the image can be consid-

ered an individual observation or sample. If we perform PCA on ToF-SIMS images, we

could reduce the hundreds of ion images generated from each mass peak to a few, in-

terpretable images of the principal component scores. However, we must first consider

the applicability of PCA for (3D) TOF-SIMS image data and review if the properties of

(3D) TOF-SIMS images comply with the assumptions underlying PCA.

Because a principal component analysis is performed on a matrix of Pearson correlation

coefficients, the data should satisfy the assumptions for this statistic [78]:

• Interval-level measurement:

All analyzed variables should be assessed on an interval or ratio level of mea-

surement [78]. The numerous mass peaks in a ToF-SIMS spectrum (approx. 300

different m/z) are of course (continuous) ratio data.

• Random sampling:

Each sample will contribute one score on each observed variable and should rep-

resent a random sample drawn from the population of interest [78]. Principal

component analysis is also a large-sample procedure so there is a question of

sampling adequacy. As a rule of thumb [79], it is suggested that there should be

10 samples for each variable and 50 should be added to that to ensure sufficient

sample size for small sets of variables4 : n≥ (10× p) + 50. ToF-SIMS images luck-

ily are ‘hyperspectral’ and each pixel equates to a full mass spectrum. A 256 ×
4This rule regarding the number of subjects per variable constitutes a lower bound, however, and

larger samples may be required under less optimal conditions.
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Table 1.2: Maximum number of m/z a mass spectrum can contain for 2D ToF-SIMS

image sizes to be analysed using PCA, given that the sample minimum for

PCA n ≥ (10 × p) + 50 with p the number of variables (m/z).

Image Size (pixels) Max. Variables

8 x 8 1

16 x 16 20

32 x 32 97

64 x 64 404

128 x 128 1633

256 x 256 6548

500 x 500 24995

256 × 150 voxel 3D ToF-SIMS image for example represent 9,830,400 individual

mass spectra (samples). In table 1.2 the maximum number of m/z a mass spec-

trum can contain to be analysed using PCA is given for different 2D ToF-SIMS

image sizes.

Given that a typical mass spectrum does not exceed more than 1633 different

m/z, it is save to assume that any 3D ToF-SIMS image with an xy-size ≥ 128 x

128 can be analysed using PCA.

• Linearity:

Obviously, the variables can’t be uncorrelated or PCA would not be useful, but

the relationship between all observed variables should also be linear [78]. Linear-

ity is PCA’s one stringent assumption5. The mass peak intensities in ToF-SIMS are

correlated with each other, of course, but they are not always perfectly linear. De-

tector saturation can result in non-linear intensity variations [72]. Therefore, care

should be taken to avoid detector saturation during data collection. Dead time

corrections (using Poisson statistics) can also be used to reduce such non-linearity

issues [81]. A more fundamental issue is the fact that the emission probability of

any secondary ion in SIMS depends on its environment. This is known as the

matrix effect and complicates quantitative analysis in static SIMS [82–84]. It is

still poorly understood and has defied any description beyond phenomenology

for many years although some progress has been made using good reference ma-

terials [85].

5Methods for performing a nonlinear form of PCA have been explored. This has been termed kernel

PCA [80].
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• Normality:

Each observed variable should be normally distributed6 and each pair of ob-

served variables should display a bivariate normal distribution, i.e. they should

form an elliptical scattergram when plotted [78]. Because ToF-SIMS counts ions,

its data will be governed by ‘counting statistics’ for which the Poisson probabil-

ity distribution is the appropriate model [72, 87]. For large numbers of events λ,

Poisson probabilities approach a normal distribution thanks to the central limit

theorem. In other words, when the ion count is high, Poisson noise or ‘shot noise’

becomes indistinguishable from Gaussian noise. This is unfortunately not often

the case, especially when considering individual pixels in ToF-SIMS images, so

shot noise is typically dominant. However, the Pearson correlation coefficient is

robust against violations of the normality assumption, when the sample size is

large [78].

When performing PCA using the covariance matrix there is no explicit assumption

about the distribution of the data as the sample covariance matrix is unbiased. There

is, however, an implicit assumption of normality, because the only zero-mean proba-

bility distribution that is fully described by the variance (‘sufficient statistics’) is the

normal distribution [88]. For multivariate normal distributions, zero covariance be-

tween components implies independence. PCA therefore works extremely well with

normally distributed data. But if the data is not normal, higher order statistics beyond

variance are not taken into account by PCA and orthogonal components are not nec-

essarily independent7. However, PCA is robust to marginal deviations from normality

[88].

In summary, PCA is applicable to (3D) ToF-SIMS image data. The variables (mass

peaks) are continuous and by regarding each pixel/voxel as an individual mass spec-

trum we readily achieve adequate sampling. The Poisson nature of ToF-SIMS data is

not an issue as long as the sample size is large. Provided there are no significant ma-

trix effects, the relationship between all observed variables should also be sufficiently

linear.

In the literature, it is quite common to find examples of PCA performed on 2D TOF-

SIMS images, but so far only Fletcher [33] performed PCA on a 3D TOF-SIMS image

(with a size of 256 × 256 × 10 = 655,360 voxels). One reason for this is the fact that the

6Variables that demonstrate marked skewness or kurtosis may be transformed to better approximate

normality [86].
7The class of algorithms that attempt to find the components that satisfy this statistical constraint are

termed independent component analysis [89].

22



CHAPTER 1: INTRODUCTION

eigendecomposition needed for PCA is computationally heavy [9].

1.6 Other Techniques

In the following subsections some of the other instrumental techniques that are used in

this thesis are discussed.

1.6.1 Cryoscopic Osmometer

A cryoscopic osmometer measures the freezing point of a solution to determine the

total osmolality (Osm/kg). The osmolarity (Osm/L) of a solution can be calculated as

follows:

Osm/L = ∑
i

φiniCi (1.6.1)

with φ the osmotic coefficient of the solute (between 0 and 1 where 1 indicates 100%

dissociation), n the number of ions into which the solute dissociates, C the molar con-

centration of the solute and i the identity of a particular solute. For example, a solution

of 1 mol/L NaCl corresponds to an osmolarity of 2 Osm/L.

Adding a solute to a solvent decreases the freezing point of the solvent. A cryoscopic

osmometer measures the freezing point of an (aqueous) solution and then uses a cali-

bration value to convert it to the total osmolality (Osm/kg). Before the total osmolality

of sample solutions can be measured, the osmometer must be calibrated, e.g. with dis-

tilled water and a calibration solution. The normal osmolality of extracellular fluid is

280-295 mOsm/kg.

1.6.2 Freeze-drying

Freeze-drying or lyophilisation is a dehydration process where the hydrated material is

brought around the triple point of water (T = 273.16 K and P = 611.73 Pa, see Figure 1.7)

by freezing it and then reducing the surrounding pressure below that of the triple point.

This allows the solid ice to sublimate directly into water vapour, avoiding the liquid-

gas transition. Freeze-drying generally causes less deformation than other dehydration

methods and chemical compounds remain unchanged. One of the major advantages

is that the samples can be stored and handled at room temperature. The TOF-SIMS

measurements can also be executed without the need for a cryostage. However, other

volatile compounds beside water are removed as well.
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Figure 1.7: Phase diagram of water as a log-lin chart with pressure from 1 Pa to 1 TPa

and temperature from 0 K to 650 K. Figure obtained from Cmglee (https:

//commons.wikimedia.org/wiki/File:Phase_diagram_of_water.svg).

Before freeze-drying, lyoprotectants can be added to protect the freeze-dried material

from forced hydrogen bonding with other molecules after the loss of water [90]. Ly-

oprotectants are typically sugars such as trehalose and sucrose.

In the freezing step, it is important to cool the material well below the temperature of

the triple point to avoid melt-back before the drying step. In the case of cells, it is also

important to use a high cooling rate to avoid the formation of large ice crystals, which

will cause damage to the cell walls [91]. This flash freezing is done by submerging the

sample in a cryogenic liquid such as liquid nitrogen or liquid ethane. Liquid nitrogen

has the advantage of being inflammable and readily available, but the Leidenfrost8

effect reduces the mean cooling rate to 0.5× 103 K−1, whereas the mean cooling rate of

liquid ethane equals 13− 15× 103 Ks−1 [92]. To avoid the formation of microscopic ice

crystals, the cooling rate should be at least 10× 103 Ks−1 [92].

Next, the pressure is lowered below that of the triple point, and enough heat is sup-

plied (either from the environment or controlled via a heating element) to the material

for the solid ice to sublime. Higher temperatures and lower pressures increase the

sublimation rate, which can be described by the Hertz-Knudsen equation [93]. Apart

from a vacuum system and (optional) heating element, a freeze-dryer will have a con-

8The Leidenfrost effect is the physical phenomenon where a liquid in contact with a surface signifi-

cantly warmer than the liquid’s boiling point, produces an insulating vapour layer.
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denser plate (at a temperature of approximately -50 to -60 ◦C) for the water vapour to

re-solidify on, preventing it from reaching the vacuum pump.

1.6.3 Coherence Scanning Interferometry

Coherence scanning interferometry is an optical method for areal surface topography

measurements that relies on visible-wavelength light (white light). It is extensively

used for surface metrology.

Interferometry is based on the wave superposition principle, which states that when

two or more propagating waves with the same frequency traverse the same space, the

resultant amplitude at each point is equal to the vector sum of the amplitudes of the

individual waves. When two waves are in phase, i.e. the phase difference between

the waves is a multiple of 2π, they will undergo constructive interference. When two

waves are out of phase, i.e. the phase difference is an odd multiple of π, they will un-

dergo destructive interference. In an interferometer using a single light source, a beam

splitter is typically used to split a wave into two parts, which travel different paths.

The two waves are then combined to be interfered. The Michelson interferometer and

the Mirau interferometer are two examples of such amplitude-division systems that

are commonly used in designs of interferometer objective lenses used for a coherence

scanning interferometer [94]. The main difference between them is the position of the

reference mirror.

A coherence scanning interferometer is constructed as follows (see Figure 1.8). Light is

emitted by a broadband white light source. A beam splitter, integrated inside the in-

terferometric objective, splits the light beam into a reference and a measurement beam.

The reference beam is reflected by the reference mirror and the measurement beam is

reflected at the sample surface (or at an internal interface in the case of transparent

layers). The two returning beams are relayed by the beam splitter to a charge coupled

device (CCD) image sensor, and form an interference pattern that is spatially sampled

by the individual CCD pixels [94]. Due to the incoherent nature of the white light,

the optical path length to the sample and the reference must be almost identical for

interference to be observed [94]. This results in an image showing interference fringes

following the equal-height lines on the sample. As the interferometric objective is actu-

ated in the vertical direction, a change of intensity due to interference will be observed

for each pixel when the path length of the two beams are the same. Therefore, the z-

value for the point on the surface imaged by this pixel corresponds to the z-value of the

interferometric objective, when the modulation of the correlogram (interference signal)

is greatest. With this information a matrix with the height values of the object surface is
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Figure 1.8: Schematic layout of an interference microscope with Mirau objective.

Figure obtained from Polytec GmbH (https://commons.wikimedia.org/

wiki/File:Interferenzmikroskop_Aufbau_sw.jpg).

produced, which is then converted into a three-dimensional map of the sample surface

with a vertical resolution down to 0.1 nm.

A quantitative description of the areal height deviation of the surface topography is

often needed to better understand the morphology of a surface. The amplitude pa-

rameters are the principal parameters in characterizing the surface topography and the

most common amplitude parameters are the average roughness (Ra), the root mean

square roughness (Rq) and the total roughness (Rt) [94, 95].

The average roughness (Ra) is the arithmetic mean of the absolute height, and is given

by:

Ra =
1
n

n

∑
i=1

(zi − z̄) (1.6.2)

with n the number of pixels and zi the ith pixel’s height value.

The root mean square roughness (Rq) is the root mean square value of the ordinate

values, and is given by:
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Rq =

√
1
n

n

∑
i=1

(zi − z̄)2 (1.6.3)

The total roughness (Rt) is defined as the sum of the maximum peak height (Rp) and

maximum valley depth (Rv) values:

Rt = Rp + Rv = max(z)−min(z) (1.6.4)

These parameters can be useful independently, but describe surface topography more

comprehensively when used in conjunction. For example, the Rq value and the Rt value

are both needed to determine whether apparent roughness is due to isolated features

or the overall surface roughness [94, 95].

1.7 Aims and Objectives

Proof-of-concept experiments have clearly demonstrated the unique capabilities of Time-

of-flight secondary ion mass spectrometry (ToF-SIMS) for biological analysis [8]. By

combining ion imaging and molecular depth profiling it is possible to render 3D chemi-

cal images, which provides a novel way to investigate biological samples such as single

cells. An investigation of the literature revealed that there still lie major challenges in

the development of data analysis tools and protocols that preserve the cell morphology

[42].

The aim of this work is to assess PCA as a data analysis tool for 3D TOF-SIMS im-

ages and to establish a cell preparation protocol for TOF-SIMS that preserves the cell

morphology.

The first is done in chapter 3, where we expand the application of PCA to large 3D im-

ages without requiring any computing resources beyond a desk top computer. We also

present a method to construct TOF-SIMS image data consisting of multiple chemistries

with spatial distributions of their own to identify the effects of different preprocessing

procedures.

In chapter 4, the effectiveness of this approach to PCA is tested on 3D ToF-SIMS images

of the more complex, biological sample consisting of primary rat cortical neurons. The

sample preparation consists of cryofixation followed by freeze-drying (cf. reference

[48]). The technique must also prove itself in answering biological questions and, as a

first application, we attempt to visualise the cellular uptake of non-native compounds,

namely fluorescent dyes, in primary rat cortical neurons. In second application, we
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attempt to differentiate between two different cell types: primary rat cortical neurons

and retinal pigment epithelium (RPE) cells. RPE cells are densely packed with melanin

granules. It might therefore be possible to differentiate RPE cells from neuronal cells

based on the presence of melanin mass fragments.

To obtain meaningful results, however, it is paramount that sample preparation does

not induce significant physical or chemical changes. In chapter 5, the first compre-

hensive comparison between large 3D ToF-SIMS images of freeze-dried and frozen-

hydrated cells is presented using PCA to facilitate the data analysis of these large data

sets.
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Experimental Details

2.1 Cell Substrate Preparation

Borosilicate glass coverslips (631-1570 - VWR) were solvent cleaned with methanol

(HPLC), acetone (LRG) and isopropanol (HPLC). All solvents were purchased from

Fisher Scientific and used as obtained. After each solvent rinse, the coverslips were

blow-dried with compressed air. Then, adhesive polyester microscope slide-grids with

1 mm line spacing (Z688533 - Sigma) were cut to fit the glass coverslips and stuck onto

the glass in order to facilitate locating the same cells with different techniques. The cov-

erslips were then placed in a vacuum oven (Thermo Scientific Vacutherm 6025) at 60 ◦C

and 50 mbar for 1 h and rinsed with isopropanol (HPLC) again before being stored in

a vacuum desiccator. Before the cell plating, the side of the coverslips without the grid

is aseptically coated with 0.01 % (w/v) poly-L-lysine (P4707 - Sigma) in water. After

40 minutes, the poly-L-lysine solution is removed by aspiration and thoroughly rinsed

with sterile tissue culture grade water (W3500 - Sigma). The coverslips were allowed

to dry for at least 12 hours before introducing cells and medium.

2.2 Cell Culture

Low-density cultures of disassociated embryonic rat cortical neurons were prepared

and cultured in serum-free media on the poly-L-lysine coated glass coverslips. All

experiments involving animals were performed according to the UK Home Office reg-

ulations in accordance with the Animals (Scientific Procedures) Act 1986 and were ap-

proved by the University of Nottingham’s animal welfare committee. Cortices were

dissected from rat embryos at day E18 of gestation and incubated in 2 ml of HEPES-

buffered Hanks’ balanced salt solution (HBSS), containing 1 % (w/v) trypsin (T1426
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- Sigma) and 0.005 % (w/v) DNAse (D5025 - Sigma) for 20 min at 37 ◦C.1 After that,

0.05% (w/v) trypsin inhibitor (T9003 - Sigma) was added to de-activate the trypsin.

The cortices were then rinsed with 1.5 mL of Neurobasal medium and gently triturated

using a fire-polished glass Pasteur pipette in the presence of 0.005 % (w/v) DNAse.

The resulting cell suspension was then centrifuged and the pellet re-suspended in

Neurobasal media containing B27 supplement (17504-044 - Invitrogen), 0.5 mM L-

glutamine (G7513 - Sigma) and 1 % (v/v) of Penicillin-Streptomycin (P0781 - Sigma).

The prepared coverslips were placed in 6-well tissue culture plates and plated with a

total of 150,000 disassociated cells per coverslip. After incubating for 30 min at 37 ◦C

to allow cell adhesion to occur, the wells were flooded to a total volume of 2 mL of

Neurobasal/B27 media. After 24 h, the media was replaced with fresh media and the

cultures were maintained at 37 ◦C in a humidified 5 % CO2 atmosphere for the next 9

days. N.B. The (primary) embryonic rat cortical neurons are non-dividing.

2.2.1 Cell Staining

For fluorescence staining, 100 µL of a 2 µM calcein-AM and 4 µM propidium iodide

solution in PBS was added to each well (04511 - Sigma) and incubated for 15 min-

utes before viewing the labelled cells under the fluorescence microscope. As soon as

possible (less than 40 minutes) after adding the working solution, labelled cells were

cryofixated and freeze-dried.

2.2.2 ARPE-19

ARPE-19 cells (the retinal pigment epithelium) was purchased from American Type

Culture Collection (ATCC, USA) and was cultured in Dulbecco’s modified Eagle’s

medium (DMEM) with F12 supplemented with penicillin (100 U/mL), streptomycin

(0.1 mg/mL), amphotericin (0.25 µg/mL), glutamin (200mM) and Fetal Bovine Serum

(FBS, 10% v/v, Sigma-Aldrich, UK).

ARPE-19 cells were then seeded on PLL-coated coverslips at 105 cells/cm2 in Neu-

robasal/B27 media.
1Trypsin is necessary to dissociate the dissected cells and obtain a single cell suspension. However, cell

surface proteins are often cleaved due to the proteolytic activity of trypsin and there is some evidence that

that this can lead to dysregulation of the cell functions [96].
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2.3 Cell Preparation

Before being flash-frozen by plunging the coverslips into 20-30 mL of liquid ethane for

20 s, the cell covered coverslips were dipped three times with a pair of tweezers in an

ammonium formate (516961 - Aldrich) solution that matched the osmolality of the cell

culture media as determined with a cryoscopic osmometer (Osmomat 030). The ethane

was liquefied by letting a stream of ethane gas condensate into a 50 mL Falcon tube held

in a bath of liquid nitrogen. The samples were stored in liquid nitrogen until the freeze-

drying process (< 1h) or the ToF-SIMS measurement in the case of a frozen-hydrated

cell measurement (< 12h). To obtain freeze-dried cells, cold samples were transferred

to the freeze-dryer (VirTis Benchtop Freeze Dryer) in falcon tubes and the chamber was

immediately pumped down to approximately 10 Pa. When the freeze-drying process

was complete, the samples were stored in a vacuum desiccator. Well-preserved cells

for sub-sequent ToF-SIMS analysis were identified with light microscopy.

2.4 Optical Microscopy

Optical microscopy images were captured on a Nikon Eclipse Ti inverted microscope

with a 20x/0.50 objective and an ORCA-Flash4.0 (C11440 - Hamamatsu) digital CMOS

camera (2048× 2048, 6.5 µm pixels). The resulting images are analysed and processed

using ImageJ.

2.5 Interferometry

In order to assess the samples’ surface topography, a 3D mapping was achieved using

a vertical scanning interferometer (Fogale Nanotech Photomap 3D; 763 x 573, 9.4 µm

pixels) with a 5x/0.12 objective. The total roughness Rt and root-mean-square rough-

ness Rq are calculated from the data using Matlab (Release 2013a, The MathWorks, Inc.,

Natick, Massachusetts, United States). More details can be found in section .

2.6 ToF-SIMS

The ToF-SIMS analyses were executed using a ION-TOF TOF-SIMS IV instrument (Muen-

ster, Germany), equipped with a Bi liquid metal ion gun (LMIG) and Ar gas cluster ion

beam (GCIB). The primary ion beam is directed at the sample under an angle of 45 ◦

in relation to the normal and has a beam spot of 1-2 µm in the high-current bunched
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mode. 25 keV Bi+3 primary ions were used in all measurements. Charging of the sam-

ple is compensated with the low-energetic electrons of the flood gun. 20 keV Ar+5000

ion clusters were used for sputtering. Ion images were recorded in the high current

bunched mode, which allows for higher mass resolution.

2.6.1 Freeze-dried cells

Unless stated otherwise, 250× 250 µm2 raster scans with 256× 256 pixels and 5 frames

per scan (1 shot per pixel) were analysed. With a target current of 0.3 pA in AC mode,

this resulted in an ion dose of 1.02× 1013 primary ions cm−2, which approximates the

static limit. The 20 keV Ar+5000 GCIB sputtered a region of 500 x 500 µm2 with a target

current of 1.2 nA for 5 s (= 6 C) between the 160 scans or 1.50 × 1022 primary ions

cm−2, unless stated otherwise. The positive ion mass spectra were calibrated with m/z

1 (H+), 15 (CH+
3 ), 29 (C2H5

+), 43 (C3H7
+) and 57 (C4H9

+). The negative ion mass

spectra were calibrated with m/z 1 (H−), 12 (C−), 13 (CH−), 16 (O−) and 17 (OH−).

2.6.2 Frozen-hydrated cells

For ToF-SIMS analysis of frozen-hydrated cells, cell samples were mounted one at a

time onto an ION-TOF cryostage immersed in liquid nitrogen (cf. reference [97]). The

sample stage was removed from the liquid nitrogen and placed onto the precooled

sample transfer arm in the entry chamber under nitrogen flow. The entry chamber was

immediately pumped down to 2× 10−5 mbar. When this pressure was reached, the

entry door to the main chamber was opened to transfer the cryostage. Analysis was

performed at -120 ◦C.

250 × 250 µm2 raster scans with 256 × 256 pixels and 5 frames per scan (1 shot per

pixel) were analysed. With a target current of 0.3 pA in AC mode, this resulted in a ion

dose of 1.02× 1013 primary ions cm−2, which approximates the static limit. 36 C of 20

keV Ar5000
+ clusters (GCIB) were used for sputtering frozen-hydrated samples over a

region of 500 x 500 µm2 between scans or 8.99× 1022 primary ions cm−2, because of

the lower sputter yield of an ice matrix [98, 99]. The positive ion mass spectra were

calibrated with m/z 1 (H+), 15 (CH+
3 ), 29 (C2H5

+), 43 (C3H7
+) and 57 (C4H9

+). The

negative ion mass spectra were calibrated with m/z 1 (H−), 12 (C−), 13 (CH−), 16 (O−)

and 17 (OH−).
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2.7 Data-processing

A peak search was performed to locate relevant mass peaks with a minimum of 15,000

counts, a minimum of 3.0 SNR and a maximum of 0.8 background (unless stated oth-

erwise) and secondary ion images were reconstructed from the raw data files with the

commercial ION-TOF software (Surfacelab 6). These values allowed all major peaks in

the spectra to be selected and were determined empirically for these specific data sets.

Images for the integrated peaks were then exported in an ASCII file format for further

data processing in Matlab (Release 2013a, The MathWorks, Inc., Natick, Massachusetts,

United States). All further data processing was performed using in-house generated

Matlab scripts. All calculations were performed on a 64-bit Windows 10 platform with

8GB of RAM, using an Intel Core i3, 1.8GHz processor.
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Principal Component Analysis of

Large ToF-SIMS Datasets1

Despite the increasing capabilities of ToF-SIMS instruments thanks to the the devel-

opment of novel ion beams [9, 10], typical ToF-SIMS measurements have a number of

fundamental limitations that make data acquisition and interpretation challenging [9].

Chief among these is the intrinsic trade-off between high mass resolution and high spa-

tial resolution as explained in subsection 1.2.5. Analysis in the static regime limits the

signal-to-noise ratio as no more than 1% of the surface can be bombarded with primary

ions in order to avoid hitting sites damaged by the analysis beam, which means only a

very small fraction of the sample is used for analysis. The low duty cycle of the pulsed

ion beam leads to long depth profiling experiments, which frequently causes samples

to be analysed well below the static limit as well, in order to save time. Additionally,

the ion images of high-mass molecular species often have a poor signal-to-noise ratio

due to the low ion count per pixel [10]. There are also complications involving the sec-

ondary ion yield, when the sample material has a curvature or a surface topography in

excess of several tens of µm [101]. With these limitations in mind, powerful data anal-

ysis is of the essence, which is why the SIMS community has embraced multivariate

analysis (MVA) methods such as PCA [69]. In section 1.5.1, the theoretical background

for PCA is discussed as wells as its applicability to ToF-SIMS data.

While it is important to select an appropriate MVA technique for ToF-SIMS data, it is

equally important to select appropriate data pretreatment. In section 3.1, a method

to construct TOF-SIMS image data consisting of multiple chemistries with spatial dis-

tributions of their own is proposed. With this method, it is possible to identify the

1This chapter has been partly published in Analyst (RSC publishing) as ‘Multivariate analysis of 3D

ToF-SIMS images: method validation and application to cultured neuronal networks’ [100]. Some pas-

sages are quoted verbatim from this source.
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effects of different preprocessing procedures such as mean-centering, standardisation

(autoscaling) and normalisation.

PCA already proved useful for 2D ToF-SIMS image analysis, but 3D ToF-SIMS data sets

are typically very large and therefore often unsuitable for MVA using the processing

power of standard desk top computers [9]. As a result, up until now the only published

application of PCA on a 3D ToF-SIMS dataset was reported by Fletcher et al. [33] on

a relatively small 3D ToF-SIMS image with a size of 256 x 256 x 10 pixels. Given the

developments in 3D ToF-SIMS imaging, there is need for a method of facilitating PCA

of large ToF-SIMS data sets as their size will only increase. In section 3.2, we demon-

strate that it is possible to expand the application of PCA to large (128 x 128 x 622) 3D

images without requiring any computing resources beyond a desk top computer by us-

ing a small training subset comprising 6.1% of the total amount of pixels to determine

the PCA loadings. We have validated our method using an established data set with

known composition and distribution that was previously published [102].

3.1 Evaluation of Data Preprocessing Effects using Mock Data

Data pretreatment is specific to the instrumental technique used. In the case of ToF-

SIMS, data preprocessing begins with the selection of peaks from the spectra and can

also include normalisation, centering, scaling and non-linear transformations [69, 83].

In subsection 3.1.1, an overview of typical TOF-SIMS image data preprocessing steps

for PCA is given.

When choosing a given preprocessing procedure, there is a tendency to choose the

procedure which gives the best looking results [72]. The problem is of course that

there is no way to determine which procedure is ‘correct’. To identify the effects of

different preprocessing procedures, it is necessary to know what the nature and spatial

distribution of the sample components are and if there is convolution in the data due to

topography and/or matrix effects. In other words, we would already need to know the

answer to understand the effect of different preprocessing steps. In subsection 3.1.2,

a method to construct TOF-SIMS image data consisting of multiple chemistries with

spatial distributions of their own is proposed. The method also allows to include matrix

effects, topography and noise.
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3.1.1 Preprocessing

There are a variety of preprocessing procedures, a number of them - specifically related

to ToF-SIMS data - will be discussed below.

The first preprocessing step of ToF-SIMS data typically involves peak selection. One

can manually select known peaks or select all peaks that fit certain criteria such as a

minimum number of counts, a minimum SNR or maximum background [83]. It is also

common to remove contaminant peaks from the data set [83]. Peak selection can signif-

icantly impact the results and the assumptions made about the data must be carefully

considered.

Normalization is typically done to remove variance due to sample charging, instru-

mental conditions, topography or matrix effects [69, 72]. It should be noted however

that normalization removes some information from the spectra.[83] and can accentuate

noise in ToF-SIMS images due to the low count rates often found within the data [72].

Therefore, care should be taken when using normalization of ToF-SIMS images[72].

In our description of PCA in subsection 1.5.1, mean-centering is necessary to ensure

that the first principal component is proportional to the maximum variance. With dif-

ferent algorithms, however, mean-centering is optional, when performing PCA. Avoid-

ing to center the data matrix results in a more general first component that mainly

reflects the mean of the full data dataset.

Scaling refers to dividing each variable by a constant. Subsection 1.5.3 already men-

tioned that PCA is sensitive to the scaling of the variables and that the correlation ma-

trix can be used as the basis for the PCA instead of the covariance matrix used for

standard (i.e. mean-centered) PCA. Because the correlation coefficients are obtained by

dividing the covariance of the variables by the product of their standard deviations,

a correlation matrix is a covariance matrix of the standardized data. Therefore, prin-

cipal component analysis using the correlation matrix is equivalent to standard (i.e.

mean-centered) principal component analysis using the standardized data. Standard-

ised means the variables are rescaled to have a mean of zero and a standard deviation

of one by subtracting the mean from each variable and then dividing the difference by

the standard deviation of the variable.

There is a consensus that data should be scaled in a manner that is consistent with the

noise structure of the data [69, 72]. As stated in 1.5.4, ToF-SIMS data often follows a

Poisson distribution and scaling methods that account for Poisson noise (such as scal-

ing by the square root of the mean) work well for ToF-SIMS data [69, 72]. On the other

hand, while the (corrected) sample standard deviation is a biased estimator for the
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population standard deviation, its bias declines with 1/N as sample size increases. If

one were to generate a random sample set of observations from a Poisson distribution

with different parameters λ that are consistent with the number of counts per pixel

observed in ToF-SIMS images and different sample sizes, it is easy to see that the dif-

ference between the sample standard deviation and the known value
√

λ becomes very

small for sample sizes consistent with the large number of pixels typically present in

2D ToF-SIMS images2.

To illustrate this decrease in bias as sample size increases, a graph of the bias in the

sample standard deviation and square root of the mean vs. λ and sample number n is

presented in Figure 3.1. Random numbers from the Poisson distribution with mean pa-

rameter λ = 1, 10 and 100 were generated with sample sizes n = 10, 100, 1000, 10000 and

100000, which are consistent with the ion counts/pixel and image sizes for (2D) ToF-

SIMS images, respectively. The sample standard deviations and square of the means

were calculated for each vector of random numbers and their bias was expressed as

the percentage of the true value
√

λ. The average bias of 1000 repeats is presented in

the graph. At n = 1000, the bias of the sample standard deviation and the square of

the mean start to converge. For even higher sample numbers, the bias becomes neg-

ligible with less than 0.7 % for n = 10,000 (≡ 100 × 100 pixels) and less than 0.2 %

for n = 100,000 (≈ 316 × 316 pixels). This illustrates that standard deviation scaling is

equivalent to Poisson scaling for large sample sizes.

It is also important to note that standardisation makes no assumptions regarding the

distribution of the data. When the assumption of a Poisson distribution is badly vio-

lated, which occurs when data is normalized [69], root mean scaling will not provide a

good estimate of the measurement uncertainty. The sample standard deviation, on the

other hand, will be consistent with the noise structure of the data, provided the sample

number is sufficiently high. One must be careful with standardisation, however, as it

has a tendency to amplify noise peaks relative to peaks which show image contrast [69]

in which case root mean scaling might provide better results.

Transformation refers to transforming the data with a function such as the logarithm

or square root [72].

2In the case of a parametric family of distributions, the standard deviation can be expressed in terms

of the parameters. The normal family is parametrized by θ = (µ,σ), whereas the Poisson family of distri-

butions is parametrized by a single number λ. The interesting thing about the Poisson distribution is that

its expectation and its variance are both equal to its parameter λ.
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Figure 3.1: Graph of the bias in the sample standard deviation and square root of the

mean vs. sample number n for different λ. Random numbers from the

Poisson distribution with mean parameter λ = 1, 10 and 100 were gener-

ated with sample sizes n = 10, 100, 1000, 10000 and 100000. The sample

standard deviations and square of the means for each were calculated and

their bias expressed as the percentage of the true value
√

λ. The average

bias of 1000 repeats is presented in the graph.

3.1.2 Creating Mock Data

To identify the effects of different preprocessing procedures, a method to construct

TOF-SIMS image data consisting of multiple chemistries with spatial distributions of

their own is proposed. The method also allows to include matrix effects, topography

and noise.

Ion intensities for compounds can be obtained from databases (see Table A.1). The

spatial distribution of an analyte can be supplied from a monochrome image with the

same size as the TOF-SIMS image one wants to form. An 8 bit grayscale image of 256×
256 pixels, for example, can be imported into Matlab as a matrix and then reshaped into

a vector P containing the pixels’ intensities3. In the case of 8 bit grayscale images, the

pixel intensity will vary between 0 and 255. This pixel intensity vector P can then be

multiplied with a vector I containing the ion intensities, creating a matrix C matching

SIMS image data:

C = P× I =



p1

p2

p3
...

p65536


(

itotal isum of rest im/z 1 · · · im/z 150

)
=



ctotal,1 csum of rest,1 cm/z 1,1 · · · cm/z 150,1

ctotal,2 csum of rest,2 cm/z 1,2 · · · cm/z 150,2

ctotal,3 csum of rest,3 cm/z 1,3 · · · cm/z 150,3
...

...
...

. . .
...

ctotal,65536 csum of rest,65536 cm/z 1,65536 · · · cm/z 150,65536


(3.1.1)

3In this subsection, the simulation of 2D images will be outlined but the formation of 3D images follows

easily.
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If the ion intensities are normalised, the total ion count itotal equals 1. The sum of rest

isum of rest is the sum of the intensities that fall outside of the mass range or mass incre-

ments. If the ion intensities are normalised, the maximum number of counts (MC) per

pixel will be≤ 255 for each chemistry, because ctotal,i ≤ 255. Normalisation also implies

that all compounds are given the same ionisability. This can of course be changed by

scalar multiplication.

Several chemistries can be added to the TOF-SIMS image through linear combination

of such matrices using the same or different images. The variance of each ion is then

given by the sum of all elements in the covariance matrix of the components.

Var

(
n

∑
i=1

aiPi

)
=

n

∑
i=1

n

∑
j=1

aiajCov(Pi, Pj) (3.1.2)

If the variables are uncorrelated, i.e. Cov(Pi, Pj) = 0 ∀(i 6= j), the variance of their sum

is equal to the sum of their variances (Bienaymé formula):

Var

(
n

∑
i=1

aiPi

)
=

n

∑
i=1

a2
i Var(Pi) (3.1.3)

This means that when the spatial distributions (images) are linearly independent, which

is roughly the case when different images are used, the coefficient of variation is the

same for all ions.

Matrix effects can for example be included by element-wise multiplication of the image

vector with a (scaled) image vector associated with a different chemistry. The spatial

distributions are then of course no longer independent.

Topography can be incorporated in the TOF-SIMS image by element-wise multiplica-

tion with a (scaled) image vector that serves as a ‘topography vector’. If the variables

are independent, the variance of their product is given by:

Var(aTP) = a2 (µ2
TVar(P) + µ2

PVar(T) + Var(T)Var(P)
)

(3.1.4)

Multiplicative noise can be added to the TOF-SIMS image I by using the equation I +

nI, where n is random noise of a particular distribution with mean 0.

3.1.3 Example: Coumarin Distribution in Acrylamide

To illustrate the effects of standardisation, normalisation and the combination of nor-

malisation and standardisation, the PCA results are calculated for a mock coumar-
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in/acrylamide sample. One could think of this as the distribution of a coumarin dye in

an acrylamide gel after gel electrophoresis.

The ion intensities for acrylamide and coumarin are easily obtained from a database

(see Table A.1). In order to create a chemical image, the image vector of a detail of

The Blind Beggar (1853) by Jozef Laurent Dyckmans is multiplied with a vector con-

taining the normalised intensities of acrylamide (see Figure 3.2) and the image vector

of The Starry Night (1889) by Vincent van Gogh is multiplied with a vector containing

the normalised intensities of coumarin (see Figure 3.3). The resulting two matrices, are

added together to form a 256 × 256 TOF-SIMS image. Noise is added to the TOF-SIMS

image by element-wise multiplicating with a matrix containing uniformly distributed

random numbers with mean 1 and variance 0.04. The variance of an ion is then given

by Var(aNP) with a the normalised intensity of that ion, N the noise vector of that ion

and P the sum of the two image vectors P1 + P2. It is important to note that, because the

mean and variance of every noise vector is set at 1 and 0.04 respectively, Var(NP) is ap-

proximately the same for all ions, which in turn means that the coefficient of variation

is roughly the same for all ions.

Successful PCA ought to separate the chemistries so that the loadings resemble the

mass spectrum and the scores images match the spatial distribution. One way of quan-

tifying this is to look at the peak signal-to-noise ratio (PSNR) between the scores images

and the images used for coumarin and acrylamide’s spatial distribution. The bench-

mark for useful PCA is given by the PSNR of the ion images of the ions with the highest

intensity that are specific for coumarin (m/z 118) and acrylamide (m/z 71). The PSNR

of m/z 71 with the reference being the 8 bit grayscale image of The Blind Beggar is

22.1515 dB, and the PSNR of m/z 118 with the reference being the 8 bit grayscale im-

age of The Starry Night is 15.1411 dB (see Figure 3.4). These values are the benchmark

for useful PCA, i.e. the scores images need to have a higher PSNR than the specific

ions.

The colour scheme of ion images (see Figure 3.4) is the same as the default hot colour

scheme used in Surfacelab, the commercial ION-TOF software. This colour scheme

has been used in this thesis, when presenting positive valued image data such as (sin-

gle) ion images and interferometry heightmaps. Race et al. [103] recommends the use

of perceptually linear colour schemes. The lightness values of the hot colour scheme

more or less monotonically increases apart from a small kink. The hot colour scheme

therefore approximately satisfies this criterion.

With no data preparation 95 % of the variance can be explained by the first five PCs.

N.B. the PCA function centers the data by default. PC1’s scores image corresponds to
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(a) The Blind Beggar (1853)

by Jozef Laurent Dyck-

mans.

(b) Normalised mass spectrum of acrylamide.

Figure 3.2: Spatial distribution and ion intensities for acrylamide.

(a) The Starry Night (1889)

by Vincent van Gogh.

(b) Normalised mass spectrum of coumarin.

Figure 3.3: Spatial distribution and ion intensities for coumarin.

(a) MC 517, TC 1.0522e+07 (b) MC 54, TC 6.3295e+05 (c) MC 87, TC 1.7310e+06

Figure 3.4: Simulated ion images. (a) Total ion image (b) m/z 71 which is specific

for acrylamide (PSNR = 22.1515 dB) and (c) m/z 118 which is specific for

coumarin (PSNR = 15.1411 dB).
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coumarin’s spatial distribution and its loadings resemble coumarin’s mass spectrum

(see Figure 3.5), whereas PC2’s scores image corresponds to acrylamide’s spatial dis-

tribution and its loadings resemble acrylamide’s mass spectrum (see Figure 3.6). The

PSNR of the scores images are higher than those of the specific ions.

With standardisation the first 35 PCs are needed to explain 95 % of the variation. Again,

PC1’s scores image corresponds to coumarin’s spatial distribution and its loadings re-

semble coumarin’s mass spectrum (see Figure 3.7), whereas PC2’s scores image cor-

responds to acrylamide’s spatial distribution and its loadings resemble acrylamide’s

mass spectrum (see Figure 3.8). The scores images have a higher PSNR than that of

the specific ions and the PCA with no data preprocessing. The loading plots, however,

shows that all variables are given the same weight regardless of how abundant they

are.

With normalisation of the data before PCA, 95 % of the variance is explained by the first

6 PCs. PC1’s loadings plot contains both mass spectra: the positive loadings resemble

coumarin’s spectrum, whereas the negative loadings resemble acrylamide spectrum

(see Figure 3.9). Correspondingly, PC1’s scores image contains both chemistries, where

a positive score is related to coumarin and a negative one to acrylamide. This makes

for a poor PSNR compared to either specific ion image.

With normalisation and standardisation of the data before PCA, 95 % of the variance

is explained by the first 34 PCs. PC1’s loadings plot again contains both mass spectra:

the positive loadings resemble acrylamide’s spectrum, whereas the negative loadings

resemble coumarin’s spectrum (see Figure 3.10). Correspondingly, PC1’s scores images

contains both chemistries, where a positive score is related to acrylamide and a negative

one to coumarin. The PSNR compared to either specific ion image is poorer and this

time the variables are given the same weight due to the standardisation.

It is thus possible to simulate chemical images and assess the use of PCA and the var-

ious preprocessing options. This simulation responds best to standardisation as far as

the scores images are concerned (highest PSNR). Without data preprocessing variables

with the highest sample variances tend to be emphasized, whereas standarisation gives

all variables the same weight in the loading plots. Normalisation tends to contain both

chemistries in the first PC, leading to a merged scores image with poor PSNR com-

pared to the specific ion images. This can, however, be circumvented by only using the

positive or negative coefficients to form scores images.

The PCA scores images this section have been presented in the same hot colour scheme

as the ion images. However, it is apparent there is a drawback using this colour scheme

as it is not immediately evident which regions of the image have a positive value and
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(a) Scores image. (b) Loadings plot.

Figure 3.5: No data preparation: PC1 corresponds to coumarin. The scores image has

a PSNR equal to 18.8553.

(a) Scores image. (b) Loadings plot.

Figure 3.6: No data preparation: PC2 corresponds to acrylamide. The scores image

has a PSNR equal to 25.9409.

(a) Scores image. (b) Loadings plot.

Figure 3.7: Standardisation: PC1 corresponds to coumarin. The scores image has a

PSNR equal to 26.7833.

(a) Scores image. (b) Loadings plot.

Figure 3.8: Standardisation: PC2 corresponds to acrylamide. The scores image has a

PSNR equal to 34.9276.
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(a) Scores image. (b) Loadings plot.

Figure 3.9: Normalisation: PC1 corresponds to both coumarin and acrylamide. The

scores image has a PSNR of 13.9185 for coumarin and 13.4932 for acry-

lamide.

(a) Scores image. (b) Loadings plot.

Figure 3.10: Normalisation and standardisation: PC1 corresponds to both coumarin

and acrylamide. The scores image has a PSNR of 11.4606 for coumarin

and 10.6283 for acrylamide.

which have a negative value. This improves when using the Matlab’s default jet colour

scheme, which has been used in sections 4.3 and 4.4. However, it becomes a colour-

matching exercise to determine which values are positive and which are negative. In

the case of PCA scores images, Race et al. [103] recommends the use of a diverging

colour scheme centred around zero such as the red and blue scheme centred around

black used in sections 3.2 and 4.2.

In summary, the method described here allows the effect of preprocessing steps to be

evaluated on completely known data sets. It can be particularly useful, if one has prior

knowledge of the composition or distribution of a real sample. These mock data sets

can also be used during the development of new preprocessing methods to test their

performance.

3.2 Training Set Method for Large ToF-SIMS Data-sets

While PCA already proved useful for 2D ToF-SIMS image analysis, 3D ToF-SIMS data

sets are typically very large and unsuitable for MVA using the processing power of

standard desk top computers [9]. As a result, up until now the only published applica-
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tion of PCA on a 3D ToF-SIMS dataset was reported by Fletcher et al. [33] on a relatively

small 3D ToF-SIMS image with a size of 256 x 256 x 10 pixels. Recently, Cumpson et

al. [104] developed faster algorithms that allowed PCA to be performed on large 2D

data sets. In this section, we demonstrate that it is possible to expand the application of

PCA to large (128 x 128 x 622) 3D images under 30 minutes without requiring any com-

puting resources beyond a desk top computer [100]. We used a small training subset

comprising 6.1% of the total amount of pixels, which were randomly selected from the

full 3D image, to determine the PCA loadings (i.e. linear combinations of the original

mass peaks accounting for amounts of variance). These loadings were then applied

to the full data set. We have validated our method using an established data set with

known composition and distribution that was previously published [102].

3.2.1 Development of Training Set Method

A simplified schematic of our data processing method for large 3D ToF-SIMS images

is shown in Figure 3.11. After a peak search to identify the relevant mass peaks, the

respective secondary ion images are imported into Matlab (Release 2013a, The Math-

Works, Inc., Natick, Massachusetts, United States) and reshaped into (scan resolved)

matrices, where the rows represent pixels (or samples) and the columns represent mass

peaks (or variables).

Normalisation with the total ion count per pixel or the sum of the selected peaks is an

option at this point in case one would like to minimise variations in the secondary ion

signal due to differences in topography, sample charging or instrumental conditions

such as variations in primary ion current or detector efficiency [83, 105]. All data sets

presented here are normalised prior to analysis.

Because the eigendecomposition involved is computationally intensive, a smaller train-

ing subset of randomly selected pixels is created to calculate the principal component

coefficients (i.e. the loadings). Depending on whether the covariance or the correlation

matrix of the training set is decomposed, the data is either mean-centered or standard-

ised (auto-scaled) respectively. Because the correlation coefficients are obtained by di-

viding the covariance of the variables by the product of their standard deviations, the

correlation matrix is equal to the covariance matrix of the standardized data. When

mean-centering, PCA will give more weight to variables that have higher variances,

which tend to be the variables with higher means. If the variables are standardised,

all variables will be weighted equally regardless of how abundant they are. It is im-

portant to note that standardisation has a tendency to amplify noise peaks relative to

peaks which show image contrast [69] and is therefore not generally recommended
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over scaling methods that are consistent with the structure of the noise (see also 3.1.1).

Root mean scaling, derived from the assumption that the image noise is Poisson in

nature, often yields better results. However, this is not the case when the Poisson as-

sumption is badly violated, which occurs when the data is normalized [69]. While the

(corrected) sample standard deviation is a biased estimator for the population standard

deviation, its bias drops off as 1/N as sample size increases (see also 3.1.1). Given the

size of the training sets used and the fact that the sample standard deviation makes no

assumptions regarding the distribution, scaling using the sample standard deviation

was chosen. The training set data presented here has always been standardised.

The full data matrix then needs to be standardised and multiplied with the loadings in

order to calculate the scores for every pixel in the image. This can be done efficiently

one scan at a time (block processing).

The Matlab code is presented in appendix A.

3.2.2 Method Validation using a Model 3D ToF-SIMS Data-set

To validate the method, we are using a previously published [102] model 3D ToF-SIMS

data set of a spin-cast multilayer sample comprising ten well-defined, alternating lay-

ers of 50 nm polystyrene (PS) and 200 nm polyvinylpyrrolidone (PVP) on a silicon

wafer substrate. Mass calibration, peak search and image reconstruction are performed

with the commercial ION-TOF software (SurfaceLab 6) and all further data processing

is performed with Matlab. The test image consists of 128 x 128 x 622 pixels with 258

relevant mass peaks each (≈ 2.6 × 109 data points). First, the data is normalised to

the total number of ion counts per pixel to account for the decrease of the ion yield in

the initial transient region and fluctuations in the secondary ion signals during depth

profiling. In the work of Bailey et al. [102], the specific layers of PS, PVP and the silicon

wafer are identified using the C7H+
7 (m/z 91), C6H10NO+ (m/z 112) and Si+ (m/z 28)

ions respectively. For the z-scaling of the data the silicon wafer interface first needs to

be established. A Gaussian function (R2
adj = 0.92) is fitted to the gradient of the aver-

age Si+ intensity of each XY plane in the z-direction (see Figure 3.12 A) to identify the

position of the interface. The position of the centre of the peak is considered to be the

interface and was set to z = 0 nm. The sputter yields for PVP and PS under the used

experimental conditions were previously determined [102] and equal (0.654 ± 0.006)

nm/s and (0.828 ± 0.01) nm/s respectively. The PS-PVP interfaces are similarly de-

termined by Gaussian fits and their sputter times are converted into layer thicknesses.

Ion images for m/z 91 and m/z 112 are presented in Figures 3.13 A and B to show

the PS and PVP layers, respectively. Their SNR is calculated as the ratio between the
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Figure 3.11: Simplified schematic of the data processing method used. (a) The n dif-

ferent 3D (normalised) ion images for every m/z can be presented as a

data matrix X with n columns (one for every m/z) and p rows (one for

every xyz pixel). (b) In order to calculate the loadings matrix W of the L

(� n) principal components, a smaller training data set S with t (� p)

randomly selected pixels is created; the training set S (t x n) is a subset

of the data matrix X (p x n). (c) Eigendecomposition of the correlation

matrix of S, provides the loadings matrix W with L columns (one for ev-

ery PC) and n rows (one for every m/z). (d) Because the training set S

was standardised for the calculation of the loadings W, the data matrix X

has to be standardised as well using the mean and standard deviation for

each column n of the training set S generating the z-scores matrix Z (p x

n). (e) The scores matrix T with L columns and p rows is calculated as the

matrix product of Z (p x n) and W (n x L). (f) The scores matrix T can now

be presented in the form of L (� n) interpretable 3D scores images.

mean and standard deviation (µsig/σsig) of the average ion intensity of each plane in

the z-direction and equals 0.99 for the ion image for m/z 91 and 0.79 for the ion image

for m/z 112 (see Figures 3.14 A and B). The low SNR is a consequence of the low ion-

isability of organic samples; the maximum count per pixel equals only 1. The range of

intensities seen in the ion images is solely due to the pixel to pixel variation in the total

ion signal. The depth resolution ∆z for the various interfaces is calculated by fitting

Gaussian functions to the gradient of the average intensity of the specific ions at m/z

91 and 112 in the z-direction (see Figures 3.15 A and B) and using the definition that

the depth resolution ∆z = 2σ where σ is the standard deviation of the Gaussian [106].

The average ∆z = (4.2 ± 0.7) nm (n = 9).

PCA is performed by regarding the mass peaks in the spectra as variables and each

pixel as an individual sample. As the eigendecomposition involved is computationally
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Figure 3.12: Z-calibration for the PS-PVP multilayer sample using the Si wafer inter-

face. A) Gaussian curve fit (ae−(
x−b

c )
2

with a = 0.03921, b = 1956 and c =

10.13) to the gradient of the average Si+ intensity in the z-direction. This

is used to scale the ion images. N.B. only the data points in the vicinity

of the interface are shown. B) Fitting a Gaussian curve (ae−(
x−b

c )
2

with a

= 0.7744, b = 1957 and c = 10.48) to the gradient of the average PC2 scores

in the z-direction. This is used to scale the scores images. N.B. only the

data points in the vicinity of the interface are shown.

intensive, the PCA is executed on a training set created by randomly selecting a thou-

sand pixels from each z-plane (see 3.2.1); the training set thus consists of 622,000 pixels

(i.e. mass spectra) or 6.1 % of the total number of pixels. Prior to PCA we tested if the

normalised variables follow a Poisson distribution. The variance-to-mean ratio (VMR)

was calculated and a chi-square goodness of fit test for a Poisson distribution was per-

formed for each variable. If the variables are truly Poisson distributed, the VMR of

the variables ought to equal 1; they average to 0.07 ± 0.09 (n = 258) for our data. The

goodness of fit test yielded p-values < 0.0001. Both tests indicate that our data does not

follow a Poisson distribution. Therefore, the loadings are generated for standardised

variables (mass peaks) in the training set. Processing times and memory usage can be

found in Table 3.1.
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Figure 3.13: PCA of the PS-PVP multilayer sample. A) Normalised and scaled ion im-

age of the specific ion for PS (m/z = 91). B) Normalised and scaled ion

image of the specific ion for PVP (m/z = 112). C) PC1 explains 38.3% of

the variance: 3D scores image (left) and loadings plot (right). The scores

clearly visualise the alternating PS-PVP layers. The positive loadings of

PC1 correspond to the mass spectrum of PS and the specific ion at m/z

91 is the one with the highest weight. The negative loadings of PC1 cor-

respond to the mass spectrum of PVP and the specific ion at m/z 112 is

the one with the highest weight. The silicon substrate has a score of ap-

proximately zero, i.e. the loadings do not apply.

In order to assess whether this random pixel selection is representative of the entire

data set, the PCA is repeated ten times to determine if the amount of variance explained

and loadings remain the same (see Table 3.2). The coefficient of variation (CV) of the

different principal components was found to be smaller than 0.19 % (n = 10) indicating

that the pixel selection is indeed representative. It should be noted that the sign of the

loadings varies during these repeats, however, this does not alter their interpretation.

A direct comparison of the results of the training set approach with those of a PCA

performed on the full data set is not possible due to memory limitations for a typical

PC setup, but can be performed on a high performance system as kindly provided by
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Figure 3.14: Calculation of the SNR for the PS-PVP multilayer sample ion and scores

images. The SNR is calculated as µsig/σsig to allow direct comparison

between ion images and scores images. A) The SNR for m/z = 91.05 (PS)

equals 0.99. B) The SNR for m/z = 112.08 (PVP) equals 0.79. C) The SNR

for the positive scores (PS) of PC1 equals 2.4 and the SNR for the negative

scores (PVP) of PC1 equals 1.35.
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Figure 3.15: Calculation of the depth resolutions ∆z for the PS-PVP interfaces in the

ion and scores images. The depth resolutions ∆z = 2σ are calculated by

fitting Gaussian curves (aie−((xi−bi)/(ci))
2
) to allow direct comparison be-

tween ion images and scores images. A) Fitting Gaussian curves to the

gradient of the average m/z = 91.05 (PS) intensity in the z-direction. B)

Fitting Gaussian curves to the gradient of the average m/z = 112.08 (PVP)

intensity in the z-direction. C) Fitting Gaussian curves to the gradient of

the average scores for PC1 in the z-direction. The parameters of the Gaus-

sian functions can be found in Table A.2.
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Table 3.1: Processing times and memory usage of the PCA performed on the valida-

tion data set. All calculations were performed on a 64-bit Windows 10 plat-

form with 8GB of RAM, using an Intel Core i3, 1.8GHz processor.

Process Time (s) Input (Mb) Output (Mb) Peak memory (Kb)

Training set formation 44.3 1386.3 1283.8 1255792

Eigendecomposition 8.5 1283.9 0.012432 1256176

Scores formation 1667.4 2670.0 489.58 1256300

Dr. Alex Henderson4. The calculation of the eigendecomposition was performed on

a 64-bit Windows 7 Ultimate platform in 296.7 seconds and required 33 GB of mem-

ory. Now, the amount of variance explained (%) for the first six PCs of the full PCA

can be compared to those obtained in subsampling PCA and the values appear to be

very similar. A two-sided one-sample t-test was performed for the null hypothesis that

the amount of variance explained in subsampling PCA equals that of the full PCA (P

values given in Table 3.2). No significant difference is observed for PC3 and PC5. A

significant different with 95 % confidence was observed for PC1 and PC4, a significant

difference with 99 % confidence was observed for PC2 and a significant difference with

99.99 % confidence was observed for PC6. Overall, it appears the training set method

assigns slightly less variance to the first two PCs and slightly more variance to the sub-

sequent PCs. The more important question is of course if the loadings are similar to

those obtained from full PCA. A visual comparison of the loadings obtained from full

PCA and those obtained from a PCA with the training set method is given in Figure

A.1. Based on the loadings, it can be surmised that only PC1 and PC2 contain relevant

information regarding our sample.

In order to get a quantitative measure of the similarity between the loadings, their co-

sine similarity cos θ is calculated. Cosine similarity (also called the spectral contrast

angle) is a measure of similarity between two vectors, loadings in our case, and is often

used as a mass spectral similarity measure [107]. The value of cos θ ranges from -1 to

1 with 0 indicating orthogonality (decorrelation), 1 meaning that the two spectra are

exactly the same and -1 meaning they are exactly opposite. If two loadings are pre-

sented as vectors of the coefficients, A and B, their cosine similarity, cos θ, is calculated

by dividing their dot product by the product of their magnitudes:

4Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University

of Manchester, United Kingdom.
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Table 3.2: Comparison between the results of a full PCA with the training set method.

The amount of variance explained (%) is given for the first six PCs as well as

the standard deviations for 10 repeats in the case of the training set method.

Also included is the P value of a two-sided one-sample t-test testing the

null hypothesis that the amount of variance explained in subsampling PCA

equals that of the full PCA. The cosine similarity cos θ with the loadings of

the full PCA is calculated for all 10 repeats of the subsampling PCA.

PC Variance Explained (%) P value cos θ (n = 10)

Full PCA Subsampling PCA (n = 10)

1 38.33 38.29 ± 0.04 0.0162∗ 0.99986 ± 0.00001

2 14.55 14.52 ± 0.03 0.0042∗∗ 0.9987 ± 0.0002

3 12.22 12.23 ± 0.02 0.4898 0.9918 ± 0.0006

4 11.82 11.84 ± 0.02 0.0215∗ 0.982 ± 0.003

5 11.65 11.66 ± 0.02 0.0544 0.969 ± 0.006

6 11.44 11.47 ± 0.01 0.0001∗∗∗∗ 0.94 ± 0.04

cos θ =
A · B
‖A‖ ‖B‖ =

n
∑

i=1
AiBi√

n
∑

i=1
A2

i

√
n
∑

i=1
B2

i

(3.2.1)

Ai and Bi are the scalar components (coefficients) of vectors (loadings) A and B with

n different mass peaks. The cosine similarity cos θ with the loadings of the full PCA

is calculated for the loadings of all 10 repeats of the subsampling PCA (see Table 3.2).

It should be noted that due to occasional sign inversion of the loadings during the re-

peats, the averages of the absolute values are presented. It can be observed that all PCs

show a great degree of similarity (> 0.9). The first three PCs are near identical, whereas

increasing dissimilarity can be observed for subsequent PCs. This also coincides with

increasing coefficients of variation (CVs).

The first two principal components elucidate the three different chemistries of the sam-

ple (53.8 % variance explained), where the positive loadings of PC1 (see Figure 2C)

correspond to the mass spectrum of PS, the negative loadings of PC1 correspond to the

mass spectrum of PVP and the positive loadings of PC2 with ions as Si+, SiH+, SiO+,

SiOH+, Si2O+ and Si2OH+ correspond to the mass spectrum of the silicon wafer. Next,

the loadings are applied to the whole data set, which was first standardised with the

mean and standard deviation of the training set, to generate scores for every pixel in

the 3D image. The scores images were then z-scaled (with the silicon wafer interface
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set at z = 0 nm). The silicon interface is established by fitting a Gaussian (R2
adj = 0.93)

to the gradient of the average scores for PC2 in the z-direction (cf. the z-calibration

with Si+, as shown in Figure 3.12 B. The PS-PVP interfaces are similarly determined by

Gaussian fits and their sputter times are converted into layer thicknesses. The scaled

scores image for PC1 is presented in Figure 3.13 C. The SNR for the PS (2.4) and PVP

signal (1.35) is calculated as µsig/σsig of the positive and negative scores of PC1, respec-

tively (see Figure 3.14 C). The SNR has clearly improved, specifically the SNR is 2.4

times higher for PS and 1.7 times higher for PVP. Similarly, the depth resolution for

the various interfaces is calculated by fitting a Gaussian to the gradient of the average

scores of PC1 in the z-direction (see Figure 3.15 C) and are not significantly different

from those calculated with the ion images as shown by a pairwise t-test (P = 0.31). The

average ∆z = (4.3 ± 0.7) nm (n = 9).

3.3 Conclusions

A method to construct TOF-SIMS image data consisting of multiple chemistries with

spatial distributions of their own is presented. This method makes it is possible to

identify the effects of different preprocessing procedures such as mean-centering, stan-

dardisation (autoscaling) and normalisation.

Next, we have demonstrated that it is possible to expand the application of PCA to

large 3D images without requiring any computing resources beyond a desk top com-

puter. The method reported here presents the first time PCA has been performed on

a large scale (128 x 128 x 622 pixels) 3D ToF-SIMS image. This was made possible by

first calculating the PCA loadings using a smaller subset of randomly selected pixels

as a training set that could then be applied to the full data set to generate the scores

images. The method has been validated using a well-defined 3D ToF-SIMS data set of

a PS-PVP multilayer system. The results clearly show that PCA separates the different

chemistries in its loadings and provides information on spatial chemical distribution

via the scores. Furthermore, the scores images have a 1.7-2.4 times better signal-to-

noise ratio than can be obtained with single ions. The depth resolution of the scores

images does not differ from that of the single ion images. Given the developments

in 3D ToF-SIMS imaging, this method of facilitating PCA of large ToF-SIMS data ad-

dresses an important need as the size of the data will only continue to increase.
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CHAPTER 4

3D ToF-SIMS Imaging of Neuronal

Networks: Freeze-Dried Cell

Preparation and Data Analysis1

The development of novel ion beams [9, 10, 45, 108] has provided Time-of-Flight Sec-

ondary Ion Mass Spectrometry (ToF-SIMS) with the basis to be established as a routine

tool for label-free 3D chemical imaging of single cells. Label-free 3D chemical imaging

is especially attractive for drug studies or toxicological risk assessment [12] and the re-

search on 3D ToF-SIMS imaging of single cells has progressed to the point where the

intracellular uptake and location of non-native compounds [39, 40] and nanoparticles

[41] can be visualised.

Having developed and validated an approach to PCA of 3D ToF-SIMS images using a

well-defined test data set in chapter 3, it is time to test its effectiveness on a more com-

plex, biological sample consisting of primary rat cortical neurons that were cultured on

poly-L-lysine coated glass slides. First, we have to develop a cell preparation protocol

for 3D ToF-SIMS measurements, however. The proposed sample preparation consists

of cryofixation followed by freeze-drying (cf. reference [48]).

As an application, we attempt to visualise the cellular uptake of non-native compounds,

namely fluorescent dyes, in primary rat cortical neurons. In another application, we at-

tempt to differentiate between two different cell types: primary rat cortical neurons

and retinal pigment epithelium (RPE) cells.

1This chapter has been partly published in Analyst (RSC publishing) as ‘Multivariate analysis of 3D

ToF-SIMS images: method validation and application to cultured neuronal networks’ [100]. Some pas-

sages are quoted verbatim from this source.

55



CHAPTER 4: 3D TOF-SIMS IMAGING OF NEURONS: FREEZE-DRIED CELL

PREPARATION AND DATA ANALYSIS

4.1 Primary Rat Cortical Neurons

4.1.1 Cell Morphology and Size

When designing a ToF-SIMS measurement protocol for cells, it is necessary to first es-

tablish the size and morphology of the cells to make sure they can be resolved with

ToF-SIMS imaging. For this reason, phase contrast microscopy images – obtained by

Dr. Christopher Towlson – of primary rat cortical neurons cultured for 2, 5, 6, 8 and 14

days in vitro (DIV) were analysed (see Figure 4.1). All five images were recorded with

10×magnification.

After creating a thresholded binary image (see Figure 4.1), it is possible to measure

the area, perimeter, circularity, Feret diameter, and minimum Feret diameter of the

cells using particle analysis algorithms. Circularity is defined by equation 4.1.1. A

circularity value of 1 indicates a perfect circle. As the value approaches 0, it indicates

an increasingly elongated polygon. The Feret diameter is the longest distance between

any two points along the selection boundary, i.e. maximum caliper. The minimum

Feret diameter is the minimum caliper diameter.

circularity = 4π

(
area

perimeter2

)
(4.1.1)

Histograms of the area were made using a bin width of 10 µm2 and a 0-1000 µm2 range.

The first few bins have a high frequency (> 100) attributed to non-cellular debris (see

Figure 4.2). Between 80 and 400 µm2, the histograms approach a normal distribution

representing counts of single cells. The normality of the 80-400 µm2 distribution was

checked using normal quantile plots yielding coefficients of determination between

0.88 and 0.98 for the various images (see Figure 4.2). The higher areas are assigned to

aggregated cells or larger debris.

After a visual check to determine whether or not the 80-400 µm2 distribution truly

corresponds to the cell dimensions by overlaying images of the particle outlines and

the original images, the means and standard deviations of the different parameters are

calculated. The fact that the standard deviations of the individual parameters overlap

for all the different images, indicates that there is no significant difference between the

different images. Therefore, all particles are pooled together to generate the overall

means given in Table 4.1.

This image processing is rather laborious. Therefore, only a limited number of images

has been processed. The large amount of user input also induces bias and some cells are
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Table 4.1: Means and standard deviations of the different parameters with all particles

pooled together (n = 851).

Parameter Mean ± StDev

Area (195 ± 69) µm2

Perimeter (75 ± 32) µm

Circularity 0.53 ± 0.22

Feret (29 ± 13) µm

MinFeret (13.2 ± 3.5) µm

left out by only considering a certain range of results. However, this small investigation

does provide a sense of the average cell size and morphology, which are needed to

check if they can be resolved with ToF-SIMS imaging.

It is clear the cells are large enough to be investigated using ToF-SIMS. As stated in

section 1.2, a 1-2 µm beam spot can be achieved in the high-current bunched mode of

the Bi LMIG. A cell area of 195± 69 µm2 (n = 851) should translate to 49 to 195 pixels in

a ToF-SIMS image obtained in the high-current bunched mode. Sub-micrometer beam

spots can be achieved in a non-bunched modes like burst-alignment (300-500 nm) or

the extreme cross-over mode (≈ 150 nm), but at the cost of mass resolution. Because of

their inherent complexity and the close chemical similarities of most of the compounds

of interest (proteins, lipids and carbohydrates), biological samples such as cells require

a high mass resolution.

4.1.2 Cell Substrate Preparation

The next thing to be determined is the substrate on which to grow cells. Silicon wafers

are sometimes used as the substrate material, because they are atomically flat [109]. In

our case, transparent wafers made of glass slides are better suited as they allow the use

of optical techniques.

It is also very important the cells are able to adhere to the surface. Cell adhesion is

preceded by protein adsorption, and cell-surface interaction is actually an interaction

between cells and surface bound proteins, e.g. fibronectin, or other biomolecules [110].

After a surface has been placed in a biological milieu containing cells, water molecules

are the first to reach the surface. The properties of this surface water shell, which in

turn depend on the surface properties, influence the proteins that arrive later and can

determine their orientation, if they denature or not, surface coverage, etc. Finally, the
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Figure 4.1: Microscopy (left) and thresholded binary image (right) of primary rat cor-

tical neurons 5 days in vitro (DIV). The microscopy image was taken by

Dr. Christopher Towlson.

Figure 4.2: Histogram of the analysed particles’ areas (i.e. cells and debris) for the

5 DIV image (left) and the normal quantile plot of the 80-400 µm2 area

distribution (right).
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cells arrive at a protein-covered surface with properties that are ultimately determined

by the surface properties [110]. It is therefore necessary to functionalise the glass sur-

face in order to make it cytophilic. The glass surface is turned cytophilic by depositing

a poly(L-lysine) (PLL) polymer layer on top of it.

To make correlative imaging between optical microscopy, white light interferometry

and ToF-SIMS possible, a marker system is needed in order to be able to image the

same cells with all three techniques. Therefore, adhesive polyester microscope slide-

grids with 1 mm line spacing are stuck onto the back of the glass coverslips.

Full experimental details can be found in section 2.1.

4.1.3 Cell Culture

Low-density cultures of disassociated embryonic rat cortical neurons were prepared

and cultured in serum-free media on the poly-L-lysine coated glass coverslips. The

prepared coverslips were placed in 6-well tissue culture plates and plated with a to-

tal of 150,000 disassociated cells per coverslip. After incubating for 30 min at 37 ◦C

to allow cell adhesion to occur, the wells were flooded to a total volume of 2 mL of

Neurobasal/B27 media. After 24 h, the media was replaced with fresh media and the

cultures were maintained at 37 ◦C in a humidified 5 % CO2 atmosphere for the next 9

days.

Full experimental details can be found in section 2.2.
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4.2 3D ToF-SIMS Images of Freeze-dried Neuronal Networks

4.2.1 Cell Preparation for ToF-SIMS

Before being flash-frozen by plunging the coverslips into 20-30 mL of liquid ethane

for 20 s, the cell covered coverslips were dipped three times with a pair of tweezers

in an ammonium formate solution that matched the measured osmolality of the cell

culture media in order to prevent cytolysis. The osmolality of the cell culture media

was determined with a cryoscopic osmometer and equalled 237.3 ± 4.7 mOsm/L (n =

6), which equates to 119 mM ammonium formate solution.

During the first experimental run, the temperature and pressure of the freeze-dryer

chamber was monitored as it is important that the sample stays frozen until the pres-

sure drops below that of triple point (273.16 K, 611.73 Pa). Figure 4.3 shows the evo-

lution of the temperature and pressure of the freeze-dryer chamber over time. It can

be seen that the pressure of the freeze dryer gets below 611.73 Pa after 30 minutes be-

fore the temperature rises over 0 ◦C. Without samples the system was able to reach 5.3

Pa after 20 min. The pressure in the system continues to drop and remains relatively

constant at c. 10 Pa after t > 3000 min, indicating drying is complete. The temperature

in the sample chamber drops to a minimum of -3 ◦C after the transfer of the falcon

tubes, and reaches an equilibrium (c. 12 ◦C) after 125 minutes. The temperature of the

condensor plate was constant within 0.5 ◦C: (-59.29 ± 0.49) ◦C (n = 20).

In order to assess the success of freeze-drying process, optical microscopy images were

taken before and after freeze-drying. The microscopy grid attached to the bottom of the

glass coverslips allowed the same regions on the coverslips to be imaged. The before

and after images are imported into Matlab and aligned using an in-house Matlab code

presented in section B.2. The optical microscopy images presented in Figures 4.4 and

B.1 consist of nine individual 20x images that were stitched together using ImageJ’s

stitching plugin [111]. In the images prior to freeze-drying, several neurons can be

seen as well as their axons and dendrites. After cryofixation and freeze-drying, opti-

cal microscopy shows that the morphology of the cells is largely preserved: the same

neurons can be seen as well as their axons and dendrites. However, not all neurons are

preserved and there are visual signs of damage. This raises questions about how rep-

resentative the samples are of the native cellular state after freeze-drying and whether

this also induces chemical changes such as chemical compound diffusion.

In order to assess the surface topography of cells after the freeze-drying process, in-

terferometry images were recorded after freeze-drying. The raw data is imported into

Matlab and processed using Matlab code presented in section B.1. The microscopy
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Figure 4.3: Temperature and pressure in the freeze-dryer chamber during the freeze-

drying of cellular samples.

grid attached to the bottom of the glass coverslips allowed the same regions on the

coverslips to be imaged. The interferometry images were aligned with the microscopy

images using Matlab code presented in section B.2. The interferometry images of the

freeze-dried cells (see Figures 4.4 and B.1) show a good correlation with their corre-

sponding optical microscopy images. It can be seen that the dry cellular material has a

topography in the order of several µm. Based on 16 individual interferometry images

the average Rt,av and Rq were determined to be respectively 6.7 ± 0.7 µm and 0.57 ±
0.08 µm. The Rt,av of an interferometry image can be considered a measure of the max-

imum cell height. It is known that there are complications involving the secondary ion

yield in ToF-SIMS, when the sample material has a curvature or a surface topography

in excess of several tens of µm [101]. Based on the interferometry data, the cells ap-

pear to show curvature and surface topography to the extent, where it could affect the

secondary ion yield.
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(a)

(b)

(c)

Figure 4.4: Correlative imaging of neuronal cell networks before and after freeze-

drying. a) Differential interference contrast (DIC) microscopy image (20x)

before freeze-drying (7 days in vitro). b) Bright-field microscopy image

(20x) after freeze-drying. Several neurons (grey ovals) can be seen as well

as their axons and dendrites. The black edges on the optical microscopy

images originate from the grid fixed to the back of the microscope slide,

which were used to locate cells during interferometry and TOF-SIMS mea-

surements. c) White light interferometry heightmap (Rt,av = 6.36 µm, Rq =

0.54 µm) of the freeze-dried neuronal network.
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4.2.2 Data Analysis using PCA

We performed a 3D ToF-SIMS imaging experiment on the samples described above

(experimental details can be found in chapter 2). After mass calibration, a peak search

and image reconstruction, the raw TOF-SIMS data is again imported into Matlab for

data processing and analysis. The image has a size of 256× 256× 160 pixels and the

peak search extracted 173 mass peaks (≈ 1.8× 109 data points). The data is normalised

to the total number of ion counts per pixel particularly to account for variations in the

secondary ion signal due to the topography of the cell sample as well as the decrease of

the ion yield in the initial transient region and fluctuations in the secondary ion signals

during depth profiling.

The variance-to-mean ratio (VMR) of the variables averages 0.023 ± 0.02 (n = 169) and

all chi-square goodness of fit tests yielded p-values < 0.0001 indicating again that the

variables do not follow a Poisson distribution. Prior to PCA the Na+ and K+ ion inten-

sities, because of their dominance, are removed as contaminant peaks (in accordance

with other studies [83]) that likely originated from the cell culture medium [48]. PCA

is performed using the training set method described in section 3.2.1. The training set

is formed by randomly selecting 4000 pixels per z-plane; the training set thus consists

of 640,000 pixels (i.e. mass spectra) or 6.1 % of the total amount of pixels (i.e. the same

relative amount of pixels as for the multilayer sample in section 3.2). The first two prin-

cipal components explain 64.3% of the variance. The positive loadings of PC1 (48.8%

variance explained, see Figure B.2) contain organic and higher-mass ions, whereas the

negative loadings contain inorganic ions specific for the borosilicate glass substrate

such as B+ (m/z 11), Al+ (m/z 27) and Si+ (m/z 28).

Biological samples such as the cells imaged here have a surface topography, which

means that the 3D image created from the stacked 2D images is distorted in the vertical

direction. Because PC1 differentiates between the borosilicate glass substrate and cel-

lular material, its indication of the substrate interface (where the scores equal zero) can

be utilised to apply the necessary z-offset correction to account for the surface topog-

raphy of the cells. Note that this assumes a constant sputter yield through the cellular

material. The Matlab code is presented in section B.3.

This computational transformation is then calibrated against interferometry data that

shows a Rt,av of 2.0 µm (see Figure 4.5 B), giving each pixel a height of 12.6 nm in the z-

direction. This approach to account for topography has previously been demonstrated

by Fletcher et al. [33] and is very similar to the method employed by Breitenstein et

al. [34] and Robinson et al. [44] who vertically shift data points using a single ion as a
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substrate marker. However, using a linear combination of ion intensities (i.e. the PCA

loadings) instead of a single ion has the advantage of increased SNR (see Figure B.3),

especially given the fact that each XY line has to be z-corrected individually, leading to

an improved z-correction (see Figure 4.5).

The positive loadings of PC2 (see Figure 4.6) contain a strong correlation with the ion

at m/z 184, which is specific for phosphocholine-containing phospholipids and a com-

mon marker for cell membranes in ToF-SIMS analysis [33, 40]. Its fragment ions at m/z

166, 104, 86 and 58 are also present in the loadings [33]. The negative loadings of PC2

contain peaks that are commonly associated with amino acids [112] such as m/z 84

(Lys), 100 (Arg), 110 (His), 120 (Phe) and 130 (Trp).

Based on the loadings, it appears that PC2 distinguishes between the cell membrane

and the cytoplasm. This supposition is strengthened by the scores plots in Figure 4.7

that show positive scores at the top of the cells (2nd analysis layer) and negative scores

inside the cell material (15th analysis layer). The presence of the ion at m/z 184 only

persists in the top two analysis layers, indicating that, with the given depth resolution,

they originate from a 13-26 nm layer on the surface of the cell, which corresponds, with

an order of magnitude, to the 8-10 nm thickness of a neuronal cell membrane [113].

In contrast, ion fragments associated with amino acids can be detected over all sub-

sequent analysis layers in areas coinciding with the location of cells, indicating that

they originate from the cytoplasm. The negative scores of the background (areas not

occupied by cells) in the scores plot of analysis layer 2 are attributed to the extracellu-

lar matrix, which is supported by the disappearance of these fragments from the sur-

rounding material in deeper analysis layers that subsequently display a score of zero,

because neither lipids nor amino acids are present in the glass substrate. Notably, if

single ions such as m/z 184 or m/z 130 are used instead of the principal components,

the cell features are not clearly visible due to the low SNR.

The results clearly show that PCA separates the different chemistries in its loadings and

provides information on spatial chemical distribution via the scores. In addition, the

PCA scores can be used to correct z-offsets due to the cells’ topography. Importantly,

this approach now makes 3D SIMS image processing of biological samples with multi-

variate analysis accessible on a routine basis and considerably facilitates data analysis.

4.2.3 Determining the sputter yield of freeze-dried cells

Biological samples such as the cells imaged here have a surface topography, which

means that the 3D image created from the stacked 2D images is distorted in the vertical
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(a) Optical image obtained from the inter-

ferometer.

(b) White light interferometry heightmap

(Rt,av = 1.99 µm, Rq = 0.28 µm).

(c) Heightmap based on the ion intensity

of Si+ (Rt,av = 0.72 µm, Rq = 0.14 µm).

(d) Heightmap based on the scores for PC1

(Rt,av = 1.17 µm, Rq = 0.25 µm).

Figure 4.5: Illustration of the improved z-offset correction of the ToF-SIMS image of

freeze-dried neurons when using a principal component instead of a single

ion. For the heightmap based on the ion intensity of Si+ (c), the interface is

defined as Inormalised = 0.05 and taken as a reference for the substrate plane.

Scaling is performed using a maximum height of 2.0 µm based on the in-

terferometry data (b) and assuming a constant sputter yield. In the case of

the heightmap based on the scores for PC1 (d), the interface is defined as

scores = 0 and taken as a reference for the substrate plane. This heightmap

has more features in common with the optical image (a).
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(a) 3D scores image.

(b) Loadings plot.

Figure 4.6: PCA of the ToF-SIMS data of the freeze-dried neuronal cell network: PC2

explains 15.5% of the variance. The positive loadings of PC2 correspond to

fragments associated with lipids and the negative loadings correspond to

fragments associated with amino acids.
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direction. As described above, the PCA scores can be used to correct z-offsets due to

the cells’ topography [100]. If a component differentiates the borosilicate glass substrate

from cellular material, its indication of the substrate interface can be utilised to apply

the necessary z-offset correction to account for the surface topography of the cells. This

computational transformation is then calibrated against interferometry data, assuming

a constant sputter yield through the cellular material. It is possible to do the latter more

accurately by fitting the scores based z-offset image to the interferometry heightmap.

First, the interferometry images are transformed to obtain an aligned (i.e. rotated and

scaled) image with the same size as the scores based z-offset image using feature match-

ing. Next, the pixels of the scores based z-offset image, which values represent the

number of scans needed to reach the substrate interface, are fitted to the interferometry

image’s height values using a linear function where the slope represents the sputter

yield (nm/scan) and the intercept represents the layer thickness (nm) of the lowest

point in the interferometry heightmap (see Figure 4.8). Using this method the sputter

yield for an individual image can be calculated accurately, resulting in a good cor-

respondence between the interferometry heightmap and the scores based heightmap

(see Figure 4.8). The Matlab code is presented in Section B.4.

Based on three separate 3D ToF-SIMS images of freeze-dried cell samples with corre-

sponding interferometry measurements, the average 20 keV Ar+5000 sputter yield for

dry cellular material equals (100 ± 50) nm3/ion. The large variation in sputter yield

between different samples might be due to instrumental variation, biological variabil-

ity, or perhaps varying degrees of cell collapse during the freeze-drying process [114]

resulting in different material densities. Because similar overall sputter times were ob-

served for the different freeze-dried cell samples in combination with varying sample

heights, the latter explanation seems likely.

Importantly, knowing the average 20 keV Ar+5000 sputter yield for dry cellular material

makes complementary interferometry images redundant. It is now possible to cali-

brate z-offset corrections using only this known sputter yield. Although it is of course

recommended to obtain complementary interferometry images for the best accuracy.
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Figure 4.7: PC2 scores plots of analysis layers 2 and 15 of the ToF-SIMS image of the

freeze-dried neuronal cell network. The PC2 scores plot for analysis layer 2

(left) shows red pixels with positive scores (lipids) in areas where cells are

present and blue pixels with negative scores (amino acids) in areas without

cells. The PC2 scores plot for analysis layer 15 (right) shows blue pixels

with negative scores (amino acids) in areas where cells are present and

black pixels with scores equal to zero (substrate) in areas without cells.
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Figure 4.8: Scaling of z-corrected ToF-SIMS images using interferometry. A) Bright-

field microscopy image (10x) of freeze-dried neuronal cells investigated

with ToF-SIMS. Several neurons can be seen as well as their axons and

dendrites. B) Diagram illustrating the linear relation between the scores

based z-offset image and the interferometry heightmap with y the height

in nm, x the number of scans, a the sputter yield in nm/scan and b the

layer thickness at the lowest point in the heightmap in nm. C) White light

interferometry heightmap (Rt = 18 µm, Rq = 0.79 µm) of the part of the

neuronal network investigated with ToF-SIMS. D) A heightmap based on

the scores of principal component 1, which differentiates the borosilicate

glass substrate from cellular material, by fitting the z-offset image to the

interferometry heightmap (a = 7.0± 2 · 10−6 nm/scan and b = 206.2± 1 ·
10−4 nm). The result is a heightmap very similar to that obtained with the

interferometer so that the peak signal-to-noise ratio (PSNR) equals 62 dB.
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4.3 Application I : Visualising the Cellular Uptake of Fluores-

cent Dyes

Having shown that the PCA method developed in Chapter 3 is applicable to cell sam-

ples, we now attempt to visualise the cellular uptake of non-native compounds, namely

fluorescent dyes, in primary rat cortical neurons. The dyes of interest are calcein-AM

(acetoxymethyl ester of calcein) and propidium iodide (PI).

Calcein-AM, the non-fluorescent acetomethoxy derivate of calcein, can be transported

through the cellular membrane into live cells. After transport through the cell mem-

brane, intracellular esterases remove the acetomethoxy groups (see Figure 4.9). The

hydrolysis of the acetomethoxy groups result in a larger conjugated ring system and a

strong green fluorescence. The hydrolysis of the esters on the amine side groups also

increase hydrophilicity and enable chelatation with intracellular Ca2+, Mg2+, Zn2+ and

other ions, causing the dye to stay inside the cell as it becomes more hydrophilic. As

dead cells lack active esterases, Calcein-AM only stains viable cells.

Propidium iodide (PI) is a fluorescent molecule and an intercalating agent that is used

as a DNA stain (see Figure 4.9). PI is membrane impermeant and generally excluded

from viable cells. If a cell’s nucleus and other DNA-containing organelles are stained,

it indicates cytolysis or membrane leakage. PI is thus commonly used as a counterstain

for calcein-AM in so-called viability assays.

First, we need to collect reference mass spectra of the pure dyes to establish potential

diagnostic ions. Next, primary rat cortical neurons will be prepared as described above,

but will be stained with calcein AM and propidium iodide prior to their cryofixation.

The goal is to be able to observe diagnostic ions for calcein and propidium iodide in

the ToF-SIMS 3D data sets of stained primary rat cortical neurons.

4.3.1 Reference Spectra for Calcein AM and Propidium Iodide

The molecular propidium cation can be observed in the positive mass spectrum of pro-

pidium iodide at m/z 207 (C27H34N4
2+) (see Figure B.4). The mass fragments at m/z

454, 385, 362, 256, 250, 164, 87, 86 and 72 in the positive ion mass spectrum of propidium

iodide can be explained as logical mass fragments from the intact propidium cation

initiated by one of three possible inductive cleavages of the C-N bonds (see Figure

4.10). One inductive cleavage leads to the formation of [C22H21N3.I]+ (m/z 454) and

[C22H21N3.Cl]+ (m/z 362). The anion exchange from I− to Cl− could have occurred in

situ or in the selvedge. The C16H16N3
+ ion at m/z 250 is then formed from m/z 454
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(a) Calcein AM is converted to calcein.

(b) Molecular structure of propidium iodide.

Figure 4.9: The dyes used for cell staining.
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Figure 4.10: Fragmentation scheme of the ions at m/z 454, 385, 362, 256, 164, 87, 86

and 72 in the positive ion mass spectrum of propidium iodide.

Figure 4.11: Fragmentation scheme of the ion at m/z 250 in the positive ion mass spec-

trum of propidium iodide.

Figure 4.12: Fragmentation scheme of the ions at m/z 286 and 210 in the positive ion

mass spectrum of propidium iodide.

and 362 by deprotonation followed by H rearrangement (see Figure 4.11). The neutral
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Figure 4.13: Molecular structure assignment for the ion at m/z 289 in the positive ion

mass spectrum of propidium iodide.

fragment formed by this first possible inductive cleavage is ionised to C5H13N+· (m/z

87), which then fragments to C5H12N+ (m/z 86) and C4H10N+ (m/z 72) by α-cleavage

of the first C-H and C-C bond respectively (see Figure 4.10). The second possible in-

ductive cleavage leads to the formation of [C8H19N.I]+ (m/z 256) and [C8H19N.Cl]+

(m/z 164). The third possible inductive cleavage leads to the formation of C25H29N4
+

at m/z 385. The ions at m/z 286 and 210 can be explained as logical mass fragments

from the intact propidium ion by consecutive H rearrangements (see Figure 4.12). The

molecular structure assigned to m/z 298 is shown in Figure 4.13. The C20H17N3
+ ion

at m/z 298 could be formed by α-cleavage followed by a H· loss, but this would violate

the even-electron rule.

The main peaks observed in the negative mass spectrum of propidium iodide (see Sup-

plementary Figure B.5) are inorganic (cluster) ions such as Cl− (m/z 35), I− (m/z 127),

HCNI− (m/z 154), NaCNI− (m/z 176), I2
− (m/z 254), HI2

− (m/z 255), NaI2
− (m/z

277), KI2
− (m/z 293), I3

− (m/z 381), NaI3
− (m/z 404) and Na2I3

− (m/z 427). The neg-

ative mass spectrum of propidium iodide also exhibits the presence of hydrocarbon

peaks such as C− (m/z 12), CH− (m/z 13), C2
− (m/z 24), C2H− (m/z 25), C3

− (m/z

36), C3H− (m/z 37), C4
− (m/z 48) and C4H− (m/z 49), C5

− (m/z 60) and C5H− (m/z

60), C6
− (m/z 72) and C6H− (m/z 72) and nitrogen containing ions such as CN− (m/z

26), CNO− (m/z 42), C3N− (m/z 50) and C6N− (m/z 74). Some high mass organic

peaks are observed (such as m/z 282) but with very low intensity.

Calcein-AM has a low ionisation yield and not many m/z with high intensity are ob-

served in the positive mass spectrum. The molecular ion can be observed in the pos-

itive mass spectrum of calcein-AM at m/z 994 (C46H46N2O23
+·), but with very low

intensity. Many mass fragments are present in the low mass range (see Supplementary

Figure B.6). The positive spectrum of calcein-AM shows very few high mass organic

peaks apart from m/z 357, 358 and 359 for which the molecular structures assigned are
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Figure 4.14: Molecular structure assignment for the ions at m/z 357, 358 and 359 in

the positive ion mass spectrum of calcein-AM.

shown in Figure 4.14.

Calcein-AM again has a low ionisation yield and not many fragments with high inten-

sity are observed in the negative mass spectrum. The molecular ion can be observed

in the negative mass spectrum of calcein-AM at m/z 994 (C46H46N2O23
−·). Many frag-

ments are present in the low mass range (see Supplementary Figure B.7). The negative

spectrum of calcein-AM shows very few high mass organic peaks apart from m/z 255.

In conclusion, the reference spectra show that the propidium cation has several high

mass fragments in its positive spectrum that could be used as diagnostic ions. The neg-

ative mass spectrum for propidium iodide is dominated by I− containing anorganic

cluster ions, which are not indicative of the propidium cation itself, which is the fluo-

rescent, intercalating agent. The positive spectrum of calcein-AM shows very few high

mass fragments and the only ions that could be used as diagnostic ions are the molecu-

lar ion at m/z 994 and m/z 357. Similarly, the negative spectrum of calcein-AM shows

very few high mass fragments and the only ion that could be used as a diagnostic ion is

the molecular ion at m/z 994. However, these ions can not be formed by calcein, which

is the actual fluorophore to be observed in cells. If calcein displays the same fragmen-

tation behaviour as its acetomethoxy derivative, the molecular ion (C30H26N2O13
+·) at

m/z 622 is the one to look out for.

4.3.2 Cell Preparation and Fluoresence Microscopy

Low-density cultures of disassociated embryonic rat cortical neurons were prepared

and cultured in serum-free media on the poly-L-lysine coated glass coverslips. The

prepared coverslips were placed in 6-well tissue culture plates and plated with a to-

tal of 150,000 disassociated cells per coverslip. After incubating for 30 min at 37 ◦C
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to allow cell adhesion to occur, the wells were flooded to a total volume of 2 mL of

Neurobasal/B27 media. After 24 h, the media was replaced with fresh media and the

cultures were maintained at 37 ◦C in a humidified 5 % CO2 atmosphere for the next 9

days. Full experimental details can be found in section 2.2.

For fluorescence staining, 100 µL of a 2 µM calcein-AM and 4 µM propidium iodide

solution in PBS was added to each well and incubated for 15 minutes before viewing

the labelled cells under the fluorescence microscope. As soon as possible (less than 40

minutes) after adding the working solution, labelled cells were cryofixated and freeze-

dried.

Before being flash-frozen, the cell covered coverslips were dipped three times with a

pair of tweezers in an ammonium formate solution that matched the measured osmo-

lality of the cell culture media. The osmolality of the cell culture media was determined

with a cryoscopic osmometer and equalled 242.2± 5.2 mOsm/L (n = 6), which equates

to 121 mM ammonium formate solution.

In order to assess the success of the freeze-drying process and the surface topography of

the cells, optical microscopy and interferometry images were taken after freeze-drying.

Calcein and propidium iodide remained fluorogenic after the freeze-drying process.

Calcein’s fluorescence microscopy image after freeze-drying indicates that the cells

were viable prior to freeze-drying (see Figures 4.16 and 4.18). Importantly, these im-

ages allow us to match ToF-SIMS ion images with the known spatial distribution of

both dyes.

4.3.3 3D ToF-SIMS Imaging

After mass calibration, a peak search and image reconstruction, the raw TOF-SIMS data

is imported into Matlab for data processing and analysis. The 3D ToF-SIMS image in

the positive polarity has a size of 256 × 256 × 410 pixels and the peak search extracted

153 mass peaks (≈ 4.1× 109 data points). The data is normalised to the total number of

ion counts per pixel particularly to account for variations in the secondary ion signal

due to the topography of the cell sample as well as the decrease of the ion yield in

the initial transient region and fluctuations in the secondary ion signals during depth

profiling. Because of the dominance of the Na+ and K+ ion intensities, these ions are

removed as contaminant peaks (in accordance with other studies [83]). The training set

is formed by randomly selecting 1500 pixels per z-plane; the training set thus consists

of 615.000 pixels (i.e. mass spectra) or 2.29% of the total amount of pixels.

The first three principal components explain 59.48% of the variance. The positive load-
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Figure 4.15: PCA of the freeze-dried neuronal cells stained with calcein-AM and pro-

pidium iodide and investigated with ToF-SIMS in the positive polarity

after removing Na+ and K+ peaks from the mass spectrum; 3D scores

images (left) and loadings plots (right). A) PC1 explains 30.02% of the

variance. The positive loadings correspond to fragments associated with

bio-organic material and the negative loadings correspond to fragments

associated with the borosilicate glass. B) PC2 explains 15.63% of the vari-

ance. The positive loadings of PC2 are a measure of intracellular calcium

and magnesium. C) PC3 explains 13.84% of the variance. The positive

loadings correspond to fragments associated with phospholipids and the

negative loadings appear to be associated with amino acids and nucleic

material.
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ings of PC1 (30.02% variance explained, see Figure 4.15 A) contain organic and higher-

mass ions that can be attributed to bio-organic material such as phosphatidylcholine

and amino acids. A common marker for phosphocholine-containing phospholipids is

the ion at m/z 184 and its fragment ions at m/z 166, 104 and 86 [33, 40]. Peaks that

are commonly associated with amino acids are for example m/z 84 (Lys), 120 (Phe)

and 130 (Trp) [33]. The negative loadings of PC1 contain inorganic ions specific for the

borosilicate glass substrate such as B+ (m/z 11), Al+ (m/z 27), Si+ (m/z 28) and Zn+

(m/z 64).

Because PC1 differentiates between the borosilicate glass substrate and cellular mate-

rial, its indication of the substrate interface (where the scores equal zero) is utilised

to apply the necessary z-offset correction to account for the surface topography of the

cells. Note that this assumes a constant sputter yield through the cellular material. This

computational transformation is then calibrated against interferometry data. Figure B.8

C shows the heightmap based on the scores of principal component 1.

PC2 explains 15.63% of the variance (see Figure 4.15 B). The positive loadings corre-

spond to Ca2+ (m/z 20), Mg+ (m/z 24), Ca+ (m/z 40) and CaOH+ (m/z 57) as well as

other inorganic salt clusters such as K2
+ (m/z 78), K2CN+ (m/z 104), K2Cl+ (m/z 113),

K2
37Cl+ (m/z 115), NaKPO3

+ (m/z 141), K2PO3
+(m/z 157) and NaP2O6

+ (m/z 181).

The positive loadings also contain some high mass organic ions such as m/z 100, 118,

120, 130, 136 and 152. C5H6N5
+ (m/z 136, A) and C5H6N5O+ (m/z 152, G) are DNA

peaks [115] whereas C4H10N3
+ (m/z 100, Arg), C8H10N+ (m/z 120, Phe), C9H8N+

(m/z 130, Trp) and C8H10NO+ (m/z 136, Tyr) are amino acid peaks [112]. The negative

loadings of PC2 resemble those of PC1 with high coefficients for inorganic ions specific

for the borosilicate glass substrate such as B+ (m/z 11), Al+ (m/z 27), Si+ (m/z 28)

and Zn+ (m/z 64). The negative loadings also contain high mass organic ions, notably

phospholipid peaks such as C5H12N+ (m/z 86), C5H14NO+ (m/z 104), C5H13NPO3
+

(m/z 166) and C5H15NPO4
+ (m/z 184). The positive loadings of PC2 are therefore a

measure of intracellular calcium and magnesium. Perhaps unsurprising, the summed

2D image of the Ca2+ (m/z 20), Mg+ (m/z 24), Ca+ (m/z 40) and CaOH+ (m/z 57)

ions without the substrate (z > 0 µm) resembles the calcein fluorescence microscopy

image (PSNR = 41.47, see Figure 4.17). Calcein after all chelates intracellular Ca2+ and

Mg2+. And perhaps surprising, not a single ion that can be attributed to calcein or

cannot be explained as a cellular mass peak is detected in the positive loadings of PC2.

PC3 explains 13.84% of the variance (see Figure 4.15 C). The positive loadings corre-

spond to phospholipid peaks such as C5H12N+ (m/z 86), C5H13NPO3
+ (m/z 166) and

C5H15NPO4
+ (m/z 184). The negative loadings correspond to amino acid peaks such
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(a) Bright-field. (b) Calcein. (c) Propidium.

Figure 4.16: Live/dead fluorescence staining of neuronal cells investigated with ToF-

SIMS in the positive polarity. A) Bright-field microscopy image (10×) of

freeze-dried neuronal cells stained with calcein-AM and propidium io-

dide. Several neurons can be seen as well as their axons and dendrites.

B) Fluorescence microscopy image (10×, λex = 490 nm, λem = 515 nm) for

calcein indicating viable cells. C) Fluorescence microscopy image (10×,

λex = 535 nm, λem = 617 nm) for propidium iodide indicating dead cells.

Figure 4.17: The summed 2D image of the Ca2+ (m/z 20), Mg+ (m/z 24), Ca+ (m/z

40) and CaOH+ (m/z 57) ions without the substrate (z > 0 µm) for neu-

ronal cells investigated with ToF-SIMS in the positive polarity.
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as C4H10N3
+ (m/z 100, Arg), C5H8N3

+ (m/z 110 Arg/His), C8H10N+ (m/z 120, Phe),

C9H8N+ (m/z 130, Trp) and C8H10NO+ (m/z 136, Tyr) as well as DNA peaks such as

C5H7N2O2
+ (m/z 127, T) C5H6N5

+ (m/z 136, A) and C5H6N5O+ (m/z 152, G). PC3

thus distinguishes lipids from amino acids and nucleic material. Again, not a single

ion that can be attributed to calcein or propidium is detected in the loadings.

The 3D ToF-SIMS image in the negative polarity has a size of 256 × 256 × 425 pixels

and the peak search extracted 288 mass peaks (≈ 8.0 × 109 data points). The data

is normalised to the total number of ion counts per pixel particularly to account for

variations in the secondary ion signal due to the topography of the cell sample as well

as the decrease of the ion yield in the initial transient region and fluctuations in the

secondary ion signals during depth profiling. The training set is formed by randomly

selecting 1000 pixels per z-plane; the training set thus consists of 425.000 pixels (i.e.

mass spectra) or 1.53% of the total amount of pixels.

The first two principal components explain 61.65% of the variance. The positive load-

ings of PC1 (49.99% variance explained, see Figure 4.19 A) contain ions that can be at-

tributed to bio-organic material [40] such as CN− (m/z 26), PO−2 (m/z 63), PO−3 (m/z

79). The negative loadings of PC1 correspond to inorganic mass peaks that can easily be

attributed to the silica (SiO2) and alumina (Al2O3) [116, 117] present in the borosilicate

glass such as O− (m/z 16), AlO− (m/z 43), SiO−2 (m/z 60), SiO−3 (m/z 76), Al2O4H−

(m/z 119), Si2O−5 (m/z 136) and Al3O6H−2 (m/z 179).

Because PC1 differentiates between the borosilicate glass substrate and cellular mate-

rial, its indication of the substrate interface (where the scores equal zero) is utilised

to apply the necessary z-offset correction to account for the surface topography of the

cells. Note that this assumes a constant sputter yield through the cellular material. This

computational transformation is then calibrated against interferometry data. Figure B.9

C shows the heightmap based on the scores of principal component 1.

PC2 explains 11.66% of the variance (see Figure 4.19 B). The positive loadings of PC2

are somewhat similar to the negative loadings of PC1 and correspond to OH- (m/z

17), CN- (m/z 26), Cl- (m/z 35), SiO3H− (m/z 77), Si2O5H− (m/z 137), Si3O7H− (m/z

197). The negative loadings of PC2 contain DNA peaks such as C4N3
− (m/z 90, A),

C4H3N2O2
− (m/z 111,T) C5H4N−5 (m/z 134, A) [115] and a fatty acid peak (16:0) at m/z

255 (C16H31O2
−) [118] but also inorganic ions such as NaCl−2 (m/z 93). Overall, PC2

appears to make a distinction between the substrate or more general organic material

versus nuclear material.

Unfortunately, no ions in the negative spectrum can be attributed to calcein or propid-

ium iodide in a conclusive manner.
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(a) Bright-field. (b) Calcein. (c) Propidium.

Figure 4.18: Live/dead fluorescence staining of neuronal cells investigated with ToF-

SIMS in the negative polarity. A) Bright-field microscopy image (10×) of

freeze-dried neuronal cells stained with calcein-AM and propidium io-

dide. Several neurons can be seen as well as their axons and dendrites.

B) Fluorescence microscopy image (10×, λex = 490 nm, λem = 515 nm) for

calcein indicating viable cells. C) Fluorescence microscopy image (10×,

λex = 535 nm, λem = 617 nm) for propidium iodide indicating dead cells..

Figure 4.19: PCA of the freeze-dried neuronal cells stained with calcein-AM and pro-

pidium iodide and investigated with ToF-SIMS in the negative polarity;

3D scores images (left) and loadings plots (right). A) PC1 explains 49.99%

of the variance. The positive loadings correspond to fragments associated

with bio-organic material and the negative loadings correspond to frag-

ments associated with the borosilicate glass. B) PC2 explains 11.66% of

the variance. PC2 appears to make a distinction between the substrate or

more general organic material versus nuclear material.
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4.4 Application II : Differentiation between Neurons and RPE

cells

In a second application, we attempt to differentiate between two different cell types:

primary rat cortical neurons and retinal pigment epithelium (RPE) cells.

Retinal pigment epithelium (RPE) is a monolayer of highly polarized cells which forms

the outer layer of the retina, they are responsible for the transport of nutrients from the

vascular choroid, the formation of the blood-retinal barrier and absorption of scattered

light. They are also in charge of secreting some factors with trophic effect. In order to

absorb scattered light on the retina and thus diminish the photo-oxidative stress as well

as improve the quality of the optical system, the cells are densely packed with melanin

granules. Eumelanin and pheomelanin have distinct fragment ions in a mass range

between m/z = 150 and m/z= 800 [119]. It might therefore be possible to differentiate

RPE cells from neuronal cells based on the presence of melanin mass fragments.

4.4.1 ARPE-19

The sample consists of ARPE-19, which is an in-vitro model of native RPE. ARPE-19

cells are well pigmented and are arranged in a regular hexagonal mosaic.

It was first determined whether or not primary rat cortical neurons and ARPE-19 cells

could survive in coculture. The ARPE-19 cells are prepared as described in the ap-

pendix (see subsection 2.2.2) and then seeded on the poly-L-lysine coated glass slides

used for neuronal cells in the Neurobasal/B27 media used for neuronal cells without

and in the presence of primary rat cortical neurons. Figure 4.20 B shows that ARPE-

19 is able to survive in Neurobasal medium/B27 supplement and figure 4.20 C shows

that ARPE-19 is able to survive in co-culture with primary rat cortical neurons as well.

ARPE-19 are 30-40 µm in size and have a morphology distinct from that of neurons.

ARPE-19 samples in Neurobasal medium/B27 supplement were then flash-frozen and

freeze-dried in an identical manner as the neurons.

4.4.2 3D ToF-SIMS Imaging of RPE Cells

Figure 4.21 A shows a bright-field microscopy images of the freeze-dried RPE cells

investigated with ToF-SIMS in the positive polarity. An out of focus bright-field mi-

croscopy image (see Figure 4.21 B) indicates that the cells are elevated and therefore

intact.
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Figure 4.20: Morphology of primary rat cortical neurons and ARPE-19 cells. A)

Bright-field microscopy image (20x) of primary rat cortical neurons. B)

Bright-field microscopy image (20x) of ARPE-19 cells. C) Bright-field mi-

croscopy image (20x) of a coculture of primary rat cortical neurons and

ARPE-19 cells. The scale bars are 100 µm in size.

After mass calibration, a peak search and image reconstruction, the raw TOF-SIMS data

is imported into Matlab for data processing and analysis. The image has a size of 256

× 256 × 170 pixels and the peak search extracted 163 mass peaks (≈ 1.8 × 109 data

points). The data is normalised to the total number of ion counts per pixel particularly

to account for variations in the secondary ion signal due to the topography of the cell

sample as well as the decrease of the ion yield in the initial transient region and fluctua-

tions in the secondary ion signals during depth profiling. Because of the dominance of

the Na+ and K+ ion intensities, they are removed as contaminant peaks (in accordance

with other studies [83]). The training set is formed by randomly selecting 1000 pixels

per z-plane; the training set thus consists of 170.000 pixels (i.e. mass spectra) or 1.53%

of the total amount of pixels.

The first three principal components explain 73.42% of the variance. The positive load-

ings of PC1 (51.24% variance explained, see Figure 4.22 A) contain organic and higher-

mass ions that can be attributed to bio-organic material such as phosphatidylcholine

and amino acids. A common marker for phosphocholine-containing phospholipids is

the ion at m/z 184 and its fragment ions at m/z 166, 104, 86 and 58 [33, 40]. Peaks that

are commonly associated with amino acids are for example m/z 84 (Lys), 100 (Arg),

110 (His), 120 (Phe) and 130 (Trp) [33]. The negative loadings of PC1 contain inorganic

ions specific for the borosilicate glass substrate such as B+ (m/z 11), Al+ (m/z 27), Si+

(m/z 28), SiH+ (m/z 29), CaH+ (m/z 41), SiO+ (m/z 44), SiOH+ (m/z 45) and Zn+

(m/z 64).

Biological samples such as the cells imaged here have a surface topography, which

means that the 3D image created from the stacked 2D images is distorted in the vertical

direction. Because PC1 differentiates between the borosilicate glass substrate and cel-
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Figure 4.21: Freeze-dried RPE cells investigated with ToF-SIMS in the positive polar-

ity. A) Bright-field microscopy image (10x) of freeze-dried RPE cells in-

vestigated with ToF-SIMS. B) Out of focus bright-field microscopy image

(10x) of freeze-dried RPE cells investigated with ToF-SIMS, indicating el-

evated and intact cells. C) A heightmap based on the scores of principal

component 1, which differentiates the borosilicate glass substrate from

cellular material. The z-offset was calibrated to the previously calculated

average 20 keV Ar+5000 sputter yield for dry cellular material, which equals

(100 ± 50) nm3/ion.

lular material, its indication of the substrate interface (where the scores equal zero) can

be utilised to apply the necessary z-offset correction to account for the surface topog-

raphy of the cells. Note that this assumes a constant sputter yield through the cellular

material. This computational transformation is then calibrated using the previously

calculated average 20 keV Ar+5000 sputter yield for dry cellular material, which equals

(100 ± 50) nm3/ion (based on three separate 3D ToF-SIMS images of freeze-dried cell

samples with corresponding interferometry measurements, see section 4.2.3). Know-

ing the average sputter yield in nm3/ion and that the Ar+5000 beam was rastered over a

250× 250 µm2 area with a target current of 1.2 nA for 5 s between analysis scans, we

can calculate the sputter yield in nm/scan:

(100 nm3/ion)× (1.2 nA/e)
(250× 250)µm2 × 5s

scan
= (60± 30) nm/scan (4.4.1)

and convert the number of scans to a height in nm. This gives each voxel a height of

60 nm in the z-direction. Figure 4.21 C shows the heightmap based on the scores of

principal component 1.

PC2 explains 13.11% of the variance (see Figure 4.22 B). The positive loadings corre-

spond to cluster ions generated from salts (see Table 4.2) and the negative loadings are

associated with fragments associated with bio-organic material. The positive loadings

of PC2 are therefore a measure of the presence of salts in the cell bodies.

PC3 explains 9.07% of the variance. The positive loadings correspond to fragments as-
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Figure 4.22: PCA of the freeze-dried RPE cells investigated with ToF-SIMS in the pos-

itive polarity after removing Na+ and K+ peaks from the mass spectrum;

3D scores images (left) and loadings plots (right). A) PC1 explains 51.24%

of the variance. The positive loadings correspond to fragments associ-

ated with bio-organic material and the negative loadings correspond to

fragments associated with the borosilicate glass. B) PC2 explains 13.11%

of the variance. The positive loadings correspond to cluster ions gener-

ated from salts and the negative loadings are associated with fragments

associated with bio-organic material. C) PC3 explains 9.07% of the vari-

ance. The positive loadings correspond to fragments associated with bio-

organic material and the negative loadings appear to be associated with

material surrounding the cells.
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Table 4.2: Positive ions indicative of cluster ions generated from salts.

Nominal Mass Molecular Formula Exact Mass

46 Na+2 45.979540

63 Na2OH+ 62.982280

72 Na2CN+ 71.982614

78 K+
2 77.927416

79 NaKOH+ 78.956218

81 Na2Cl+ 80.948393

83 Na2
37Cl+ 82.945443

88 NaKCN+ 87.956551

95 K2OH+ 94.930156

97 NaKCl+ 96.922330

99 NaK37Cl+ 98.91938

103 Na3(OH)+2 102.974790

104 K2CN+ 103.930489

113 K2Cl+ 112.896268

115 K2
37Cl+ 114.893318

119 Na2K(OH)+2 118.948728

137 Na2K(CN)+2 136.949395

139 Na3Cl+2 138.907016

141 Na3
37ClCl+ 140.904066

NaKPO+
3 140.911986

155 Na2KCl+2 154.880954

157 Na2K37ClCl+ 156.878004

K2PO+
3 156.885924

171 NaK2Cl+2 170.854891

173 NaK2
37ClCl+ 172.851941

181 NaP2O+
6 180.906786

197 KP2O+
6 196.880724
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Figure 4.23: PC3 scores plots of the freeze-dried RPE cells investigated with ToF-SIMS

in the positive polarity after removing Na+ and K+ peaks from the mass

spectrum. PC3 explains 9.07% of the variance. A) The PC3 scores plot for

analysis layer 2 shows red pixels with positive scores in areas where cells

are present and blue pixels with negative scores in areas without cells. B)

The PC3 scores plot for analysis layer 15 shows red pixels with positive

scores in areas where cells are present and pixels with scores equal to zero

(substrate) in areas without cells. C) The PC3 scores plot for the cross

section at z = 0.060 µm shows pixels with positive scores in areas where

cells are present and blue pixels with negative scores in areas without

cells.

sociated with bio-organic material and the negative loadings appear to be associated

with material surrounding the cells. This supposition is strengthened by the scores

plot of surface scan number 2 (see Figure 4.23 A) that shows positive scores at regions

containing cells and negative scores outside of the cell material. The scores of the back-

ground (areas not occupied by cells) subsequently display a score of zero in surface

scan number 15 (see Figure 4.23 B), because neither lipids nor amino acids are present

in the glass substrate. Figure 4.23 C is the cross section at z = 0.060 µm, which again

shows positive scores at regions containing cells and negative scores outside of the

cell material. These observations support the conclusion that the negative loadings of

PC3 relate to a component that is present in the extracellular matrix. Several organic

mass peaks such as m/z 129, 123, 117, 109, 105, 103, 87 and 39 are present in the neg-

ative loadings. Some of these such as m/z 129 (C10H+
9 ), 91 (C7H+

7 ), 55 (C4H+
7 ) and 39

(C3H+
3 ) could point towards the presence of (polycyclic) aromatic hydrocarbons [120].

Mass peaks at m/z 109 (C8H+
13) and 95 (C7H+

11) are known fragments of cholesterol

[121, 122]. Mass peaks at m/z 117, 105 and 91 can also be attributed to cholesterol

[121]. However, the identification of individual compounds such as cholesterol is dif-

ficult, because only low mass fragment ions are observed. Only if a (near) molecular

ion such as [M-H]+ at m/z 385.3 (C27H46O+) or [M-OH]+ at m/z 369.3 (C27H+
45) can be

resolved, unambiguous identification is possible.

Figure 4.24 A shows a bright-field microscopy images of the freeze-dried RPE cells
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Figure 4.24: Freeze-dried RPE cells investigated with ToF-SIMS in the negative polar-

ity. A) Bright-field microscopy image (10x) of freeze-dried RPE cells in-

vestigated with ToF-SIMS. The dark edge on the left belongs to the 1 mm

spaced sample grid to aid in locating specific cells. B) Out of focus bright-

field microscopy image (10x) of freeze-dried RPE cells investigated with

ToF-SIMS, indicating elevated and intact cells. C) A heightmap based on

the scores of principal component 1, which differentiates the borosilicate

glass substrate from cellular material. The z-offset was calibrated to the

previously calculated average 20 keV Ar+5000 sputter yield for dry cellular

material, which equals (100 ± 50) nm3/ion.

investigated with ToF-SIMS in the negative polarity. An out of focus bright-field mi-

croscopy image (see Figure 4.24 B) indicates that the cells are elevated and therefore

intact.

After mass calibration, a peak search and image reconstruction, the raw TOF-SIMS

data is imported into Matlab for data processing and analysis. The image has a size

of 256 × 256 × 135 pixels and the peak search extracted 367 mass peaks (≈ 3.2 ×
109 data points). The data is normalised to the total number of ion counts per pixel

particularly to account for variations in the secondary ion signal due to the topography

of the cell sample as well as the decrease of the ion yield in the initial transient region

and fluctuations in the secondary ion signals during depth profiling. The training set

is formed by randomly selecting 1000 pixels per z-plane; the training set thus consists

of 135.000 pixels (i.e. mass spectra) or 1.53% of the total amount of pixels (i.e. the same

relative amount of pixels as for the positive polarity).

The first two principal components explain 75.04% of the variance. The positive load-

ings of PC1 (68.24% variance explained, see Figure 4.25 A) contain ions that can be at-

tributed to bio-organic (and more specifically nuclear) material [40] such as PO−2 (m/z

63), PO−3 (m/z 79), C5H4N−5 (m/z 134, A), HP2O−6 (m/z 159) and NaP2O−6 (m/z 181).

The negative loadings of PC1 correspond to inorganic mass peaks that can easily be

attributed to the silica (SiO2) and alumina (Al2O3) [116, 117] present in the borosilicate

glass, see Table 4.3.
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Figure 4.25: PCA of the freeze-dried RPE cells investigated with ToF-SIMS in the neg-

ative polarity; 3D scores images (left) and loadings plots (right). A) PC1

explains 68.24% of the variance. The positive loadings correspond to

fragments associated with bio-organic material and the negative load-

ings correspond to fragments associated with the borosilicate glass. B)

PC2 explains 6.80% of the variance. The positive loadings correspond to

fragments associated with salts and the negative loadings correspond to

fragments associated with bio-organic material.
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Table 4.3: Negative ions indicative of the borosilicate glass substrate.

Nominal Mass Molecular Formula Exact Mass

16 O− 15.994915

17 OH− 17.002740

27 Al− 26.981541

32 O−2 31.989830

43 AlO− 42.976456

59 AlO−2 58.971371

60 SiO−2 59.966758

61 SiO2H− 60.974583

76 SiO−3 75.961673

77 SiO3H− 76.969498

103 Al2O3H− 102.955652

119 Al2O4H− 118.950567

136 Si2O−5 135.928431

137 Si2O5H− 136.936256

179 Al3O6H−2 178.929763

196 Si3O−7 195.895189

197 Si3O7H− 196.903013

239 Al4O8H−3 238.908959
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Because PC1 differentiates between the borosilicate glass substrate and cellular mate-

rial, its indication of the substrate interface (where the scores equal zero) can be utilised

to apply the necessary z-offset correction to account for the surface topography of the

cells. Note that this assumes a constant sputter yield through the cellular material.

This computational transformation is then calibrated using the previously calculated

average 20 keV Ar+5000 sputter yield for dry cellular material, which equals (100 ± 50)

nm3/ion (based on three separate 3D ToF-SIMS images of freeze-dried cell samples

with corresponding interferometry measurements). This gives each voxel a height of

60 nm in the z-direction. Figure 4.24 C shows the heightmap based on the scores of

principal component 1.

PC2 explains 6.80% of the variance. The positive loadings of PC2 correspond to in-

organic mass peaks such as Cl− (m/z 35), NaCl−2 (m/z 93), KCl−2 (m/z 109), Na2Cl−3
(m/z 151), NaKCl−3 (m/z 167) and their 37Cl isotopes. The positive loadings PC2 are

therefore a measure of the presence of salts. The negative loadings correspond to frag-

ments associated with bio-organic material. The 3D scores image (see Figure 4.25 B)

shows positive scores values surrounding the cellular material.

PC2 for both positive and negative polarity describes the distribution of cluster ions

generated from salts, but interestingly, in the positive polarity PC2 (see Figure 4.22 B)

is a measure of the presence of salts in the cell bodies, whereas in the negative polarity

PC2 (see Figure 4.25 B) is a measure of the presence of salts surrounding the cellular

material. An explanation might lie in the cluster ions observed in the loadings. In

the positive polarity, the ions are clusters formed from Na+ and K+ cations and OH−,

CN−, Cl−, PO3
3− and P2O6

2− anions (see Table 4.2). CN− and PO3
3− are known to

originate from cellular and nuclear material respectively [123]. In the negative polarity,

the ions are clusters formed from Na+ and K+ cations and Cl− anions and their 37Cl

isotopes.

4.4.3 Comparison to Neurons

Having performed PCA on the ARPE-19 positive and negative ToF-SIMS 3D image

data, which revealed major components of the samples and allowed us to perform

a z-offset correction, we now focus on determining whether there are differences in

cell-related ion signals and their intensities between ARPE-19 and primary rat cortical

neurons in a freeze-dried sample state.

It is essential that only the mass signals obtained from voxels corresponding to cellular

material are compared in order to exclude contributions from the substrate to mass
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signals and the total ion intensity. Selecting voxels corresponding to cellular material

can be readily done by using the voxels’ scores values. Any voxels for which PC1 > 0

(not substrate) are considered cellular material voxels for freeze-dried ion images. The

mass signals from voxels corresponding to cellular material are summed to produce a

mass spectrum specific to the cellular material in our samples. These (to the voxel’s

total ion count) normalized ion intensity summations, however, need to be divided by

the total number of voxels to obtain the average normalized ion intensity signal per

voxel before the mass spectra of different cells can be compared.

Finally, we are not very interested in inorganic mass peaks. Therefore, only organic

mass peaks are selected for comparison. Figures 4.26 and 4.27 show the average nor-

malized ion intensities of organic mass peaks between ARPE-19 (red) and primary rat

cortical neurons (blue) cellular material in positive and negative 3D ToF-SIMS images

in a freeze-dried sample state.

In order to get a quantitative measure of the similarity between the mass spectra of

ARPE-19 and neuronal reference mass spectra, their cosine similarity is calculated. Co-

sine similarity (also called the spectral contrast angle) is a measure of similarity be-

tween two vectors, mass spectra in our case, and is often used as a mass spectral sim-

ilarity measure [107]. The value of cos θ ranges from 0 to 1 in positive space with 0

indicating orthogonality (decorrelation) and 1 meaning that the two spectra are exactly

the same. If two mass spectra are presented as vectors of mass peaks, A and B, their

cosine similarity, cos θ, is calculated by dividing their dot product by the product of

their magnitudes:

cos θ =
A · B
‖A‖ ‖B‖ =

n
∑

i=1
AiBi√

n
∑

i=1
A2

i

√
n
∑

i=1
B2

i

(4.4.2)

Ai and Bi are the scalar components (mass peak intensities) of vectors (spectra) A and

B with n different mass peaks.

The average cos θ between the organic mass spectrum of RPE cells and three separate

reference mass spectra of neuronal cells in the positive polarity equals 0.77 ± 0.02 (n =

3). The cos θ between the three reference mass spectra of neuronal cells equals 0.89 ±
0.07 (n = 3), which is significantly different according to a two-tailed t-test (P = 0.0463).

This indicates that the organic mass peaks and their intensities are quite similar for both

freeze-dried RPE and freeze-dried neuronal cells although there are some differences

which are not merely measurement variation.
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Organic mass peaks which are unique for RPE cells include m/z 125, 88, 83, 82 and

39. One of these can be explained as an amino acid peak, C5H7O+ (m/z 83, Val) [112],

or a DNA peak, C3H5N3
+ (m/z 83, G) [115]. Unfortunately, none of these ions can

be attributed to melanin, a molecule expected to be present in RPE cells, in a conclu-

sive manner. Most of the potential diagnostic peaks for melanin appear above m/z

200 such as C25H17N3O8
+ (m/z 487), C24H17N3O6

+ (m/z 443), C18H11N2O9
+ (m/z

399) and C16H11N2O5
+ (m/z 311) for eumelanin and C13H12N2O10S+ (m/z 388) and

C11H12N2O5S+ (m/z 284) for pheomelanin [119].

Organic mass peaks which are unique for neuronal cells include m/z 147, 131, 119, 116,

98, 72, 71, 70, 69, 59, 57, 53 and 43. Some of these can be explained as amino acid peaks

such as C9H8O+ (m/z 131, Phe), C4H10N+ (m/z 72, Val) and C4H8N+ (m/z 70, Pro)

[112], or phospholipid peaks such as C5H8NO+ (m/z 98), C5H11
+ (m/z 71), C5H9

+

(m/z 69), C3H9N+ (m/z 59), C4H9
+ (m/z 57), C4H5

+ (m/z 53) and C3H7
+ (m/z 43)

[124]. A PDMS contamination could explain m/z 147 (C5H15OSi2
+).

The cos θ between the organic mass spectrum of RPE cells and a reference mass spec-

trum of neuronal cells in the negative polarity equals 0.96. This indicates that the or-

ganic mass peaks and their intensities are very similar for both freeze-dried RPE and

freeze-dried neuronal cells. Some common organic peaks, i.e. observed in the mass

spectra of both cell types, can be explained as DNA peaks such as C5H4N5O− (m/z

150, G), C5H4N5
− (m/z 134, A), C4H3N2O2

− (m/z 111, T) and C4N3
− (m/z 90, A)

[115].

There are also several organic mass peaks which are unique for the RPE cells’ mass

spectrum such as C5H3N5
− (m/z 133, G), C5H5N2O2

− (m/z 125, T), C4H4N3O− (m/z

110, C) and C4H2N3
− (m/z 92, C) [115], but this is likely due to measurement variation

(better SNR for the RPE ToF-SIMS data) given the high cos θ value. There are no unique

ions present in the negative RPE spectrum that are indicative of melanin such as C9N−

(m/z 122), C5N− (m/z 74), C3NO− (m/z 66) and C3N− (m/z 50) [125].

A single organic mass peak which is only found in the reference spectrum for neuronal

cells is a fatty acid peak (16:0) at m/z 255 (C16H31O2
−) [118] so this might be distinctive

for neuronal cells.

92



CHAPTER 4: 3D TOF-SIMS IMAGING OF NEURONS: FREEZE-DRIED CELL

PREPARATION AND DATA ANALYSIS

Figure 4.26: Comparison of the average normalized ion intensity per voxel of organic

mass peaks between neuronal (red) and RPE (blue) cellular material in

positive polarity 3D ToF-SIMS images of freeze-dried cells (10-15 cells per

image).

Figure 4.27: Comparison of the average normalized ion intensity per voxel of organic

mass peaks between neuronal (red) and RPE (blue) cellular material in

negative polarity 3D ToF-SIMS images of freeze-dried cells (10-15 cells

per image).
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4.5 Conclusions

In this chapter, we have developed a cell preparation protocol for 3D ToF-SIMS mea-

surements. Primary rat cortical neurons were cultured on poly-L-lysine coated glass

slides for 9 days in vitro. The sample preparation consists of cryofixation followed by

freeze-drying (cf. reference [48]). Microscopy and interferometry measurements show

that the morphology of the cells is more or less preserved. However, not all neurons are

preserved and there are visual signs of damage. This raises questions about how rep-

resentative of the native cellular state the samples are after freeze-drying and whether

this also induces chemical changes such as chemical compound diffusion.

Having developed and validated an approach to PCA of 3D ToF-SIMS images using

a well-defined test data set in chapter 3, the method was subsequently applied to 3D

ToF-SIMS data obtained from freeze-dried neuronal cell samples to test its effectiveness

on this more complex, biological sample. The results clearly show that PCA separates

the different chemistries in its loadings and provides information on spatial chemical

distribution via the scores. In addition, the PCA scores can be used to correct z-offsets

due to the cells’ topography. This in combination with calibration using corresponding

interferometry images allows the average sputter yield in freeze-dried cellular material

to be calculated accurately. Importantly, this approach now makes 3D SIMS image

processing of biological samples with multivariate analysis accessible on a routine basis

and considerably facilitates data analysis.

As an application, we attempted to visualise the cellular uptake of non-native com-

pounds, namely fluorescent dyes, in primary rat cortical neurons. Even though pro-

pidium iodide and calcein to a lesser extent have distinct fragment ions in the high

mass range, it was not possible to detect the fluorophores by 3D ToF-SIMS imaging of

the cells, while their presence was confirmed by fluorescence microscopy. Breitenstein

et al. [38] conducted a similar experiment using ethidium homodimer, DiI, fuchsine,

calcein and LysoTracker Green, where they reached similar conclusions as well. One

of the reasons cited is the fact that ‘3D ToF-SIMS data of molecular species m/z > 200

have shown up to now a comparatively poor signal-to-noise ratio which makes a sci-

entifically proper interpretation challenging’ [38].

In another application, we attempted to differentiate between two different cell types:

primary rat cortical neurons and retinal pigment epithelium (RPE) cells. It is possible to

detect differences in the kind of ions detected, but again only low mass fragment ions

are observed. This makes the identification of individual compounds (such as melanin

or cholesterol) difficult. Only if a (near) molecular ion or diagnostic fragment (m/z
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> 200) can be resolved, unambiguous identification is possible. Some caution is also

required as to whether these differences in the kind of ions detected are due to inherent

differences in cell chemistry or caused by the trypsinisation of the primary neuronal

cells (see 2.2).

We have to conclude that the poor signal-to-noise ratio of molecular species with m/z

> 200 is a major bottleneck in the advancement of ToF-SIMS imaging as a diagnostic

tool for the uptake of non-native compounds in cells or the differentiation of different

cell types. Gilmore et al. [9] argues that increasing the ionisation yield is the current

‘holy grail’ in ToF-SIMS development. The ionisation efficiency in SIMS is low and it

has been established that the majority of sputtered atoms and molecules are neutral

[9]. Post-ionisation of the sputtered neutral molecules could therefore deliver huge

increases in ion signal [126]. Fartmann et al. [127] have demonstrated the application

of laser post-ionisation in the analysis of cultured cell lines. However, this approach

has yet to be widely adopted, because of the added complexity of the experiments and

the expense of the additional equipment required [9].
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3D ToF-SIMS Imaging of

Frozen-Hydrated Neuronal

Networks

Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) has the capacity to be-

come a routine tool for label-free 3D chemical imaging of biological samples such as

cellular networks. To obtain meaningful results, it is paramount that sample prepara-

tion does not induce significant physical or chemical changes. In the previous chapter,

we have seen that freeze-drying does not preserve all neurons and that there are visual

signs of damage. This raises questions about how representative of the native cellu-

lar state the samples are after freeze-drying and whether this also induces chemical

changes such as chemical compound diffusion. We have also observed a poor signal-

to-noise ratio of molecular species with m/z > 200. This poses a major bottleneck in

the advancement of ToF-SIMS imaging as a diagnostic tool for the uptake of non-native

compounds in cells or the differentiation of different cell types.

As discussed in section 1.4, the literature tells us that cryofixation may be regarded as

the most suitable fixation method currently available. The drying step, however, has

shown to cause membrane damage as well as molecule rearrangement and a decrease

in certain ion signals compared to ToF-SIMS measurements of samples in a frozen-

hydrated state. However, these observations were made by surface analysis of either

intact cells or fracture planes within cells. Furthermore, to our knowledge nearly all

examples of freeze-fractured and frozen-hydrated cell imaging experiments in the lit-

erature are executed in 2D. Only Fletcher et al. [33] and Angerer et al. [128] presented

3D ToF-SIMS images (256× 256× 10 and 128× 128× 13 voxels in size respectively) of

a whole, intact frozen-hydrated cell. Angerer et al. also compared 2D ion images of air-
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dried cells at room temperature and cells in a frozen-hydrated state after removing the

outer membrane by etching with C+
60, and found that the ions of the latter had a greater

degree of localisation, which led them to infer that the drying process causes internal

structures to collapse. However, they did not investigate the differences between the

different sample preparations beyond the degree of localization of a few select ions.

A comprehensive comparison between 3D ToF-SIMS images of freeze-dried and frozen-

hydrated cells is therefore still lacking. A few studies that included frozen-hydrated

ToF-SIMS surface analysis of cells, when comparing various cell preparation techniques,

also raised the temperature of the sample holder well above the recrystallization tem-

perature in order to sublimate water from the cell surfaces prior to imaging [64, 129].

This step ultimately provides in-situ freeze-dried samples and raises the question to

what extent the sample can still be considered frozen-hydrated and if recrystallization

deformed the cell structure. Here, we present 3D ToF-SIMS image data of whole, intact

cells in a frozen-hydrated state. The cells have been kept well below the recrystal-

lization temperature prior and during ToF-SIMS analysis and the 3D ToF-SIMS image

data shows the cells completely embedded in an ice matrix clearly demonstrating the

cells are in a frozen-hydrated state. A comprehensive comparison between large 3D

ToF-SIMS images of freeze-dried and frozen-hydrated cells is made using principal

component analysis to facilitate the data analysis of these large data sets.

5.1 Cell Preparation and ToF-SIMS

In this chapter, primary rat cortical neurons are investigated in a frozen-hydrated state

with 3D ToF-SIMS imaging. Ar+5000 gas clusters (GCIB) are used to etch through the

vitreous ice matrix to obtain 3D ToF-SIMS data of intact cells, while the stage tem-

perature is kept below the recrystallization temperature. This data is compared to 3D

ToF-SIMS image data of freeze-dried cells, obtained at room temperature, in order to

ascertain any quality differences in terms of cell preservation and chemical informa-

tion. In order to make a valid comparison, the same primary ion beam configuration

and other instrumental settings are used. Next, because of the sample’s topography

and the fluctuations in the secondary ion signals during depth pro-filing (such as the

decrease of the ion yield in the surface transient region), the images are normalised to

their total ion count per voxel. This normalisation also serves to minimise differences

in the secondary ion signal between 3D ToF-SIMS images due to differences in sample

topography, sample charging or instrumental conditions such as variations in primary

ion current or detector efficiency, making them more comparable.
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Primary rat cortical neurons were cultured on poly-L-lysine coated glass slides for 9

days in vitro. Details on the cell substrate preparation and cell culture protocol can be

found in appendix 2.

For ToF-SIMS analysis of frozen-hydrated cells, cell samples were mounted one at a

time onto an ION-TOF cryostage immersed in liquid nitrogen (cf. reference [97]). The

sample stage was removed from the liquid nitrogen and placed onto the precooled

sample transfer arm in the entry chamber under nitrogen flow. The entry chamber was

immediately pumped down to 2× 10−5 mbar. When this pressure was reached, the

entry door to the main chamber was opened to transfer the cryostage. Analysis was

performed at -120 ◦C as measured by a thermocouple.

5.2 Data Analysis using PCA

There are three main sample components in 3D ToF-SIMS images of frozen-hydrated

cells: bio-organic material, vitreous ice and glass substrate. 3D ToF-SIMS images of

freeze-dried cells on the other hand only consist of two main sample components:

bio-organic material and glass substrate. By performing principal component anal-

ysis (PCA) on our 3D ToF-SIMS data sets of freeze-dried and frozen-hydrated cells,

we are able to distinguish the main components of our samples and assign one ma-

jor component to each voxel. The image containing frozen-hydrated cells has a size of

256× 256× 205 voxels and the peak search extracted 714 mass peaks (≈ 9.6× 109 data

points). The training set is formed by randomly selecting 1000 voxels per z-plane; the

training set thus consists of 205,000 voxels (i.e. mass spectra) or 1.5% of the total num-

ber of voxels. The correlation matrix of the training set is then decomposed to generate

the loadings for standardised variables (mass peaks). These loadings are then applied

to the full data set via block processing to generate 3D scores images.

The first two principal components elucidate the three different chemistries of the

frozen-hydrated sample (75.5% variance explained). The positive loadings of PC1

(65.7% variance explained, see Figure 5.1 A) contain protonated water clusters H(H2O)n
+

(n = 5-11) that are indicative of ice [97] as well as organic ions indicative of cellular ma-

terial, whereas the negative loadings contain inorganic ions specific for the borosilicate

glass substrate such as B+ (m/z 11), Al+ (m/z 27) and Si+ (m/z 28). Because PC1

differentiates between the borosilicate glass substrate and ice/cellular material, its in-

dication of the substrate interface (where the scores equal zero) can be utilised to apply

the necessary z-offset correction to account for surface topography of the sample [100].

Note that this assumes a constant sputter yield through the sample matrix.
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Figure 5.1: Elucidating the three main sample components in the 3D ToF-SIMS image

of frozen-hydrated primary rat cortical neurons using principal compo-

nent analysis (PCA). A) The loadings of PC1 (65.7% variance explained)

differentiate between the borosilicate glass substrate (negative loadings)

and ice/cellular material (positive loadings). B) The loadings of PC2 (9.8%

variance explained) distinguish cellular material (negative loadings) from

its surroundings be it ice or substrate (positive load-ings). C) Voxel classi-

fication in the z-corrected 3D ToF-SIMS image based on their scores values

for PC1 and PC2. Voxels for which PC1 < 0 are considered substrate vox-

els (green). Voxels for which PC1 > 0 and PC2 < 0 are considered cellular

material (organic) voxels (red). Voxels for which PC1 > 0 and PC2 > 0

are considered ice voxels (blue). N.B. Because neither the thickness nor the

topography of the ice layer could be determined, it is only possible to per-

form the z-offset correction (without z-calibration and calculation of the

sputter yield).
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The negative loadings of PC2 (9.8% variance explained, see Figure 5.1 B) contain a

strong correlation with common markers for phosphocholine-containing phospholipids

such as the C5H15NPO4
+ ion at m/z 184 [124] and peaks commonly associated with

amino acids such as the C8H10NO+ ion (Tyr) at m/z 136, the C9H8N+ ion (Trp) at

m/z 130 and the C8H10N+ ion (Phe) at m/z 120 [112]. The positive loadings of PC2

contain both protonated water clusters and inorganic ions specific for the borosilicate

glass substrate, but with low coefficients indicating limited correlation. PC2 therefore

distinguishes cellular material from its surroundings be it ice or substrate.

Using these PCA assignments, each voxel in the 3D ToF-SIMS image can be classified

based on its scores values for PC1 and PC2 (see Figure 5.1 C). Voxels for which PC1 < 0

are considered substrate voxels, voxels for which PC1 > 0 and PC2 < 0 are considered

cellular material voxels and voxels for which PC1 > 0 and PC2 > 0 are considered ice

voxels.

Similarly, we can perform PCA on the freeze-dried cells’ 3D ToF-SIMS data to distin-

guish the main components of our samples and identify to which component each

voxel belongs (see Figure 5.2). In this case, PC1 differentiates between the borosili-

cate glass substrate and organic material. In the case of freeze-dried cells, the z-offset

correction to account for the surface topography can also be calibrated against interfer-

ometry data. Based on three separate 3D ToF-SIMS images of freeze-dried cell samples

with corresponding interferometry measurements, the average 20 keV Ar5000
+ sputter

yield for dry cellular material equals (100 ± 50) nm3/ion (n = 3). The calculation of the

average 20 keV Ar5000
+ sputter yield for dry cellular material makes it possible to cal-

ibrate z-offset corrections without complementary interferometry data. Although it is

of course recommended to obtain complementary interferometry images for the most

accurate result given the average sputter yield’s large coefficient of variation.

Because it was not possible to conduct interferometry measurements on frozen sam-

ples, it was not possible to determine their sputter yield directly. However, based on

the average cell height determined by interferometry on dried samples (6.7 ± 0.7 µm,

see 4.2.1), we estimate the sputter yield in frozen samples to be six-fold that of dry

samples.
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Figure 5.2: Elucidating the two main sample components in the 3D ToF-SIMS image of

freeze-dried primary rat cortical neurons using principal component anal-

ysis (PCA). A) The loadings of PC1 (45.4% variance explained) differentiate

between the borosilicate glass substrate (negative loadings) and cellular

material (positive loadings). B) Voxel classification in the z-corrected 3D

ToF-SIMS image based on their scores values for PC1. Voxels for which

PC1 < 0 are considered substrate voxels (green). Voxels for which PC1 >

0 are considered cellular material (organic) voxels (red). The z-corrected

3D ToF-SIMS image is calibrated using the average 20 keV Ar5000
+ sputter

yield determined for freeze-dried cellular material.
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5.3 Improved Cell Membrane Preservation

Preservation of cell integrity is a critical aspect of any biological sample preparation

method. Complementary imaging techniques such as optical or electron microscopy

could provide this information before ToF-SIMS analysis for freeze-dried samples, but

for frozen-hydrated samples this is not readily achievable as the samples need to be

kept below the recrystallization temperature and the cells are embedded in an ice ma-

trix. Instead, antilocalization of Na+ and K+ in ToF-SIMS images is used as an indicator

of instantaneous fixation of the cell in the living state [48] and membrane preserva-

tion [58, 130]. Due to active transport of sodium and potassium ions by the Na+/K+-

ATPase enzyme found in the plasma membrane of all animal cells, mammalian cells

contain a relatively high concentration of potassium ions but low concentrations of

sodium ions whereas the extracellular environment has significantly higher levels of

sodium than potassium ions.

As the freeze-dried cells are not embedded in a matrix like the frozen-hydrated cells

and the intracellular Na+ and K+ intensities are to be compared to their extracellu-

lar intensities, slice planes in the z-axis close to the substrate interface that contain

both cells and their surrounding extracellular matrix are chosen for this comparison.

A scores image of PC1 at a slightly higher slice plane (see Figure 5.3 A) is used to

determine intracellular (PC1 > 0) regions. The freeze-dried cell images show similar

intracellular K+ and Na+ intensities (see Figures 5.3 B and C). The average normalised

K+ and Na+ ion intensities per pixel inside the cell regions equal 0.087 ± 0.018 (n =

7606 pixels) and 0.088 ± 0.017 (n = 7606 pixels) respectively. In regions corresponding

to the extracellular matrix the Na+ intensities are higher than within the cells, whereas

the K+ intensities are slightly lower. The average normalised K+ and Na+ ion intensi-

ties per pixel outside the cell regions equal 0.080 ± 0.048 (n = 57371 pixels) and 0.113

± 0.047 (n = 57371 pixels) respectively. Two-tailed t-tests show that all ion intensities

are significantly different from one another with 95% confidence. The overlap of the

K+ signal with the cell regions is nonetheless limited. To obtain a quantitative measure

of the overlap between K+ and cell regions, the PC1 and K+ images are converted to

binary images and their peak signal-to-noise ratio (PSNR) is calculated (see Figures 5.4

A and B). The PSNR between the binary images equals only 3.30 dB. It is also shown

that the freeze-dried cells were viable before the freeze-drying step. The cells had been

stained with calcein-AM (acetoxymethyl ester of calcein) and propidium iodide (PI)

prior to their cryofixation (see Figure 4.16). Calcein-AM only stains viable cells so its

fluorescence microscopy image after freeze-drying indicates that there was no mem-

brane leakage prior to freeze-drying. (N.B. Only the freeze-dried cells presented in this
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Figure 5.3: Na+/K+ antilocalisation in z-corrected ToF-SIMS image slices of freeze-

dried (top row) and frozen-hydrated (bottom row) neuronal cells. A)

Scores image for PC1 of a freeze-dried cell sample at z = 189 nm (10 scans)

from the substrate interface. The red regions (positive scores) correspond

to cellular signals. No extracellular regions are visible due to the short dis-

tance from the substrate interface. B) Normalised ion image for K+ (m/z =

39) of the freeze-dried cell sample at z = 21 nm (2 scans) from the substrate

interface. The average normalised K+ intensities per pixel inside and out-

side (i.e. the extracellular matrix) the cell regions equal 0.087 ± 0.018 (n

= 7606 pixels) and 0.080 ± 0.048 (n = 57371 pixels) respectively. C) Nor-

malised ion image for Na+ (m/z = 23) of the freeze-dried cell sample at

z = 21 nm (2 scans) from the substrate interface. The average normalised

Na+ intensities per pixel inside and outside (i.e. the extracellular matrix)

the cell regions equal 0.088 ± 0.017 (n = 7606 pixels) and 0.113 ± 0.047 (n

= 57371 pixels) respectively. D) Scores image for PC2 of a frozen-hydrated

cell sample at z = 5 scans from the substrate interface. The green regions

(negative scores) correspond to cellular signals and the red regions (posi-

tive scores) correspond to signals originating from the ice matrix. E) Nor-

malised ion image for K+ (m/z = 39) of the frozen-hydrated cell sample

at z = 5 scans from the substrate interface. The average normalised K+ in-

tensities inside and outside the cell regions equal 0.023 ± 0.032 (n = 33923

pixels) and 0.005 ± 0.018 (n = 29608 pixels) respectively. F) Normalised

ion image for Na+ (m/z = 23) of the frozen-hydrated cell sample at z = 5

scans from the substrate interface. The average normalised Na+ intensities

inside and outside the cell regions equal 0.015 ± 0.026 (n = 33923 pixels)

and 0.007 ± 0.026 (n = 29608 pixels) respectively.
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Figure 5.4: Overlap of the K+ distribution with cellular regions in z-corrected ToF-

SIMS image slices of freeze-dried (top row) and frozen-hydrated (bottom

row) neuronal cells. A) Binary scores image for PC1 > 0 of the freeze-dried

cell sample at z = 189 nm (10 scans) from the substrate interface. B) Binary

normalised ion image for K+ (m/z = 39) of the freeze-dried cell sample at

z = 21 nm (2 scans) from the substrate interface. The peak signal-to-noise

ratio (PSNR) between the K+ image and the PC1 image equals 3.30 dB. C)

Binary scores image for PC2 < 0 of the frozen-hydrated cell sample at z =

5 scans from the substrate interface. D) Binary normalised ion image for

K+ (m/z = 39) of the frozen-hydrated cell sample at z = 5 scans from the

substrate interface. The PSNR between the K+ image and the PC1 image

equals 12.64 dB.
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section were stained. Other cell samples used for the comparison between freeze-dried

and frozen-hydrated cells were not.) These observations indicate that the dehydration

step induces some amount of membrane damage and/or migration of diffusible chem-

ical species.

A slice plane in the z-axis close to the substrate interface is also chosen for the frozen-

hydrated cells. Because it is not readily achievable to perform any complementary

imaging on frozen-hydrated samples, the scores image of PC2 (see Figure 5.3 D) is

used to determine intracellular (PC2 < 0) and extracellular (PC2 > 0) regions. The

frozen-hydrated ToF-SIMS images of the neuronal networks show cells embedded in

a vitreous ice matrix (see Figure 5.3 D). The K+ intensities observed inside the cell re-

gions are higher than those of Na+ (see Figures 5.3 E and F). The average normalised

K+ and Na+ ion intensities per pixel inside the cell regions equal 0.023 ± 0.032 (n

= 33923 pixels) and 0.015 ± 0.026 (n = 33923 pixels) respectively. The K+ ion image

of the frozen-hydrated cells also overlaps better with the cell regions than that of the

freeze-dried cells (see Figures 5.4 C and D). The PSNR between the binary PC2 and K+

images equals 12.64 dB in this case. The vitreous ice regions contain lower amounts of

both Na+ and K+ compared to cells, but the Na+ intensity is higher in these regions

than that of K+. The average normalised K+ and Na+ ion intensities per pixel outside

the cell regions equal 0.005 ± 0.018 (n = 29608 pixels) and 0.007 ± 0.026 (n = 29608 pix-

els) respectively. Two-tailed t-tests again show that all ion intensities are significantly

different from one another with 95% confidence. The observations confirm rapid fixa-

tion and a good degree of membrane preservation as well as successful removal of salts

during the ammonium formate washing step for the frozen hydrated sample prepara-

tion. The greater degree of antilocalization of Na+ and K+ in the frozen-hydrated cell

sample’s 3D ToF-SIMS image data means that the frozen-hydrated cell samples reflect

the native cell state better than the freeze-dried ones, which is in agreement with the

literature [58, 61, 128].

5.4 Increased Intensities for High-Mass Fragments

Having established which method preserves the cell structure best physically, we then

focused on determining whether there are differences in cell-related ion signals and

their intensities between the frozen-hydrated and the freeze-dried samples. It is essen-

tial that only the mass signals obtained from voxels corresponding to cellular material

are compared in order to exclude contributions from the substrate or ice matrix to mass

signals and the total ion intensity. Selecting voxels corresponding to cellular material
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can be readily done by using the voxels’ scores values (see Figure 5.1 C). Any vox-

els for which PC1 > 0 (not sub-strate) and PC2 < 0 (not ice) are considered cellular

material voxels for frozen-hydrated ion images. Any voxels for which PC1 > 0 (not

substrate) are considered cellular material voxels for freeze-dried ion images (see Fig-

ure 5.2 B). The mass signals from voxels corresponding to cellular material are summed

to produce a mass spectrum specific to the cellular material in our samples. These (to

the voxel’s total ion count) normalized ion intensity summations, however, need to be

divided by the total number of voxels to obtain the average normalized ion intensity

signal per voxel before the mass spectra of freeze-dried and frozen-hydrated cellular

material can be compared. Finally, the cellular material of frozen-hydrated cells still

contains vitrified ice and will produce a mass spectrum containing ion signals for both

organic material and ice. The cell preparation method can also influence the organic

ion signals produced. Therefore, a list of known mass peaks for cellular material (lipids

and amino acids) from literature [112, 124, 131] was used to select relevant mass peaks

for the comparison (see Table C.1).

Figure 5.5 shows the average normalized ion intensities of identified lipid and amino

acid mass peaks between freeze-dried (red) and frozen-hydrated (blue) cellular mate-

rial in 3D ToF-SIMS images of neurons. In order to get a quantitative measure of the

similarity between the (known fragments) mass spectra of frozen-hydrated and freeze-

dried cellular material their cosine similarity is calculated. Cosine similarity (cos θ) is a

measure of similarity between two vectors, mass spectra in our case, and is often used

as a mass spectral similarity measure [107]. The value of cos θ ranges from 0 to 1 in

positive space with 0 indicating orthogonality (decorrelation) and 1 meaning that the

two spectra are exactly the same. Comparing the mass spectrum of frozen-hydrated

cellular material separately to three mass spectra of freeze-dried cellular material, the

average cos θ equals 0.30 ± 0.02 (n = 3) indicating intermediate dissimilarity. The aver-

age cos θ between the three mass spectra of freeze-dried cellular material equals 0.95 ±
0.03 (n = 3) indicating a high degree of similarity. The cell preparation method clearly

has an influence on the mass peaks obtained.

Many mass peaks of the frozen-hydrated cellular material are higher in intensity than

those of the freeze dried samples, especially those at higher masses. The C7H7
+ ion

at m/z 91 shows a fifteen-fold increase and the C5H15NPO4
+ ion at m/z 184 shows a

four-fold increase, for example. A two-sided t-test shows that the average of the identi-

fied mass peak intensities of the frozen-hydrated cellular material is significantly larger

(P = 0.02) in the higher mass range (m/z > 100) than that of those of the freeze-dried

cellular material. However, when limited to the low mass range up to m/z 100, no
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significant difference (P = 0.32) is observed between the average identified mass peak

intensities of the frozen-hydrated cellular material and those of the freeze-dried cel-

lular material. Notably, several fragments at higher mass attributed to phosphatidyl-

choline such as C7H17NPO5
+ (m/z 226), C6H17NPO4

+ (m/z 198) and C5H13NPO4
+

(m/z 182) are only observed in the mass spectrum of the frozen-hydrated cellular mate-

rial [124]. Equally, several low-mass fragments attributed to phosphatidylcholine such

as C5H14NO+ (m/z 104), C5H12NO+ (m/z 102), C7H13
+ (m/z 97), C7H11

+ (m/z 95),

C5H14N+ (m/z 88), C6H13
+ (m/z 85) and C6H11

+ (m/z 83) are only observed in the

mass spectrum of the freeze-dried cellular material [124]. Mass fragments attributed

to amino acids are found in the mass spectra of both freeze-dried and frozen-hydrated

cellular material, but there are certain differences. C3H8NO+ (m/z 74, Thr), C3H6NO+

(m/z 72, Gly), C2H5S+ (m/z 61, Met) and C2H6NO+ (m/z 60, Ser) for example are only

observed in the frozen-hydrated spectrum and C4H7N2O2
+ (m/z 115, Gly), C5H8N3

+

(m/z 110, Arg/His), C4H10N3
+ (m/z 100, Arg), CH5N3

+ (m/z 59, Arg) and C3H3O+

(m/z 55, Tyr) are only observed in the freeze-dried spectrum [112, 131]. There are sev-

eral more ions in the low mass range that are only found in one of the two spectra,

but these can be attributed to both phosphatidylcholine and amino acids or proteins in

general so no clear conclusions can be drawn from them.

Fragmentation products and their ratios are the result of competing and consecutive

unimolecular reactions, whose reaction rates are dependent on the internal energy of

the precursor ion [132]. The increase in higher-mass fragments for phosphatidylcholine

indicates that the internal energy (Eint) of the phosphatidylcholine precursor ions is

lower in the frozen-hydrated state. Differences in internal energy would also explain

the observed differences in fragments attributed to amino acids. The internal energy

content of molecular ions derives from the thermal energy of the molecule before ion-

ization and the amount of energy deposited in the ionization process [132]. On the

one hand, the low temperature of the liquid nitrogen cooled frozen-hydrated cell mea-

surements in ToF-SIMS could affect the internal energy of an ion via a decrease of its

thermal energy before ionization. On the other hand, the energy deposition of the Bi3
+

projectiles is likely influenced by the ice matrix.

To assess the effect of the sample’s temperature a simple experiment comparing ToF-

SIMS mass spectra of freeze-dried cells at room temperature with those of freeze-dried

cells cooled to the same temperature as the frozen-hydrated cells was conducted. Two

mass spectra of freeze-dried cellular material at T < -120 ◦C are compared with the

three mass spectra of freeze-dried cellular material at room temperature by calculating

the cosine similarity between them. The average cos θ equals 0.96± 0.03 (n = 6) indicat-
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ing a high degree of similarity. In other words, it would seem the temperature has little

effect on the mass fragments obtained suggesting that not the lower temperature but

the ice matrix is responsible for the increase in higher-mass fragments in the frozen-

hydrated state. We hypothesize that the ice matrix as a source of protons increases

the likelihood of ’soft’ chemical ionization over ’hard’ electron ionization of neutrals

in the relatively high-pressure region close to the surface (selvedge) and that its rela-

tive volatility increases the particle density in the selvedge increasing the likelihood of

collision induced energy-exchange [18, 133].
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Figure 5.5: Comparison of the average normalized ion intensity per voxel of selected

mass peaks between freeze-dried (red) and frozen-hydrated (blue) cellular

material in 3D ToF-SIMS images of neurons. Only mass peaks identified

as lipid and amino acid mass peaks are shown (see Table C.1 for assign-

ments). The frozen-hydrated cell material has higher average normalized

ion intensities for identified lipid and amino acid mass peaks in the higher

mass range (m/z > 100).
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5.5 Conclusions

Ar5000
+ gas clusters (GCIB) were used to etch through the vitreous ice matrix to obtain

large 3D ToF-SIMS image data (256 × 256 × 205 voxels) of whole, intact primary rat

cortical neurons (a small section of a neuronal network) in a frozen-hydrated state. The

cells have been kept well below the recrystallization temperature prior and during ToF-

SIMS analysis and the 3D ToF-SIMS image shows the cells completely embedded in an

ice matrix. This enabled, for the first time, a comprehensive comparison with 3D ToF-

SIMS images of freeze-dried cells. Previous ToF-SIMS imaging studies of cells generally

employed a freeze-fracture methodology or sublimated the surface ice to expose the

cellular material for 2D analysis.

The dehydration step for the freeze-dried samples induces some amount of mem-

brane damage and/or migration of diffusible chemical species based on a comparison

of the spatial distributions of Na+ and K+ in the ToF-SIMS images. This effect was

significantly reduced in frozen-hydrated samples indicating that these samples reflect

the native cell state better than the freeze-dried ones. Furthermore, significant differ-

ences between the mass spectra of frozen-hydrated and freeze-dried cellular material

were found by calculating their cosine similarity. Notably, an increased ion intensity

for higher-mass fragments (m/z > 100) is observed in the mass spectrum of frozen-

hydrated cellular material. This increased ion intensity for higher mass fragments in

the mass spectrum of frozen-hydrated cellular material is an additional advantage of

studying biological samples in a frozen-hydrated state. Many chemical species present

in cells will generate similar low mass fragments and differ in their higher mass frag-

ments so unambiguous chemical identification often relies on the presence of the high

mass fragments in the spectrum. It is likely that the ice matrix is responsible for the in-

crease in higher-mass fragments in the frozen-hydrated state rather than the low tem-

perature used for the cryogenic analysis conditions.

In spite of the quality improvements in terms of cell preservation and chemical infor-

mation, there are draw-backs to this approach. The increased technical difficulty, the

inability to assess a sample location beforehand using complementary imaging tech-

niques and the increased measurement time severely limit sample throughput. If there

is need for a high number of measurements and the application does not require the

cell to be studied in its most native state and higher-mass fragments are not of inter-

est, one may consider freeze-dried cell preparation for convenience. The best results

in terms of cell preservation and secondary ion yields, however, are obtained with cell

samples in a frozen-hydrated state.
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In this thesis we set out to to assess PCA as a data analysis tool for 3D TOF-SIMS

images and to establish cell preparation protocols for TOF-SIMS that preserves the cell

morphology.

In chapter 3, we first presented a method to construct ToF-SIMS image data consisting

of multiple chemistries with spatial distributions of their own to identify the effects

of different preprocessing procedures. We were also able to expand the application

of principal component analysis (PCA) to large 3D ToF-SIMS images without requir-

ing any computing resources beyond a desk top computer. The method reported here

presents the first time PCA has been performed on a large scale (128 x 128 x 622 pix-

els) 3D ToF-SIMS image. This was made possible by first calculating the PCA loadings

using a smaller subset of randomly selected pixels as a training set that could then be

applied to the full data set to generate the scores images. The method has been vali-

dated using a well-defined 3D ToF-SIMS data set of a PS-PVP multilayer system. The

results clearly show that PCA separates the different chemistries in its loadings and

provides information on spatial chemical distribution via the scores. Furthermore, the

scores images have a 1.7-2.4 times better signal-to-noise ratio than can be obtained with

single ions. The depth resolution of the scores images does not differ from that of the

single ion images.

Having developed and validated an approach to PCA of 3D ToF-SIMS images using a

well-defined test data set in chapter 3, the method was subsequently applied to 3D ToF-

SIMS data obtained from freeze-dried neuronal cell samples to test its effectiveness on

this more complex, biological sample in chapter 4. The results clearly show that PCA

separates the different chemistries in its loadings and provides information on spatial

chemical distribution via the scores. The method facilitates differentiation between cel-

lular components such as lipids and amino acids, which allowed the cell membrane,
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the cytoplasm and the extracellular matrix (ECM) to be easily distinguished from one

another. In addition, the PCA scores can be used to correct z-offsets due to the cells’

topography. This in combination with calibration using corresponding interferometry

images allows the average sputter yield in freeze-dried cellular material to be calcu-

lated accurately. Importantly, this approach now makes 3D SIMS image processing of

biological samples with multivariate analysis accessible on a routine basis and consid-

erably facilitates data analysis.

As an application, we attempted to visualise the cellular uptake of non-native com-

pounds, namely fluorescent dyes, in primary rat cortical neurons. Even though pro-

pidium iodide and calcein to a lesser extent have distinct fragment ions in the high

mass range, it was not possible to detect the fluorophores by 3D ToF-SIMS imaging of

the cells, while their presence was confirmed by fluorescence microscopy. We have to

conclude that the poor signal-to-noise ratio of molecular species with m/z > 200 is a

major bottleneck in the advancement of ToF-SIMS imaging as a diagnostic tool for the

uptake of non-native compounds in cells.

In another application, we attempted to differentiate between two different cell types:

primary rat cortical neurons and retinal pigment epithelium (RPE) cells. It is possible to

detect differences in the kind of ions detected, but again only low mass fragment ions

are observed. This makes the identification of individual compounds (such as melanin

or cholesterol) difficult. Only if a (near) molecular ion (m/z > 200) can be resolved,

unambiguous identification is possible.

In chapter 4, microscopy and interferometry measurements show that the morphology

of freeze-dried cells is more or less preserved. However, not all neurons are preserved

and there are visual signs of damage. This raised questions about how representa-

tive of the native cellular state the samples are after freeze-drying and whether this

also induces chemical changes such as chemical compound diffusion. In chapter 5,

we presented a comprehensive comparison with 3D ToF-SIMS images of freeze-dried

cells. Previous ToF-SIMS imaging studies of cells generally employed a freeze-fracture

methodology or sublimated the surface ice to expose the cellular material for 2D anal-

ysis. The dehydration step for the freeze-dried samples was shown to induce some

amount of membrane damage and/or migration of diffusible chemical species based

on a comparison of the spatial distributions of Na+ and K+ in the ToF-SIMS images.

This effect was significantly reduced in frozen-hydrated samples indicating that these

samples reflect the native cell state better than the freeze-dried ones.

Furthermore, significant differences between the mass spectra of frozen-hydrated and

freeze-dried cellular material were found by calculating their cosine similarity. No-
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tably, an increased ion intensity for higher-mass fragments (m/z > 100) is observed in

the mass spectrum of frozen-hydrated cellular material. This increased ion intensity for

higher mass fragments in the mass spectrum of frozen-hydrated cellular material is an

additional advantage of studying biological samples in a frozen-hydrated state. Many

chemical species present in cells will generate similar low mass fragments and differ

in their higher mass fragments so unambiguous chemical identification often relies on

the presence of the high mass fragments in the spectrum. It is likely that the ice matrix

is responsible for the increase in higher-mass fragments in the frozen-hydrated state

rather than the low temperature used for the cryogenic analysis conditions.

6.1 Future Work and Outlook

While we may not have found melanin related mass fragments in the mass spectra of

retinal pigment epithelium (RPE) cells, it was possible to detect quite a few distinct

differences in the kind of ions detected for primary rat cortical neurons and RPE cells

albeit in the low mass range. We need to determine if it is possible use these mass peaks

to identify cell types in unknown samples (e.g. a co-culture of neuronal and RPE cells)

by ‘fingerprinting’.

Even though propidium iodide and calcein to a lesser extent have distinct fragment

ions in the high mass range, it was not possible to detect the fluorophores by 3D ToF-

SIMS imaging of freeze-dried cells, while their presence was confirmed by fluorescence

microscopy. Like Breitenstein et al. [38], we conclude that this is due to the poor signal-

to-noise ratio of molecular species with m/z > 200. Gilmore et al. [9] argues that

increasing the ionisation yield is the current ‘holy grail’ in ToF-SIMS development. In

chapter 5, we showed that the mass spectrum of frozen-hydrated cellular material has

increased ion intensities for higher-mass fragments compared to freeze-dried cellular

material. We thus need to follow up on this and see if it is possible to detect the fluo-

rophores by 3D ToF-SIMS imaging of frozen-hydrated cells.

Similarly, while differences are observed in the kind of ions detected for primary rat

cortical neurons and retinal pigment epithelium (RPE) cells, only low mass fragment

ions are observed, which makes the identification of individual compounds difficult.

If frozen-hydrated cell measurements resolve (near) molecular ions (m/z > 200), it

will be possible to unambiguously identify specific compounds such as melanin or

cholesterol.

In spite of the quality improvements in terms of cell preservation and chemical in-

formation, there are draw-backs to measuring cells in a frozen-hydrated state. The
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increased technical difficulty, the inability to assess a sample location beforehand us-

ing complementary imaging techniques and the increased measurement time severely

limit sample throughput. This needs to be addressed, because biological samples (due

to inherent biological variability) require high sample numbers before the results are

considered reliable.

Alternatively, matrix-enhanced SIMS (ME-SIMS) [134, 135] can be used to enhance

molecular yields. However, these all in all incremental ion yield enhancements may

not be sufficient and then new technological approaches will be need to explored. For

example, developments in laser post ionisation of the neutral portion of the secondary

species (> 99% of ejected material) have the potential to deliver huge increases in signal

if the problem of photon induced fragmentation can be overcome [9].
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APPENDIX A

Supplementary Data to Chapter 3

A.1 Data Used for Mock TOF-SIMS Data Formation

Table A.1: Normalised ion intensities for acrylamide and coumarin, obtained from

SDBSWeb : http://sdbs.db.aist.go.jp (National Institute of Advanced In-

dustrial Science and Technology, December 2014). The sum of rest is given

by the sum of the intensities that fall outside of the mass range or mass

increments. The underlined m/z are those used as specific ions.

m/z acrylamide coumarin

total 1.0000 1.0000

sum of rest 0.0000 0.0077

14 0.0023 0.0000

15 0.0031 0.0000

16 0.0096 0.0000

17 0.0131 0.0000

24 0.0019 0.0000

25 0.0102 0.0000

26 0.0529 0.0045

27 0.1804 0.0043

28 0.0354 0.0043

29 0.0046 0.0000

30 0.0248 0.0000

37 0.0000 0.0103

38 0.0033 0.0213

39 0.0027 0.0313

40 0.0038 0.0060

41 0.0040 0.0000
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42 0.0052 0.0000

43 0.0523 0.0089

44 0.1923 0.0043

45 0.0094 0.0151

49 0.0000 0.0045

50 0.0000 0.0213

51 0.0058 0.0273

52 0.0100 0.0029

53 0.0119 0.0045

54 0.0067 0.0000

55 0.1398 0.0000

56 0.0048 0.0000

59 0.0000 0.0134

61 0.0000 0.0120

62 0.0000 0.0285

63 0.0000 0.0692

64 0.0000 0.0287

70 0.0079 0.0000

71 0.1922 0.0000

72 0.0094 0.0000

73 0.0000 0.0031

74 0.0000 0.0079

75 0.0000 0.0060

85 0.0000 0.0031

86 0.0000 0.0048

87 0.0000 0.0045

88 0.0000 0.0024

89 0.0000 0.0893

90 0.0000 0.1084

91 0.0000 0.0084

92 0.0000 0.0062

118 0.0000 0.2393

119 0.0000 0.0213

146 0.0000 0.1503

147 0.0000 0.0148
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A.2 Matlab Code to Import ToF-SIMS Data

1 function [ FileList, N, IMAGECHAR, id, alpha ] = im_info

2 %im_info gathers FileList, number of files N, FOV, size, name, id

3 % and alpha

4

5 clearvars

6

7 % imports files from directory we're in (all image files together)

8 FileList = dir('*.txt');

9

10 % number of files ( = total + sum of rest + ions )

11 N = size(FileList,1);

12

13 % load first file and set delimiter

14 filename = FileList(1).name;

15 delimiter = ' ';

16

17 % retrieve FOV

18

19 startRow = 3;

20 endRow = 3;

21 formatSpec = '%*s%*s%*s%*s%f%*s%f%*s%*s%[^\n\r]';

22 fileID = fopen(filename,'r');

23 textscan(fileID, '%[^\n\r]', startRow−1, 'ReturnOnError', false);

24 dataArray = textscan(fileID, formatSpec, endRow−startRow+1,
25 'Delimiter', delimiter, 'MultipleDelimsAsOne', true, 'ReturnOnError',

26 false);

27 fclose(fileID);

28

29 FOV = [dataArray{1:end−1}];
30

31 clearvars startRow endRow formatSpec fileID dataArray ans;

32

33 % retrieve SIZE

34

35 startRow = 9;

36 endRow = 9;

37 formatSpec = '%*s%*s%*s%f%*s%f%*s%f%*s%[^\n\r]';

38 fileID = fopen(filename,'r');

39 textscan(fileID, '%[^\n\r]', startRow−1, 'ReturnOnError', false);

40 dataArray = textscan(fileID, formatSpec, endRow−startRow+1,
41 'Delimiter', delimiter, 'MultipleDelimsAsOne', true, 'ReturnOnError',

42 false);
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43 fclose(fileID);

44

45 SIZE = [dataArray{1:end−1}];
46

47 clearvars startRow endRow formatSpec fileID dataArray ans;

48

49 % retrieve NAME

50

51 endRow = 1;

52 formatSpec = '%*s%*s%*s%s%*s%*s%*s%*s%[^\n\r]';

53 fileID = fopen(filename,'r');

54 dataArray = textscan(fileID, formatSpec, endRow, 'Delimiter',

55 delimiter, 'MultipleDelimsAsOne', true, 'ReturnOnError', false);

56 fclose(fileID);

57 NAME = dataArray{:, 1};

58

59 clearvars filename delimiter startRow endRow formatSpec

60 fileID dataArray ans;

61

62 IMAGECHAR{1,1} = NAME;

63 IMAGECHAR{2,1} = FOV;

64 IMAGECHAR{3,1} = SIZE;

65

66 clearvars NAME FOV SIZE;

67

68 alpha = cell(1,N−2);
69 id = ones(1,N−2);
70

71 for k = 3:N;

72

73 % loads individual txt file

74 filename = FileList(k).name;

75 delimiter = ' ';

76

77 % ID

78

79 startRow = 2;

80 endRow = 2;

81 formatSpec = '%*s%*s%*s%*s%*s%*s%f%*s%*s%[^\n\r]';

82 fileID = fopen(filename,'r');

83 textscan(fileID, '%[^\n\r]', startRow−1, 'ReturnOnError', false);

84 dataArray = textscan(fileID, formatSpec, endRow−startRow+1,
85 'Delimiter', delimiter, 'MultipleDelimsAsOne', true,

86 'ReturnOnError', false);

87 fclose(fileID);

88
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89 ID = [dataArray{1:end−1}];
90

91 id(1,k−2)=ID;
92

93 % ions

94 startRow = 2;

95 endRow = 2;

96 formatSpec = '%*s%*s%*s%s%*s%*s%*s%*s%[^\n\r]';

97 fileID = fopen(filename,'r');

98 textscan(fileID, '%[^\n\r]', startRow−1, 'ReturnOnError', false);

99 dataArray = textscan(fileID, formatSpec, endRow−startRow+1,
100 'Delimiter', delimiter, 'MultipleDelimsAsOne', true,

101 'ReturnOnError', false);

102 fclose(fileID);

103

104 IND_ION = dataArray{:, 1};

105

106 alpha{1,ID−1} = IND_ION;

107

108 end

109

110 clearvars k filename delimiter startRow endRow formatSpec

111 fileID dataArray ID IND_ION ans;

112

113

114 end

1 function [ temp ] = im_ionint2( FileList, IMAGECHAR, k )

2 %UNTITLED3 Summary of this function goes here

3 % Detailed explanation goes here

4

5 temp = cell(1,1);

6

7 filename = FileList(k).name;

8 delimiter = ' ';

9

10 startRow = 10;

11 %formatSpec = '%*s%*s%*s%f%*s%*s%*s%*s%*s%[^\n\r]';

12 formatSpec = '%*s%*s%*s%f%*s%*s%*s%*s%*s%*s%[^\n\r]';

13 fileID = fopen(filename,'r');

14 textscan(fileID, '%[^\n\r]', startRow−1, 'ReturnOnError', false);

15 dataArray = textscan(fileID, formatSpec, 'Delimiter',

16 delimiter, 'MultipleDelimsAsOne', true, 'EmptyValue' ,0.0,

17 'ReturnOnError', false);
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18 fclose(fileID);

19

20 clearvars filename delimiter startRow formatSpec fileID ;

21

22 temp{1,1} = sparse( [dataArray{1:end−1}] );

23

24 clearvars dataArray ;

25

26 end

1 clearvars

2

3 str1 = sprintf('%s − BEGIN PROSSEX', datestr(now));

4 disp(str1)

5 clearvars str1

6

7 % gather image information

8

9 [FileList,N,IMAGECHAR,id,alpha] = im_info;

10

11 save im_info.mat FileList N IMAGECHAR id alpha −v7.3;
12

13 clearvars alpha

14

15 % gather ion intensities (excl. total + sum of rest) in num1

16

17 num1 = cell(1,N−2);
18

19 for k = 3:N

20

21 [ temp ] = im_ionint2( FileList, IMAGECHAR, k );

22

23 num1(1,id(1,k−2)−1) = temp;

24

25 clearvars temp

26

27 str1 = sprintf('%s − FILE %d OF %d COMPLETE', datestr(now),k−2,N−2);
28 disp(str1)

29 clearvars str1

30

31 end

32

33 clearvars k FileList N IMAGECHAR id

34
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35 save num1.mat num1 −v7.3;
36

37 clearvars num1

38

39 str1 = sprintf('%s − OUTPUT SAVED', datestr(now));

40 disp(str1)

41 clearvars str1

1 clearvars

2

3 str1 = sprintf('%s − BEGIN PROSSEX', datestr(now));

4 disp(str1)

5 clearvars str1

6

7 % gather image information

8

9 load im_info.mat

10 clearvars N alpha id

11

12 % gather total ion intensities

13 [ total1 ] = im_ionint2( FileList, IMAGECHAR,1 );

14

15 save total1.mat total1 −v7.3;
16

17 clearvars

18

19 str1 = sprintf('%s − OUTPUT SAVED', datestr(now));

20 disp(str1)

21 clearvars str1

A.3 Matlab Code to Reshape Imported Data

1 % needed: IMAGECHAR, N, num1

2

3 str1 = sprintf('%s − BEGIN PROSSEX', datestr(now));

4 disp(str1)

5 clearvars str1

6

7 load im_info.mat

8 clearvars FileList alpha id

9 load num1.mat
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10

11 num=cell(IMAGECHAR{3,1}(1,3),N−2);
12

13 A=linspace(0,prod(IMAGECHAR{3,1}),IMAGECHAR{3,1}(1,3)+1);

14

15 for k = 1:N−2;
16

17 for l= 1:IMAGECHAR{3,1}(1,3) ;

18

19 num{l,k} = rot90( reshape( num1{1,k}(A(l)+1:A(l+1),1),

20 IMAGECHAR{3,1}(1,1),IMAGECHAR{3,1}(1,2) ) );

21

22 end

23

24 str1 = sprintf('%s − ION %d OF %d COMPLETE', datestr(now),k,N−2);
25 disp(str1)

26 clearvars str1

27

28 end

29

30 clearvars A k l num1 IMAGECHAR N

31

32 save num.mat num −v7.3;
33

34 clearvars num

35

36 str1 = sprintf('%s − END PROSSEX', datestr(now));

37 disp(str1)

38 clearvars str1

1 % needed: IMAGECHAR, total

2

3 str1 = sprintf('%s − BEGIN PROSSEX', datestr(now));

4 disp(str1)

5 clearvars str1

6

7 load im_info.mat

8 clearvars FileList N alpha id

9 load total1.mat

10

11 % reshape

12 total=cell(IMAGECHAR{3,1}(1,3),1);

13

14 A=linspace(0,prod(IMAGECHAR{3,1}),IMAGECHAR{3,1}(1,3)+1);
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15

16 for l= 1:IMAGECHAR{3,1}(1,3) ;

17

18 total{l,1} = rot90( reshape( total1{1,1}(A(l)+1:A(l+1),1),

19 IMAGECHAR{3,1}(1,1),IMAGECHAR{3,1}(1,2) ) );

20

21 end

22

23 clearvars IMAGECHAR total1 A l

24

25 save total.mat total −v7.3
26

27 clearvars total

28

29 str1 = sprintf('%s − END PROSSEX', datestr(now));

30 disp(str1)

31 clearvars str1

A.4 Matlab Code for the Normalisation of the Image Data

1 clearvars

2

3 str1 = sprintf('%s − BEGIN PROSSEX', datestr(now));

4 disp(str1)

5 clearvars str1

6

7 %load variables

8 load num.mat

9 load total.mat

10

11 % create new cell for normalised intensities

12 normalised = cell(size(num));

13

14 save normalised_v2.mat normalised −v7.3
15

16 clearvars normalised

17

18 % load matfile

19

20 m = matfile('normalised_v2.mat','Writable',true);

21

22 for k = 1:size(num,2)
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23

24 temp = cell(size(num,1),1);

25

26 for l=1:size(num,1)

27

28 temp{l,1} = num{l,k}./total{l,1};

29

30 temp{l,1}(isnan(temp{l,1})) = 0; % clears nan when total = 0

31

32 end

33

34 m.normalised(:,k) = temp;

35

36 str1 = sprintf('%s − ION %d OF %d COMPLETE', datestr(now),k,

37 size(num,2));

38 disp(str1)

39 clearvars str1 l temp

40

41

42 end

43

44 clearvars k m total num

45

46 str1 = sprintf('%s − OUTPUT SAVED', datestr(now));

47 disp(str1)

48 clearvars str1

A.5 Matlab Code to Calculate the PCA Loadings

1 % create a training set

2 % needs normalised, IMAGECHAR, amount of random pixels per plane

3

4 training=ones(1000*IMAGECHAR{3,1}(1,3),size(normalised,2));

5 L=linspace(0,1000*IMAGECHAR{3,1}(1,3),IMAGECHAR{3,1}(1,3)+1);

6

7 for l = 1:IMAGECHAR{3,1}(1,3);

8

9 A=randperm(IMAGECHAR{3,1}(1,1)*IMAGECHAR{3,1}(1,2),1000);

10 B=unique(A);

11 clearvars A

12

13 for k = 1:size(normalised,2);
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14

15 training(L(l)+1:L(l+1),k)=normalised{l,k}(B);

16

17 end

18

19 clearvars B

20

21 end

22

23 clearvars L l k

24

25 save analysis_normalised.mat training −v7.3
26

27 str1 = sprintf('TRAINING SET FORMED');

28 disp(str1);

29 clearvars str1

30

31 % calculate PCA coefficients

32

33 % [coeff,~,~,~,explained] =

34 % pca(training,'Algorithm','eig','Centered',false,'NumComponents',6);

35 % not centered pca

36

37 % [coeff,D] = eigs(cov(training)); % equivalent to centered pca (cov)

38

39 [coeff,D] = eigs(corr(training)); % equivalent to standardised pca (corr)

40

41 explained = (diag(D)/trace(D))*100; % variance as a percentage

42 clearvars D

43

44 save analysis_normalised.mat coeff explained −v7.3 −append
45

46 str1 = sprintf('PCA COEFF CALCULATED');

47 disp(str1);

48 clearvars str1

49

50 % transform alpha from cell to double, which can be used in bar

51 % needs alpha

52

53 ALPHA = ones(size(alpha));

54

55 for k = 1:size(alpha,2);

56

57 A = cell2mat(alpha{k});

58 A = str2double(A);

59 ALPHA(k)=A;
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60

61 clearvars A

62

63 end

64

65 clearvars k

66

67 % loadings plots

68 % needs ALPHA, coeff, explained

69

70 for k = 1:6 % chart for each PC

71

72 h = figure; % create figure

73 bar(ALPHA, coeff(:,k)) % bar chart for PC k

74

75 str1=sprintf('PC %d (%1.2f percent variance explained)', k, explained(k));

76 title(str1); % puts PC number and its explained variance in title

77

78 xlabel('m/z');

79 ylabel('loadings');

80

81 str2=sprintf('Loadings_normalised_PC%d', k);

82 saveas(h,str2,'fig') % save figure

83

84 close(h) % close figure

85

86 end

87

88 clearvars k h str1 str2

89

90 str1 = sprintf('LOADINGS PLOTS FORMED');

91 disp(str1);

92 clearvars str

A.6 Matlab Code to Calculate PCA Scores

1 % formation of scores

2 % needs normalised, IMAGECHAR, coeff, training

3

4 A=mean(training);

5 B=std(training);

6 %
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7 % clearvars training

8

9 normalised_SCORES = cell(IMAGECHAR{3,1}(1,3),6);

10

11 for l = 1:IMAGECHAR{3,1}(1,3);

12

13 data=ones(IMAGECHAR{3,1}(1,1)*IMAGECHAR{3,1}(1,2),size(normalised,2));

14

15 for k = 1:size(normalised,2);

16

17 data(:,k)=reshape(normalised{l,k},IMAGECHAR{3,1}(1,1)

18 *IMAGECHAR{3,1}(1,2),1);

19

20 end

21

22 data_stand =(data − (ones(size(data,1),1)*A))

23 ./(ones(size(data,1),1)*B);

24

25 scores = data_stand*coeff;

26

27 for k = 1:6

28

29 normalised_SCORES{l,k}=reshape( scores(:,k),IMAGECHAR{3,1}(1,1),

30 IMAGECHAR{3,1}(1,2) );

31

32 end

33

34 end

35

36 clearvars k l data data_stand scores

37

38 save scores.mat normalised_SCORES −v7.3
39

40 str1 = sprintf('SCORES FORMED');

41 disp(str1);

42 clearvars str1

A.7 Matlab Code to Form 3D Scores Images

1 datestr(now)

2

3 V = cell(max(Zr{1,1}(:)) − min(Zr{end,1}(:)) + 1,1);
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4 for l = 1:size(V,1)

5 V{l,1}=NaN(256,256);

6 end

7 clearvars l

8

9 %[I,J] = ind2sub(size(Zr{k,1}),find(Zr{k,1}==l));

10

11 MaxZR = max(Zr{1,1}(:));

12 MinZR = min(Zr{end,1}(:));

13

14

15 LS=linspace(MinZR,MaxZR,size(V,1));

16

17 for k = 1:size(Zr,1)

18

19 if max(Zr{k,1}(:)) > −11;
20

21 for l = 1:size(V,1);

22

23 A=find(Zr{k,1}==LS(l));

24

25 V{l,1}(A)=normalised_SCORES{k,3}(A);

26

27 clearvars A

28 end

29

30

31 end

32

33 clearvars k

34 %

35 % A=find(Zr{k,1}==l)

36 %

37 % V{1,1}(B)=normalised_SCORES{1,1}(B);

38 %

39 %

40 % V{l+1,1}=normalised_SCORES{k,1}(I,J);

41

42 end

43

44 datestr(now)

45

46 %

47 %

48 %

49 for l = 1:size(V,1)
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50

51 Vmat(:,:,l) = V{l,1};

52

53 end

54

55 clearvars l

56

57 for l = 1:size(V,1)

58

59 Z(:,:,l) = (ones([256,256])*(l−MaxZR+1)*0.060)−0;
60 X(:,:,l) = ones([256,1])*linspace(0, 250,256);

61 Y(:,:,l) = linspace(0, 250,256)'*ones([1,256]);

62

63 end

64

65 figure;

66 k=slice(X,Y,Z,Vmat,[],[],[−0.6:0.060:10.140]);
67 set(k,'edgecolor','none');

68 axis xy tight vis3d;

69 xlabel('x (\mum)','FontSize', 20)

70 ylabel('y (\mum)','FontSize', 20)

71 ylabel(colorbar,'principal component score','FontSize', 20)

72 zlabel('z (\mum)','FontSize', 20)

73 % title('PC1 (68.24 % variance explained)','FontSize', 20)

74 %caxis([0,10]);

75 daspect([4,4,1]);

76

77 for n=1:length(k)

78

79 set(k(n),'alphadata',get(k(n),'cdata'),'facealpha',0.25)

80

81 end

A.8 Supplementary Figures
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(a) PC1: full PCA result (left) and subsampled PCA result (right). The cosine similarity cos θ

between the loadings equals 0.99987.

(b) PC2: full PCA result (left) and subsampled PCA result (right). The cosine similarity cos θ

between the loadings equals 0.9989.

(c) PC3: full PCA result (left) and subsampled PCA result (right). The cosine similarity cos θ

between the loadings equals 0.9907.

Figure A.1: A visual comparison of the loadings obtained from full PCA and those

obtained from a PCA with the training set method.
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(d) PC4: full PCA result (left) and subsampled PCA result (right). The cosine similarity cos θ

between the loadings equals 0.984.

(e) PC5: full PCA result (left) and subsampled PCA result (right). The cosine similarity cos θ

between the loadings equals -0.965.

(f) PC6: full PCA result (left) and subsampled PCA result (right). The cosine similarity cos θ

between the loadings equals 0.96.

Figure A.1: A visual comparison of the loadings obtained from full PCA and those

obtained from a PCA with the training set method. (cont.)
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A.9 Supplementary Tables

Table A.2: Parameters of the Gaussian curves (aie−((xi−bi)/(ci))
2
) fitted to the gradient

of the average m/z = 91.05 (PS) intensity, m/z = 112.08 (PVP) intensity and

scores for PC1 in the z-direction, seen in Figure 3.15, to allow direct com-

parison between ion images and scores images. The depth resolutions ∆z

are calculated as 2σ and there is no significant difference between those cal-

culated with the ion images and those calculated with the scores as shown

by a pairwise t-test (P = 0.31).

Interface m/z 91.05 (PS) or m/z 112.08 (PVP) PC1 scores

ai bi (nm) ci (nm2) ∆z (nm) ai bi (nm) ci (nm2) ∆z (nm)

1 (PVP) 0.003996 1279 5.083 3.19 -1.346 1279 5.132 3.20

2 (PS) 0.010280 1080 7.087 3.76 0.9903 1079 7.181 3.79

3 (PVP) 0.003839 1029 5.400 3.29 -1.290 1029 5.540 3.33

4 (PS) 0.006753 810.3 10.90 4.67 0.6732 809.1 10.56 4.60

5 (PVP) 0.002134 764.6 9.882 4.45 -0.6745 764.6 10.69 4.62

6 (PS) 0.005647 544.0 13.08 5.11 0.5918 542.6 12.20 4.94

7 (PVP) 0.001923 500.5 10.65 4.62 -0.5838 500.1 12.38 4.98

8 (PS) 0.006661 275.6 10.58 4.60 0.6717 274.6 10.48 4.58

9 (PVP) 0.002146 228.3 9.854 4.44 -0.6844 228.6 10.58 4.60
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Supplementary Data to Chapter 4

B.1 Matlab Code for Interferometry Image Data Processing

Below is the Matlab code written for the processing of interferometry image data ob-

tained from the Fogale Nanotech Photomap 3D, a coherence scanning interferometer

(see section 1.6.3) with a 5x/0.12 objective and a camera size of 763× 573 (9.4 µm pix-

els). The raw data files were exported in a ASCII text file containing XYZ triplet data

(in µm). The data is imported into Matlab (Release 2013a, The MathWorks, Inc., Natick,

Massachusetts, United States) as three [437199× 1] columns.

The image is leveled using a baseline correction that consists of fitting a polynomial

equation which is then subtracted from the image. Next, the total roughness Rt and the

root-mean-square roughness Rq are calculated (see section 1.6.3). Finally, the array is

reshaped as a matrix. The Rt,av of the image is calculated as the average of the Rt values

for each individual y-profile line in the image. Finally, a surface heightmap is plotted.

1 % Surface plot of XYZ triplets

2

3 % Input data

4 disp('Surface plot of XYZ triplets');

5 X = input('Enter X (n x 1) : ');

6 Y = input('Enter Y (m x 1) : ');

7 Z = input('Enter Z (nm x 1) : ');

8 filename = input('Enter filename : ');

9

10 % Baseline correction

11 f = fit([X,Y], Z,'poly33','Exclude', Z > 1);

12 Zn=Z−f([X,Y]);
13

14 % Roughness parameters

147



APPENDIX B: SUPPLEMENTARY DATA TO CHAPTER 4

15 d = Zn−mean(Zn);
16 Rv = min(d(:));

17 Rp = max(d(:));

18 Rt = Rp − Rv

19 Rq = sqrt(mean(d.^2))

20

21 clearvars d Rv Rp

22

23 % Reshape data

24 Zr=rot90(reshape(Zn,763,573));

25

26 % Average Rt per y profile

27 for k = 1:size(Zr,2)

28 Rp(k)=max(Zr(:,k));

29 Rv(k)=min(Zr(:,k));

30 end

31 Rp_av = mean(Rp);

32 Rv_av = mean(Rv);

33 Rt_av = Rp_av − Rv_av

34

35 clearvars Rp Rv k

36

37 % Create figure

38 h=figure;

39

40 % Plot

41 clims = [Rv_av, Rp_av];

42 imagesc([min(X), max(X)],[min(Y), max(Y)],Zr,clims)

43

44 colormap(hot)

45 colorbar EastOutside

46 axis xy image

47

48 xlabel('x (\mum)')

49 ylabel('y (\mum)')

50 ylabel(colorbar,'z (\mum)')

51

52 str=sprintf('R_{t} = %f and R_{q} = %f', Rt,Rq );

53 title(str);

54

55 % Save figure

56 str1=sprintf('IF_%s', filename);

57 str2 = strrep(str1, '.', '_');

58 saveas(h,str2,'fig')

59

60 % Close figure
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61 close(h)

62

63 clearvars X Y Z Zn f filename h str str1 str2 clims ans Rp_av Rv_av
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B.2 Matlab Code for Aligning Images

This code aligns two images by rotation and scale change after manually picking cor-

responding points. It is used to align correlated microscopy, interferometry and ToF-

SIMS images.

The original and distorted images are first imported as grayscale images or trans-

formed to grayscale images (mat2gray). Matlab’s Control Point Selection Tool (cpse-

lect) is then used to pick pairs of control points, which are saved to the workspace. A

similarity transformation is fitted to the control points. Next, the scale and angle are

recovered from the geometric transformation. The distorted image is then transformed

to align with the original image. The mean-squared error between the two images is

calculated to provide a quantitative measure of alignment quality.

1 % show point matches

2 figure;

3 showMatchedFeatures(original,distorted,base_points,input_points);

4 title('Putatively matched points (including outliers)');

5

6 % estimate transformation

7 [tform, inlierDistorted, inlierOriginal] =

8 estimateGeometricTransform(input_points,base_points, 'similarity');

9

10 % display matching point pairs used in the computation of the

11 % transformation matrix

12 figure;

13 showMatchedFeatures(original,distorted, inlierOriginal, inlierDistorted);

14 title('Matching points (inliers only)');

15 legend('ptsOriginal','ptsDistorted');

16

17 % solve for Scale and Angle

18 Tinv = tform.invert.T;

19 ss = Tinv(2,1);

20 sc = Tinv(1,1);

21 scale_recovered = sqrt(ss*ss + sc*sc)

22 theta_recovered = atan2(ss,sc)*180/pi

23

24 % recover the original image by transforming the distorted image

25 outputView = imref2d(size(original));

26 recovered = imwarp(distorted,tform,'OutputView',outputView);

27

28 % compare recovered to original

29 figure, imshowpair(original,recovered,'montage')

150



APPENDIX B: SUPPLEMENTARY DATA TO CHAPTER 4

30

31 % image MSE

32 MSE = mean((original(:)−recovered(:)).^2)
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B.3 Matlab Code for Z-Offset Correction

Based on a vector containing the scores of a principal component differentiating be-

tween substrate and the material on the substrate, it is possible to calculate the z-offset

correction for ToF-SIMS images with topography. First, the scores matrix is converted

into a matrix [pixels × scans] where each column is a xy-pixel’s z-profile of the scores’

values. Next, the first row number (i.e. scan number) for which the score value < 0

is determined for each xy-pixel’s z-profile. If there is none such row, the maximum

number of scans is assigned instead. Then, a matrix with new scan numbers, where

the interface is defined as scan 0, is created and reshaped into scan resolved images.

Finally, a heightmap of the surface topography is produced with z the number of scans

removed from the interface.

1 % z−offset correction based on PC scores

2

3 % total number of scans

4 SN = size(normalised_SCORES,1);

5

6 % create matrix where each column is a xy−pixel's z−profile
7 for k = 1:SN

8 pp(:,k) = normalised_SCORES{k,1}(:);

9 end

10

11 clearvars k

12

13 % find row number of first score value < 0 for each pixel

14 % if there is none, assign max number of scans instead

15 % create matrix with new scan numbers (interface = 0)

16 for k = 1:size(pp,1)

17 zero = find(pp(k,:) < 0,1,'first');

18 TF = isempty(zero);

19 if TF == 1

20 zero = SN;

21 end

22 Z(k,:)= linspace(zero−1,−SN+zero,SN);
23 end

24

25 clearvars k zero TF

26

27 % reshape Z−matrix into scan resolved images

28 Zr=cell(SN,1);

29
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30 for l= 1:SN

31 Zr{l,1} = reshape(Z(:,l),size(normalised_SCORES{1,1},1),

32 size(normalised_SCORES{1,1},2));

33 end

34

35 clearvars l Z SN pp

36

37 % create heightmap

38 h = figure;

39 imagesc([0, IMAGECHAR{2,1}(1)],[0, IMAGECHAR{2,1}(2)],Zr{1,1});

40 colormap(hot);

41 colorbar;

42 axis xy image;

43 xlabel('x (\mum)');

44 ylabel('y (\mum)');

45 ylabel(colorbar, 'z (number of scans removed from the interface)');

46 title('Surface Heightmap in Number of Scans');

47

48 % save z−file
49 save zfile_pc1.mat Zr −v7.3
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B.4 Matlab Code for Determining the Sputter Yield

If one possesses a scores based z-offset image and a corresponding interferometry

heightmap, the z-offset correction can be calibrated by fitting the scores based z-offset

image to the interferometry heightmap using a linear function. The pixel values of the

scores based z-offset image represent the number of scans needed to reach the sub-

strate interface. Therefore, the slope of the linear function represents the sputter yield

(nm/scan) and the intercept represents the layer thickness (nm) of the lowest point in

the interferometry heightmap. It is important to note this assumes a constant sputter

yield through the cellular material. If necessary, the interferometry image is first trans-

formed to obtain an aligned (i.e. rotated and scaled) image with the same size as the

scores based z-offset image using feature matching (see Section B.2).

The interferometry and z-offset corrected heightmap are transformed into vectors be-

fore applying a first degree fit. Then the standard deviation of the coefficients and

the R2 of the linear fit are calculated. The scaled z-offset correction is calculated and

reshaped into a matrix. The mean squared error (MSE) is then calculated in order to

calculate the peak signal-to-noise ratio (PSNR) between the scaled z-offset heightmap

and the interferometry heightmap. Finally, both images are plotted next to each other

for comparison.

1 % fitting sputterspeed and offset

2

3 %load data

4 H = IF_trans(:);

5 N = Zr_PC1{1,1}(:);

6

7 % least−squares polynomial fit of degree 1

8 [p,s] = polyfit(N,H,1);

9

10 % calculate standard deviation of coefficients and R2

11 SD = sqrt(diag(inv(s.R)*inv(s.R'))./s.normr.^2./s.df);

12 R2=1 − s.normr^2 / norm(H−mean(H))^2;
13

14 clearvars s

15

16 % form scaled image

17 E1 = (N*p(1)) +p(2);

18 E2 = reshape(E1,256,256);

19

20 % calculate MSE between images
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21 MSE = mean((E1−H).^2);
22

23 % calculate PSNR between images

24 PSNR = log ((max(IF_trans(:))^2) / (MSE))*10;

25

26 clearvars E1 H N

27

28 % compare scaled to original heightmap

29 h=figure;

30 h1 = subplot(1,2,1);

31 imagesc(IF_trans)

32 axis xy image

33 colormap(hot)

34 colorbar

35 caxis([min(E2(:)) max(E2(:))])

36 xlabel('x (\mum)','FontSize',20)

37 ylabel('y (\mum)','FontSize',20)

38 ylabel(colorbar,'z (\mum)','FontSize',20)

39 title('Interferometry (original)','FontSize',20)

40 h2 = subplot(1,2,2);

41 imagesc(E2)

42 axis xy image

43 colormap(hot)

44 colorbar

45 xlabel('x (\mum)','FontSize',20)

46 ylabel('y (\mum)','FontSize',20)

47 ylabel(colorbar,'z (\mum)','FontSize',20)

48 title('Z−corrected PC1 (scaled)','FontSize',20)

49 linkaxes([h2,h1])

50

51 saveas(h,'scaling.fig')

52

53 clearvars h h1 h2 E2
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B.5 Supplementary Figures
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(a) DIC microscopy image

(20x) of neuronal cells.

(b) Bright-field microscopy

image (20x) of freeze-

dried neuronal cells.

(c) White light interferom-

etry heightmap of the

freeze-dried neuronal

network (Rt,av = 6.25 µm,

Rq = 0.52 µm).

(d) DIC microscopy image

(20x) of neuronal cells.

(e) Bright-field microscopy

image (20x) of freeze-

dried neuronal cells.

(f) White light interferom-

etry heightmap of the

freeze-dried neuronal

network (Rt,av = 7.10 µm,

Rq = 0.58 µm).

(g) DIC microscopy image

(20x) of neuronal cells.

(h) Bright-field microscopy

image (20x) of freeze-

dried neuronal cells.

(i) White light interferom-

etry heightmap of the

freeze-dried neuronal

network (Rt,av = 5.88 µm,

Rq = 0.51 µm).

Figure B.1: Correlative imaging of neuronal cell networks before and after freeze-

drying.
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(a) 3D scores image.

(b) Loadings plot.

Figure B.2: PCA of the neuronal cell network: PC1 explains 48.8% of the variance.

The positive loadings of PC1 correspond to fragments associated with bio-

organic material and the negative loadings correspond to inorganic ions

specific for the borosilicate glass substrate such as B+ (m/z 11), Al+ (m/z

27) and Si+ (m/z 28).
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(a) Calculation of the SNR for the average Si+ intensity in the z-direction. The SNR equals

13.

(b) Calculation of the SNR for the average PC1 scores in the z-direction. The SNR equals

25, which is 1.9 times that of the average Si+ intensity.

Figure B.3: Using a linear combination of ion intensities (i.e. the PCA loadings) in-

stead of a single ion has the advantage of increased SNR, leading to an

improved z-correction. As a result, a heightmap that resembles the optical

image more closely is obtained (see Figure 4.5).
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Figure B.4: The normalised mass spectrum in the positive polarity of propidium io-

dide. The m/z labelled peaks correspond to C4H10N+ (m/z 72), C5H12N+

(m/z 86), C5H13N+· (m/z 87), [C8H19N.Cl]+ (m/z 164), C27H34N4
2+

(m/z 207), C13H12N3
+ (m/z 210), C16H16N3

+ (m/z 250), [C8H19N.I]+

(m/z 256), C19H16N3
+ (m/z 286), C20H17N3

+ (m/z 298), [C22H21N3.Cl]+

(m/z 362), C25H29N4
+ (m/z 385) and [C22H21N3.I]+ (m/z 454).

Figure B.5: The normalised mass spectrum in the negative polarity of propidium io-

dide. The m/z labelled peaks correspond to CH− (m/z 13), CN− (m/z

26), C3N− (m/z 50), I− (m/z 127), I2
− (m/z 254), NaI2

− (m/z 277), and

I3
− (m/z 381).
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Figure B.6: The normalised mass spectrum in the positive polarity of calcein-AM. The

m/z labeled peak corresponds to C21H9O6
+ (m/z 357).

Figure B.7: The normalised mass spectrum in the negative polarity of calcein-AM.
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(a) Bright-field. (b) Interferometry. (c) Heightmap based on

PC1.

Figure B.8: Scaling of the z-offset corrected heightmap based on PC1 of stained, neu-

ronal cells investigated with ToF-SIMS in the positive polarity. A) Bright-

field microscopy image (10×) of freeze-dried neuronal cells stained with

calcein-AM and propidium iodide. Several neurons can be seen as well

as their axons and dendrites. B) White light interferometry heightmap

(Rq = 1.05, Rt,av = 5.4) of the part of the neuronal network investigated

with ToF-SIMS. C) Scaled z-offset corrected heightmap (Rq = 0.64, Rt,av

= 2.50) based on the scores of principal component 1, which differentiates

the borosilicate glass substrate from cellular material, by fitting the z-offset

image to the interferometry heightmap. The result is a heightmap very

similar to that obtained with the interferometer so that the peak signal-to-

noise ratio (PSNR) equals 63 dB. The calculated sputter yield equals 21.2

nm/scan and the layer thickness of the lowest point in the interferometry

heightmap equals 44.1 nm.
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(a) Bright-field. (b) Interferometry. (c) Heightmap based on

PC1.

Figure B.9: Scaling of the z-offset corrected heightmap based on PC1 of stained, neu-

ronal cells investigated with ToF-SIMS in the negative polarity. A) Bright-

field microscopy image (10×) of freeze-dried neuronal cells stained with

calcein-AM and propidium iodide. Several neurons can be seen as well

as their axons and dendrites. B) White light interferometry heightmap

(Rq = 0.69, Rt,av = 3.72) of the part of the neuronal network investigated

with ToF-SIMS. C) Scaled z-offset corrected heightmap (Rq = 0.27, Rt,av

= 1.18) based on the scores of principal component 1, which differentiates

the borosilicate glass substrate from cellular material, by fitting the z-offset

image to the interferometry heightmap. The result is a heightmap very

similar to that obtained with the interferometer so that the peak signal-to-

noise ratio (PSNR) equals 64 dB. The calculated sputter yield equals 7.0

nm/scan and the layer thickness of the lowest point in the interferometry

heightmap equals 206.2 nm.
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C.1 Supplementary Tables
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Table C.1: Identified mass peaks for cellular material (lipids and amino acids) used

to select relevant mass peaks for comparison between the mass spectra of

freeze-dried and frozen-hydrated cellular material. The nominal masses

(nom. m/z), molecular formulas and their assignments were obtained from

literature [112, 124, 131]. Three-letter abbreviations are used for amino

acids and PC indicates phosphatidylcholine. Furthermore, the observed

m/z (obs. m/z), mass accuracy (mass acc.) and normalised ion intensity

per pixel (norm. ion int. per pixel) are given for both freeze-dried and

frozen-hydrated cellular material. The normalised ion intensities per pixel

are the ones graphically presented in Figure 5.5.
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