
Capriotti, Paolo (2017) Models of type theory with strict
equality. PhD thesis, University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/39382/1/thesis.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution licence and may be
reused according to the conditions of the licence. For more details see:
http://creativecommons.org/licenses/by/2.5/

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/84342446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk

University of Nottingham

School of Computer Science

Models of Type Theory with
Strict Equality

Paolo Capriotti

A thesis submitted to the University of Nottingham for the
degree of

Doctor of Philosophy

July 2016

i

Abstract

This thesis introduces the idea of two-level type theory, an extension of Martin
Löf type theory [27] that adds a notion of strict equality as an internal primitive.

A type theory with a strict equality alongside the more conventional form of
equality, the latter being of fundamental importance for the recent innovation
of homotopy type theory (HoTT), was first proposed by Voevodsky [38], and
is usually referred to as HTS.

Here, we generalise and expand this idea, by developing a semantic frame-
work that gives a systematic account of type formers for two-level systems, and
proving a conservativity result relating back to a conventional type theory like
HoTT.

Finally, we show how a two-level theory can be used to provide partial solutions
to open problems inHoTT. In particular, we use it to construct semi-simplicial
types, and lay out the foundations of an internal theory of (∞, 1)-categories.

ii

Acknowledgements

I would like to thank the members of the Functional Programming Laboratory
of the University of Nottingham, and in particular my supervisor Venanzio
Capretta, for their advice and support, and for providing an excellent and
stimulating research environment.

Thorsten Altenkirch, Nicolai Kraus and Christian Sattler deserve particular
thanks for countless discussions, type theory meetings, and reading groups, all
of which made the time of my PhD extremely enjoyable and fruitful.

And most of all, I would like to express my gratitude to my wife, Elisa, without
whose support and encouragement, I would have certainly not made it to this
point. Thank you!

CONTENTS

1 introduction 1
1.1 Overview . 2
1.2 Contributions . 4

1.2.1 Declaration of authorship 5
1.3 Related Work . 5
1.4 Fundaments of type theory . 6

1.4.1 Contexts . 6
1.4.2 Morphisms . 6
1.4.3 Types . 7
1.4.4 Terms . 7
1.4.5 Substitutions . 8
1.4.6 Dependent products . 9
1.4.7 Dependent sums . 9
1.4.8 Equality . 9
1.4.9 Propositions as types . 10
1.4.10 Other structures . 11

1.5 Homotopy Type Theory . 11
1.6 The problem of “infinite structures” 13
1.7 Internalising strict equality . 15

2 type theory and type formers 17
2.1 Categories with families . 17

2.1.1 Notation . 19
2.1.2 Presheaves . 20
2.1.3 Basic type formers . 23
2.1.4 Morphisms . 30
2.1.5 The Yoneda embedding for CwFs 31
2.1.6 Presheaf universes . 32
2.1.7 More notational conventions 33
2.1.8 Fibrations and contextuality 34

2.2 The Rule Framework . 36
2.3 Type formers and structures . 39
2.4 Examples . 39
2.5 Morphisms . 42
2.6 Composition of morphisms . 45
2.7 Special type formers . 46
2.8 Systems of universes . 48

2.8.1 Univalent universes . 50

iii

Contents iv

2.9 Further work . 51

3 two-level type theory 53
3.1 The simplicial model . 54
3.2 Presheaf models . 55

3.2.1 Lifting type formers . 55
3.2.2 Regular models . 57
3.2.3 Conservativity . 61

3.3 Two-level type formers . 62

4 type theory with strict equality 64
4.1 Introduction . 64

4.1.1 Differences with HTS . 65
4.2 Basic notions . 66
4.3 Fibrant replacement . 67
4.4 Reedy fibrant diagrams . 69

4.4.1 Essentially fibrant types and fibrations 69
4.4.2 Strict Categories . 70
4.4.3 Limits and colimits . 71
4.4.4 Inverse Categories . 72
4.4.5 Reedy Fibrant Limits . 72
4.4.6 Fibrant Limits and Semi-Simplicial Types 74

4.5 Reedy-Fibrant Replacement . 75
4.6 Semi-Segal types . 76

4.6.1 Preliminaries . 77
4.6.2 Nerve of a strict category 80
4.6.3 Maps of semi-Segal types 82
4.6.4 Completeness . 82

4.7 Further work . 84

1
INTRODUCTION

Type theory is a foundational framework for mathematics which can also be
regarded as a programming language. The central concept of type theory is of
course that of a type: an entity that plays the double role of a logical statement
(a “proposition”) and of a collection (a “set”).

The sort of type theory developed in this thesis is more specifically referred to
as Martin-Löf dependent type theory [27], because it is based on the idea that
types can depend on values. This, together with a few basic primitives, makes
the corresponding calculus powerful enough to express most fundamental math-
ematical ideas, including universal and existential quantification, functions, or-
dered pairs, etc.

In recent years, a new branch of type theory, called homotopy type theory
(HoTT) (section 1.5) has arisen. The main revolution of HoTT consists in em-
bracing the higher dimensional structure of equality, and using it to interpret
types not just as sets, but as topological spaces up to homotopy equivalence.

This has made it possible to formalise classical results of homotopy theory syn-
thetically, that is, without reference to the underlying representation of topo-
logical spaces - be it as sets equipped with a collection of open subsets, or
any other formulation, possibly more well-behaved in a constructive setting.
Instead, spaces are studied abstractly, their features and properties derived
simply from those of the types that represent them. This has made the formu-
lations and proofs of homotopical facts extremely elegant and streamlined, cast
new light on seemingly well-understood results, and suggested new directions
of research.

The interest of homotopy type theory lies in the fact that, by using its un-
derlying type theoretic language, one is restricted to constructions that are
automatically homotopy-invariant: any concept, or definition, or result, by the
mere fact of having been expressed “internally”, is guaranteed to remain valid
when spaces are replaced with equivalent ones.

This fundamental homotopy-invariance property crystallises into the princi-
ple of univalence, probably the most important technical innovation of HoTT,
which roughly states that (homotopy) equivalent types are equal. Equality here

1

1.1 overview 2

is not meant in a strict sense (i.e. equal types will not be interpreted as the
same object in a model), but rather as the existence of some kind of “path” in
the universe connecting the two types.

If follows that equality, despite still adhering to its defining property of being
preserved by all constructions, is not a mere proposition anymore: it may
possess non-trivial structure. Paths themselves form a type, and their notion
of equality is also subject to the same considerations. Here we see how directly
some of the most familiar constructions in classical homotopy theory, such as
homotopy groups, arise internally in the language of HoTT.

Unfortunately, HoTT, and its homotopy invariant nature, impose some funda-
mental constraints on the kind of constructions that we are allowed to perform
internally. Any classical definition whose (possibly ultimately irrelevant) de-
tails depend on more than the homotopy type of the spaces involved, needs to
be reworked to fit into the framework of HoTT.

Sometimes, of course, this is not possible, as not all classical results hold in
HoTT (a famous example is Whitehead’s theorem, that only holds for truncated
types in HoTT [36]). Other times, it looks as though it should be possible to
provide an internal analogue of a classical notion, but all naive attempts fail.

The most prominent example of such a notion is that of semi-simplicial types,
which we explain in section 1.6. Giving a satisfactory account of this and similar
“infinite coherence” problems is the main motivation behind this thesis.

1.1 overview

Type theory, especially if directly introduced as a mathematical foundation, is
usually presented as a collection of inference rules. Where the usual foundations
of mathematics are based on some (often not clearly specified) form of first order
logic, on top of which the well-known axioms of Zermelo-Fraenkel set theory [41]
are laid out, the rules of type theory form a single corpus that describes both
the logical and the set-theoretical aspects of mathematics (and much more, as
will be clear later when we will describe homotopy type theory).

In this thesis, we follow a slightly unconventional path: we define an algebraic
notion of model of type theory, as a category equipped with the logical structure
necessary to talk about types. The syntax of type theory, then, instead of being
implicitly defined by a set of rules, is taken to be the initial model in our setting.

The advantage of our approach is that we do not have to deal with all the syn-
tactical complications of name binding, type derivations or congruence rules for
definitional equality (see for example [18]). In fact, the initial model (provided
it exists), is in particular a model, hence it comes equipped with all the struc-
ture and satisfies all the axioms that we require. Furthermore, and even more

1.1 overview 3

obviously, there is no “initiality theorem” [34] to be proved, as the syntax is
initial by definition.

The disadvantage is that, since the syntax doesn’t natively possess a notion
of name binding, writing out terms explicitly in the language of the model
can be cumbersome, and it makes for expressions that are extremely hard to
read. We will subvert this issue by devising a number of notational conventions
(sections 2.1.1 and 2.1.7) that will make it possible to work in models of type
theory as if they had name binding, making constructions in a generic model
essentially indistinguishable from their completely syntactical counterparts.

The thesis consists of an introductory chapter (chapter 1), followed by three
main chapters. In chapter 2 we lay out our algebraic approach to models of type
theory. In chapter 3, we extend our framework to cover two-level models and
prove a conservativity result. Finally, in chapter 4, we fix a particular instance
of two-level type theory, and give some examples of what can be achieved by
working internally in such a theory.

Our definition of model of type theory is based on categories with families (CwF,
[11]), although our definition differs slightly from the original in non-essential
ways (section 2.1). We introduce and motivate a number of basic type formers
(section 2.1.3) using presheaves, and the fact that presheaf categories have a
natural CwF structure (section 2.1.2).

Once we have enough basic type formers under our belt, we will give a general
definition of “type former” (section 2.2), and show how the basic ones defined
previously can also be regarded as instances of the general definition.

We will then introduce two-level models of type theory, where two different
type theories are combined in a single system. This kind of structure naturally
arises when studying certain homotopical models of type theory: types can be
divided into fibrant and strict, resulting in two “parallel” type theories, with
possibly different sets of type formers.

Perhaps surprisingly, with enough assumptions on the type formers involved, a
two-level type theory is conservative over its fibrant fragment (section 3.2.3),
meaning that proofs and constructions using the full two-level theory can always
be reworked so that they only use the fibrant fragment, as long as the end result
is itself fibrant. The proof mimics that of a similar result on the conservativity
of the Logical Framework [18].

The idea of the conservativity proof is straightforward, but is unfortunately
made complicated by issues of strictness of coercion of fibrant types into strict
types (section 3.2). We work around the strictness issues by defining the notion
of regularity for models (section 3.2.2).

Finally, we will move completely inside a two-level model, and work in the
internal language of the corresponding type theory (chapter 4), in the style of

1.2 contributions 4

[36]. We choose a two-level type theory inspired by Voevodsky’s HTS [38], but
more minimalistic (section 4.1.1).
In our flavour of two-level type theory, we develop the notion of Reedy fibrant
diagram, and show how they can be classified by fibrant types. In particular,
this yields a definition of semi-simplicial type, a notion that has so far eluded
all attempts at formalisation in conventional HoTT.
Our construction resembles the one in [17], however, in the latter, a specific
consequence of the existence of strict equality has to be assumed in order for
the construction to go through. We, instead, build on the general idea of Reedy
fibrancy, and make no ad-hoc assumption beyond the general setup of two-level
type theory.
From that, we lay out the foundations of an internal development of higher
category theory, starting from the definition of complete semi-Segal type (defi-
nition 4.6.8), and showing why this is a good candidate for a notion of category
that is powerful enough to include all the reasonable “categorical” structures
present in HoTT, while at the same time allowing all the familiar categorical
constructions to be performed within the constraints of type theory.
Most of the mathematical content of this thesis is based on a constructive meta-
theory. We do not make use of classical principles like the law of excluded
middle or the axiom of choice. One exception is the overview of the simplicial
model of HoTT given in section 3.1, since the construction referenced in [21] is
explicitly non-constructive. 1

1.2 contributions

The main contributions of this thesis are as follows:
• We develop a systematic and generic theory of type formers: a single

notion that can be instantiated to cover all known examples of what are
usually referred to as type formers. This is inspired by the ideas of the
Logical Framework [16], but our presentation is completely semantic in
nature, and can be used to state and prove metatheoretical results about
models of type theory without fixing a particular set of type formers in
advance.

• We define the notion of two-level type theory, making precise and gener-
alising the ideas underlying the HTS theory proposed by Voevodsky [38].
We prove a conservativity result, which implies, among other things, that
two-level type theory can be used as a “schematic” language for working
with infinite families of objects in a conventional type theory.

1 There do exist attempts at building models of HoTT in a constructive setting [14] [7], but
they are still relatively incomplete and poorly understood, hence we do not rely on them in
this thesis.

1.3 related work 5

• We show how a particular minimalistic flavour of two-level type theory,
similar to HTS, can be used to give partial solutions to some of the most
pressing open problems in HoTT. In particular, we give a definition of
semi-simplicial type, and use it to lay out the foundation of an internal
theory of (∞, 1)-categories in type theory.

In particular, this thesis contains proofs of the following results:
• theorem 3.2.4, showing that any type former on a CwF can be lifted to

the fibrant universe of its presheaf category;
• theorems 3.2.9 and 3.2.13, drawing a correspondence between a regular

model of type theory and the two-level model given by its presheaf cate-
gory;

• theorem 3.2.14, providing a way to prove statements in HoTT using a
two-level system;

• theorem 4.5.4, showing how to construct a Reedy fibrant replacement for
any inverse diagram in a two-level system;

• theorem 4.3.1, exhibiting an inconsistency of a general fibrant replacement
operator in a two-level system with non-0-truncated fibrant types (see
section 1.5).

1.2.1 Declaration of authorship

Section 1.4 and section 2.1 contain background material about semantic models
of type theory. Most of the definitions and results of these sections can be
found in the literature, but their presentation has been reworked to fit with the
constructions introduced later.
Most of the material of chapter 4 is joint work with Thorsten Altenkirch and
Nicolai Kraus. The definition of semi-simplicial types and, more generally,
Reedy fibrant diagrams, and most of the preliminary content leading up to
that, including parts of section 1.6, have been published in [4].
The rest of the thesis is original work of the present author.

1.3 related work

The main ideas of this thesis are inspired by Voevodsky’s proposal of a homotopy
type system (HTS), which can be found in [38].
In [8], the authors present a version of a two-level type theory with a fibrant
replacement operator, which would be inconsistent in the formulation of this
thesis (theorem 4.3.1), to derive a model structure on the universe of strict
types.

1.4 fundaments of type theory 6

A two-level type theory is developed in [26]. Their motivation, however, is
substantially different, hence the resulting theory has little resemblance with
the two-level type theory developed in this thesis.

A lot of work from several authors has recently gone into trying to develop
a systematic and rigorous framework for working with models of type theory.
Chapter 2 contains one such (partial) attempt. Similar work going in the same
general direction can be found in [1, 3, 29, 39, 40].

1.4 fundaments of type theory

To motivate the definitions of chapter 2 we will begin by exploring the basic con-
cepts of intuitive type theory, and show how their desired properties translate
directly into categorical structures.

1.4.1 Contexts

The fundamental notion of type theory is that of dependent type. For the idea
of dependent type to even make sense, however, we first need to state what it
is exactly that a type can depend on. This is how we arrive to the notion of
context.

A context represents a list of assumptions, each assumption being essentially
made up of variable name and a type. Every theorem is always stated and
proven relatively to some context.

Whenever, in informal mathematics, we say something like “let n be a natural
number, R a commutative ring, and M a free R-module of rank n”, we are
effectively defining a context Γ containing the three variables n, R, and M ,
having the stated types.

This simple example already shows one important characteristic of contexts:
the type of a variable is allowed to depend on previously introduced variables.
That is, of course, essential if we want to model the idea of dependent types.

Despite the intuition of contexts being essentially lists of pairs, in the following
we will take a more axiomatic approach: we will take a collection of contexts
C as given, and work out the structure that this collection ought to possess in
order to model the intuitive idea described above.

1.4.2 Morphisms

It is natural to require that contexts form a category.

1.4 fundaments of type theory 7

In fact, assumptions can intuitively be instantiated in the context given by some
other assumptions. For example, if Γ denotes the context defined above, with
variables n, R, M , and ∆ is the context in which we have a natural number m,
and field k, we can “interpret” Γ into ∆ by setting, for example,

n 7→ m

R 7→ k

M 7→ km
(1)

This would define a morphism from ∆ to Γ in the category C. It will be clear in
chapter 2, once we have a complete definition of CwF, how to make morphism
definitions like (1) precise.

The category C should have a (distinguished) terminal object 1. We call 1 the
unit context, and think of it as the context where no assumptions have been
made. This is consistent with our interpretation, as there should be a unique
way to instantiate the unit context in any other context.

1.4.3 Types

Now we can finally move to the central concept: types. Given a context Γ, a
type A over Γ should be defined as something that allows one to talk about:

• the context extension Γ.A, which is to be thought of as the result of adding
a new variable of type A to the existing context Γ

• the display map pA : Γ.A→ Γ, which is the interpretation of the extended
context into the original one obtained by simply “forgetting” about the
extra variable.

Note that the above data is exactly what is required to give an object of the
slice category C/Γ. Therefore, any type should determine such an object.

This will be made precise in chapter 2 in the context of a CwF. However, to
motivate the general definition, we will first leave things at an intuitive level,
assume that we have a way to map types over Γ (whatever they are) to objects
in C/Γ, and investigate the structure and properties that this mapping should
have.

1.4.4 Terms

Given a type A over the context Γ, a term a of type A is a morphism

a : Γ→ Γ.A

1.4 fundaments of type theory 8

that is a section of the display map pA, i.e. such that pA ◦ a = id.

The idea of this definition is that a term of type A is defined to be exactly what
is required to give an interpretation of the extended context Γ.A in the context
Γ. The property of being a section says that the interpretation does not touch
any of the other assumptions.

To express the fact that a is term of type A over the context Γ, we will write
the judgement

Γ ` a : A

or simply a : A, when the context is clear.

For technical reasons, although terms can be regarded as a defined notion, we
will take them as primitive in definition 2.1.1 below. Of course, the characteri-
sation as sections is still valid, and will be proved as proposition 2.1.2.

1.4.5 Substitutions

Given a morphism σ : ∆ → Γ, which we regard as a way to interpret the
assumptions in Γ in terms of the assumptions in ∆, there should be a way to
transport types and terms over Γ to, respectively, types and terms over ∆. In
fact, if the context Γ can be interpreted in ∆, then everything we can state and
prove in Γ should make sense in ∆ as well.

In particular, given a type A over Γ, there should exist a type A[σ] over ∆, and
a morphism σ+ : ∆.A[σ]→ Γ.A, which we refer to as σ extended with A.

The property of being able to transport terms of type A to terms of type A[σ]
can be expressed concisely by requiring that the following square

∆.f∗A σ+ //

pA[σ]

��

Γ.A
pA
��

∆ σ // Γ

(2)

be a pullback.

In fact, the commutativity property states that the extended morphism behaves
like σ on the assumptions in ∆, while the universal property of the pullback
is equivalent to saying that terms a of type A can be uniquely transported to
terms of type A[σ] in a way that is compatible with the extended morphism
σ+.

If C has (distinguished) pullbacks, every σ : ∆→ Γ determines a functor −[σ] :
C/Γ→ C/∆, so the condition above can be expressed in any such category. We
refer to −[σ] as the substitution (or pullback, or reindexing) functor.

1.4 fundaments of type theory 9

1.4.6 Dependent products

In order to define a notion of “function” internal to our system, we need to be
able, given types A and B over some context Γ, to define a type A→ B, whose
terms can be thought of as functions from A to B.

More generally, given a type A over Γ, and a type B over Γ.A, we want to define
a type of dependent functions from A to B, the so called dependent product of
A and B, which we denote by ΠAB.

Terms of ΠAB can be thought of as functions whose result type depends on the
argument. Alternatively, one can think of ΠAB as an internalised form of the
categorical product of a family of types.

We define dependent products rigorously in definition 2.1.20, but for now, we
can think of ΠAB as defined by the fact its terms are in natural bijective
correspondence with terms of type B in the context Γ.A. This expresses the
idea that a function is completely characterised by its value on a “generic”
element of its domain.

1.4.7 Dependent sums

The idea of dependent sums generalises the notion of binary product.

Given a type A over Γ, and a type B over Γ.A, the dependent sum of A and
B, denote ΣAB, intuitively represents the type of all pairs of terms a and b,
where a : A and b : B[a]. Dually to dependent products, dependent sums can
be thought of as an internal version of the coproduct of a family of types.

Again, we will later give a precise definition of Σ (definition 2.1.22), but for
now, we can think of ΣAB as a type characterised by the fact that its terms
are in bijective correspondence with pairs of terms as above.

1.4.8 Equality

The final essential idea that we will require in order to replicate basic logic and
set theoretical constructions in our system is that of equality.

The “structural” nature of the kind of system that we are set to create implies
that we should only be allowed to consider equality between terms of the same
type.

Given a type A in the context Γ, and terms a, b : A, we can then form an equality
type a = b. This is the first point in our development where the type-theoretic
incarnation of a concept differs substantially with its conventional set-theoretic
counterpart.

1.4 fundaments of type theory 10

In the usual classical foundations of mathematics (e.g. ZFC over some form of
first-order logic), equality of sets is not itself a set, but a meta-theoretic entity.
In other words, equality of mathematical objects is not itself a mathematical
object.
One can of course remedy this somewhat by reifying equality into a set as
follows: define the equality set [a = b] of a and b as the equaliser 2

[a = b] // 1
b
//

a // X

regarded as a subobject of a canonically specified terminal object 1 in Set (e.g.
the ordinal 1).
This is indeed one way to interpret type theoretic equality in terms of sets, but
the advantage (or the curse, depending on how one looks at it) of the type-
theoretic account is that it is much more general, and the notion of equality set
described above is but one of many possible interpretations.
We will define one version of equality precisely in definition 2.1.24, and another
one later in section 2.4. Again, for this introductory discussion, we will limit
ourselves to an informal characterisation: the equality type a = b is defined by
the following two features:

• a canonical term refl : a = a;
• a “substitution” principle: a term p : a = b can be used to reduce any

construction involving b (and possibly p itself) into one in terms of a (and
refl).

The first feature simply expresses the fact that every object should be equal to
itself (and gives us a concrete witness of the fact). The second formalises the
idea that equal objects are indistinguishable from within the theory.

1.4.9 Propositions as types

Equality as a type is but one example of a general pattern in type theory:
propositions, i.e. statements about mathematical objects, are themselves math-
ematical objects and can be studied as such.
The idea is that if a type A is thought of as a proposition, then its terms
are interpreted as witnesses of the truth of A, or, in other words, as pieces of
evidence for A.
Interestingly, all the structures introduced above have a sensible interpretation
in terms of operations over propositions. For example, if A and B are propo-
sitions, the type ΠAB can be interpreted as the proposition stating that A

2 When working in a non-constructive meta-theory like ZF, the above definition can be simpli-
fied as follows: [a, b] is defined to be 1 if a = b, and the empty set otherwise.

1.5 homotopy type theory 11

implies B: a witness of ΠAB, in fact, is a function that turns evidence for A
into evidence for B.
Similarly ΣAB corresponds to the logical conjuction of A and B: a witness of
ΣAB is a pair of witnesses for A and B respectively.
Furthermore, one can use dependent products and sums to reproduce the ideas
of universal and existential quantification of logical theories. For example, if A
is any type, and B is thought of as a family of propositions indexed over A (or,
equivalently, a “predicate” over A), the dependent product ΠAB corresponds
to the assertion that B holds for all the elements of A (i.e. ∀x : A,B). Dually,
ΣAB serves as the assertion that there exists an element of A for which B holds
(i.e. ∃x : A,B).

1.4.10 Other structures

Unfortunately, the structures of dependent products, dependent sums and
equality defined above, although very powerful and versatile, are often not
enough to express certain mathematical ideas. Examples of constructions
that are not covered by those basic operations are: induction, disjoint unions,
logical negation, quotients, and others.
For this reason, type theories usually include extra structures designed to deal
with those requirements. In the following, after giving precise definitions of
the basic structures defined above, we will give a generic definition of type
former (section 2.2), encompassing most of the type-theoretic structures that
are encountered in the literature.
This will allow us to work in a type theory (or model thereof) where the set of
type formers is arbitrary, and does not need to be specified in advance. That
in turn will make some of our results very general, only subject to certain
conditions on the type formers involved, which can then be verified separately
and independently.
We will not discuss those extra type formers in detail. We will define some of
them in section 2.4, but only give a brief explanation. We refer the interested
reader to [36, Chapter 1].

1.5 homotopy type theory

The equality type x = y introduced in section 1.4.8 expresses the idea that the
two elements x and y are “identified” in some sense, and they can be substituted
for each other.
However, by itself, it has somewhat awkward features, which make it hard to
use it effectively when formalising mathematics in type theory.

1.5 homotopy type theory 12

First of all, it is not well-behaved when it comes to describing equality of
functions and equality of types. For example, we cannot derive the principle of
function extensionality, stating that two functions are equal whenever they are
equal at every point. Therefore, this principle is usually taken as an axiom in
most incarnations of type theory.

Secondly, the following question may come quite naturally after reading the
informal definition of section 1.4.8: is every witness of equality equal to refl?

A superficial reading of the substitution principle of equality (corresponding
to the so-called J-eliminator, which we will introduce rigorously in section 2.4)
would suggest this to be the case, since it says that proving a property of
equality can be reduced to proving the corresponding property for refl.

A careful examination, however, reveals a fault in this straightforward argument:
given arbitrary terms a, b : A, and p : a = b, we cannot internally express the
property of p of being equal to refl, because p and refl have different types. If
we restrict ourselves to terms p : a = a, then our premise is not general enough,
and we are not allowed to use the substitution principle.

In fact, it turns out that the question cannot be answered internally: it is
consistent to assume that there exist proofs of equality which are not themselves
equal to refl [20]. This implies that equality cannot be simply thought of as a
“mere” proposition, since it carries potentially non-trivial internal structure.

From here, one can either dismiss this limitation as a failure of the definition of
equality, and address it by adding the missing component as an extra assump-
tion (see (24)), or embrace it, and fully explore its consequences.

Both approaches are viable, and have been pursued with great success. The first
makes it possible to encode most, if not all, of existing informal mathematics
(at least, if we also assume certain classical principles such as the axiom of
choice or the excluded middle). It is very close in spirit to working within the
Mitchell-Bénabou language of topoi, and it exists on a similar level of generality.
We will call such a theory strict.

The second approach is embodied by HoTT [36]. When no assumptions on
the triviality of equality types is made, we can observe that types arrange
themselves into a cumulative hierarchy of truncation levels, starting with −1-
types (also called propositions), whose equality types are completely trivial,
followed by 0-types, or sets, having propositions as equality types, and in general
n-types, defined as those types whose equality types are (n− 1)-types.

One appeal of HoTT is that equalities can be seen as paths in a space, and it is
even possibly to develop substantial amounts of homotopy theory synthetically
(see for example [9] for an extensive account). An important fact to keep in mind
is that, when doing homotopy theory in type theory, every statement that one
can make holds up to homotopy, and every construction respects (homotopy)
equivalence.

1.6 the problem of “infinite structures” 13

This means that whatever we do will be “invariant”, in the sense that it can only
take the homotopy type of spaces, and homotopy equivalence classes of maps,
into account, and not the concrete representations of spaces or maps. This
is often considered a selling point of HoTT: one might perform constructions
using representatives of homotopy classes in traditional homotopy theory, which
make it necessary to show that those constructions are well-defined, i.e. do not
depend on the choice of the representative.

In HoTT, everything is automatically well-defined up to homotopy as we are
simply not able to talk about non-homotopy-invariant notions like strict equal-
ity internally.

1.6 the problem of “infinite structures”

It is not hard to imagine that the blessing of having only constructions up to
homotopy can turn out to be a curse: the inability to reflect a notion of “strict
equality” into the theory can sometimes make certain ideas much harder to
express.

For example, we cannot form a type expressing that a given diagram commutes
strictly; all we can do is stating that it commutes up to homotopy. Unfortu-
nately, depending on the shape of the diagram, this will only be sufficient in
the simplest cases. More often than not, it will be necessary to say that the
different “pieces” (the equalities expressing commutativity) fit together.

For instance, the fact that a certain sub-diagram commutes can be part of the
proof that the diagram commutes, but it may at the same time be derivable as
the composition of the fact that other sub-diagrams commute. In this case, it is
natural to require these different ways of getting a certain proof to be equal. It
does not stop here; these new proofs can themselves be required to be coherent,
and so on.

This phenomenon is of course not something that can only be observed in type
theory. The first step becomes already apparent in the theory of monoidal
categories in the form of “Mac Lane’s Pentagon”. On higher dimensions, it
is exactly the same issue that is discussed as homotopy commutativity versus
homotopy coherence by Lurie [25].

In general, homotopy coherence corresponds to infinite towers of coherence
data, and it is a major open problem (and commonly believed to be unsolvable)
to express such towers internally in HoTT. One way to avoid the problem
altogether is to restrict constructions to types of low truncation levels. As
an example, the category theory developed in [2] only considers 1-truncated
types to develop a theory of ordinary categories. This is in many situations not
satisfactory: we know that types are ∞-groupoids [24, 37], and similarly, the

1.6 the problem of “infinite structures” 14

universe should be an (∞, 1)-category. Unfortunately, there does not seem be
a way to express this internally in HoTT.
Of course, it is always possible to take one of the existing models of higher
categories and replicate it internally in HoTT. However, since all of the existing
models are ultimately built out of sets, this would force the HoTT version to be
based on sets as well (i.e. 0-truncated types), which means that many specific
structures that are expected to be (∞, 1)-categories would not qualify. One
notable example is provided by universes, which cannot in general be assumed
to be truncated (as shown in [23]), hence cannot possibly be given a categorical
structure for any notion of higher category which is based on sets. On the other
hand, we define an (∞, 1)-category structure for a universe in section 4.6.2.
The crucial shortcoming of HoTT is that we are unable to encode certain
constructions which would appear to be harmless, as they only require finite
amounts of coherence data at every step. An example that has received consid-
erable attention in the HoTT community is the construction of Reedy fibrant
n-semi-simplicial types (simply referred to as semi-simplicial types).
Let us start with ∆+, the category of finite non-zero ordinals and strictly mono-
tone functions. Let us write [n] for the ordinal with n+ 1 elements. A type-
valued diagram over ∆op

+ is a strict functor from ∆op
+ to the category of types.

It would correspond to a type X[n] (for simplicity written Xn) for every n, and
face maps di : Xn+1 → Xn for 0 ≤ i ≤ n, as it is well-known that any map
in ∆op

+ can be written as a composition of face maps. The problem is that we
need the semi-simplicial identities (essentially a representation of the functor
laws) to be strict, a fact which we cannot express in type theory.
The considered approach to avoid this problem is to only attempt internalising
Reedy fibrant diagrams over ∆op

+ , essentially ensuring that the face maps are
simple projections.
Using the correspondence between fibrations and type families, a (Reedy fi-
brant) semi-simplicial type then corresponds to a type X0 (the “points”) on
level 0. On level 1, we need a family

X1 : X0 → X0 → U ,

where U is the universe of types. We think of X1 as lines between types. Next,
we need

X2 : Πa,b,c:X0X1(a, b)→ X1(b, c)→ X1(a, c)→ U ,
the type of fillers for triangles.
Writing down the type of X4 is already rather tedious, but nevertheless straight-
forward: X4 is a family which gives a type for any collection of four points, six
lines and four triangles that form a boundary of a tetrahedron.
A long-standing open problem of homotopy type theory is then to write down
the type of Xn, or something equivalent to it, for a general natural number n.

1.7 internalising strict equality 15

This has revealed to be much harder than one might expect, and it is actually
conjectured to be impossible.

What is definitely possible is to generate an expression Xn for every externally
fixed numeral n, such that the expressions X0,X1,X2, . . . all “fit together”. If
one attempts to perform the same construction for a variable n : N, the types
do not match up anymore. The reason is that some strict equalities that hold
in the case of a numeral n fail to hold in the case of a variable. One could try to
prove that the required equalities hold up to homotopy, but one quickly realises
that one would also need to show that these equalities are coherent, and that
the coherence proofs are coherent themselves, and so on; even only expressing
the coherence data that is required to make the construction go through seems
to be as hard, if not harder, than the original problem.

1.7 internalising strict equality

In some sense, the equalities needed when attempting to construct semi-
simplicial types, as explained in section 1.6, should hold and be fully coherent,
because they are trivially satisfied for each externally fixed natural number. If
only we had a way to reason about strict equalities within the system, there
would be no problem at all; however, this would require strict equalities to be
reified into a type.

We could take the equality of a strict theory to be the internalised version of
strict equality. In that case, it would be possible to construct Reedy fibrant
semi-simplicial types internally. However, we can also simply define categories
and functors in the usual sense, and all coherences will be satisfied automatically
thanks to the strictness assumptions in the theory.

Using this approach, we would bypass all the coherence problems, but have to
give up all the advantages of HoTT, like univalence and higher inductive types.
The idea of a two-level system is to combine strict type theory and HoTT,
instead of viewing them as two alternative extensions of the basic underlying
type theory.

A two-level type theory consists of two “parallel” type theory, with possibly
different structures, sharing a small common core consisting of dependent prod-
ucts and sums. We call the two fragments strict and fibrant respectively. The
strict fragment is, unsurprisingly, a strict form of type theory, while the fibrant
fragment is an incarnation of HoTT. Every fibrant type can be canonically
regarded as a strict type, but not vice versa.

The reason why two-level type theory has to be set up in this way, rather
than just having two equality types, is lemma 4.2.1, showing that if there is no
distinction between fibrant and strict types, then the two equalities necessarily
collapse into one.

1.7 internalising strict equality 16

The idea a type theory with two equality types is not new. Such a system
was first suggested by Voevodsky [38], who referred to it as HTS, but the
theory developed in this thesis (specifically in chapter 3) presents substantial
differences with HTS (see section 4.1.1). In particular, it requires no form of
equality reflection in its strict fragment. Thus, we can avoid all the problems
that are usually connected to equality reflection, such as undecidability of type
checking.

In contrast, the two-level system presented in this thesis is well-behaved, very
close to the standard formulation of HoTT, and has straightforward semantics.
One could expect that a downside of our system might be reduced expressibility
compared to a theory that features equality reflection. However, we can achieve
in our system what HTS was suggested for: a definition of semi-simplicial types,
and other constructions based on them.

Furthermore, by being careful about the relationship between strict and fibrant
type formers, we can prove a conservativity result (theorem 3.2.14). This means
that, in some sense, the fibrant fragment corresponds exactly to HoTT as
presented in [36]. In a proof assistant which supports this theory, we could in
principle implement results that so far can only be stated meta-theoretically.
To give an example, it is shown in [22] that constant functions from A to B
which satisfy n coherence conditions correspond to maps ‖A‖ → B, provided
that B is n-truncated. Here n is a natural number, external to the theory,
so the result has to be formalised as a sequence of internal statements, which
means that it can only be stated and proved meta-theoretically. In a two-level
system, we can formalise it by taking n to be an element of the strict type of
natural numbers, then show the required equivalence in the fibrant fragment.
Conservativity would then allow us to conclude the the corresponding statement
is valid in HoTT for all choices of the parameter n, and all the complications of
meta-theoretic reasoning would be encapsulated in the proof of theorem 3.2.14.

2
TYPE THEORY AND TYPE FORMERS

This chapter contains the fundamental definitions and constructions that will
be used throughout the rest of the thesis. We will start from the intuitive
ideas presented in chapter 1, and make them precise in terms of categories with
families, which we choose as the primary basic notion of model of type theory.

Our presentation of basic type formers (Π, Σ, equality and unit type) is based
on the same ideas as in [5], which will make it easier to extend the notion of
type former to more general operations, as well as to the context of chapter 3.

2.1 categories with families

Definition 2.1.1 (see [11]). A category with families (CwF) is given by:

• a category C, equipped with a distinguished terminal object 1;

• a presheaf Ty : C → Setop;

• a presheaf Tm : (
∫

Ty)→ Setop;

• for all Γ : C and A : Ty(Γ), an object (Γ.A, πA) representing the functor
(C/Γ)→ Setop defined by:

(∆,σ) 7→ Tm∆(A[σ]). (3)

Here and in the following, if X : C → Setop is a presheaf on a category C,
σ : C(∆, Γ) is a morphism, and x : XΓ is an element of X, we write x[σ] instead
of X(σ)(x).

The objects of C are called contexts. Given a context Γ, the elements of Ty(Γ)
are called types, and given a type A, the elements of TmΓ(A) are called terms.

The context Γ.A is called the context extension of Γ by the type A, and πA is
the display map of A.

The action of Ty and Tm on morphisms is called substitution.

17

2.1 categories with families 18

Note that, given a morphism σ : C(∆, Γ), a type A : Ty(Γ), and a term a :
Tm∆(A[σ]), the definition of CwF gives a corresponding morphism C(∆, Γ.A)
which we will denote by 〈σ, a〉.

Proposition 2.1.2. For all contexts Γ : C and types A : Ty(Γ), there is a
natural isomorphism:

TmΓ(A) ∼= C/Γ(Γ, Γ.A). (4)

Proof. Equation (4) follows directly from the definition of context extension,
by taking ∆ :≡ Γ and σ :≡ id in (3).

Proposition 2.1.2 says that terms of type A can be equivalently regarded as
sections of the display map πA : C(Γ.A, Γ).

Proposition 2.1.3. Let σ : C(∆, Γ) be any morphism, and A : Ty(Γ). There
exists a morphism σ+ : C(∆.A[σ], Γ.A) that makes the square

∆.A[σ] σ+ //

πA[σ]

��

Γ.A
πA
��

∆ σ
// Γ

(5)

into a pullback.

Proof. Diagram 5 being a pullback is equivalent to the condition that, for all
contexts Φ and morphisms τ : C(Φ, ∆), there is a natural isomorphism:

C/Γ(σ∗Φ, Γ.A) ∼= C/∆(Φ, ∆.A[σ]),

where we write Φ to mean the pair (Φ, τ) in the slice category C/∆, and
similarly for Γ.A and ∆.A[σ].
But clearly, the isomorphism holds, since both sides are naturally isomorphic
to TmΦ(A[σ ◦ τ]), by the defining property of context extension.

Proposition 2.1.3 allows us to turn the context extension operation into a func-
tor ext :

∫
Ty→ C.

Definition 2.1.4. Let C, D be CwFs. A CwF morphism C → D is given by:
• a functor F : C → D;
• a natural transformation FTy :

∫
Γ Ty(Γ)→ Ty(FΓ);

• a natural transformation FTm :
∫

Γ,A TmΓ(A)→ TmFΓ(F
TyA);

such that F1 is a terminal object in D, and, for all Γ : C and A : Ty(Γ), the
map

φFA : D(F (Γ.A),FΓ.FTyA)

defined below is an isomorphism.

2.1 categories with families 19

The map φFA is obtained as follows. First, by applying the functor F to
the display map pA, the context F (Γ.A) can be regarded as an element of
D/FΓ. Then, the term FTm(vA) : TmF (Γ.A)(F

TyA[F (pA)]) determines a
morphism D/FΓ(F (Γ.A),FΓ.FTyA) by the defining property of context
extension, and φFA is taken to be the corresponding underlying morphism
D(F (Γ.A),FΓ.FTyA).
We will usually omit the superscripts Ty and Tm when referring to the action
of a morphism on types and terms respectively.

Definition 2.1.5. A CwF morphism F : C → D is said to be split if it preserves
the distinguished terminal objects and context extension “on the nose” and the
map φFA is the identity for all types A.

Definition 2.1.6. A CwF morphism F : C → D is said to be a CwF equivalence
if it is an equivalence of categories, and it induces isomorphisms on types.

Note that a CwF equivalence automatically induces isomorphisms on terms.

2.1.1 Notation

In the following, let C be a CwF.
If Γ is a context, and A : Ty(Γ), the universal property of the context extension,
applied to the identity substitution C/Γ(Γ.A, Γ.A), yields a canonical term
vA : TmΓ.A(A[πA]). We call vA the variable of type A.
Weakenings, i.e. substitutions along display maps, will often be omitted from
the notation, as they can usually be unambiguously reconstructed, and leaving
them implicit simplifies the syntax considerably. In particular, the variable of
type A can be regarded simply as a term in TmΓ.A(A).
Sometimes, when building contexts using context extension, we will associate
“names” to certain types. These names will be used to refer to their corre-
sponding variables, and weakenings thereof. For example, the context Γ(a : A)
denotes the context Γ.A, with the convention that the name a refers to the
variable vA : TmΓ(a:A)(A).

The terminal object of C is referred to as the unit context.1 We will identify
types in the unit context with the corresponding contexts obtained by context
extension. So, for example, if A : Ty(1), we will write A to denote 1.A, and if
B : Ty(A), we can form the context extension A.B.

1 In traditional type-theoretic terminology, the term empty context is more often found. This
is because contexts are usually built explictly by chaining a finite number of context exten-
sions, and 1 is the base case of this process, where no extensions have been performed yet.
However, “empty” is more suggestive of an initial, rather than terminal, object, so we will
keep consistency with the corresponding terminology for types, and use the term unit context
instead

2.1 categories with families 20

Finally, thanks to proposition 2.1.2, terms in TmΓ(A) correspond bijectively
with sections of the display map πA. We will therefore identify a term with its
corresponding section.
With those syntactical conventions, working in an arbitrary CwF is basically
indistinguishable from working in the corresponding type theory (i.e. its inter-
nal language). For that reason, we are able to avoid giving a precise definition
of syntax of type theory. Our definitions and constructions exist purely within
the semantics realm of CwFs, and that is sufficient for our purposes.
We will also implicitly assume the existence of a hierarchy of an arbitrary finite
number of universes of sets Set0 ⊆ Set1 ⊆ Set2 . . ., but remove the indices
from the notation. In particular, we will simply write Set instead of Set0 or
Set1. This is in line with a widespread convention in type theory called “typical
ambiguity” [12], and is used, for example, in [36].
The existence of this hierarchy of universes may depend on certain large cardinal
axioms (like the existence of a corresponding chain of innaccessible cardinals)
in a foundations like ZFC. Alternatively, if we assume that the metatheory that
we are working in is itself some form of type theory, then all we need is a tower
of universes (as in definition 2.1.15) in the outer theory.

2.1.2 Presheaves

The prototypical example of a CwF is the category of presheaves over C, where
C is an arbitrary (small) category. We will denote this category by Ĉ. For any
presheaf P , let Ty(P) be the category of presheaves over

∫ C P , and let Ty(P)
be the underlying set of objects of Ty(P).
Clearly, Ty defines a functor Cop → Cat, hence Ty is a functor Cop → Set. The
corresponding term functor is given by:

TmP (A) :≡ Ty(P)(1,A),

where 1 is the terminal object of Ty(P), i.e. the functor which is constantly
equal to the terminal object 1 of Set. Substitutions are defined in the obvious
way via precomposition.
To define context extension, we will need the following

Proposition 2.1.7. Let C be any category, and P : Ĉ a presheaf on C. There
is an equivalence of categories:

Φ : Ĉ/P ∼=
∫̂
P

such that, for all presheaves Q over P , there is an isomorphism of categories:∫
Φ(Q) ∼=

∫
Q (6)

2.1 categories with families 21

Proof. Given a presheaf Q over P , define a presheaf Φ(Q) on
∫ C P by assigning

to every object (Γ,x) of
∫C P , where Γ : C and x : PΓ, the fibre of Q over x.

Conversely, given a presheaf F :
∫̂C P , define QΓ as the set of pairs (x, y), where

x : PΓ, and y : F (Γ,x).

It is easy to see that Φ. defines an equivalence of categories. As for equation
(6), it follows immediately from the definition of Φ.

Now, given a presheaf P and a type A over P , define P .A to be the presheaf
over P corresponding to A through the equivalence of proposition 2.1.7, so that
we have equivalences:

Ty(P .A) ∼=
∫̂
A ∼= Ty(P)/A, (7)

where the first is a consequence of the isomorphism (6), and the second is
obtained by applying proposition 2.1.7 to the category

∫C P . We will call P .A
the total space of A.

Therefore, we can associate, to any type in B : Ty(P .A), a corresponding type
in Ty(P), which we will denote by ΣAB. Note that P .ΣAB ∼= P .A.B.

Lemma 2.1.8. The map B 7→ ΣAB defines a left adjoint for the substitution
functor Ty(P)→ Ty(P .A) along πA.

Proof. The functor ΣA can be regarded as the composition:

ΣA : Ty(P .A)→ Ty(P)/A→ Ty(P),

where the first functor is the equivalence 7, and the second is the forgetful
functor.

The latter has a right adjoint, mapping a type C : Ty(P) to the product A×C,
together with the first projection.

Therefore, all is left to do is to verify that A×C corresponds to C[πA] through
the equivalence 7, which is easy to see.

Note that Ty(P), being a presheaf category, is a cartesian closed category with
all small limits and colimits. In particular, given two types A,B, we can form
their exponential BA, which we can think of as the “function type” between A
and B.

We will now generalise this notion of function type to the situation where B
“depends on A”, i.e. when B is not in Ty(P), but in Ty(P .A).

2.1 categories with families 22

Given B : Ty(P .A), we can obtain a type ΣAB : Ty(P), together with a
projection π1 : Ty(P)(ΣAB,A). Since Ty(P) has limits, we can form a pullback
square:

ΠAB //

��

(ΣAB)
A

��

1 // AA,

(8)

where the bottom arrow selects the identity morphism A→ A.

This determines a type ΠAB : Ty(P).

Lemma 2.1.9. The map B 7→ ΠAB defines a right adjoint for the substitution
functor Ty(P)→ Ty(P .A) along πA.

Proof. Let X be an arbitrary type in Ty(P), and consider the homset
Ty(P .A)(X [πA],B). Through the equivalence (7), this is isomorphic to
(Ty(P)/A) (A×X, ΣAB), which fits into a pullback square:

(Ty(P)/A) (A×X, ΣAB) //

��

Ty(P)(A×X, ΣAB)

��
1 // Ty(P)(A×X,A).

Using the adjunction defining the exponential, this diagram is isomorphic to:

(Ty(P)/A) (A×X, ΣAB) //

��

Ty(P)(X, (ΣAB)A)

��

1 // Ty(P)(X,AA).

However, by applying the limit-preserving functor Ty(P)(X,−) to 8, we get
the same diagram, but with Ty(P)(X, ΠAB) in the top left corner. Therefore,
it follows that there is a natural isomorphism

Ty(P)(X, ΠAB) ∼= Ty(P .A)(X [πA],B),

hence ΠA is right adjoint to substitution along πA.

As an immediate consequence of lemma 2.1.9, there is a natural isomorphism:

λ : TmP .A(B)→ TmP (ΠAB), (9)

which is often referred to as lambda abstraction. Furthermore, given terms
f : TmP (ΠAB) and a : TmP (A), we get a term λ−1(f)[a] : TmP (B[a]). It is
customary to denote this term simply by f a, and call this operation application.

2.1 categories with families 23

Alternatively, we can regard application as a morphism εA,B:

Γ.A.ΠAB
εA,B //

%%

Γ.A.B

zz
Γ.A.

Since the type B appearing in a ΠAB is defined over an extended context,
it is often convenient to introduce a name for the variable of type A, when
constructing such an expression. Therefore, we will employ the notation:

Πa:AB,

to mean the exact same thing as ΠAB, with the addition that B is assumed to
be a type in the context P (a : A), i.e. the name a refers to the variable of type
A within the expression that defines B. A similar notation will be used for Σ.
We will now define a very simple notion of equality type for presheaves.
Let P be a presheaf, and A : Ty(P) a type over it. Consider the diagonal
morphism Ty(P)(A,A× A) and map it through the equivalence of proposi-
tion 2.1.7 to get a morphism in Ĉ(P .A,P .(A× A)), which is isomorphic to
Ĉ(P .A,P .A.A). Using proposition 2.1.7 again, this morphism determines a
type over P .A.A which we will denote by EqA, and refer to as the equality type
of A.
In particular, given terms a1, a2 : TmP (A), we can form a type EqA[a1, a2] by
substitution. Terms of this type are witnesses of equality betwee a1 and a2,
hence this type is inhabited (i.e. it has a global section) if and only if a1 and
a2 are equal terms.

Lemma 2.1.10. The type EqA is a subterminal object of Ty(P .A.A).

Proof. Since equivalence of categories preserves subterminality, it is enough to
show that the diagonal A→ A×A is subterminal in Ty(P)/(A×A).
Let now C be any category, and A : C an object such that the product A×A
exists. The diagonal δ : A → A× A is the equaliser of the two projections
A×A → A, hence it is monic. Since the forgetful functor C/(A×A) → C is
faithful, it follows that δ → id is monic in C/(A×A), i.e. δ is subterminal.

2.1.3 Basic type formers

In the previous section, we defined the operations Σ, Π and Eq on types of
a presheaf category. We will now define what it means for a general CwF to
support those operations.
The following definitions are standard (see for example [18]).

2.1 categories with families 24

Definition 2.1.11. We say that a CwF supports Π-types if for any two types
A : Ty(Γ) and B : Ty(Γ.A) there is a type π(A,B) : Ty(Γ), and for each
b : TmΓ.A(B) there is a term λ(b), and for each f : TmΓ(π(A,B)) and a :
TmΓ(A) there is a term f · a : TmΓ(B[a]) such that the following equations
(appropriately quantified) hold:

λ(b) · a = b[a]

λ(f · vA) = f

π(A,B)[τ] = π(A[τ],B[τ+])
(λ(b))[τ] = λ(b[τ])

(f · a)[τ] = f [τ] · a[τ].

Definition 2.1.12. We say that a CwF supports Π-types if for any two
types A : Ty(Γ) and B : Ty(Γ.A) there is a type σ(A,B) : Ty(Γ), and for
each a : TmΓ(A) and b : TmΓ(B[a]) there is a term 〈a, b〉 : TmΓ(σ(A,B)),
and for all terms x : TmΓ(σ(A,B)) there are terms π(x) : TmΓ(A) and
π′(x) : TmΓ(B[π(x)]) such that the following equations (appropriately
quantified) hold:

π(〈a, b〉) = a

π′(〈a, b〉) = b

〈π(x), π′(x)〉 = x

σ(A,B)[τ] = σ(A[τ],B[τ+])
〈a, b〉[τ] = 〈a[τ], b[τ]〉
π(x)[τ] = π(x[τ])

π′(x)[τ] = π(x′[τ]).

Definition 2.1.13. We say that a CwF supports equality types if for all types
A : Ty(Γ) there is a type eq(A) : Ty(Γ.A.A), such that two terms a, b : TmΓ(A)
are equal if and only if there is a term p : TmΓ(eq(A)[a, b]), and furthermore:

eq(A)[τ++] = eq(A[τ]).

Definition 2.1.14. We say that a CwF has a unit type if there exists a type
1 : Ty(1) with a unique term.

The purpose of this section is to develop equivalent formulations of the above
definitions based on presheaves. In section 2.2, we will introduce the rule frame-
work, and that will help us generalise the presheaf-based definitions (defini-
tion 2.1.20, definition 2.1.22, definition 2.1.24 and definition 2.1.26) to cover a
wide variety of “type formers”.

Definition 2.1.15. Let C be a CwF. A universe in C is given by:
• a type U in the unit context;
• a type El in the context U .

2.1 categories with families 25

We will see later how universes of sets determine universes in presheaf categories
for an arbitrary C (section 2.1.6). For now, we will focus on the case where C
is itself a CwF. In that case, the presheaf category Ĉ has a canonical universe,
given by the functors Ty and Tm, part of the CwF structure of C. For reasons
that will be clear later, we will call this the fibrant universe of Ĉ.

Since now we have two CwFs in play, in an attempt to avoid confusion, we will
use the notation T̂y and T̂m when discussing the CwF structure on Ĉ.

In the following, we will write y for the Yoneda embedding C → Ĉ.

Lemma 2.1.16. Let P be a presheaf on C, A a term of type Ty in the context
P of Ĉ, and x an element of P over some Γ : C. Let us write π for the display
map of the type Tm[A] over P .

There is an isomorphism of types over P .Tm[A]:

y(Γ,x)[π] ∼= y(Γ.AΓ(x),x[π], vAΓ(x)), (10)

natural in (Γ,x) :
∫
P .

Proof. We will construct the required isomorphism by using proposition 2.1.7
to transport all the presheaves involved to Ĉ.

By the Yoneda lemma, we can regard x as a morphism y(Γ)→ P . The left side
of 10 is then isomorphic to the type over y(Γ) obtained by substituting Tm[A]
along x.

As for the right side, its total space can also be regarded as a presheaf over
y(Γ) through the Yoneda embedding of the display map Γ.A(x)→ Γ.

By proposition 2.1.7, presheaves over y(Γ) correspond to presheaves on
∫
y(Γ),

which is isomorphic to C/Γ. Applying the isomorphism of proposition 2.1.7
explicitly, it is easy to see that the left side is mapped to the functor given by
(3) for the type A(x), so the conclusion follows from the defining property of
context extension.

Corollary 2.1.17. Let P be a presheaf on C, and A a term of type Ty in the
context P of Ĉ. The type

ΠTm[A]Ty

is isomorphic to the presheaf on
∫
P given by:

(Γ,x) 7→ Ty(Γ.AΓ(x)). (11)

Proof. Again, let us write π for the display map of Tm[A].

Fix an arbitrary (Γ,x) :
∫
P . By lemma 2.1.9, there is a natural isomorphism:

T̂y(P)(y(Γ,x), ΠTm[A]Ty) ∼= T̂y(P .Tm[A])(y(Γ,x)[π], Ty).

2.1 categories with families 26

By lemma 2.1.16, the weakened type y(Γ,x)[π] is isomorphic to the repre-
sentable presheaf y(Γ,x,A(x)), hence the conclusion follows from the Yoneda
lemma.

In the setting of 2.1.17, if B is a term of type ΠTm[A]Ty in context P , we will
denote by B̃Γ(x) the element of Ty(Γ.AΓ(x)) corresponding to BΓ(x) through
the isomorphism 11. Expanding the definition of the isomorphism, one can
show that:

B̃Γ(x) = (λ−1B)Γ.AΓ(x)(x[π], vAΓ(x)).

Corollary 2.1.18. Let P be a presheaf on C, A a term of type Ty, and B a
term of type ΠTm[A]Ty, both in the context P . The type

ΠTm[A]Tm[B a]

is isomorphic to the presheaf on
∫
P given by:

(Γ,x) 7→ TmΓ.AΓ(x)(B̃Γ(x))

The universe Ty allows us to use the CwF structure on Ĉ to give definitions
that work across all types of C. However, to generalise Π and Σ, we need to
access pairs of dependent types. For that reason, we define the context Ty(2)
as:

(A : Ty)(B : ΠTm[A]Ty).

Here we are using the syntactical conventions introduced in section 2.1.1. Let
us take a minute to explain in detail what this expression means.

First of all, since Ty is a type in the unit context of Ĉ, we can form a context
P0 :≡ (A : Ty) by extension from the unit context, and use A to refer to the
corresponding term of type Ty, i.e. A : T̂mP0(Ty).

In the context P0, the morphism corresponding to the variable A is just the
identity P0 → P0, hence Tm[A] could have simply been written as Tm. How-
ever, using an explicit substitution makes it clear that we are referring to the
variable A, and generalises better to situations where the context contains more
than one variable.

Since T :≡ ΠTm[A]Ty is a type in the context P0, we can perform another
context extension and obtain the context P0(B : T). If we make weakenings
explicit, now A refers to the variable of type Ty[πTy][πT], and B to the variable
of type T [πT].

Corollary 2.1.19. There is an isomorphism, natural in Γ : C:

Ty(2)(Γ) ∼=
∐

A:Ty(Γ)
Ty(Γ.A).

2.1 categories with families 27

Proof. Immediate consequence of corollary 2.1.17 and the definition of context
extension of presheaves.

Thanks to corollary 2.1.19, we are free to identify elements of Ty(2)(Γ) with
pairs of types (A,B), where A : Ty(Γ) and B : Ty(Γ.A). However, using Ty(2)
can sometimes be preferable, since it avoids referring to context extension at
all.

Definition 2.1.20. A Π-type structure on C is given by:

• a term
π : T̂mTy(2)(Ty), (12)

• an isomorphism
Tm[π] ∼= Πa:Tm[A]Tm[B a] (13)

of types over Ty(2).

Note that a Π-type structure on C is given entirely in terms of the CwF structure
on Ĉ and its fibrant universe.

Definition 2.1.20 can be stated more explictly: giving the term 12 is the same as
giving a natural transformation π : Ty(2) → Ty, and, thanks to corollary 2.1.18,
the isomorphism 13 is equivalent to an isomorphism:

TmΓ(πΓ(A,B)) ∼= TmΓ.A(B). (14)

It is then easy to verify that C supports Π-types (definition 2.1.11) if and only
if it has a Π-type structure. In particular, we get the following:

Proposition 2.1.21. For any category C, the presheaf category Ĉ is equipped
with a canonical Π-type structure.

Proof. It looks like one could simply take π to be the Π operation on presheaves.
However, Π, regarded as a family of functions T̂y(2)(Γ)→ T̂y(Γ), is not natural
in Γ.

In fact, keeping in mind that T̂y(Γ) is a category, and not just a set, one would
only be able to prove that Π is a pseudonatural transformation of functors C →
Catop. Fortunately, there is a way to give an alternative equivalent definition
of Π that is indeed strictly natural.

Let P : Ĉ, A : T̂y(P), and B : T̂y(P .A). We will define π(A,B) as a functor∫
P → Setop. For (Γ,x) :

∫
P , we will write x : y(Γ) → P for the morphism

corresponding to x through the isomorphism of the Yoneda lemma. Then set:

π(A,B)Γ(x) :≡
(

ΠA[x]B[x
+]
)

Γ
(id).

2.1 categories with families 28

Pseudonaturality of Π implies that π(A,B) ∼= ΠAB. Furthermore, it is easy
to check directly that π : Ty(2) → Ty is (strictly!) a natural transformation.
The isomorphism (14) can now be obtained from λ abstraction for Π, and the
fact that Π and π are pointwise isomorphic.

Definition 2.1.22. A Σ-type structure on C is given by:
• a term

σ : T̂mTy(2)(Ty), (15)

• an isomorphism
Tm[σ] ∼= Σa:Tm[A]Tm[B a] (16)

of types over Ty(2).

Like in the case of Π-type structures, Σ-type structures have a more direct
characterisation: giving a Σ-type structure on C is the same as giving a nat-
ural transformation σ : Ty(2) → Ty, together with a natural isomorphism
between TmΓ(σΓ(A,B)) and the set of pairs (a, b), where a : TmΓ(A) and
b : TmΓ(B[a]). Clearly, this is just a reformulation of definition 2.1.12, hence
C supports Σ-types if and only if it has a Σ-type structure.
From this characterisation, we get:

Proposition 2.1.23. For any category C, the presheaf category Ĉ is equipped
with a canonical Σ-type structure.

Proof. The morphism σ : Ty(2) → Ty can now be taken to be the Σ opera-
tion on presheaves, which in this case is automatically natural. The required
isomorphism follows directly from the definition of Σ.

Definition 2.1.24. An equality type structure on C is given by:
• a term

eq : T̂m(A:Ty).Tm[A].Tm[A](Ty), (17)

• an isomorphism
Tm[eq] ∼= EqTm[A] (18)

of types over (A : Ty).Tm[A].Tm[A].

By corollary 2.1.17, a term like eq in definition 2.1.24 is given by a map that
assigns, to every A : Ty(Γ) a type eq(A) : Ty(Γ.A.A), naturally in (Γ,A).
Isomorphism (18) is equivalent to an isomorphism between sections of the
morphism Γ.A→ Γ (display map of A), and of the morphism Γ.A.A.eq(A)→ Γ
(composition of display maps).

Proposition 2.1.25. For any category C, the presheaf category Ĉ is equipped
with a canonical equality type structure.

2.1 categories with families 29

Proof. As for Π and Σ, we want to define eq using the Eq operation on
presheaves, but once again we have the problem that Eq, as defined, is not
strictly natural. However, thanks to lemma 2.1.10, we can easily define a
stricter version of Eq.

For P : Ĉ, and A : T̂y(P), let eq(A) be the image of the unique map Eq(A)→ 1
in T̂y(P .A.A). Since Eq(A) is subterminal by lemma 2.1.10, it follows that
eq(A) ∼= Eq(A), and eq is clearly natural in A.

The required isomorphism is now easy to construct.

The construction in proposition 2.1.25 may appear more involved than neces-
sary, since one might be tempted to simply define eq as:

eq(A)Γ(x, a, a′) =
 1 if a = a′

0 otherwise.
(19)

However, a definition like (19) presumes that we are able to decide the equality
of arbitrary functions. Classically, (19) is equivalent to the definition given in
proposition 2.1.25, but the way we phrased it makes it valid in a constructive
setting as well.

Similarly to Π and Σ-type structures, the existence of an equality structure is
equivalent to the fact that C supports equality structures (definition 2.1.13).

Finally, we will define one last structure. This one is fortunately much simpler
than the previous three.

Definition 2.1.26. A unit type structure on C is given by:

• a term
u : T̂m1(Ty) (20)

• an isomorphism
Tm[u] ∼= 1 (21)

of types in the unit context.

And correspondingly:

Proposition 2.1.27. For any category C, the presheaf category Ĉ is equipped
with a canonical unit type structure.

Proof. The type u can be set to the unit presheaf 1. The required isomorphism
obviously follows from the fact that 1 is terminal.

Again, unit type structures and the existence of unit types (definition 2.1.14)
are equivalent.

2.1 categories with families 30

2.1.4 Morphisms

Given a morphism F : C → D between CwFs, if C and D are equipped with
one of the structures defined in section 2.1.3, we can ask whether F preserves
those structures.

Definition 2.1.28. Let Γ : C, (A,B) : Ty(2)Γ and (A′,B′) : Ty(2)FΓ. We say that
(A,B) and (A′,B′) are F -related if:

• FA = A′

• for all (∆,σ) : C/Γ, and all terms a : Tm∆(A[σ]), we have that
F (B(a)) = B′(Fa).

The following is a direct consequence of definition 2.1.28:

Lemma 2.1.29. Two pairs (A,B) and (A′,B′) as in definition 2.1.28 are
F -related if and only if:

• FA = A′

• φFA(FB̃) = B̃′, where φFA is as in definition 2.1.4, B̃ is the type in Ty(Γ.A)
corresponding to B through the isomorphism of corollary 2.1.17, and B̃′
is defined similarly.

In particular, for all pairs (A,B) in C there is exactly one pair (A′,B′) in D
that is related to it. The advantage of formulating the following definitions in
terms of related pairs rather than using the characterisation of lemma 2.1.29
directly is that we need no mention of context extension.

Definition 2.1.30. Let (A,B) and (A′,B′) be F -related pairs, u :
(Πa:Tm[A]Tm[B a])Γ(A,B) and u′ : (Πa:Tm[A]Tm[B a])FΓ(A

′,B′). We
say that u and u′ are F -related if for all (∆,σ) : C/Γ, and all terms
a : Tm∆(A[σ]), we have that F (u(a)) = u′(Fa).

Note that the equality between F (u(a)) and u′(Fa) in definition 2.1.30 makes
sense because (A,B) and (A′,B′) are themselves related.

Definition 2.1.31. Suppose both C and D are equipped with Π-type struc-
tures. We say that F preserves Π-types if, for all related pairs (A,B) and
(A′,B′):

• F (π(A,B)) = π(A′,B′),

• for all terms f : TmΓ(π(A,B)), the element of (Πa:Tm[A]Tm[B a])Γ(A,B)
corresponding to f through the Π-type structure on C is related to the
element of (Πa:Tm[A]Tm[B a])FΓ(A

′,B′) corresponding to Ff through
the Π-type structure on D.

2.1 categories with families 31

The definition of preservation of Σ-types is similar, but simpler, because we
don’t need to define a notion of relatedness for elements of Σa:Tm[A]Tm[B a],
as we can simply map them using F directly:

Definition 2.1.32. Suppose both C and D are equipped with Σ-type structures.
We say that F preserves Σ-types if, for all related pairs (A,B) and (A′,B′):

• F (σ(A,B)) = σ(A′,B′),
• the following diagram commutes:

TmΓ(σ(A,B))
∼= //

F
��

(Σa:Tm[A]Tm[B a])Γ(A,B)

F
��

TmFΓ(σ(A
′,B′))

∼= // (Σa:Tm[A]Tm[B a])FΓ(A
′,B′),

where the horizontal arrows are the isomorphisms given by the Σ-type
structures on C and D respectively.

For equality types, the definition is entirely analogous:

Definition 2.1.33. Suppose both C and D are equipped with equality type
structures. We say that F preserves equality if, for all Γ : C, A : Ty(Γ):

• F (eq(A, a, b)) = eq(FA,Fa,Fb),
• the following diagram commutes:

TmΓ(eqΓ(A, a, b))
∼= //

F
��

(EqTm[A])Γ(A, a, b)

F
��

TmFΓ(eqFΓ(FA,Fa,Fb)) ∼=
// (EqTm[A])FΓ(FA,Fa,Fb)

Finally, we say that F preserves the unit type simply if Fu = u over the unit
context.
Replacing equality with isomorphism in the above definitions yields the notions
of weak preservation of the various type structures.
Remark 2.1.34. Let F : C → D be a CwF morphism. Suppose C is equipped
with a Π structure. Then the application morphism εA,B : Γ.A.ΠAB → Γ.A.B
can be mapped to D through F , which implies that we can apply terms of type
F (ΠAB) to terms of type FA, even though D might not even have a Π-type
structure.

2.1.5 The Yoneda embedding for CwFs

If C is a CwF, the Yoneda embedding y : C → Ĉ is a functor between CwFs, so
it is natural to ask whether it can be extended to a CwF morphism.

2.1 categories with families 32

Definition 2.1.35. Let Γ : C be a context, and A : Ty(Γ) a type over Γ. Define
the presheaf y0(A) : T̂y(yΓ) as follows:

y0(A)∆(σ) :≡ Tm∆(A[σ]).

Proposition 2.1.36. For all Γ : C and A : Ty(Γ), there is a natural isomor-
phism

y(Γ).y0(A) ∼= y(Γ.A)

over y(Γ).

Proof. Immediate consequence of the defining isomorphism of context extension.

Lemma 2.1.37. For all Γ : C and A : Ty(Γ), we have:

TmΓ(A) ∼= T̂myΓ(y0A).

Proof. It follows from proposition 2.1.36 and proposition 2.1.2 that T̂myΓ(y0A)
is naturally isomorphic to the set of sections of yπA : y(Γ.A) → y(Γ). By the
Yoneda lemma, this is isomorphic to the set of sections of πA : C(Γ.A, Γ), which,
by proposition 2.1.2 again, is isomorphic to TmΓ(A).

Proposition 2.1.38. For any CwF C, the Yoneda Embedding y : C → Ĉ can be
extended to a CwF morphism, where y0 is the action of the morphism on types,
and the isomorphism of lemma 2.1.37 is its action on terms.

Proof. Naturality of y0 is easy to verify. It only remains to check that the map

φyA : Ĉ(y(Γ.A), y(Γ).y0(A))

as in definition 2.1.4 is an isomorphism, but this follows immediately from the
fact that it is the inverse of the isomorphism of proposition 2.1.36.

The reason for the subscript 0 in our notation for the action of y on types is
that, when C possesses Π and Σ type structures, the map y0, as defined, does
not preserve them.

We will later define in certain cases a stricter version of y0 that does indeed
preserve the extra structure, and we reserve the name y for that.

2.1.6 Presheaf universes

Using a universe of sets Seti, we can build a universe in any presheaf model.
This construction follows closely the one in [19]. Let C be any small category,
and consider the CwF structure on Ĉ defined in section 2.1.2.

2.1 categories with families 33

Definition 2.1.39. Let P be a context in Ĉ. A type A : T̂y(P) is said to
be small (with respect to Seti), if it factors through Seti when regarded as a
functor

∫
P → Set.

For all object Γ : C, let UΓ be the set of small types over yΓ. This defines a
presheaf U on C.

For all Γ : C and P : UΓ, define

ElΓ(P) :≡ PΓ(id).

We now have a universe (U , El) in Ĉ.

Proposition 2.1.40. The universe (U , El) classifies small types, i.e. a type A
over P is small if and only if there exists a term Ã of type U over P such that
A = El[Ã].

Proof. Clearly, El is small, hence El[Ã] is small for all Ã : P → U .

Conversely, if A is small, define Ã : P → U as follows:

ÃΓ(x) :≡ A[x],

where x : y(Γ)→ P denotes the morphism corresponding to x : PΓ through the
isomorphism of the Yoneda lemma. We have:

El[Ã]Γ(x) = ElΓ(ÃΓ(x))

= ElΓ(A[x])
= A[x]Γ(id)
= AΓ(x).

2.1.7 More notational conventions

In the following, we will make heavy use of nested Π and Σ types, building
complicated type expressions with them. It is therefore convenient to adopt
a “flatter” notation, one that is more symmetric with the respect to the two
arguments of a Π or Σ type.

This notation is inspired by the syntax of the proof assistant agda [28], and it
works as follows: a type like Πa:AB is written as:

(a : A)→ B,

mimicking the usual notation for (non-dependent) function types.

2.1 categories with families 34

Similarly, the type Σa:AB will be written as follows:

(a : A)×B,

making it explicit that Σ-types can be thought of as a generalised form of
products.
Chained Π types will be written by omitting all the intermediate arrows, and
if the same type is present more than once, the corresponding variables can be
grouped within one bracket. For example:

(a : A)(b, b′ : B)(c : C)→ D

represents the type:
Πa:AΠb:BΠb′:BΠc:CD.

Finally, if (U , El) is a universe, we will sometimes omit uses of El, as they can
be inferred very easily: if a term is used in place of a type, it means that there
is an implicit application of El there.

2.1.8 Fibrations and contextuality

Definition 2.1.41. Let p : C(∆, Γ) be a morphism in a CwF. We say that p
is a fibration if there is a type A : Ty(Γ) such that p and pA : C(Γ.A, Γ) are
isomorphic in the slice category C/Γ.
We say that a context Γ is fibrant if the unique morphism C(Γ, 1) is a fibration.

Lemma 2.1.42. In any CwF, pullbacks of fibrations exist and are fibrations.

Proof. Immediate consequence of proposition 2.1.3.

Definition 2.1.43. A CwF C is said to be contextual if every context of C is
fibrant.

The idea of definition 2.1.43 is to express the idea that in certain CwFs contexts
are none other than types in the unit context. For example, this holds for
syntactical models like RF0, introduced in section 2.2 (see lemma 2.2.6).
If C is a CwF, and Γ is any context of C, we can put a category structure
on Ty(Γ) by defining a morphism between types A and B to be a morphism
between pA and pB in the slice category C/Γ. We denote with Ty(Γ) the
resulting category of types over Γ.
Note that the notation Ty(Γ) is consistent with how we denoted the category
of types over a presheaf in section 2.1.2.

Proposition 2.1.44. A CwF C is contextual if and only if the canonical functor
j : Ty(1)→ C is an equivalence of categories.

2.1 categories with families 35

Proof. The functor j is always fully faithful, and C being contextual is clearly
equivalent to j being essentially surjective.

Corollary 2.1.45. A presheaf category is a contextual CwF.

Contextual CwFs are similar to C-systems (also called contextual categories)
[10]. There are, however, two important differences:

• the identification between types and contexts is not canonical, and only
up to isomorphism;

• we require that every context can be obtained out of a single type, rather
than a chain of types.

In particular, the second condition implies that our notion of contextuality
is only well-behaved when C has a Σ-type structure. It would be possible to
formulate definition 2.1.43 in a way that doesn’t implicitly require the existence
of Σ-types, using the idea of a telescope (i.e. a finite sequence of types, each
depending on the previous ones), but doing so is cumbersome, and will not be
required in the following, so we avoid it.

Proposition 2.1.46. If C is a CwF equipped with a Σ-type structure, then
the category Ty(Γ) is itself a CwF with a Σ-type structure, and the canonical
functor j : Ty(Γ)→ C is a split CwF morphism preserving Σ-types.

Proof. Define a type over A : Ty(Γ) to simply be an element of Ty(Γ.A). Con-
text extension and Σ-types can be defined directly using the Σ-type structure
of C.

Verifying that j is a split CwF morphism is then straightforward, and the
preservation of Σ-types is a direct consequence of the definitions.

Contextuality has a useful category-theoretic consequence:

Proposition 2.1.47. Let C be a contextual CwF. Then C has finite products.

Proof. The existence of a terminal object is part of the definition of a CwF, so
we only need to show that C has binary products.

Let Γ, ∆ : C be any two contexts. By contextuality, we can replace ∆ with a
type A over the unit context. By proposition 2.1.3, the following square is a
pullback:

Γ.A //

��

A

��
Γ // 1,

which means that Γ.A is the product of Γ and A.

2.2 the rule framework 36

We conclude this section with a construction that will occasionally be useful
later.

Proposition 2.1.48. Let C be a CwF, and Γ : C a context. The slice category
C/Γ can be equipped with a CwF structure.

Proof. If (∆,σ) is an object of C, we simply define types and terms over (∆,σ)
to be the types and terms over ∆ in C.

2.2 the rule framework

We will use the type structures defined above to “bootstrap” a more general
definition of structure for CwF. To that end, we give the following definition:

Definition 2.2.1. An RF -category2 is a CwF C, equipped with Π, Σ, equality
and unit type structures, and a universe U , El. An RF -morphism is a CwF
morphism preserving all the structure.

RF -categories and RF -morphisms form a category RF . Denote by RF s the
subcategory of RF consisting of only split morphisms. We will need the follow-
ing:

Lemma 2.2.2. The category RF s has all small limits.

Proof. Let I be a small category, and F : I → RF a functor. Denote by Ci the
underlying category of F (i).

We construct the limit of F by first taking the limit C (in Cat) of the Ci, and then
defining a CwF structure on C, equipped with all the required type structures.

For a context Γ : C, denote by Γi the context of Ci obtained from Γ through the
projection of the universal cone C → Ci. Types over Γ are defined to be simply
the limit of Ty(Γi) over I.

Similarly, if A is a type over Γ, we write Ai for the projection of A to Ty(Γi),
and define terms of type A as the limit of TmΓi(Ai).

Context extension is defined pointwise. This is the crucial point where we use
the fact that the diagram F is composed solely of split morphisms.

Verifying that this gives a CwF structure on C is straightforward.

As for the Π, Σ, equality and unit type structures, they can all be defined
pointwise, and the resulting RF-category is easily seen to satisfy the universal
property of the limit.

Theorem 2.2.3. The category RF s has an initial object RF0.

2 RF stands for rule framework

2.2 the rule framework 37

Theorem 2.2.3 can be proved by giving an explicit inductive definition of RF0:
types are expressions generated from base types like U , El and the unit type,
by applying the operations of the RF structures: Π, Σ and equality. Similarly,
terms are generated from variables and their weakening by applying the various
isomorphisms of the RF structures. Contexts are defined as tuples of types,
and morphisms as tuples of terms.

Making this sort of definition precise is, however, far from a straightforward task,
as is proving that it in fact gives an initial object of RF . Intuitively, initiality
follows because we can regard every context (resp. type, term, morphism)
in RF0 as a “recipe” to build a context (resp. type, term, morphism) in an
arbitrary RF -category C. This gives, for any such C, a uniquely determined
functor RF0 → C that clearly preserves all the structures.

We follow a slightly more indirect approach, based on the ideas underlying
the proof of the adjoint functor theorem. Indeed, the following proof could be
adapted to show the more general fact that the forgetful functor RF → Cat
has a left adjoint. However, we will not need the extra generality.

Proof of theorem 2.2.3. Since RF s has all small limits (lemma 2.2.2), it is
enough to show that it has a weakly-initial family. We say that a small RF -
category is countable if the set of objects is countable, all the homsets are
countable, and Ty(Γ) and TmΓ(A) are countable for all Γ and A.

We will show that every RF -category contains a countable RF -subcategory.
From this fact, the existence of a weakly-initial family easily follows (for ex-
ample, fix a countably infinite set Ω and take the family of all RF -categories
whose contexts, morphisms, types and terms are all elements of Ω).

Let C be an RF -category. We define a chain of subsets Dn of C, each equipped
with subfamilies of morphisms, types and terms, arranged just like in a CwF,
but with no further structure. The morphisms of Dn between contexts ∆ and
Γ will be denoted Dn(∆, Γ), just like in a category, and they will form a subset
of C(∆, Γ). We will write Tyn(Γ) for the types of Dn over Γ, which will form a
subset of Ty(Γ), and similarly for terms.

The starting point D0 is just the empty subset. Given Dn and its associated
structures, define Dn+1 as the subset of C containing Dn, plus all the contexts,
morphisms, types and terms that are obtained from those of Dn by applying
any of the operations of the RF -category C. In detail:

• the set Dn+1 contains all the elements of Dn, plus the unit context, and
the context Γ.A, for all choices of Γ : Dn and A : Tyn(Γ);

• morphisms of Dn+1 are obtained from those of Dn by adding the canon-
ical morphism to the unit context, identity morphisms, compositions of
morphisms in Dn, projections of types in Dn and substitutions of the form
〈σ, a〉, where σ : Dn(∆, Γ), and a : Tmn

∆(A[σ]);

2.2 the rule framework 38

• the set Tyn+1(Γ) contains all the types of Dn, plus the unit type, types
of the form ΠAB and ΣAB, where A : Tyn(Γ), and types of the form
a = b, where a, b : Tmn

Γ(A), and A : Tyn(Γ);

• the set Tmn+1(Γ) contains all the terms of Dn, plus the unique inhabitant
of the unit type, and the images of the isomoprhisms defining Π, Σ and
equality types and their inverses.

From the fact that every operation in the definition of RF -category has a
finite number of arguments, it easily follows that the union of all the Dn and
corresponding structures forms an RF -subcategory of C.

The advantage of the proof above over the usual technique of building the
initial model purely syntactically is that the iterative construction happens
within an existing CwF, hence we only need to concern ourselves with adding
the necessary elements to the structures involved, and their required properties
will automatically hold, because they do so in the ambient category.

We will write RF0 to denote the initial object of RF s. Since RF0 is only
initial in a subcategory of RF , we cannot conclude that it is initial in RF . In
particular, given an RF -category C, we can always give a morphism RF0 → C,
but that morphism might not be unique.

Fortunately, we can prove a weaker version of uniqueness.

Definition 2.2.4. A weak RF -morphism is a CwF morphism that weakly pre-
serves all the structure.

Theorem 2.2.5. Let C be an RF -category, and F ,G : RF0 → C two weak
RF -morphisms in RF . Then F and G are isomorphic.

Proof. Construct an RF -category E (the pseudo-equaliser of F and G) as fol-
lows: the objects of E are contexts Γ in RF0, together with an isomorphism
between FΓ and GΓ. Similarly, types (resp. terms) in E are types (resp. terms)
in RF0, together with an isomorphism between their respective images in C.

The fact that F and G are weak RF -morphisms implies that it is possible
to equip E with a structure of RF -category such that the obvious projection
π : E → RF0 is a split morphism.

By initiality of E , the morphism π has a section, which implies that F and G
are isomorphic.

Lemma 2.2.6. The category RF0 is contextual.

Proof. It is easy to see that Ty(1) can be equipped with an RF -category struc-
ture such that the canonical functor j : Ty(1)→ RF0 is a split RF -morphism
(see proposition 2.1.46). It follows that j is an isomorphism of RF -categories,
hence RF0 is contextual by proposition 2.1.44.

2.3 type formers and structures 39

2.3 type formers and structures

We know from section 2.1 that presheaf categories are equipped with a canonical
CwF structure, as well as Π, Σ, equality and unit type structures. If C is a
CwF, then its presheaf category additionally possesses a canonical universe
(the fibrant universe) given by the presheaves of types and terms. Therefore,
we have that for any CwF C, the presheaf category Ĉ is an RF -category.

Definition 2.3.1. A type former is a context in RF0.

The idea behind definition 2.3.1 is that we can use the language of RF0 as a
meta-theoretical framework to describe structures on a generic CwF C. The
universe U in RF0 intuitively stands for the collection of types of C. Given
some A : U , the RF -type El[A] corresponds to the terms of A regarded as a
type on C.

Making this intuition precise is relatively straightforward: denote by J−KĈ the
unique split morphism RF0 → Ĉ. Using J−KĈ , any type former can be inter-
preted as a presheaf on C constructed from Ty and Tm, using the operations
of RF -categories in Ĉ.

Definition 2.3.2. Let Φ be a type former, and C a CwF. A Φ-structure on
on C is a global element of JΦKĈ . A CwF equipped with a Φ-structure will be
referred to as a Φ-CwF.

Lemma 2.3.3. Let Φ be a type former. A Φ-structure φ on C can be trans-
ported to a Φ-structure on the slice category C/Γ for any context Γ.

Proof. The Φ-structure φ can be regarded as a term of type JΦK in the unit
context of Ĉ. If ! : y(Γ)→ 1 is the unique morphism to the terminal object of Ĉ,
it is not hard to verify that JΦK[!] coincides with JΦKĈ/Γ under the isomorphism
of proposition 2.1.7. Therefore, φ[!] is a Φ-structure for C/Γ.

It follows from lemma 2.3.3 that a slice of an RF -category is itself an RF -
category.

2.4 examples

All of the commonly employed type structures on CwFs can be expressed using
the notion of type former developed in section 2.3.

In particular, we can now revisit the definitions of the type structures of an
RF -category, as given in section 2.1, and reformulate them in terms of type
formers.

2.4 examples 40

For example, a Π-type structure is none other than a ΦΠ-structure, where Π
is the following type former:

ΦΠ = (A : U)(B : A→ U)
→ (P : U)× (P ∼= ((a : A)→ B a)),

(22)

where we are making use of the notation described in section 2.1.7 to represent
nested Π and Σ types in RF , and uses of El are implicit. The symbol ∼= refers
to a notion of isomorphism internal to RF , defined in the natural way:

A ∼= B :≡ (f : A→ B)

× (g : B → A)

× ((x : A)→ g(f(x)) = x)

× ((y : B)→ f(g(y)) = y).

Note that the equality symbol used here and in following type formers refers to
the equality type structure that is part of the definition of RF -category.

Expanding the definition of isomorphism into (22) brings it closer to the tradi-
tional formulation of Π-types: the return Σ-type in (22) consists of five compo-
nents, corresponding to the formation, elimination and introduction rule, plus
β and η equalities [18].

Similarly, we can define a type former ΦΣ for Σ-type structures, a type for-
mer Φeq for equality type structures, and a type former Φunit for unit type
structures.

Unfortunately, we cannot use the above characterisations as definitions, because
we need to bootstrap the process with a number of basic type structures in order
to define RF0.

However, we can now use RF to give succint definitions of other commonly
employed type structures, and, more importantly, we can prove metatheoretical
results on CwFs while remaining agnostic of the particular type structures that
they carry.

2.4 examples 41

One of the simplest examples that we haven’t covered directly so far is given
by binary sums. They can be defined by the following RF type former:

Φsum :≡ (A,B : U)
→ (S : U)
× (l : A→ S)

× (r : B → S)

×((P : S → U)
(d1 : (x : A)→ P (l(x)))

(d2 : (y : B)→ P (r(y)))

(f : (s : S)→ P (s))

× ((x : A)→ f(l(x)) = d1(x))

× ((y : B)→ f(r(y)) = d2(y))).

Another important example is intensional equality, the cornerstone of Martin-
Löf type theory, and HoTT in particular. This is not to be confused with the
equality type former introduced in section 2.1.3.

ΦIEQ :≡ (A : U)
→ (E : A→ A→ U)
× (r : (a : A)→ E(a, a))
×(((a : A)(P : (b : A)→ E(a, b)→ U)

(d : P (a, r(a)))
→ (J : (b : A)(p : E(a, b))→ P (b, p))
× J(a, r(a)) = d).

(23)

For comparison, the extensional equality type structure of section 2.1.3 can be
represented in RF as follows:

ΦEQ :≡ (A : U)
→ (E : A→ A→ U)
× ((a, b : A)→ E(a, b) ∼= (a = b)).

Given a ΦEQ-structure, the ability to convert any propositional equality, (i.e.
a term of type E(a, b)), into a definitional equality (i.e. an equality of a and b
as terms), is often referred to as the “reflection rule”.

The difference between intensional and extensional equality can then be sum-
marised by the statement that intensional equality does not admit a reflection
rule, and instead replaces it with the J eliminator and corresponding compu-
tation rule given in (23).

2.5 morphisms 42

We employed extensional equality as a very convenient technical device in the
development of our framework of type formers. Indeed, many “natural” models
of type theory like Set or any presheaf model come equipped with a straight-
forward extensional equality structure.
However, in a constructive setting, extensional equality has certain undesirable
characteristics (for example, models with extensional equality, such as RF0,
tend to have undecidable equality of terms), hence intensional equality is often
preferred.
As a compromise between the two forms of equality, we recall the following rule,
depending on some E : ΦIEQ, called uniqueness of identity proofs (UIP).

UIP(E) :≡ (A : U)
→ (a, b : A)
→ (p, q : E(a, b))
→ E(p, q).

(24)

UIP says that any two parallel equalities are themselves equal, which means
that types do not possess any higher equality structure. In HoTT terminology,
this can be expressed by saying that every type is a set.
We will refer to the type former (E : ΦIEQ)×ΦUIP(E) as strict equality. Note
that extensional equality satisfies UIP, hence it can be regarded as a special
case of strict equality.
Other type formers that we will need in the following are:

• Φempty, for the empty type;
• ΦN, for the natural numbers;
• Φfunext, for function extensionality.

Their definitions can be obtained by encoding in RF0 the usual rules that
concern them. See for example [36] for a detailed exposition of these type
formers and similar ones.

2.5 morphisms

Similarly to what we did in section 2.1.4, we want to define what it means for a
morphism between CwFs F : C → D to preserve a Φ-structure. Unfortunately,
due to the presence of Π-types in the description of a type former as a context
in RF0, this turns out to be quite challenging.
In fact, given a CwF morphism F : C → D, it is not possible in general to
define a corresponding RF -morphism F̃ between Ĉ and D̂, in either direction.
If we had such a morphism, we could say that F preserves Φ-structures when
F̃ maps the Φ-structure on C into the one on D, or vice versa.

2.5 morphisms 43

However, since this is not the case, our definition of preservation of type struc-
tures is much more cumbersome, and requires setting up some infrastructure
to be able to talk about a form of “logical relations” on type structures. Then,
given an F , we will be able to recursively define the preservation relation on
Φ-structures on C and D, essentially by induction on Φ.

Definition 2.5.1. An oplax RF -morphism between RF -categories A and A′,
with universes (U , El) and (U ′, El′) respectively, is given by:

• a CwF morphism F : A → A′;

• a morphism FU : A′(U ′,FU);

• a morphism FEl : A′(U ′.El′,F (U .El));

such that the following diagram commutes:

U ′.El′ FEl
//

��

F (U .El)

��
U ′

FU
// FU .

We will often suppress the superscript U and El from our notation when working
with an oplax RF -morphism.

Note that F is not required to preserve any of the RF -structure.

Given an oplax RF -morphism F : A → A′, we can construct an RF -category
RF .

Objects of RF are defined to be triples Γ = (Γ, Γ′,R), where Γ : A, Γ′ : A′,
and R is a span over FΓ and Γ′, i.e. a diagram in A′ of the form:

FΓ R
loo r // Γ′. (25)

A type over Γ is itself a triple A = (A,A′,X), where A : Ty(Γ), A′ : Ty(Γ′),
and X : Ty(R.FA[l].A′[r]). Context extension of (A′,A′,X) is defined to be
the span determined by R.FA[l].A′[r].X.

Terms of type A are defined to be triples (a, a′,x), where a : TmΓ(A), a′ :
TmΓ′(A

′), and x : TmR(X [al, a′r]).

This determines a CwF structure on RF , and it is easy to see that the two
obvious projections RF → A and RF → A′ are split CwF morphisms.

Proposition 2.5.2. The CwF RF defined above has an RF -structure, and the
two projections RF → A and RF → A′ are split RF -morphisms.

Proof. We will only show how to define a Π-type structure on RF , since this
is the most involved step.

2.5 morphisms 44

Let Γ = (Γ, Γ′,R) be a context in RF , A = (A,A′,X) a type over it, and
B = (B,B′,Y) a type over Γ.A. Let R be given by the span in (25).

The Π-type ΠAB is defined as the triple P = (ΠAB, ΠA′B
′,P), where P is

the following type in the context R0 = R(u : F (ΠAB)[l])(u
′ : ΠA′B

′[r]):

Πa:FA[l]Πa′:A′[r]ΠX [a,a′]Y [a,u a, a′,u′ a′],

and u a denotes the application of u : F (ΠAB)[l] to a : FA[l], as described in
remark 2.1.34.

Terms of type P are triples (u,u′,w), where u : TmΓ(ΠAB), u′ : TmΓ(ΠA′B
′),

and w : TmR(P [Fu[l],u′r]).

Using the defining properties of Π-type structures in A and A′, we can see
that these are naturally isomorphism to triples (b, b′, y), where b : TmΓ.AB,
b′ : TmΓ′.A′B

′, and y : TmR(a:FA[l])(a′:A′[r]).X(Y [a,Fb[l], a′, b′[r]]), which are
exactly terms of type B in the context Γ.A.

Since the functors RF → A and RF → A′ are split RF -morphisms by proposi-
tion 2.5.2, initiality of RF0 implies that JΦKRF is a span over JΦKA and JΦKA′ .
We will write that span as:

F JΦKA JΦKFoo // JΦKA
′
.

Definition 2.5.3. Let φ be a global element of JΦKA and φ′ a global element
of JΦKA′ . An element of JΦKF over φ and φ′ is defined to be a global element
s of JΦKF such that the following diagram commutes:

1
φ

zz
s
��

φ′

$$

F JΦKA JΦKFoo // JΦKA
′
.

Let us now fix two CwFs C and D, both equipped with Φ-structures for some
type former Φ, and a CwF morphism F : C → D. The following lemma is an
immediate consequence of definition 2.5.1.

Lemma 2.5.4. The functor F ∗ : D̂ → Ĉ is an oplax RF -morphism.

It follows from lemma 2.5.4 that we have an RF -category RF ∗ , thus we get an
interpretation morphism RF0 → RF ∗ .

Definition 2.5.5. Let φ and ψ be the Φ-structures of C and D respectively.
We say that F is a Φ-morphism (or that F preserves Φ-structures) if there
exists an element of JΦKF ∗ over φ and ψ.

2.6 composition of morphisms 45

Definition 2.5.5 is based on the idea of logical relations [35]. For a fixed CwF
morphism F , we defined a notion of “being related through F” for Φ-structures,
by induction on Φ.

For the type formers of RF itself, it is not hard to see that preservation as
defined in section 2.1.4 coincides with the notion of definition 2.5.5, when using
the equivalent definitions given in section 2.4.

Note that, for a general Φ, for Φ-structures φ and ψ on C and D respectively,
being related through F does not mean that φ can be mapped through F to a
Φ-structure on D that happens to coincide with ψ. In fact, there is no way in
general to transport a Φ-structure along an arbitrary functor.

This can be understood in analogy with common algebraic structures. For
example, given two monoids A and B, and a function between them f : A→ B,
we know what it means for f to be a monoid homomorphism - meaning that
the two monoid structures on A and B are “related through f” - but there is
in general no way to transport a monoid structure from A to B.

2.6 composition of morphisms

Unfortunately, for a general type former Φ, definition 2.5.5 is not very well
behaved. In fact, it is not even guaranteed that composition of Φ-morphisms
is a Φ-morphism, that is, Φ-CwFs do not necessarily form a category.

The problem becomes apparent as soon as we consider certain “higher order”
type formers, i.e. type formers with Π types nested on the left. The simplest
example is:

Φ :≡ (U → U)→ U .

To make our example easier to follow, we observe that, given any set A, we can
construct a CwF with only one context 1, Ty(1) = A, and Tm1(a) = 1 for all
types a : A, with context extension defined in the only possible way.

If we assume that the set A is equipped with a function AA → A, then its
corresponding CwF can be equipped with a Φ-structure. Let us call a set
equipped with such a structure a Φ-set.

Given a function f : A → B between Φ-sets, we say that it is a Φ-morphism
if it induces a Φ-morphism on the corresponding Φ-CwFs. If we denote by
φA and φB the Φ-structures on A and B respectively, what this means is that
for all functions u : A → A and v : B → B such that the following diagram
commutes:

A u //

f
��

A

f
��

B v
// B,

2.7 special type formers 46

we have that f(φA(u)) = φB(v).

To show that Φ-morphisms between Φ-CwFs are not in general closed under
composition, it is therefore enough to find Φ-morphisms f : A→ B, g : B → C

such that g ◦ f is not a Φ-morphism.

We take A = 1, B = 2, C = 3, and f , g to be inclusions. The Φ structure φA
on A is the only possible one, while the Φ-structure φB on B takes a function
u : B → B and returns u(0).

The Φ-structure φC on C is defined as follows: given u : C → C, it distinguishes
two cases:

• if u(2) ⊆ 2, then φC(u) = u(0);

• otherwise, φC(u) = 1.

It is easy to see that the inclusions A→ B and B → C are indeed Φ-morphisms.
However, if we take for example the function u : C → C that swaps 1 and 2
and fixes 0, then clearly the following diagram commutes:

1 id //

0
��

1
0
��

C u
// C,

but φC(v) = 1 6= 0 = φA(id).

2.7 special type formers

The notion of type formers is very general. As shown in section 2.6, it is possible
to define “higher order” type formers, for which even the most basic properties
are not provable.

In practice, most of the commonly employed type formers are much better
behaved than in the general case. For this reason, it is useful to single out
certain specific properties of type formers that make them more suitable to be
analysed.

Lemma 2.7.1. Let Φ be a type former, F : A → A′ an oplax RF -morphism.
Suppose φ is a global element of JΦKA and φ′ a global element of JΦKA′. Then
any two elements of JΦKF over φ and φ′ are equal.

Proof. Let R′F be subcategory of RF consisting of all those objects

FΓ R
loo r // Γ′,

where R is subterminal in the category of spans over FΓ and Γ′.

2.7 special type formers 47

It is not hard to see that R′F is itself an RF -category, and consequently the
inclusion functor i : R′F → RF is a split RF -morphism.

It follows that the interpretation functor J−KRF has values inR′F . In particular,
JΦKF is subterminal over F JΦKA and JΦKA, which is exactly what we had to
prove.

Lemma 2.7.1 ensures that, if a CwF morphism F : C → D between Φ-CwFs is
a Φ-morphism, then there is at most one possible choice for the element s of
definition 2.5.5.

Now, given oplax RF -morphisms F : A → B and G : B → C, we can form the
pullback RF ×BRG, which is an RF -category by lemma 2.2.2, and is equipped
with split morphisms πA and πC to A and C respectively.

Definition 2.7.2. We say that a type former Φ is flat if for all F ,G as above,
whenever JΦKRF×BRG has a global element s, then there is an element of JΦKGF
over πA(s) and πC(s).

Definition 2.7.2 formalises the idea of a type former that is well-behaved with
respect to composition, as the following proposition shows.

Proposition 2.7.3. If Φ is a flat type former, composition of Φ-morphisms is
a Φ-morphism.

Proof. If F : A → B and G : B → C are Φ-morphisms, then JΦKRF×BRG has
a global element s, where πA(s) is the Φ-structure on A, and πB(s) is the
Φ-structure on C.

Since Φ is flat, we get a corresponding element of JΦKGF , showing that GF is
a Φ-morphism.

Corollary 2.7.4. Let Φ be a flat type former. Φ-CwFs, together with Φ-
morphisms, form a category.

Definition 2.7.5. A flat type former Φ is said to be algebraic if the category
of Φ-CwFs and split Φ-morphism has an initial object.

All the usually considered type formers are algebraic. In particular, all the type
formers involved in the definition of an RF -category are algebraic (as essentially
proved by theorem 2.2.3), as well as all the examples of section 2.4.

Proposition 2.7.6. Let Φ be an algebraic type former, H the initial Φ-CwF,
and C an arbitrary Φ-CwF. Then any two Φ-morphisms F ,G : H → C are
isomorphic.

2.8 systems of universes 48

Proof. Let S be the RF -category whose objects are triples (P ,Q,R), where P
is a presheaf on H, Q a presheaf on C, and R a span of the form:

F ∗Q R //oo G∗Q.

Let E the pseudo-equaliser of F and G, defined like in the proof of theorem 2.2.5.
Let π : E → H be the canonical projection.
We can define RF -morphisms

RF ∗ ×Ĉ RG∗ // S //Rπ∗ .

The fact that F and G are both Φ-morphisms determines a global element of
the interpretation of Φ in RF ∗ ×Ĉ RG∗ , which can therefore be transported to
Rπ∗ .
It follows that E can be equipped with a Φ-structure such that the CwF mor-
phism π is a split Φ-morphism. The conclusion now follows immediately from
the initiality of H.

Definition 2.7.7. A type former Φ is said to be set-theoretic if for all small
categories A, the CwF Â has a Φ-structure.

Again, all type formers considered so far are set-theoretic. In section 2.8 we
will define a type former for a univalent universe (definition 2.8.6), which fails
to be set-theoretic.
A type in RF0 over some type former Ψ will be referred to as a type former
over Ψ. Given such a type Φ, we will often identify it with the corresponding
context extension Ψ.Φ.

Definition 2.7.8. Let Ψ be a type former, Φ a type former over Ψ, and C a
CwF equipped with a Ψ-structure ψ.
A Φ-structure on C is a Ψ.Φ-structure on the underlying CwF such that the
induced Ψ structure is equal to ψ.

2.8 systems of universes

If (U , El) is a universe in a CwF C, U induces another CwF structure on C,
which we shall denote with the superscript U . Types of CU over a context Γ
are defined by:

TyU (Γ) :≡ C(Γ,U).
For a type A : TyU (Γ), we define terms of A as follows:

TmUΓ (A) :≡ C(Γ, El[A]).

There is a canonical map CU → C, which is easily verified to be a CwF mor-
phism.

2.8 systems of universes 49

Definition 2.8.1. Let (U , El) and (U ′, El′) be universes in a CwF C. A universe
morphism U → U ′ is a CwF morphism CU → CU ′ that makes the following
diagram commutative:

CU //

CU
′

~~
C.

If C is equipped with a Φ-structure φ, it is not possible in general to restrict φ
to CU . This justifies the following definition.

Definition 2.8.2. Let C be a Φ-category, where Φ is any type former, and
(U , El) a universe in C. We say that U is a Φ-universe if CU has a Φ-structure
φU such that the canonical map CU → C is a Φ-morphism.

Note that if Φ is flat, then universes over C form a category, with morphisms
given by universe morphisms such that the underlying CwF morphism preserves
Φ-structures.

Definition 2.8.3. Let A be a category, Φ a flat type former and C a Φ-CwF. A
system of Φ-universes on C (indexed by A) is a functor from A to the category
of Φ-universes of C.

Usually, A is taken to be a poset, most commonly the ordinal ω. This is the
case, for example, in the type theory described in [36].

Lemma 2.8.4. In any RF -category C, finite diagrams of fibrant objects have
a limit.

Proof. By lemma 2.1.42, all we have to prove is that any morphism between
fibrant objects of C is isomorphic to a fibration. The following argument appears
in [13].

Let A and B be types over the unit context, and f : A→ B any map. Define:

E :≡ (a : A)× (b : B)× (f(a) = b).

We have a factorisation:
A i // E

p // B,

and it is easy to see that i is an isomorphism, and p is a fibration.

Proposition 2.8.5. Let A be a finite category and Φ a flat type former. There
is a type former univΦ,A such that systems of Φ-universes indexed by A are in
bijective correspondence with univΦ,A-structures on C.

2.8 systems of universes 50

Proof. Define:
Ψ :≡ (U : U)× (el : El U → U).

Clearly, a Ψ-structure is the same as a universe. Furthermore, (El[U], El[λ−1(el)])
is a universe in RF0/Ψ, which we will also denote with U . Therefore, RF0/Ψ
is an RF -category with universe U .

If C is a CwF equipped with a universe V , we get an interpretation functor
J−KĈ : RF0/Ψ mapping U to TyV .

It follows that, if we define univΦ,1 be the interpretation of Φ in RF0/Ψ, a
univΦ,1-structure in C is the same as a Φ-universe V in C.

Now, let I be the category with two objects 0 and 1, and only one non-identity
morphism in I(0, 1). Define a type former Ψ2 as follows:

Ψ2 :≡ ((U , el) : Ψ)

× ((U ′, el′ : Ψ))

× (f0 : El U → El U ′)
× (f1 : (X : El U)→ El(el(X))→ El(el′(f0(X))).

Clearly, a Ψ2-structure is the same as a pair of universes, together with a
universe morphism, i.e. a system of universes indexed by I.

Again, if C is equipped with universes V and V ′, there is an interpretation
functor J−KĈ : RF0/Ψ2 that maps the two universes U and U ′ in RF0/Ψ2 to
V and V ′ respectively.

RF0/Ψ2 can be regarded as an RF -category, where the universe is defined to
be:

(A : U)× (A′ : U ′)× (f(A) = A′).

Consequently, if we define univΦ,I to be the interpretation of Φ in RF0/Ψ2,
it is easy to see that a univΦ,I-structure on C is the same as a system of
Φ-universes indexed by I.

Now the general case follows from lemma 2.8.4 and the fact that every finite
category is a finite colimit of 1 and I in Cat.

2.8.1 Univalent universes

Let C be a Φ0-CwF where Φ0 is defined as:

Φ0 :≡ ΦΠ ×ΦΣ ×Φieq,

and let (U , El) be a universe in C.

2.9 further work 51

We can define the property of a function being an equivalence, internally in C,
as follows.

Over the context (A,B : U)(f : A→ B), define a type isEquiv:

isEquiv :≡ ((g : B → A)× (g ◦ f = id))
× ((g : B → A)× (f ◦ g = id)).

Here id and ◦ denote the identity function and composition of functions internal
to C, respectively, defined in the obvious way using the Π-type structure on C.

The type Equiv of equivalences is defined over the context (A,B : U):

Equiv :≡ (f : A→ B)× isEquiv[f].

It is easy to define a term idE : Equiv[A,A] over the context (A : U), corre-
sponding to the identity equivalence. From the properties of equality, it follows
that there exists a function coerce : A = B → Equiv[A,B] in the context
(A,B : U).

Univalence for U is the following type, in the unit context:

uaU :≡ (A,B : U)→ isEquiv[A = B, Equiv[A,B], coerce[A,B]].

Definition 2.8.6. The universe U is said to be univalent if the corresponding
univalence type uaU has a global element.

Proposition 2.8.7. There is a type former Φua over Φ, such that a Φua-
structure over Φ0-CwF C is the same as a univalent universe.

Proof. Univalence can be defined internally in any Φ0-CwF, hence in particular
in RF0/Φ0.

2.9 further work

The definitions of special type formers given in section 2.7 serve their purpose
of allowing a workable theory of type formers to be developed, but could be
considered rather unsatisfactory, since they involve quantification over arbitrary
functors, and it is thus hard to verify in practice that a given type former
possesses those properties.

It seems reasonable that, at least for the case of flat and algebraic type formers,
one should be able to verify that a type formers falls in one of those classes
simply by inspecting the type expression in RF0 that defines it.

For example, it appears to be the case that if a type former is written only
using “first-order” Π-types of non-small types, then it is automatically flat. All

2.9 further work 52

the usual type formers, at least the ones that we used or mentioned, have this
form, and the example of non-flat type former given in section 2.6 is indeed
higher order.

It also seem likely that there should exist a notion of “strict positivity” for type
formers, and those type formers that turn out to be strictly positive ought to
be algebraic.

Investigating these and similar syntactic characterisations for type formers will
be the goal of future research.

3
TWO-LEVEL TYPE THEORY

In this chapter, we will develop the idea of two-level type theory, modelled
by CwFs with two type functors. Such systems are motivated by the need to
introduce an internalised notion of strict equality into the theory.
Since certain type formers will play a special role within a two-level CwF, we
single out CwFs with a fixed basic structure:

Definition 3.0.1. Amodel of type theory is a CwF equipped with Π, Σ and unit
type structures. Given models of type theory C and D, a morphism between
them is a CwF morphism that preserves the Π, Σ and unit type structures.

We will write T to denote the type former corresponding to Π, Σ and unit
types, so that a model of type theory is simply a CwF with a T -structure. In
other words:

T :≡ ΦΠ ×ΦΣ ×Φunit.
Example 3.0.2. If C is an arbitrary category, the presheaf category Ĉ is a model
of type theory.

We will often simply say model instead of model of type theory. In particular,
the structure needed to make a category (or a CwF) into a model will often
be referred to as a model structure. Note that our notion of model structure is
completely unrelated to that of Quillen model structure [30]. No confusion is
possible, however, since we will never refer to the latter.
If Φ is a type former over T , CwFs equipped with a Φ-structure will be referred
to as Φ-models. If Φ is flat, Φ-models of type theory form a categoryMΦ. In
particular, the trivial type former over T is flat, and its corresponding category
of models will be denoted simply byM.
To incorporate strict equality into type theory, we will need to make a distinc-
tion between arbitrary types, and types for which weak equality is well defined.
This is necessary, because, as we will see in lemma 4.2.1, the theory becomes
degenerate if we don’t make this distinction.

Definition 3.0.3. A two-level CwF is a CwF C, equipped with a functor Tyf :
C → Setop, and a natural transformation | − | : Tyf → Ty.

53

3.1 the simplicial model 54

Given a two-level CwF C, we can define a second CwF structure on C having
Tyf as the type functor, and where terms are given by Tmf

Γ(A) :≡ TmΓ(|A|).
Context extension is similarly defined as Γ.A :≡ Γ.|A|. We will write Cf to
denote C equipped with this second CwF structure. To avoid confusion, and
for consistency with notations that we will introduce later, we will write Cs,
Tys and Tms when referring to the original CwF structure on C.
The natural transformation | − | induces a split CwF morphism Cs → Cf .
Definition 3.0.4. A two-level model of type theory is a two-level CwF C such
that both Cs and Cf are models of type theory, and | − | is a T -morphism.

If Φ and Ψ are type formers over T , we define a (Φ, Ψ)-model to be a two-level
model C where Cf is equipped with a Φ-structure, and Cs is equipped with a
Ψ-structure.
The simplest way to construct a two-level CwF is with a universe:
Remark 3.0.5. Let C be a CwF equipped with a universe U , El. Define Tyf(Γ) :≡
TmΓ(U), and for A : Tyf(Γ), let |A| :≡ El[A].
Then C, with the above choice of fibrant type functor, is a two-level CwF.

For all CwFs C, the presheaf category Ĉ is a two-level CwF, where we can use
the fibrant universe to define fibrant types as in remark 3.0.5.

3.1 the simplicial model

The reference example of a two-level model is given by the category of simplicial
sets, whose definition we recall below.
Definition 3.1.1. The simplicial category ∆ has the natural numbers as ob-
jects, and morphisms ∆(n,m) are defined to be monotone functions [n]→ [m],
where [k] denotes the set of natural numbers less or equal to k.
Definition 3.1.2. A simplicial set is a presheaf on ∆.

Simplicial sets form a category sSet, that can be regarded as a model of type
theory like any presheaf category (example 3.0.2).
We can then define two-level model structure on sSet as follows: for all contexts
Γ, fibrant types Tyf(Γ) are defined to be the subset of Ty(Γ) of those types A
such that the display map Γ.A→ Γ is a Kan fibration. Since Kan fibrations are
closed under Π and Σ type formation [21], the fibrant fragment of sSet admits
Π and Σ type formers, hence sSet is a two-level model of type theory.
Note that the definition of types used in [21] differs from the one we have given
here. However, it can be easily verified that all the constructions carry over to
our definition. Following [21], then, it can be shown that the fibrant fragment
of sSet models all of the commonly used type formers, including a univalent
universe.

3.2 presheaf models 55

3.2 presheaf models

In this section, we will show that, given a model of type theory C, its presheaf
category Ĉ can be regarded as a two-level model. Furthermore, if C is equipped
with a Φ-structure for some type former Φ, one can find the same Φ-structure
on the fibrant fragment of Ĉ.
The idea of the proof is very simple: we start with a model C and build a two-
level model structure on Ĉ. The strict fragment of Ĉ is obtained from the usual
CwF structure on presheaf categories (section 2.1.2). Fibrant types on Ĉ are
given by the fibrant universe (section 2.1.3), and the fibrant model structure is
inherited from that of C.
The problem with this approach is that the resulting morphism from the fibrant
to the strict fragment does not preserve type formers strictly. For example, let
A,B : Ĉ(1, Ty) be fibrant types over the unit context. If we form their Σ-type
within the fibrant model structure, then convert it to a strict type, we get the
presheaf P given by:

PΓ = TmΓ(ΣAB).

However, if we convert both A and B to strict types first, then take their Σ-
type, we end up with a presheaf Q, where, QΓ is a set of pairs of terms of A
and B over Γ.
Of course, terms of ΣAB can be identified to the set of such pairs, but the two
resulting presheaves, although isomorphic, are not equal on the nose. A similar
problem occurs with Π-types. Therefore, the resulting structure on Ĉ does not
satisfy the definition of two-level model (definition 3.0.4).
For this reason, we need to slightly modify the CwF structure on C, so that
strict preservation of Π and Σ can be achieved. This will be the aim of the
following subsections.

3.2.1 Lifting type formers

Let C be a CwF equipped with a Φ-structure φ. The fibrant universe Ty
determines a CwF structure on Ĉ, where types are given by

T̂yf
(P) :≡ Ĉ(P , Ty).

Let us denote by Ĉf the corresponding CwF.
Lemma 3.2.1. The yoneda embedding y : C → Ĉf can be extended to a CwF
morphism.

Proof. By the Yoneda lemma, Tyf(yΓ) ∼= Ty(Γ), hence we can take this iso-
morphism as the action of y on types. Consequently, y can be defined to be an
isomorphism on terms as well.

3.2 presheaf models 56

In this section, we will show how to lift φ to a Φ-structure on T̂yf , so that the
Yoneda embedding of lemma 3.2.1 is a Φ-morphism.
Lemma 3.2.2. Let f : C → D be a CwF equivalence between RF -categories.
If f weakly preserves the universe, then f is a weak RF -morphism.

Proof. Since f is a CwF equivalence, we can use it to transport all the type
structures from C to D. Since all the type structures of an RF -category except
the universe are characterised by a universal property, it easily follows that the
transported structures are isomorphic to the original ones on D, which amounts
to saying that f preserves them.
Theorem 3.2.3. Let f : C → D be a CwF morphism such that f∗ : D̂ → Ĉ is
an equivalence of categories, and f is bijective on types. Suppose C is equipped
with a Φ-structure φ. Then there exists a Φ-structure φ′ on D such that f is a
Φ-morphism.

Proof. Since f∗ is an equivalence of categories, it induces a equivalences of slice
categories, hence an isomorphism of the type functors of D̂ and Ĉ thanks to
proposition 2.1.7. Therefore, f∗ is a CwF equivalence.
Note that f being bijective on types is equivalent to f∗ preserving the universe.
Hence, it follows from lemma 3.2.2 that f∗ is a weak RF -morphism.
Let f! : Ĉ → D̂ be the left adjoint of f∗. Explicitly, f! is given by the left Kan
extension of y ◦ f along y : C → Ĉ. In this case, f! is also a CwF equivalence,
hence a weak RF -morphism.
We define a CwF morphism f̃ : Ĉ → Rf∗ . On objects, f̃ maps P to the triple
(P , f!(P), δP), where δP denotes the span:

f∗f!P P
ηoo // P .

The action of f̃ on types is defined similarly. It is not hard to check that f̃ is
a weak RF -morphism.
Therefore, the diagram:

RF0

~~ !!
Ĉ

f̃

//Rf

commutes weakly by theorem 2.2.5. It follows that f̃(φ) determines a canonical
Φ-structure on D̂, such that f is a Φ-morphism, as required.
Theorem 3.2.4. There is a Φ-structure on Ĉf such that the Yoneda embedding
(lemma 3.2.1) preserves Φ-structures.

Proof. The Yoneda embedding y : C → Ĉf is bijective on types, and the induced
functor y∗ is an equivalence. Therefore, theorem 3.2.3 applies directly.

3.2 presheaf models 57

3.2.2 Regular models

Let C be a model, and consider the category Ĉ/Ty of presheaves over Ty. If X
is such a presheaf, we denote by | − |X the corresponding morphism to Ty.

For a presheaf X over Ty, regard X as a type in the unit context of the CwF
Ĉ, and denote by X(2)

Γ the presheaf corresponding to the type:

ΣA:XΠTm[|A|X]X.

Lemma 3.2.5. For all context Γ : C, the set X(2)
Γ is naturally isomorphic to

the set of pairs (A,B), where A : XΓ and B : XΓ.|A|X .

Proof. Immediate consequence of lemma 2.1.16.

In the following, we will use the isomorphic representation of X(2) given by
lemma 3.2.5 liberally.

Note that if Ty is regarded as an element of Ĉ/Ty, the presheaf Ty(2) matches
with the one we defined in section 2.1.3.

We can make X(2) into a presheaf over Ty in at least two ways: using the Π
or Σ-type structures on C. In fact, they both can be regarded as morphisms:

Ty(2) → Ty,

from which we obtain the desired morphism X(2) → Ty by composing with the
obvious map X(2) → Ty(2).

We now define an endofunctor E of Ĉ/Ty as:

EX :≡ X(2) +X(2) + 1,

where the map EX → Ty on the first X(2) component is given by the Π-type
structure on C as explained above, on the second component by the Σ-type
structure, and on the third component it just selects the unit type.

Denote by:

πE : X(2) → EX

σE : X(2) → EX

uE : 1→ EX

the three canonical injections into the coproduct EX.

Proposition 3.2.6. The endofunctor E : Ĉ/Ty→ Ĉ/Ty is finitary.

Proof. Clear from the characterisation of lemma 3.2.5.

3.2 presheaf models 58

It follows from proposition 3.2.6 that E admits a free monad E∗.
An element of (E∗X)Γ is either a base element η(A), where A : XΓ and η :
X → E∗X is the unit of the monad E∗, or a compound element of the form
πE(A,B), σE(A,B) or uE .
Here, we are abusing notation by writing πE for the canonical map (EX)(2) →
EX given by the free monad construction, and similarly for σE and uE .
The idea of this construction becomes clear when we try to apply E∗ to Ty itself.
The resulting presheaf E∗Ty can be regarded as an alternative type functor on
C where types can be uniformly be classified into base types, Π-types, Σ-types
or unit types.
This is made precise by the following.

Lemma 3.2.7. For any model C, the presheaf E∗Ty can be extended to a model
structure.

Proof. For an element A : E∗Ty, define its set of terms simply as TmΓ(|A|).
This clearly equips C with a CwF structure, where context extension is given
by Γ.A :≡ Γ.|A|.
The rest of the structure can be obtained directly from the decomposition of E∗:
the Π-type structure is given by πE , the Σ-type structure by σE and the unit
type structure by uE . Verifying all the required properties is straightforward.

If C is a category and Φ is a flat type former over T , writeMΦ
C for the subcat-

egory of MΦ consisting of Φ-models that have C as the underlying category,
and Φ-morphisms that have the identity as the underlying functor. We refer
toMΦ

C as the category of Φ-model structures on C.
Similarly, MC denotes the category of model structures on C (without any
additional structure).
Lemma 3.2.7 implies that E∗ induces an endofunctor onMC for all models C.

Lemma 3.2.8. The endofunctor determined by E∗ is a comonad onMC.

Proof. A morphism ε, serving as the counit of the comonad, can be obtained
directly from the map | − | : E∗Ty→ Ty. All we need to do to make ε into the
unit of a comonad is to show that it induces a model morphism. Indeed, this
is readily verified, since the model structure corresponding to E∗Ty is defined
in terms of | − | itself.
To define the comonad multiplication δ : E∗Ty → E∗(E∗Ty), we proceed by
induction on the structure of E∗, and at the same time show that |δ(X)| = |X|
for all X.
Let Γ : C, and X : E∗Ty(Γ).

3.2 presheaf models 59

• If X = η(A) for some A : Ty(Γ), set δ(X) :≡ η(η(A)). Then clearly
|δ(X)| = A = |X|.

• If X = πE(A,B), we have by induction hypothesis δ(A) : E∗(E∗Ty)(Γ),
and, modulo an application of the isomorphism of lemma 3.2.5, δ(B) :
E∗(E∗Ty)(Γ.|A|). Since |A| = |δ(A)| by the induction hypothesis, we
can set δ(X) :≡ πE(δ(A), δ(B)), and observe that |δ(X)| = Π|A||B| =
|πE(A,B)| = |X|, as required.

• If X = σE(A,B), we proceed exactly like for the πE case above.

• If X = uE , we set δ(X) :≡ uE , and the required equation obviously
holds.

The fact that δ is a model morphism follows immediately from its definition.

One of the comonad laws has already been proved as part of the definition of
δ, and the others can be easily verified.

Lemma 3.2.8 may seem surprising at first, since E∗ is defined as a (free) monad,
while it turns out to be a comonad when regarded as an endofunctor of model
structures. However, E∗ is already a comonad on Ĉ/Ty, so all that lemma 3.2.8
states is that this structure carries over.

On the other hand, E∗ is not a monad on MC , since for example the unit
η : Id→ E∗ cannot be regarded as a model morphism.

Theorem 3.2.9. Let C be a model. The Yoneda embedding y : C → Ĉ can be
extended to a model morphism between E∗Ty and the canonical model structure
on Ĉ defined in section 2.1.2.

Proof. We have already defined an action of y on types, denoted y0 : Ty →
T̂y(y−). The function y0 maps a type A : Ty(Γ) to the functor (∆,σ) 7→
Tm∆(A[σ]) (definition 2.1.35). We observed that y0 is not in general a model
morphism.

For an element X : E∗Ty(Γ), we will define y(X) : T̂y(yΓ) by induction on
the structure of E∗Ty(Γ), and at the same time we will construct a natural
isomorphism y(X) ∼= y0(|X|).

• if X = η(A) for some type A : Ty(Γ), let y(X) :≡ y0(X) and the
isomorphism be the identity;

• if X = πE(A,B), we get by induction hypothesis a type y(A) : T̂y(yΓ);
similarly, using lemma 3.2.5, we get a type y′(B) : T̂y(y(Γ.A)).
Now, y(Γ.A) ∼= y(Γ).y0(A) ∼= y(Γ).y(A), hence we can set
y(X) :≡ Πy(A)y

′(B). It follows from the definition of Π-types in
C that y(X) ∼= y0(|X|).

• if X = σE(A,B) or X = uE , we proceed similarly to the case of πE .

3.2 presheaf models 60

We can prove that y : Ty(Γ) → T̂y(yΓ) is natural in Γ by induction on its
argument, and using the fact that y0 is natural (proposition 2.1.38) as the base
case.
At this point, since the definition of the Π-type structure on E∗Ty is given
precisely by πE , it is easy to verify that y as defined above does indeed preserve
Π-types strictly, and a similar argument shows that y preserves all type formers,
hence it is a model morphism.

Definition 3.2.10. A Φ-model C is said to be (weakly) regular if it is equipped
with a model morphism θ : Ty→ E∗Ty on the category of Φ-model structures
of C. C is said to be strongly regular if θ is a coalgebra of the comonad E∗.

Definition 3.2.11. An type former Φ over T is said to be regular if E∗ maps
Φ-models into Φ-models.

If Φ is flat, we can say that Φ is regular if and only if E∗ can be extended to an
endofunctor (hence a comonad) onMΦ

C for any Φ-model C. Clearly, the trivial
type former over T is regular by lemma 3.2.7.

Proposition 3.2.12. If Φ a regular algebraic type former over T , then the
initial Φ-model is strongly regular.

Proof. Let S be the initial Φ-model. The existence of θ : TyS → E∗TyS is an
immediate consequence of the initiality of S.

Theorem 3.2.13. Let Φ and Ψ be type formers over T , with Φ regular and
Ψ set theoretic, and let C be a regular model. The presheaf category Ĉ can be
equipped with a (Φ, Ψ)-model structure such that the Yoneda embedding y : C →
Ĉ can be extended to a Φ-morphism between C and the fibrant fragment of Ĉ.

Proof. Let C′ be the model obtained from C by replacing Ty with E∗Ty. We
know from theorem 3.2.4 that Ĉf can be made into a Φ-model and y : C′ →
Ĉf can be extended to a Φ-morphism. Furthermore, Ĉs is a Ψ-model by the
assumption that Ψ is set-theoretic.
Since θ : C → C′ is a model morphism, all we have to do is define the rest of
the two-level model structure on Ĉ.
The non-obvious bit is how to define the coercion map | − | : T̂yf

→ T̂ys. Fortu-
nately, most of the hard work is already contained in the proof of theorem 3.2.9.
For all contexts P : Ĉ, and A : T̂y(P), set:

|A|Γ(x) :≡ y(AΓ(x))Γ(id).

From naturality of y, it follows that:

|A|[x] = y(AΓ(x)).

3.2 presheaf models 61

Now, consider a pair (A,B) in the fibrant fragment. Its related pair is given
(lemma 2.1.29) by (|A|, |B|), where we have used the isomorphism of corol-
lary 2.1.17 implicitly.
Now we compute:

|ΠAB|Γ(x) = y((ΠAB)Γ(x))Γ(id)
= y(ΠAΓ(x)B̃Γ(x))Γ(id)
= (Πy(AΓ(x)y

′(B̃Γ(x)))Γ(id)
= (Π|A|[x]|B|[x+])Γ(id)
= ((Π|A||B|)[x])Γ(id)
= (Π|A||B|)Γ(x).

It follows that | − | preserves Π types strictly. A similar verification for Σ and
the unit type shows that | − | is a model morphism, concluding the proof.

3.2.3 Conservativity

An important consequence of the results of section 3.2.2 is the following con-
servativity result.

Theorem 3.2.14. Let Φ be a regular algebraic type former, and Ψ a set-
theoretic type former over T . Assume that the category of (Φ, Ψ)-models has
an initial object S, and let H be the initial Φ-model. Let H : H → S be the
unique morphism to the fibrant fragment of S.
Let Γ : H and A : Ty(Γ). If H(A) is inhabited in S, then A is inhabited in H.

Proof. Consider the diagram:

H y //

H ��

Ĥ

S,

??

where Ĥ is regarded as a (Φ, Ψ)-model as in theorem 3.2.13.
Since H is the initial Φ-model, this diagram commutes weakly by proposi-
tion 2.7.6.
Therefore, if H(A) is inhabited in S, it is also inhabited in Ĥ, hence in H, since
the Yoneda embedding is full.

Theorem theorem 3.2.14 states that to prove a proposition or construct a value
in a model, it is enough to prove it or construct it in a corresponding two-
level model. The type formers Φ and Ψ appearing in theorem 3.2.14 specify

3.3 two-level type formers 62

the choice of structure for the fibrant fragment and strict fragment of the two
level model, respectively. They are both type formers over T , because they
share the common structure of a model of type theory, which, according to
definition 3.0.4, has to be preserved by the coercion morphism from fibrant to
strict types.

Note that individual type formers outside of the common fragment in T may be
duplicated across Φ and Ψ. For example, both Φ and Ψ could contain the type
former for binary sums Φsum introduced in section 2.4. This is not a problem,
but it is important to note that the common type formers outside of T need
not be preserved by the coercion morphism.

Regularity of Φ is important, because without it we cannot make sure that
preservation of the basic type former T is strict. It could be possible to define
a weaker notion of two-level model of type theory that, unlike definition 3.0.4,
does not require the basic type formers to be preserved strictly by the coer-
cion morphism. In that case, it would be possible to remove the regularity
assumption from the hypotheses of theorem 3.2.14.

The intended application of theorem 3.2.14 is to a setting where Φ contains the
type formers of a theory like HoTT, and Ψ the ones for a version of strict type
theory, either something like our RF , or alternatively a theory with just UIP
and function extensionality (section 2.4). In section 4.1 we will describe such a
setting in detail.

3.3 two-level type formers

When building a two-level system, one can specify type formers Φ and Ψ over
T , and that gives a notion of (Φ, Ψ)-model that one can work with.

This way, the type formers of Φ and Ψ, except for their T fragment, are com-
pletely independent, which means that the strict and fibrant fragment of a
(Φ, Ψ)-model do not interact outside of their common model of type theory.

Sometimes, however, it might be desirable to put structures on top of a two-
level model that make full use of the two fragments. To make this possible, we
will define a notion of two-level type former.

Definition 3.3.1. A two-level RF -category is an RF -category with an addi-
tional universe (U f , Elf), and a morphism of universes U f → U .

To avoid confusion, we will denote the first universe in an RF -category with
(U s, Els). We will often keep the morphism U f → U s implicit when writing out
types and terms in a two-level RF -category.

Similarly to what we did in section 2.3, we can define a category RF2 of two-
level RF -categories, and show that it has an initial object RF 2

0 .

3.3 two-level type formers 63

Consequently, we get the corresponding notions of two-level type former and
two-level structure for a two-level CwF.

Furthermore, there is a two-level type former T 2 corresponding to the state-
ments that both U f and U s are T -universes, and that the map U f → U s is a
T -universe morphism.

Correspondingly, for a two-level type former Φ over T 2, we get a corresponding
notion of two-level Φ-model.

Note that a type former Φ can be regarded as a two-level type former in two
ways, either by lifting it to U f or U s. If Φ is over T , then either of its liftings
to RF 2

0 are over T 2.

In particular, given type formers Φ and Ψ over T , we can lift Φ to a two-level
type former Φf on U f , Ψ to a two-level type former Ψs on U s, and obtain a
two-level type former Φf ×Ψs over T 2. Then (Φ, Ψ)-models are the same as
two-level Φf ×Ψs-models.

We can then prove a more general version of theorem 3.2.14 for models of
two-level type formers.

Definition 3.3.2. Let Φ be a type former over T , and Ψ a two-level type former
over Φf ×T T 2. We say that Ψ is set-theoretic if for all regular Φ-models C, the
presheaf category Ĉ is a two-level Ψ-model.

Theorem 3.3.3. Let Φ be a regular algebraic type former over T , and Ψ a
set-theoretic two-level type former over Φ×T T 2. Assume that the category of
two-level Ψ-models has an initial object S, and let H be the initial Φ-model. Let
H : H → S be the unique morphism to the fibrant fragment of S.

Let Γ : H and A : Ty(Γ). If H(A) is inhabited in S, then A is inhabited in H.

Proof. Completely analogous to the proof of theorem 3.2.14.

4
TYPE THEORY WITH STRICT EQUAL ITY

In this chapter, we fix a specific two-level model of type theory, and work
internally in it. One is free to assume that this model is the initial one equipped
with the prescribed type structures, but this is not strictly necessary, so we will
not make that assumption.

The style used in the following mimics that employed in [36] to develop HoTT
internally. We will make use of the same ideas, although our notation is con-
sistent with the rest of the thesis, and follows the conventions described in
sections 2.1.1 and 2.1.7.

Our main purpose for this chapter is to develop enough fundamentals of two-
level type theory to be able to define certain basic notions that will enable
us to express the idea of “infinite structure” or “infinite tower of coherence
conditions”, as explained in section 1.6.

4.1 introduction

Let Φ0 be a “basic” type former over T . For concreteness, define Φ0 as:

Φ0 :≡ Φieq ×Φsum ×Φempty ×ΦN

since these are the type structures that will be assumed to exist in the following.

The type former Φ0 represents structures that will be present both in the
fibrant and in the strict fragment of our theory. However, since the definition
of two-level model only requires the two T -structures to be compatible, the two
Φ0-structures will behave very differently, in general.

For the rest of the chapter, fix a (Φ, Ψ) model of type theory A, where:

• Ψ is the type former over Φ obtained by adding function extensionality
(Φfunext), and requiring that the equality in Φ satisfy UIP;

• the strict fragment of A admits a system of Ψ-universes indexed by some
finite ordinal n;

64

4.1 introduction 65

• the fibrant fragment of A admits a system of univalent Φ-universes in-
dexed by n;

• the two systems of universes can be extended to a system of universes
indexed by ω× 2.

The idea of the universe setup is that the two systems of universes live in the
two different fragments, but for any i : n, the i-th fibrant universe is “contained”
in the i-th strict universe.

A crucial observation is that we can find a two-level type former Ψ′ so that the
initial two-level Ψ′-model satisfies all the above conditions, and at the same
type all the hypotheses of theorem 3.3.3.

To make this possible, we have to set up the type formers for our universes so
that all the fibrant universes are contained in the first strict one. This makes
the two-level type former Ψ′ for set-theoretic.

Therefore, if we assume A to coincide with the initial two-level Ψ′-model, we are
allowed to interpret all the results of this chapter to ordinary HoTT, thanks
to theorem 3.3.3.

As mentioned above, the type structures for the strict and the fibrant fragments
are not required to match (outside of T). However, it is possible to assume that
parts of them do.

In particular, the language is (at least apparently) more expressive if we require
the Φsum, Φempty and ΦN-structures to match. A model where this happens
has been referred to as strong in [4].

One substantial disadvantage of working in a strong model is that theorem 3.3.3
does not apply. It appears that strong two-level models constitute a proper
extension of HoTT, which means that adopting their language implies having
to depart from HoTT itself. Therefore, we will not make this assumption in
the following.

4.1.1 Differences with HTS

Although our two-level theory is inspired by HTS [38], and shares many of its
features and motivations, there are some substantial differences between the
two systems.

Probably the most important difference is that HTS assumes that natural num-
bers, binary sums and the empty type in the fibrant fragment can eliminate to
arbitrary types. In other words, coercion from fibrant to strict types preserves
those type formers. As we observed above, the extra assumptions would break
the proof of our conservativity result (theorem 3.2.14). Furthermore, they are
not strictly necessary for the development that follows.

4.2 basic notions 66

Another fundamental difference is that HTS assumes the reflection rule for
equality in the strict fragment. From a semantic point of view, this is a com-
pletely unproblematic assumption, and in fact it is within the scope of the-
orem 3.2.14, since equality in presheaf categories does validate the reflection
rule.
However, systems with equality reflection seem to be much harder to study
from a meta-theoretical point of view, and consequently harder to implement.
Although most of the current implementation efforts for proof assistants based
on Martin-Löf type theory do not include equality reflection, there have been
recent attempts at developing a system within which something like HTS could
potentially be realised [6].
In practice, lack of a reflection rule for strict equality does not seem to be a
big hurdle when reasoning within a two-level system informally. Of course,
formalising proofs in a proof assistant could potentially be made easier by not
having to manually manage rewrites along equality witnesses, but we have no
reason to believe that a system that replaces reflection with simply uip would
be any less practical for actual formalisation of results based on a two-level
theory.
Finally, universes in the strict fragment of our system are not assumed to be
fibrant types, like in HTS. In some variations of HTS, universes of strict types
are even assumed to be contractible. This is motivated by their interpretation in
the simplicial set model (section 3.1). However, universes in presheaf categories
are clearly not fibrant in the two-level CwF structure that we constructed in
section 3.2, so we will not make this assumption.

4.2 basic notions

We will adopt some specific conventions when working internally in a two-level
theory.
As in any two-level model of type theory, we have a distinction between fibrant
and strict types. Technically, they are completely disjoint sets, only connected
by the coercion morphism Tyf → Tys.
However, we will sometimes refer to being fibrant as a property of a strict type:
such a type will be called fibrant if there is a fibrant type that coerces to it.
We will keep the universe hierarchies of the two fragments distinct, by writing
U for a generic fibrant universe, and U s for a strict one. Similarly to how we
dealt with universes in the metatheory (section 2.1.1), we will not write explicit
subscripts to identify a universe within a hierarchy, and instead adhere to the
convention called “typical ambiguity” [12].
Similarly, we will use the superscript s to denote type formers for the strict
fragment, and no superscript at all for their fibrant counterparts. For example

4.3 fibrant replacement 67

0s is the strict empty type, A+s B is a strict binary sum, etc. For strict Π, Σ
and unit types, we are free to omit the subscript, since they behave identically
to their fibrant versions. Furthermore, strict equality will be written as x =

s
y,

and fibrant equality simply as x = y.
We will follow the same convention for defined notions. For example, we will
write A 's B to denote strict isomorphism, defined as follows:

A 's B :≡ (f : A→ B)

× (g : B → A)

× ((a : A)→ g(fa) =
s
a)

× ((b : B)→ f(gb) =
s
b).

Of particular importance for the following are the finite ordinals given by Finn :
U . They are defined by induction on the natural number argument n : N:

Fin0 :≡ 0
Finn+1 :≡ 1 + Finn.

Of course, we also get the corresponding strict type Fins
n, indexed over the strict

natural numbers, with the analogous strict definition.
We conclude this section with the following observation, showing that, in order
to develop a system with two different notions of equality, one really needs the
separation between fibrant and strict types.

Lemma 4.2.1. Assume that the coercion morphism Tyf → Tys is an isomor-
phism. Then strict and fibrant equality coincide up to equivalence, hence in
particular fibrant equality satisfies uip.

Proof. For any type A, and a, b : A, it follows from the assumption that the
strict equality type a =

s
b is fibrant. Therefore, we can define a function:

f : a =
s
b→ a = b,

and it is easy to show that f is the inverse of the usual coercion a = b→ a =
s
b.

Therefore, strict and fibrant equality are strictly isomorphic types.

4.3 fibrant replacement

It is natural to ask whether we could extend our theory with a fibrant re-
placement operation, allowing us to convert any type into its “closest” fibrant
approximation.

4.3 fibrant replacement 68

In fact, it is not hard to give a definition for a fibrant replacement type former
in RF 2

0 :

ΦR : (A : U s)→(R : U f)

×(η : A→ R)

×(elim : (X : U f)→ (A→ X)→ R→ X)

×((X : U f)(f : A→ X)(a : A)→ elimX(f)(η(a)) = f(a))

The type former ΦR expressed quite faithfully the idea of “replacing” a strict
type with a fibrant approximation: given a strict type A, we get a fibrant type
R, together with a function η : A → R, and a universal property stating that,
for any fibrant type X, to define a function R → X all we need it to define a
function A→ X.

In fact, a fibrant replacement type former is quite similar to the propositional
truncation operation, only, of course, it makes types fibrant rather than propos-
tional.

Having fibrant replacement in the theory would make a lot of constructions
easier, and it does seem justifiable, since many of the known models of HoTTs,
being Quillen model categories, are indeed equipped with a very similar opera-
tion.

For example, a type former along the lines of ΦR is considered in [8], where the
authors construct a model structure on a universe of strict types using fibrant
replacement.

Unfortunately, it turns out that the fibrant replacement operation in models
of HoTTs cannot be internalised as a ΦR-structure, as the following theorem
shows.

Theorem 4.3.1. Assume the existence of a fibrant replacement type structure
R, as given by ΦR. Then every fibrant type is a set.

Proof. Let A be a fibrant type, and x : A. Since the type (r : x =
s
x)→ r = refl

is inhabited, so is its fibrant replacement. Therefore, by path induction, we get
that for all x, y : A and p : x = y:

R((r : x =
s
y)→ r = p).

However, if p : x = x, the type (r : x =
s
x)→ r = p clearly imples that refl = p,

hence, by the elimination property of R and the fibrancy of refl = p, so does
its fibrant replacement.

It therefore follows that for all p : x = x, we have refl = p, i.e. A is a set.

4.4 reedy fibrant diagrams 69

4.4 reedy fibrant diagrams

In this section we will demonstrate how a two-level system can be used to
derive results about HoTT by going outside of the fibrant fragment. This is
analogous to how in homotopy theory one can get results that are invariant
under homotopy equivalence, even when certain constructions are performed
on concrete spaces and do not only depend on their homotopy type.

Specifically, we will define Reedy fibrant diagrams I → U for an inverse category
I, and show that they have limits in U if I is finite. This is an internalised
version of some of the results in [33].

4.4.1 Essentially fibrant types and fibrations

As a preparation for our sample application of the two-level system, we remark
that for a strict type A : U s, asking that A be fibrant is quite a strong require-
ment. It is often sufficient that there exists a fibrant type B : U and a strict
isomorphism A 's B. If this is the case, we say that A is essentially fibrant.

In section 4.2, we have defined the fibrant finite ordinals Finn, for n : N, and
their strict counterparts Fins

n, for n : Ns.

Definition 4.4.1. A type I is said to be finite if there exists a number n : Ns

and a strict isomorphisms I 's Fins
n.

Note that Finn is not in general finite.

Lemma 4.4.2. Let I be finite and X : I → U be a family of fibrant types.
Then, (i : I)→ X(i) is essentially fibrant.

Proof. Essential finiteness gives us a cardinality n on which we can do induction.
If n is 0s, then (i : I)→ X(i) is strictly isomorphic to the unit type. Otherwise,
we have an finite I ′ such that f : 1 +s I ′ 's I, and (i : I) → X(i) is strictly
isomorphic to

X(f(inl 1))× ((i : I ′)→ X(f(inr i))),

which is finite by the induction hypothesis.

Similar to essential fibrancy, we have the following definition:

Definition 4.4.3. Let p : E → B be a function. We say that p is a fibration
if there is a family F : B → U such that the fibre of p over any b : B is strictly
isomorphic to F (b), that is,

(b : B)→
(
F (b) 's (e : E)× (p(e) =

s
b)
)

.

4.4 reedy fibrant diagrams 70

Any fibrant type family F : B → U gives rise to a fibration p : E → B, as it is
easy to see that the first projection (ΣBF) → B satisfies the given condition.
Indeed, any strict fibration is isomorphic over B to a strict fibration of this
form. This often allows us to assume that a given fibration has the form of a
projection.

4.4.2 Strict Categories

We can define categories in a two-level system in much the same way as precat-
egories are defined in [36], except that we can use strict equality to express the
laws. Since strict equality does not suffer from coherence issues, this notion of
category is well-behaved even when morphisms form a higher type, or even if
they are not fibrant at all.

Definition 4.4.4 (strict category). A strict category C is given by:

• a type |C| of objects;
• for all pairs of objects x, y : |C|, a type C(x, y) of arrows or morphisms;
• for all objects x : |C|, an identity arrow id : C(x,x);

• for all objects x, y, z : |C|, a composition function

◦ : C(y, z)→ C(x, y)→ C(x, z).

With the usual categorical laws holding strictly, meaning that we have:

• for all object x, y : |C| and morphisms f : C(x, y), strict equalities

idl : f ◦ id =
s
f

idr : id ◦ f =
s
f ;

• for all objects x, y, z,w : |C|, and morphisms f : C(x, y), g : C(y, z),
h : C(z,w), a strict equality

assoc : h ◦ (g ◦ f) =
s
(h ◦ g) ◦ f .

We say that a strict category C is locally fibrant if C(x, y) is a fibrant type for
all objects x, y. We say that C is fibrant if it is locally fibrant and the type of
objects is a fibrant type. Finally, we say that C is finite if the type of objects
|C| is finite.

The usual theory of categories can be reproduced in the context of strict cate-
gories. It is not hard to define corresponding notions of functor, natural trans-
formation, limits, adjunctions, and so on.

4.4 reedy fibrant diagrams 71

From now on, we will refer to strict categories simply as categories. If C is a
category, we will often abuse notation and use C itself to denote its type of
objects.

Another important notion is the following:

Definition 4.4.5 (reduced coslice). Given a category C and an object x : C,
the reduced coslice x � C is the full subcategory of non-identity arrows in the
coslice category x/C. A concrete definition is the following. The objects of
x� C are triples of the following type:

(y : |C|)× (f : C(x, y))×
(
(p : x =

s
y)→ ¬

(
p∗(f) =s id

))
,

where p∗ denotes the transport function C(x, y) → C(y, y), obtained from the
eliminator of strict equality. Morphisms between (y, f , s) and (y′, f ′, s′) are
elements h : C(y, y′) such that h ◦ f =

s
f ′ in C.

Note that we have a “forgetful functor” forget : x � C → C, given by the first
projection on objects as well as on morphisms.

4.4.3 Limits and colimits

Much of what is known about the category of sets in classical category theory
can be extended to the category of strict types in a given universe.

For example, the following result translates rather directly:

Lemma 4.4.6. The universe U s, regarded as a category in the usual way, has
all small limits.

Proof. Let C be a category with |C| : U s and C(x, y) : U s (for all x, y), and let
X : C → U s be a functor.

We define L to be the type of natural transformations 1→ X, where 1 : C → U s

is the constant functor on 1. Clearly, L : U s, and a routine verification shows
that L satisfies the universal property of the limit of X.

Unfortunately, for colimits the situation is not as pleasant. We can certainly
show that U s has coproducts, since they can be obtained directly using the
strict Σ type structure, but only using our assumptions on the strict fragment
of the system, we cannot prove that pushouts exist in U s.

It would be possible to add pushouts as an additional strict type former. This
type former would be set-theoretic, since presheaf models do have arbitrary
colimits, so it would not invalidate the assumptions of theorem 3.3.3. Since
we will not need arbitrary colimits in the following, we choose to not take this
route, and maintain a traditional set of type formers for the strict fragment.

4.4 reedy fibrant diagrams 72

4.4.4 Inverse Categories

Classically, inverse categories are defined as categories which do not contain an
infinite sequence of nonidentity arrows (see [33]).
For simplicity, we restrict ourselves to those which have height at most ω, and
where a rank function is given explicitly. This allows us to perform all construc-
tions constructively, without having to deal with ordinals beyond ω.
First, consider the category (Ns)op which has n : Ns as objects, and
(Ns)op(n,m) :≡ n >s m.
The predicate >s: Ns → Ns → U s is defined in the familiar way, and it is a
strict proposition, i.e.

(p, q : n >s m)→ p =
s
q

Definition 4.4.7. We say that a category C is an inverse category if there is
a functor ϕ : C → (Ns)op which “creates identities”; i.e. if we have f : C(x, y)
and ϕx =s ϕy, then we also have p : x =

s
y and p∗(f) =s id.

4.4.5 Reedy Fibrant Limits

We saw in section 4.4.3 that U s has all small limits. Unfortunately, the same
does not hold for the category U of fibrant types. Even pullbacks of fibrant
types are not fibrant in general (but see Lemma 4.4.8). If we have a functor
X : C → U , we can always regard it as a functor X : C → U s, where it does
have a limit. If this limit happens to be essentially fibrant, we say that X has
a fibrant limit. Clearly, this limit will then be a limit of the original diagram
C → U , since U is a full subcategory of U s.
Of course, the category U has general homotopy limits. For example, given a
diagram:

A

f
��

B
g // C,

we can form the corresponding homotopy pullback by taking:

P :≡ (a : A)× (b : B)× (f a = g b),

which is fibrant by construction.
It could in principle be possible to use homotopy limits everywhere in place of
strict limits, which would therefore work around the question of the existence
of strict limits in U . However, definining homotopy limits for general (or even
inverse) diagrams already requires some machinery to handle arbitrarily high
towers of coherence data, hence we cannot tackle it at this point.

4.4 reedy fibrant diagrams 73

Lemma 4.4.8. The pullback of a fibration E → B along any function f : A→
B is a fibration.

Proof. We can assume that E is of the form Σ (b : B) .C(b) and p is the first
projection. Clearly, the first projection of Σ (a : A) .C(f(a)) satisfies the uni-
versal property of the pullback.

Lemma 4.4.8 makes it possible to construct fibrant limits of certain “well-
behaved” functors from inverse categories. The so-called matching objects play
an important role.

Definition 4.4.9 (matching object; see [33, Chp. 11]). Let C be an inverse
category, and X : C → U a functor. For any z : C, we define the matching object
MX
z to be the (not necessarily fibrant) limit of the composition z � C forget−−−→
C X−→ U ⊂ U s.

Definition 4.4.10 (Reedy fibrant diagram; see [33, Def. 11.3]). Let C be an
inverse category and X : C → U be a functor. We say that X is Reedy fibrant
if, for all z : C, the canonical map Xz →MX

z is a fibration.

Using this definition, we can make precise the claim that we can construct
fibrant limits of certain well-behaved diagrams. The following theorem is an
internal version of the corresponding result in [33, Lemma 11.8].

Theorem 4.4.11. Let C be an finite inverse category. Then, every Reedy fibrant
X : C → U has a fibrant limit.

Proof. By induction on the cardinality of C. If the type of objects is empty, the
limit is the unit type.

Otherwise, let us consider the rank functor ϕ : C → (Ns)op. We choose an
object z : C such that ϕz is maximal; this is possible (constructively) since C is
assumed to be finite. In particular, z has no incoming arrow (apart from id).

Let us call C′ the category that we get if we remove z from C; that is, we set

|C′| :≡ (x : |C|)× (¬(x =
s
z)).

Clearly, C′ is still finite and inverse. Let X : C → U be Reedy fibrant. We
can write down the limit of X (i.e. the type of natural transformations to the
constant functor) explicitly as

(c : (y : |C|)→ Xy)× ((y, y′ : |C|)(f : C(y, y′))→ cy[f] =s cy′). (26)

4.4 reedy fibrant diagrams 74

Using that |C| 's |C′|+s 1, and the fact that z has no incoming non-identity
arrows, this type is strictly isomorphic to

(cz : Xz)× (c : (y : |C′|)→ Xy)×(
(y : |C′|)(f : C(z, y))→ cz[f] =s cy

)
×(

(y, y′ : |C′|)(f : C(y, y′))→ cy[f] =s cy′
)

.

(27)

Let us write L for the limit of X restricted to C′, p for the canonical map
p : L→MX

z , and q for the map Xz →MX
z .

Then, (27) is strictly isomorphic to

(cz : Xz)× (d : L)× (p(d) =
s
q(cz)) (28)

This is the pullback of the cospan

L
p //MX

z Xz.
qoo

By Reedy fibrancy of X, the map q is a fibration. Thus, by Lemma 4.4.8, the
map from (28) to L is a fibration.

By the induction hypothesis, L is essentially fibrant. This implies that (28) is es-
sentially fibrant, as it is the domain of a fibration whose codomain is essentially
fibrant.

If C is an inverse category, we will denote by C<n the full subcategory of C
consisting of all those objects of rank less than n. Correspondingly, for a given
diagram X over C, we will denote by X|n the restriction of X to C<n.

4.4.6 Fibrant Limits and Semi-Simplicial Types

If X is a Reedy fibrant diagram over C :≡ (∆op
+)

<n, we can restrict X to
n� C, then take the limit of the corresponding functor. With a slight abuse of
notation, we will denote such limit by MX

n , even though X is not defined at n.

Note that a diagram X over (∆op
+)

<n+1 is Reedy fibrant if and only if its
restriction to (∆op

+)
<n is Reedy fibrant and the map Xn → MX

n is a fibration.
Hence, to give a Reedy fibrant diagram over (∆op

+)
<n+1 is the same as to give a

Reedy fibrant diagram X over (∆op
+)

<n, together with a fibration Y over MX
n .

We will refer to this extended diagram as 〈X,Y 〉.

By mutual induction on the natural number n, we can define a type SSTn, and
a function SSKn from SSTn to diagrams over (∆op

+)
<n. We start with with

SST0 :≡ 1 and SSK0(1) set to the trivial diagram over (∆op
+)

<0.

4.5 reedy-fibrant replacement 75

Then, we set

SSTn+1 :≡ Σ (X : SSTn) . (MSSKnX
n → U)

SSKn+1(X,Y) :≡ 〈SSKn(X),Y 〉.

Above, we write MA
n to mean the fibrant type, given by Theorem 4.4.11, which

is strictly isomorphic to the matching object of A at n (which would otherwise
only be a strict type).

For any strict natural number n : Ns, elements of SSTn are Reedy fibrant n-
semi-simplicial types. Since SSTn is fibrant, this gives an internal representation
of semi-simplicial types in HoTT.

Unfortunately, unless we add some form of ω-limits to the fibrant fragment of
our system, we cannot use the family SST to obtain a fibrant type of general
semi-simplicial types (i.e. with simplices of arbitrarily high dimension).

4.5 reedy-fibrant replacement

The goal of the current section is to show that any strict functor X from
an admissible inverse category C to U has a fibrant replacement; that is, we
can construct a Reedy fibrant diagram which is equivalent in a suitable sense.
This construction is an internalisation of the known analogous construction in
traditional mathematics (see e.g. [33, Lemma 11.10] or [32].

Note that this notion of fibrant replacement does not contradict the impossibil-
ity result of section 4.3. In fact, all the types involved in the construction of a
Reedy fibrant replacement are already fibrant: the replacement only happens
at the level of diagrams.

Lemma 4.5.1. Let f : A→ B be a function between fibrant types. Then there
exists a fibrant type N , an equivalence i : A → N , and a fibration p : N → B,
such that f =

s
p ◦ i.

Proof. Let N :≡ (a : A) × (b : B) × (fa = b). The function i is given by
i(a) :≡ (a, f(a), refl), while p is simply the projection into the component of
type B.

The function i is clearly the inverse of the projection into the component of type
A, hence i is an equivalence. Furthermore, p is a fibration, being a projection
from a Σ type.

The equation f =
s
p ◦ i holds definitionally.

We will refer to the type N constructed in the proof of lemma 4.5.1 as the
mapping cocylinder of f .

4.6 semi-segal types 76

Definition 4.5.2. Let C be an inverse category. We say that C is admissible
if, for all n : C, Reedy fibrant diagrams over the reduced coslice x � C have a
fibrant limit.

The main example of an admissible inverse category is ∆op
+ . This follows from

Theorem 4.4.11 and the fact that all the reduced coslices of ∆op
+ are finite.

Definition 4.5.3. Let X,Y be diagrams over a category C. A natural trans-
formation f : X → Y is said to be an equivalence if, for all n : C, the function
fn : Xn → Yn is an equivalence.

Theorem 4.5.4. Let X be a diagram over an admissible inverse category C.
Then there exists a Reedy fibrant diagram Y , and an equivalence η : X → Y .

Proof. We will construct, by induction on the natural number n, a Reedy fibrant
diagram Y (n) over C<n, and an equivalence η(n) : X|n→ Y (n).

For n = 0 there is nothing to construct, so assume the existence of Y (n), and
fix any object x : C of rank n+ 1. The forgetful functor ix : x� C → C factors
through C<n, hence we can consider the composition Y (n) ◦ i, which is again a
Reedy fibrant diagram, and take its limit L.

The map η(n) induces a map Xx → L. Define Y (n+1)
x to be the mapping

cocylinder of this map. For any object y of rank n or less, define Y (n+1)
y as Y (n)

y ,
and for any morphism f : C(x, y), the corresponding function Y (n+1)

x → Y
(n+1)
y

is given by the projection from the mapping cocylinder, followed by a map of
the universal cone of the limit L. The action of Y (n) on morphisms between
objects of ranks n or less is defined to be the same as that of Y (n).

It is easy to see that those definitions make Y (n+1) into a diagram that extends
Y (n) to objects of rank n+ 1. We can also extend η(n) by defining η(n+1)(x)

to be the embedding of Xx into the mapping cocylinder Y (n+1)
x , which is an

equivalence by lemma 4.5.1.

Reedy-fibrancy of Y (n+1) follows immediately from the construction, since L is
exactly the matching object of Y (n+1) at x.

To conclude the proof, we glue together all the Y (n) and η(n) into a single
diagram Y and natural transformation η. Clearly, Y is Reedy fibrant, and η is
an equivalence.

4.6 semi-segal types

One of the most promising applications of a homotopy type theory with strict
equality is the possibility of constructing and working with algebraic objects
comprising infinite towers of coherence conditions.

4.6 semi-segal types 77

Semi-semplicial types, introduced in section 4.4.6, represent the most fundamen-
tal of those objects, and a basis on which to build more complex and directly
useful structures.
In this section, we will define the notion of semi-Segal type and use it to model
(∞, 1)-semicategories internally in HoTTs. The following definitions and re-
sults are mostly based on the theory of Segal spaces [31], which can, to a certain
extent, be thought of as the special case obtained when the model we are work-
ing on happens to be the simplicial model (section 3.1).
The caveat here is that, as noted in section 4.4.3, the category of simplicial
sets is much richer, in terms of strict categorical structure, than what we get
to see when working from within type theory. In particular, we noted that the
lack of colimits in the formulation of HoTTs that we adopted makes it really
hard (and perhaps impossible) to reproduce the theory of diagrams over general
Reedy categories.
Therefore, we cannot hope for a well-behaved theory of Segal types, and we
instead settle for the weaker notion of semi-Segal type, which means that we
cannot directly model higher categories equipped with identity morphisms, but
only semi-category-like structures.
Fortunately, a rich theory can be developed nonetheless. For example, the
notion of completeness, which superficially seems to require the presence of
degeneracies in the underlying simplicial type, can actually be defined for semi-
Segal types (definition 4.6.8).

4.6.1 Preliminaries

We begin with some definitions concerning semi-simplicial types. Note that
a map f : ∆+(n,m) is uniquely determined by the finite strictly increas-
ing sequence f(0), f(1), . . . , f(n). In the following, we will use the notation
σf(0),f(1),...,f(n) to denote the face map Xm → Xn of a semi-simplicial type X
corresponding to the map f .
For example, σ012 : X3 → X2 is the face map corresponding to the inclusion
[2]→ [3].
For all n, the n+ 1 face maps Xn → X0 will therefore be denoted by σi, for
i : Finn+1. Finally, for all i : Finn, let us write linei for σi,i+1.
Definition 4.6.1. Let X be a semi-simplicial type. The n-th spine of X is the
type:

Sn(X) :≡ (x : Finn → X1)× ((i : (Finn−1))→ σ1(xi) = σ0(xi+1)).

The n-th spine of X can be regarded as the type of “paths” of length n in the
graph underlying X. Note that Sn(X) is a fibrant type, for all semi-simplicial
types X.

4.6 semi-segal types 78

Lemma 4.6.2. Let X be a semi-simplicial type. For all n : N, the family of
face maps linei : Xn → X1 determines a map φn : Xn → Sn(X).

Proof. It follows from the definition of linei that:

σ1 ◦ linei =s σi+1 =
s
σ0 ◦ linei+1,

therefore φn can be defined simply as:

φn(x) :≡ (λi.linei(x),λi.refl).

The map φn defined above is called the n-th Segal map of X.

Definition 4.6.3. A semi-Segal type is a semi-simplicial type X such that all
the Segal maps φn are equivalences. A morphism of semi-Segal types is simply
a morphism of the underlying semi-simplicial types.

For any n, the type expressing the fact that φn is an equivalence is called the
n-th Segal condition, and it is a fibrant, propositional type. In fact, being an
equivalence is always a proposition ([36]).

For a semi-simplicial type X, the structure of a semi-Segal type is therefore a
fibrant proposition, so in particular it is invariant under levelwise equivalence
of semi-simplicial types.

We will say that a semi-Segal type is Reedy fibrant if the underlying semi-
simplicial type is. Note that that the Segal maps of a Reedy fibrant semi-
simplicial type are fibrations. The following proposition shows that it is quite
easy to obtain Reedy fibrant semi-Segal types.

Proposition 4.6.4. Let X be a semi-Segal type. Then the Reedy fibrant re-
placement of X (theorem 4.5.4) is a Reedy fibrant semi-Segal type.

Proof. Let Y be the Reedy fibrant replacement of X. Since η : X → Y is a
levelwise equivalence, we get commutative squares:

Xn
//

��

Yn

��
X1 ×X0 · · · ×X0 X1 // Y1 ×Y0 · · · ×Y0 Y1,

where the horizontal maps are equivalences induced by η, and the vertical maps
are the Segal maps. Since the Segal maps of X are equivalences, it follows that
those of Y are equivalences as well.

4.6 semi-segal types 79

The relationship between semi-Segal types and (∞, 1)-categorical structures on
types becomes clear when we analyse the first few levels of their semi-simplicial
structure.

Let X be a semi-Segal type. We can think of the type X0 as the type of objects
of X. Since X is Reedy fibrant, we have a fibration X1 overM0(X) = X0×X0.
The type X1(x, y) can be thought of as the type of morphisms between two
objects x and y.

So far, we have only singled out a graph. The algebraic nature of semi-Segal
types arises from the invertibility of the Segal maps. For all n, let ψn : Sn(X)→
Xn be an inverse of φn. Given morphisms f : X1(x, y) and g : X1(y, z), we can
define their composition g ◦ f :≡ σ02(ψ(f , g)), where (f , g) denotes the element
of S2(X) determined by f and g.

With some work, this composition operation can be shown to be weakly asso-
ciative, i.e. there exists a family of associators, witnessing equalities between
h ◦ (g ◦ f) and (h ◦ g) ◦ f , for all triples of composable morphisms f , g and h.

In fact, consider the homotopy pullback:

X2 ×X1 X2
π1 //

π2
��

X2

σ02
��

X2 σ01
// X1.

Using the equivalence φ2 twice, we can easily construct an equivalence τ :
X2×X1 X2 → S3(X). If u : X2×X1 X2 is such that τ (u) = (f , g,h), then it is
not hard to check that σ02(π2(u)) = h ◦ (g ◦ f).

Note that the functions σ012,σ123 : X3 → X2 determine a well-defined map
p : X3 → X2 ×X1 X2, and τ ◦ p = φ3. It follows from the 2-out-of-3 property
of equivalences that p is also an equivalence.

Now, let t = ψ3(f , g,h). We have that (f , g,h) = φ3(t) = τ (p(t)), hence
p(t) = u. Therefore, h ◦ (g ◦ f) = σ02(π2(u)) = σ03(t). Using a different
pullback, one can show that, similarly, (h ◦ g) ◦ f = σ03(t), which implies the
required equality.

It is perhaps not surprising that similar arguments, using the Segal conditions
at successively higher levels, show the existence of coherence conditions for the
semi-categorical structures built so far. For example, at level 4 one can obtain a
family of pentagonators, witnessing the commutativity of the following diagram
of equalities, for all quadruples of composable morphisms f , g,h, k:

4.6 semi-segal types 80

k ◦ (h ◦ (g ◦ f))

uu))
k ◦ ((h ◦ g) ◦ f)

��

(k ◦ h) ◦ (g ◦ f)

��
(k ◦ (h ◦ g) ◦ f) // ((k ◦ h) ◦ g) ◦ f .

4.6.2 Nerve of a strict category

The most fundamental examples of semi-Segal types are given by strict cate-
gories. In principle, only semi-categories are required, since the identities do
not play any role in the construction of the corresponding semi-Segal type.
However, we will not be concerned with the extra generality.
Let us recall that in section 4.4.2 we defined a locally fibrant category as a strict
category C, such that for all objects x, y of C, the type C(x, y) is fibrant.
Lemma 4.6.5. A locally fibrant category C determines a Reedy fibrant semi-
Segal type.

Proof. We define a semi-simplicial type X using a familiar nerve construction:

Xn :≡ (x : Fins
n+1 → C)× ((i : Fins

n → C(xi,xi+1)).

Face maps are defined in the usual way. First, given two indices i, j : Fins
n+1,

with p : i < j, an pair (x, f) : Xn determines a morphism fp : C(xi,xj) obtained
by composing all the fk with i ≤ k < j. The composed morphism fp can easily
be defined by induction over the inequality p. Note that Xn is fibrant thanks
to lemma 4.4.2.
Now, let i+ : i < i+ 1. A map σ : ∆+(n,m) can be used to obtain an inequality
σ(i+) : σ(i) < σ(i+ 1). We can then define σ∗ : Xm → Xn as follows:

σ∗(x, f) :≡ (λi.xσ(i),λi.fσ(i+)).

It is easy to show that X, as defined above, is indeed a semi-simplicial type.
The Segal condition can be shown by directly constructing the equivalence
between n-spines and n-simplices. The type of n-spines of X is:

(f : Fins
n → X1)× ((i : Fins

n−1 → σ1(fi) = σ0(fi+1))).

Expanding the definitions, we get the equivalent type:

((x0,x1 : Fins
n → C)

×(f : (i : Fins
n)→ C(x0

i ,x1
i))

×((i : Fins
n−1)→ x1

i = x0
i+1).

4.6 semi-segal types 81

We now split x0 into the pair of s = x0
0 and the rest of the sequence, and

similarly split x1 into the pair consisting of the beginning of the sequence and
t = x1

n−1. With some index manipulation, this yields the equivalent type:

(s, t : C)
×((x0x1 : Fins

n−1 → C)
×(g :→ C(s,x0

0)))

×(h :→ C(x1
n−2, t)))

×(f : (i : Fins
n−2)→ C(x0

i ,x1
i+1))

×((i : Fins
n−1)→ x1

i = x0
i).

The last component of the previous type states that x0 and x1 are equal. There-
fore, we can contract them into a single sequence x:

(s, t : C)
×((x : Fins

n−1 → C)
×(g :→ C(s,x0)))

×(h :→ C(xn−2, t)))
×(f : (i : Fins

n−2)→ C(xi,xi+1)).

Now we can join s at the beginning of x and t at the end, to get exactly the
type Xn as defined above. Examining the equivalence Xn → Sn(X) obtained
by chaining the above steps reveals that it is exactly given by the Segal map,
thereby proving that X is a semi-Segal type.

We call the the semi-Segal type X obtained from a locally fibrant category
C using lemma 4.6.5 the pre-nerve of C, and we call nerve its Reedy fibrant
replacement.

It is important to note that the “weak” categorical structure arising from the
nerve X of a locally fibrant category C matches precisely with the categorical
structure on C itself.

Clearly, the objects and morphisms of X are the same as those of C. Let us
now consider composition. Let f : C(x0,x1) and g : C(x1,x2) be two compos-
able morphisms. Their composition as morphisms of the semi-Segal type X
is given by applying the face map σ02 to the 2-simplex corresponding to the
pair (f , g) through the Segal equivalence. It follows from the definition of the
semi-simplicial structure on X that this is indeed the composition g ◦ f , as
expected.

Lemma 4.6.5 can be applied to a universe regarded as a strict category. We will
denote the nerve of a univalent universe as TYPE, leaving implicit the specific
universe used, as usual.

4.6 semi-segal types 82

4.6.3 Maps of semi-Segal types

The definition of semi-Segal types as semi-simplicial types satisfying a (propo-
sitional) property makes it extremely easy to define the corresponding notion
of morphism.

Definition 4.6.6. A semi-Segal map is a morphism between the underlying
semi-simplicial types of two semi-Segal types.

A semi-Segal map can be regarded as the appropriate generalisation of the
notion of functor between categories. In particular, we can regard a semi-Segal
map between the nerves of two strict categories as a weak semi-functor between
them.
It is important to note that the notion of semi-Segal map between arbitrary
semi-Segal types is not fibrant, hence not invariant under equivalence. For
example, a map between the pre-nerves of two strict categories is the same
thing as an ordinary (strict) functor between them, while a semi-Segal map
between the nerves is a much weaker notion.

4.6.4 Completeness

In the classical theory of Segal spaces, completeness can be understood as the
property that the internal notion of equivalence in a Segal space can be recovered
by only looking the path spaces of its space of points.
In HoTT, completeness is also a very natural property, corresponding to an
internal form of univalence for a categorical structure. In [2], completeness
is considered such a fundamental property that the term category is reserved
for those structures that possess it (while those that do not are referred to as
precategories).
However, it is clear that, in order to define completeness in the setting of semi-
Segal types, we first need to derive a notion of equivalence, which might appear
to be problematic, since semi-Segal types have no identity morphisms.
Fortunately, there is a way to work around this issue:

Definition 4.6.7. Let X be a Reedy fibrant semi-Segal type, and f : X1(x, y)
be a morphism. We say that f is an equivalence if, for all objects z : X0, the
maps:

f ◦ − : X1(z,x)→ X1(z, y)
− ◦ f : X1(y, z)→ X1(x, z),

given by left and right composition with f respectively, are equivalences of
types.

4.6 semi-segal types 83

It is easy to see that, if X is the nerve of a strict category C, then f is an
equivalence if and only if it is a “homotopy equivalence” in C, i.e. if there exists
a morphism g in C in the opposite direction such that g ◦ f = id and f ◦ g = id.
Note that we are using fibrant equality here, so a homotopy equivalence is not
the same as a categorical isomorphism.

The property of being an equivalence for a morphism f : X1 is a mere proposi-
tion, denoted isEquiv(f), hence it determines a subtype of X1:

EquivX :≡ (f : X1)× isEquiv(f).

Definition 4.6.8. A Reedy fibrant semi-Segal type X is said to be complete if
the function

EquivX → X0,

that maps an equivalence to its first endpoint, is an equivalence of types.

Proposition 4.6.9. TYPE is a complete semi-Segal type.

Proof. A function f : X → Y is an equivalence in TYPE if and only if it is
an equivalence of types. Therefore, completeness of TYPE follows immediately
from univalence.

A semi-Segal type does not have a built-in notion of identity, but nevertheless,
certain morphisms can behave as identities:

Definition 4.6.10. Let u : X1(x,x) be a morphism in a Reedy fibrant semi-
Segal type X. We say that u is a unit if for all g : X1(y,x) we have that
u ◦ g = g, and for all h : X1(x, z) we have that h ◦ u = h.

Interestingly, completeness is enough for a semi-Segal type to possess units.

Proposition 4.6.11 (see [15, Lemma 1.4.5]). Let X be a complete semi-Segal
type. Then for all objects x : X0 there exists a unit u : X1(x,x).

Proof. By completeness, we get an object y : X0, and an equivalence f :
X1(x, y). Since f is an equivalence, we can find u : X1(x,x) such that f ◦u = f .
We will show that u is a unit.

If g : X1(z,x), then f ◦ u ◦ g = f ◦ g. Using the fact that f is an equivalence
again, we get that u ◦ g = g.

Finally, let h : X1(x, z). We can find h′ : X1(y, z) such that h′ ◦ f = h. Then
h ◦ u = h′ ◦ f ◦ u = h′ ◦ f = h, as required.

4.7 further work 84

4.7 further work

We have only scratched the surface of what is possible to achieve in a two-level
system.

In particular, the notion of semi-Segal type appears to be a quite promising
candidate for the role of (∞, 1)-categories in type theory. This thesis only
presented the very basic definitions and result, but there is much left to be
developed in this area.

B IBL IOGRAPHY

[1] Benedikt Ahrens. Modules over relative monads for syntax and semantics.
ArXiv e-prints, July 2011.

[2] Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent
categories and the Rezk completion. Mathematical Structures in Computer
Science (MSCS), pages 1–30, Jan 2015.

[3] Benedikt Ahrens, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. Cat-
egorical structures in type theory, in type theory. Talk at Workshop on
Homotopy Theory and Univalent Foundations, Fields Institute, Toronto,
Canada, 2016.

[4] Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. Extending Homo-
topy Type Theory with Strict Equality. In Jean-Marc Talbot and Laurent
Regnier, editors, 25th EACSL Annual Conference on Computer Science
Logic (CSL 2016), volume 62, pages 21:1–21:17, Dagstuhl, Germany, 2016.

[5] S. Awodey. Natural models of homotopy type theory. ArXiv e-prints, June
2014.

[6] Andrej Bauer, Gaëtan Gilbert, Philipp Haselwarter, Matija Pretnar, and
Chris Stone. Andromeda. Implementation of a type theory with equality
reflection.

[7] Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory
in cubical sets, 2014.

[8] Simon Boulier and Nicolas Tabareau. Model structures on types in type
theory. in preparation.

[9] Guillaume Brunerie. On the homotopy groups of spheres in homotopy type
theory. ArXiv e-prints, June 2016.

[10] John Cartmell. Generalised algebraic theories and contextual categories.
Annals of Pure and Applied Logic, 32:209 – 243, 1986.

[11] Peter Dybjer. Internal type theory. In Types for Proofs and Programs,
pages 120–134. Springer, 1995.

[12] Solomon Feferman. Typical ambiguity: trying to have your cake and eat it
too. One Hundred Years of Russell’s Paradox, Berlin: de Gruyter, pages
135–151, 2004.

[13] Nicola Gambino and Richard Garner. The identity type weak factorisation
system. Theoret. Comput. Sci., 409(1):94–109, 2008.

85

Bibliography 86

[14] Nicola Gambino and Christian Sattler. The Frobenius Condition, Right
Properness, and Uniform Fibrations. ArXiv e-prints, October 2015.

[15] Yonatan Harpaz. Quasi-unital∞–categories. Algebraic & Geometric Topol-
ogy, 15(4):2303–2381, 2015.

[16] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defin-
ing logics. Journal of the ACM (JACM), 40(1):143–184, 1993.

[17] Hugo Herbelin. A dependently-typed construction of semi-simplicial types.
Mathematical Structures in Computer Science (MSCS), pages 1–16, Mar
2015.

[18] Martin Hofmann. Syntax and semantics of dependent types. In Semantics
and logics of computation (Cambridge, 1995), volume 14 of Publ. Newton
Inst., pages 79–130. Cambridge Univ. Press, Cambridge, 1997.

[19] Martin Hofmann and Thomas Streicher. Lifting Grothendieck universes.
[20] Martin Hofmann and Thomas Streicher. The groupoid interpretation of

type theory. In In Venice Festschrift, pages 83–111. Oxford University
Press, 1996.

[21] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. The simplicial model
of univalent foundations (after voevodsky). ArXiv e-prints, Nov 2012.

[22] Nicolai Kraus. The general universal property of the propositional trunca-
tion. In 20th International Conference on Types for Proofs and Programs
(TYPES 2014), volume 39, pages 111–145, 2015.

[23] Nicolai Kraus and Christian Sattler. Higher homotopies in a hierarchy of
univalent universes. ACM Transactions on Computational Logic (TOCL),
16(2):18, 2015.

[24] Peter LeFanu Lumsdaine. Higher Categories from Type Theories. PhD
thesis, Carnegie Mellon University, 2010.

[25] Jacob Lurie. Higher Topos Theory, volume 170 of Annals of Mathematics
Studies. Princeton University Press, Princeton, NJ, 2009.

[26] Maria Emilia Maietti and Giovanni Sambin. Toward a minimalist founda-
tion for constructive mathematics. From Sets and Types to Topology and
Analysis: Practicable Foundations for Constructive Mathematics, 48:91–
114, 2005.

[27] Per Martin-Löf. An intuitionistic theory of types. In Twenty-five years of
constructive type theory (Venice, 1995), pages 127–172. Oxford University
Press, 1998.

[28] Ulf Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineering,
Chalmers University of Technology and Göteborg University, Göteborg,
Sweden, 2007.

Bibliography 87

[29] Erik Palmgren. Categories with families, FOLDS and logic enriched type
theory. ArXiv e-prints, May 2016.

[30] Daniel G. Quillen. Homotopical Algebra, volume 43 of Lecture Notes in
Mathematics. Springer-Verlag, 1967.

[31] Charles Rezk. A model for the homotopy theory of homotopy theory. Trans.
Amer. Math. Soc., 353(3):973–1007 (electronic), 2001.

[32] Emily Riehl and Dominic Verity. The theory and practice of reedy cate-
gories. Theory and Applications of Categories, 29(9):256–301, 2014.

[33] Michael Shulman. Univalence for inverse diagrams and homotopy canonic-
ity. Mathematical Structures in Computer Science, pages 1–75, Jan 2015.

[34] Thomas Streicher. Semantics of Type Theory: Correctness, Completeness,
and Independence Results. Birkhauser Boston Inc., Cambridge, MA, USA,
1991.

[35] William W. Tait. Intensional interpretations of functionals of finite type I.
The Journal of Symbolic Logic, 32(2):198–212, 1967.

[36] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. https://homotopytypetheory.org/book,
Institute for Advanced Study, 2013.

[37] Benno van den Berg and Richard Garner. Types are weak ω-groupoids.
Proceedings of the London Mathematical Society, 102(2):370–394, 2011.

[38] Vladimir Voevodsky. A simple type system with two identity types, 2013.
Unpublished note.

[39] Vladimir Voevodsky. B-systems. ArXiv e-prints, October 2014.

[40] Vladimir Voevodsky. Lawvere theories and Jf-relative monads. ArXiv
e-prints, January 2016.

[41] E. Zermelo. Untersuchungen über die grundlagen der mengenlehre. i. Math-
ematische Annalen, 65:261–281, 1908.

	Introduction
	Overview
	Contributions
	Declaration of authorship

	Related Work
	Fundaments of type theory
	Contexts
	Morphisms
	Types
	Terms
	Substitutions
	Dependent products
	Dependent sums
	Equality
	Propositions as types
	Other structures

	Homotopy Type Theory
	The problem of ``infinite structures''
	Internalising strict equality

	Type theory and type formers
	Categories with families
	Notation
	Presheaves
	Basic type formers
	Morphisms
	The Yoneda embedding for CwFs
	Presheaf universes
	More notational conventions
	Fibrations and contextuality

	The Rule Framework
	Type formers and structures
	Examples
	Morphisms
	Composition of morphisms
	Special type formers
	Systems of universes
	Univalent universes

	Further work

	Two-level type theory
	The simplicial model
	Presheaf models
	Lifting type formers
	Regular models
	Conservativity

	Two-level type formers

	Type theory with strict equality
	Introduction
	Differences with HTS

	Basic notions
	Fibrant replacement
	Reedy fibrant diagrams
	Essentially fibrant types and fibrations
	Strict Categories
	Limits and colimits
	Inverse Categories
	Reedy Fibrant Limits
	Fibrant Limits and Semi-Simplicial Types

	Reedy-Fibrant Replacement
	Semi-Segal types
	Preliminaries
	Nerve of a strict category
	Maps of semi-Segal types
	Completeness

	Further work

