
Open Research Online
The Open University’s repository of research publications
and other research outputs

A phenomenal basis for hybrid modelling
Conference or Workshop Item
How to cite:

Hall, Jon G; Rapanotti, Lucia and Markov, Georgi (2017). A phenomenal basis for hybrid modelling. In:
Proceedings of 5th IEEE International Workshop on Formal Methods Integration (IEEE FMi 2017), 4-6 Aug 2017.

For guidance on citations see FAQs.

c© [not recorded]

Version: Accepted Manuscript

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/84342345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/policies.html

A phenomenal basis for hybrid modelling

Jon G. Hall Lucia Rapanotti
School of Computing and Communications

The Open University
Walton Hall

Milton Keynes, UK
Jon.Hall, Lucia.Rapanotti@open.ac.uk

Georgi Markov
Siemens Corporation
CT RDA SSI AVI-US

755 College Road East
Princeton, NJ 08540-6632, USA

Georgi.Markov@siemens.com

Abstract—This work in progress extends the new mechanical

philosophy from science to engineering. Engineering is the
practice of organising the design and construction of artifices
that satisfy needs in real-world contexts. This work shows how
artifices can be described in terms of their mechanisms and
composed through their observable phenomena.

Typically, the engineering of real system requires descrip-
tions in many di↵erent languages: software components will
be described in code; sensors and actuators in terms of their
physical and electronic characteristics; plant in terms of di↵er-
ential equations, perhaps. Another aspect of this work, then,
to construct a formal framework so that diverse description
languages can be used to characterise sub-mechanisms.

The work is situated in Problem Oriented Engineering, a
design theoretic framework engineering defined by the first
two authors.

Keywords-mechanism description; parallel composition;
problem orientation; engineering

I. Introduction
The turn of the century has seen the new mechanical

philosophy “[emerge] as a framework for thinking about
the philosophical assumptions underlying many areas of
science, especially biology, neuroscience, and psychology”
[3, 4]. Under this view, the aim of science is to synthesise
mechanisms the results of which are observable natural
phenomena.

Figure 1. Craver’s canonical mechanism [4]; linear time at the systems
level, potentially other forms of time, branching, looping, etc at the
mechanism level

Craver’s [4] view of mechanism is shown in Figure 1.
There we see two levels of behaviour. On the lower level,

are many parts (the Xi) whose behaviour (the �i) is organised
and influences each other to create, on the upper level, the
observable behaviour (the) of the system (S).

Craver’s model is located in biological system science —
Figure 1 is motivated by a description of neurons releasing
neurotransmitters — and is created to model natural phe-
nomena. Our interest in the new mechanical philosophy is
di↵erent in that we wish to be able to design and implement
mechanisms for which the phenomena generated interact to
serve a specific need in context; i.e., we wish to design
solutions to problems.

To do so, we must be able to describe mechanisms that
create desired phenomena and understand their conglomer-
ation and interaction as their phenomena combine them into
larger mechanisms. Challenges exist both at the behavioural
levels and in their interaction:
• At the lower level, we must be willing to consider

conglomerate mechanisms whose individual descrip-
tions necessarily share no single language: a socio-
technical system — a call centre, for instance — may
include software to control a Customer Relationship
Management (CRM) system, operator scripts by which
prospects can be approached, policies for data protec-
tion and processes by which complaints are handled.
These artefacts share little in terms of ‘interpreting
platform’: a microprocessor interpreter of (compiled)
software code won’t be able to interpret an operator
script; a human operator wouldn’t be the first choice to
interpret a python script. The disparity of description
reflects these di↵erences.
More generally, target systems might be described as
combinations of flowcharts, process calculi, software
code; in DNA, RNA, or as proteins; scripts, policy,
process and procedure; recipes, etc.

• Even so, the constituent parts of the system must
talk together to achieve their objectives. They do so
through the phenomena generated by the mechanism,
the occurrences of which are observable and shared:
so, for instance, software may choose and dial the
next prospect, indicating through a light on the screen
(an observable occurrence) that the phone has been

answered. Likewise, the human operator will encode a
prospect’s responses into the CRM, another observable
occurrence.
In terms of Craver’s model, then, at the upper level
the ways in which phenomena interact may constrain
how their underlying mechanisms develop over time.
For instance, when we interact with our smart phone the
finger-touch phenomenon interacts with the screen or
buttons and whilst this is in progress, the smart phone’s
operation is restricted to some sub-mechanism.

• We can expect the language in which the mechanism
is described to be chosen so that it is suitable for that
mechanism, and so representative of its characteristics,
such as the ways in which the generated phenomena
synchronise. In this case, the sharing of phenomena
between mechanisms is subject to, what we might call,
‘impedance matching’ in that expectations exist for the
synchronisation on both sides. We present an example
of poor impedance matching later.

Additionally, the conglomerate mechanism will share a
context with other mechanisms and within which it interacts
via the sharing of phenomena. This shared context will
typically not have a description in terms of mechanism —
it may, for instance, be a country’s economy for which is
being designed a fiscal policy — and so we may simply
know more or less about its mechanisms and phenomena.

According to [13, 6, 5], a phenomenon is the behaviour of
the mechanism as a whole. We agree with this interpretation,
but also see value in being able to extract, what might be
called, sub-phenomena corresponding to constituent (sub-
)mechanisms of a conglomerate. This will allow us to
work at finer granularities of phenomena, for instance, those
shared between identified sub-systems.

In this paper, we begin a characterisation of diverse
systems composition as needed in the construction of mech-
anism that solves problems. In particular, we introduce
the notion of a mechanism description language (mdl),
a language for describing mechanisms. This relates back
to Craver’s model, although we do not limit ourselves to
biological mechanisms: we wish to consider designed formal
mechanisms as might, for instance, be expressed through
HCSP [1], other dialects of Process Algebras [10, 15], Petri
Nets [12], Statecharts [9], programming languages, etc.

The work is motivated by a need for a formal interpreta-
tion of the sharing mechanism used by problem oriented
approaches, including Problem Oriented Engineering (or
POE, [7]) and Problem Frames ([11]). As a theory of
design, POE takes a balanced view of problem and solution;
makes no constraints on the languages in which problems or
solutions are expressed; supports formal, informal and even
intuitive reasoning; and gives focus to the construction of
a stakeholder-relevant design rationale which captures their
notion of satisfaction. A POE problem is a need in real-world
context [8]:

• the need expresses wished-for phenomena and relations
between them;

• the context describes existing phenomena and their
relations;

Problem solving provides an artifice which is a mech-
anism (or conglomerate) created so that new phenomena
are created and existing phenomena and their relations are
manipulated to produce those wished for. Thus, we do not
expect each sub-mechanism of a system to be described in
the same language, so there may be many di↵erent mdls
composed in parallel in the description of a single system.
This complicates the semantics of parallel composition as
we cannot expect its operands to share anything other than
the phenomena they use to communicate. In particular, this
distances the semantics of parallel composition somewhat
from conjunction.

II. Phenomena and PhenomenalModels

Definition 1 (Phenomenon): A phenomenon an element
of the world the occurrences of which are observable.

NB: we do not say that a phenomenon should be observed
for it to be a phenomenon, only that it can be.

Some phenomena arise naturally, others artificially: a pro-
tein occurs through an evolved protein synthesis mechanism
whereas, from a software perspective, the mechanisms for
software handshake occurrences are constructed by software
engineers. The meanings of natural and artificial here relate
not to the phenomena themselves but to the mechanisms
that underlie their occurrence: it may be that a solution
to a problem has, as a component, an artificially produced
protein.

That phenomena are observable reveals their dependence
on time: in being observable, a phenomenon must exist at the
same time as the observer. This dependence can be simple,
as might be the temperature, or more complex, as might be
time-taking-creation in the case of a protein or the exercise
of a software handshake. To this end, being able to talk both
about point time and interval time is appropriate.

In the next section, we define phenomenal models as
the semantic basis of our presentation. The basis of a
phenomenal model is a temporal frame, specifically an
interval temporal frame of which there are many variants,
for instance [17, 14].

Definition 2 (Interval temporal frame, cf. [14]):
T = hT,v,�,4i is an interval temporal frame, where
• T is the collection of time intervals; we define T̄ =S

I2T I, the time base of T ;
• is-contained-by, I v J means J has an earlier starting

point than I and a later ending point;
• precedes, I � J means I is before J and there is a

non-empty interval between them;
• meets, I 4 J means I is before J but there is no non-

empty interval between them.

These interval relationships are illustrated in Figure 2.
Actually, for our purposes, the important relation is meets;
see Section II-A

I is-contained-by J

I precedes J

I meets J

I
J

I
J

I
J

Figure 2. The relationships between intervals I and J in an Interval
Temporal Frame

As interval- and instant-based models of time are intere-
latable, we could have chosen to base our analysis on an
instant-based model of time, i.e., with T a collection of
points. However, interval-based descriptions are ‘cleaner’ for
our purposes. For completeness, however, we identify the
time point t with the point-interval [t, t], when contained in
T . Our intention is that the universal time base will be the
non-negative reals R�0.

A. Phenomenal models

There are many di↵erent types of communication between
systems; an incomplete (and overlapping) ontology includes
synchronous and asynchronous, blocking and non-blocking,
bu↵ered and non-bu↵ered. Here, for simplicity, we focus on
message passing via explicit channels of the form defined in
process algebras such as CSP ([10]), i.e., both transmitting
and receiving processes wait when ready to communicate.
This model of communication is carried over to Hybrid CSP
(HCSP) [1] through which much of our development is done.
In HCSP, a channel ch, say, mediates between processes and
carries values between them when both are willing to par-
ticipate; a process’s willingness to communicate is indicated
through two predicates associated with the channel:
• ch!, the output predicate, being that of the sending

process;
• ch?, the input predicate, being that of the receiving

process.
Channel communications are phenomena; the value com-

municated are occurrences visible to other processes. We
collect all channels together as the set PHEN. In addition
to phenomena, which are for sharing, we also assume a set
of state variables, STATE, through wish internal state is cap-
tured. State variables are not shared between mechanisms.

Thus:
Definition 3 (Phenomenal Model): Suppose PHEN is a

set of phenomena, STATE a set of state variables, and
PROP = {p1, ..., pn} a set of atomic formulae containing
ch!, ch? for each ch 2 PHEN. Then a phenomenal model for
PROP over PHEN is a 3-tuple M = hT ,V,Wi, where

• T = hT,v,�,4i is an interval temporal frame over time
base the non-negative reals, R�0;

• V is a valuation assigning to every p 2 PROP a set
of intervals V(p) ✓ T over which p is true; V(p) is
downwards closed, i.e., I 2 V(p) ^ J v I) J 2 V(p)
and is extended to T̄ in the obvious way, i.e., for w 2 T̄ ,
V(p)(w) = true when 9I 2 V(p) • w 2 I;

• W is an interpretation assigning to each ch 2 PHEN
a type type(ch) and a function ch : T̄ ! type(ch), and
to each state variable z 2 STATE a type type(z) and a
function z : T̄ ! type(z).

The class of phenomenal models is written PMODEL.
For simplicity, we will assume all state and channel

variables have type R.
A convenient visualisation of a phenomenal model is as a

collection of graphs, one for each phenomenon and atomic
proposition. The graph for the phenomenal model over
PHEN = {ch} and STATE = {z}, with I = [c, d] 2 V(ch!),
I 2 V(¬ch?), ch unconstrained and continuous z is shown
in Figure 3. Values that are constant over the interval are
shown with their constant value boxed at the beginning of the
interval; unconstrained values (i.e., whose value is unknown)
are dotted.

ch!
ch?
ch

c d

F

T

z

Figure 3. Visualising the phenomenal model over PHEN = {ch} and
STATE = {z} on the interval I = [c, d] and with I 2 V(ch!), I 2 V(¬ch?),
unconstrained phenomenon ch and continuous state variable z.

III. Mechanism Description Languages
A mechanism description language (mdl) is a language

for describing mechanisms. This relates back to Craver’s
model, although we do not limit ourselves to biological
mechanisms.

Definition 4 (Mechanism description language): Given
PROP and STATE, a mechanism description language (mdl)
MECH over PHEN and STATE is a formal system that
has an embedded mechanism for synchronous input and/or
output on ch 2 PHEN and which has a semantic function:

[[]] : MECH ! 2PMODELS

i.e., maps an mdl expression to a set of phenomenal models.

Given our wish to be inclusive, we do not further constrain
an mdl’s syntax; in fact, we make no assumption that the
representation is textual. The reason is that we want to
be able to combine disparate mdls, for instance, HCSP

with Petri Nets with process algebras with programming
languages. The combination takes place through the valid
phenomenal models for the expressions.

There are many ways of producing a set of phenomenal
models. One traditional way to do so is to define a logic.
This is the route that HCSP takes.

A. HCSP as a mechanism description language

We do not have su�cient space to recount the semantic
function of HCSP, but the mapping is defined via the
Duration Calculus, DC in [2, page 524↵]1.

The set of PMODELS for an HCSP expression is then the
satisfying models for the DC formula. Thus:

[[]] : HCSP! 2PMODELS

Example 1: Consider the HCSP terms ⌧1 , x := 4; ch!x
and ⌧2 , ch?y; z := y. These terms have semantics, respec-
tively:

[[⌧1]] = de _ �(dx = 4e ^ keep\x)
_(wait(ch!) ^ keep)
_�(wait(ch!) ^ keep)_syn(ch!, x)

�

[[⌧2]] =
�
wait(ch?) ^ keep)
_�(wait(ch?) ^ keep)_syn(ch?, y)

_(de _ 9� 2 type(y).� = p.y ^ dy = �e ^ keep\y)
�

in which:
• keep is true of process whose state variables keep their

value fixed throughout an interval (keep\x true if all
except x is fixed);

• wait(↵) is true of a process if the specified channel flag
is false, i.e., the process is waiting for output (↵ = ch!)
or input (↵ = ch?);

• syn(ch?, y) is true of a process if the specified channel
flag is true, i.e., the process can receive input, and y’s
value coincides with the value on ch. syn(ch!, x) is true
of a process if the specified channel flag is true, i.e.,
the process can transmit output, and x’s value coincides
with the value on ch;

• p.e stands for the value of expression e, when any
variable x of e takes its previous value p.x (cf. [1]).

Satisfying phenomenal models for ⌧1 are of two forms,
each of which has dom(V1) = {ch!, ch?} and dom(W1) =
{ch, x}. The satisfying models are illustrated in Figures 4
and 5. Consider an interval I = [c, d].

The first is when there is no synchronisation, i.e., where,
for some e 2 (c, d] (see the upper graph of Figure 4):

V1(ch!)(w) = T, w 2 [e, d]
V1(ch?)(w) = F, w 2 [e, d]

W1(x)(w) = 4, w 2 [c, d]

1Actually, the semantics is in the continuation style, i.e., [[]] : DC ! DC
but we ignore this complication here.

ch!
ch?
ch
x

c e d

T

4

F

x:=4 wait & keep

ch!
ch?
ch
x

c e e’ d

T

4

4

F T

x:=4 wait & keep syn

Figure 4. Models for ⌧1: (above) when synchronisation not forthcoming
and (below) when synchronisation forthcoming, e 2 (c, d], e0 2 [e, d). Green
means interval can be empty.

ch!
ch?
ch
y

c d

T

z

F

wait & keep

ch!
ch?
ch
y

c f f’ d

T

ß

z
ß

ß

TF

wait & keep syn z:=y

Figure 5. Models for ⌧2, each �: (left) when synchronisation not
forthcoming and (right) when synchronisation forthcoming, f 2 [c, d),
f 0 2 (f , d). Green means interval can be empty.

The second is where synchronisation is completed, i.e.,
where, for some e 2 (c, d], e0 2 [e, d) (see the lower graph
of Figure 4):

V1(ch!)(w) = T, w 2 [e, d]

V1(ch?)(w) =

8>><
>>:

F, w 2 [e, e0)
T, w 2 [e0, d]

W1(ch)(w) = 4, w 2 [e0, d]
W1(x)(w) = 4, w 2 [c, d]

Similarly, those of ⌧2 share dom(V2) = {ch!, ch?} and
dom(W2) = {ch, y, z}. The first is when synchronisation fails
(see the upper graph of Figure 5):

V2(ch!)(w) = F, w 2 [c, d]
V2(ch?)(w) = T, w 2 [c, d]

The second form is when synchronisation succeeds, for
some � 2 type(x), f 2 [c, d) and f 0 2 (f , d) (see the lower
graph of Figure 5):

V2(ch!)(w) =

8>><
>>:

F, w 2 [c, f)
T, w 2 [f , f 0]

V2(ch?)(w) = T, w 2 [c, f 0]
W2(ch)(w) = �, w 2 [f , f 0]
W2(y)(w) = �, w 2 [f , d]
W2(z)(w) = �, w 2 [f 0, d]

B. Coloured Petri Nets as mechanism description language

Coloured Petri Nets (CPNs) [12] are a popular variant of
the Petri net model of concurrency used extensively in the
modelling of systems, particularly in the organisation. Their
semantics includes a time-based version and there are tools
for their animation and analysis of properties.

The semantics of CPNs are, like HCSP, too complex to
give here. However, a CPN that has similar phenomenal
models (and so will synchronise with ⌧2, when we have
defined parallel composition) is shown in Figure 6.

For those unfamiliar with CPNs, Figure 6 shows a CPN
with 5 places (circles; representing state) and 3 transitions
(boxes; representing actions). A transition is enabled if each
prior place (connected by an arc ending in the transition) has
a marking (or value associated with it). In Figure 6, both the
transition labelled ‘Value to send’ and that labelled ‘syn’ are
enabled (the former as its prior places has marking 4; the
latter since it has no prior places) and so can fire. Each fires
independently of the other and, in doing so, removes the
values from the prior places, populating the posterior places
(those connected by an arc starting at the transition). The
arcs define the way that this is achieved.

The possible ‘runs’ of the CPN of Figure 6 from the initial
marking of the value 4 in place ‘Value to send’ are shown
in Figure 7. There are three, corresponding to:

upper: transition ch!x ready firing before syn
middle: transition syn firing before ch!x ready

lower: both transitions firing at the same time.
Note that, after the initial ‘assignment’ x := 4, the CPN
waits for synchronisation with places ch! and ch marked.

IV. Parallel mechanism composition

Given two mdl expressions, each defining a set of phe-
nomenal models, we can ask whether there are any phenom-
enal models that are compatible between the two. Here, by
compatible, we mean each satisfies the expectations of the
other for synchronisation. Formally, this is:

Definition 5 (Compatible phenomenal models): Two
phenomenal models Mi = hTi,Vi,Wii, i = 1, 2
are compatible when they intersect and agree on
PHEN = PHEN1 \ PHEN2, and their associated channel

4

ch!x
ready

ch!x
complete

x

x

⊤

⊤
syn

⊤

⊤ x

⊤

Value to
send

ch? ch ch!

End

Figure 6. A Coloured Petri Net ‘close to’ x := 4; ch!x

flags2, i.e.,

T1 = T2
dom(V1) \ dom(V2) = PHEN

dom(W1) \ dom(W2) = PHEN! [PHEN?
V1(ch) = V2(ch) for ch 2 PHEN
W1(ch) = W2(ch) for ch 2 PHEN! [PHEN?

PHEN are called the shared phenomena between M1 and
M2.

The conditions on the domains exists so that state vari-
ables are not available as a mechanism for communication.
Of course, even if W1 and W2 share non-PHEN names,
we can ensure the intersections are disjoint through suitable
renamings, which we assume has been done in the sequel.

When compatible phenominal models do exist, their join
satisfies both expressions at the same time, modulo the state
variables and non-shared phenomena. This we will interpret
as a model for their parallel composition.

We can join compatible models:
Definition 6 (Model Join): Given compatible phenome-

nal models M1 and M2 over T we define M1 t M2 over
PHEN1 [PHEN2 and STATE1 [STATE2 thus:

M1 t M2 , hT ,V1 [V2,W1 [W2i

2In which PHEN? = {ch? | ch 2 PHEN} and PHEN! = {ch! | ch 2 PHEN}

c

End

F

F

F

Value to send 4

ch!x ready
@c1

syn
@c2

ch!x complete
@c3

d

ch!

ch?

ch

F

F

T

T F

F

T

F

4

c

End

F

F

F

Value to send 4

syn
@c1

ch!x ready
@c2

ch!x complete
@c3

d

ch!

ch?

ch

F

F

T

T F

F

T

F

4

c

End

F

F

F

Value to send 4

syn and
ch!x ready

@c1

ch!x complete
@c3

d

ch!

ch?

ch

F

F

T

T F

F

T

F

4

Figure 7. The phenomenal models for the CPN of Figure 6. Upper:
ch!x ready fires before syn and, middle: vice versa. In lower, both syn and
ch!x ready fire at the same time.

Proposition 1: M1 t M2 is a phenomenal model over
PHEN1 [PHEN2 and STATE1 [STATE2.

With these definitions, we can define parallel composition:
Definition 7 (Parallel composition): Suppose we have

two mdl expressions ⌧i over PHENi and STATEi, i = 1, 2,
respectively. Then we define

[[⌧1k⌧2]] = {M1 t M2 | Mi 2 [[⌧i]] ^ M1, M2 compatible}
There are a number of notable features of this definition:
• the definition is symmetric in its operands;
• the model joins identify channels and their flags, al-

lowing the two expressions to ‘synchronise and pass
values’.

Example 2: For terms ⌧1 and ⌧2 above, the models on the
right of the respective figures (the synchronisation cases) can
be made compatible when e = e0 = f and � = 4. Taking their
join as M = M1 tM2, we have the behaviour of the parallel
composition as:

I(ch!)(w) =

8>><
>>:

F, w 2 [c, f)
T, w 2 [f , f 0]

I(ch?)(w) = T, w 2 [c, f 0]
V(ch)(w) = 4, w 2 [f , f 0]
V(x)(w) = 4, w 2 [c, d]
V(y)(w) = 4, w 2 [f , d]
V(z)(w) = 4, w 2 [f 0, d]

as illustrated in Figure 8

ch!
ch?
ch
y

c f f’ d

T

z
4

4

4x

T

4

F

x:=4 syn z:=y

Figure 8. The phenomenal models for ⌧1 k ⌧2: the behaviour is the join
of the operand terms.

A. Impedance mismatch

We began this paper by saying that we might expect
the language in which the mechanism is described to be
chosen so that it is suitable for that mechanism, and so
representative of its characteristics, such as the ways in
which the generated phenomena synchronise. Clearly, the
parallel composition of two mdls expressed in the same
language will match flawlessly. However, expressions in
di↵erent languages may not.

Consider, for instance, the parallel composition of HCSP
term ⌧2 and the CPN of Figure 6, through the phenomenal
models of Figures 5 and 7. We noted that the CPN waits for
synchronisation when places ch! and ch are marked.

However, for phenomenal model compatibility, we require
that, like for ⌧1 k ⌧2, the green intervals in Figure 5 must
shrink to zero, and also that c = c1 = c2 in Figure 7. Given
the waiting ‘nature’ of the CPN model for synchronisation,
this may or may not be the expected outcome.

V. Discussion and Future work

The ‘new mechanical philosophy’ is emerging as a frame-
work for thinking about science. Under this view, science
is the discovery of mechanism the results of which are
observable natural phenomena. In this paper, we have taken
the first steps towards extending this philosophy to provide
a mechanical basis for design and engineering, under our
Problem Oriented Engineering framework. With our exten-
sion, design is the creation of (sub-)system descriptions
the conglomeration of which is a solution to a problem.
Because sub-systems may be diverse in their nature, we
have also shown how diverse descriptions can be joined
through parallel composition with phenomena sharing. This
diverse sub-system composition is helpful in that it can
reveal ‘impedance mismatches’ between the expectations for
the sharing of phenomena between sub-systems.

This work in progress has, however, barely touched upon
the complexity needed for a full theory, one that would,
for instance, stand as the basis for POE. In particular, the
notion of synchronisation that we use is that of HCSP, i.e.,
synchronous and unbu↵ered; whereas this covers other CSP
process algebras, there are many other variants that would
also need to be considered in a fuller theory.

Moreover, we have been very restrictive in assuming only
real values state variables and channel communication in
the mechanisms we have defined. Whereas this might be
su�cient for real-world systems, it is too restrictive for
synthesis: we might, for instance, be designing a software
engineering process for which the phenomena occurrences
include program code, documentation, code reviews, even
scrums, etc or organisational governance with observable
phenomena policy documents. This also raises the possi-
bility that phenomena occurrences from one process are
themselves mechanism descriptions, capable of themselves
generating phenomena. This is not unlike the ⇡-calculus [16]
and would be interesting to examine any crossover.

Finally, throughout, we have relied on the visual nature
of phenomenal models to illustrate more technical examples.
That phenomenal models are so visual suggests non-formal
and informal interactions with a mdl described system might
be possible; for instance, a human generating behaviours in
the form of graphs that have interpretations as phenomenal
models and so being composable with formal descriptions.
The third author is actively working through this idea with
tools for phenomenal model visualisation.

Acknowledgements

The authors would like to thank the reviewers for their
constructive comments.

References

[1] Z. Chaochen, W. Ji, and A. Ravn. A formal description
of hybrid systems. Hybrid Systems III, pages 511–530,
1996.

[2] Zhou Chaochen, Charles Anthony Richard Hoare, and
Anders P Ravn. A calculus of durations. Information
processing letters, 40(5):269–276, 1991.

[3] Carl Craver and James Tabery. Mechanisms in sci-
ence, 2015. URL https://plato.stanford.edu/entries/
science-mechanisms/.

[4] Carl F Craver. Explaining the brain: Mechanisms and
the mosaic unity of neuroscience. Oxford University
Press, 2007.

[5] Stuart Glennan. Rethinking mechanistic explanation.
Philosophy of science, 69(S3):S342–S353, 2002.

[6] Stuart S Glennan. Mechanisms and the nature of
causation. Erkenntnis, 44(1):49–71, 1996.

[7] Jon G. Hall and Lucia Rapanotti. Assurance-driven
design in Problem Oriented Engineering. International
Journal On Advances in Systems and Measurements, 2
(1):119–130, 2009.

[8] Jon G Hall and Lucia Rapanotti. A design theory
for software engineering. Information and Software
Technology, 87:46–61, 2017.

[9] D. Harel and A. Naamad. The statemate semantics of
statecharts. ACM Transactions on Software Engineer-
ing and Methodology, 5(4): 293-333, 1996.

[10] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall International, 1985.

[11] M. Jackson. Problem Frames: Analyzing and Structur-
ing Software Development Problems. Addison-Wesley
Publishing Company, 2001.

[12] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells.
Coloured Petri Nets and CPN Tools for modelling and
validation of concurrent systems. International Journal
on Software Tools for Technology Transfer (STTT),
2007.

[13] Stuart A Kau↵man. Articulation of parts explanation
in biology and the rational search for them. In Topics
in the Philosophy of Biology, pages 245–263. Springer,
1976.

[14] Peter Bernard Ladkin. The logic of time representation.
PhD thesis, Citeseer, 1987.

[15] R. Milner. Communication and Concurrency. Prentice-
Hall, 1989.

[16] Robin Milner. Communicating and mobile systems: the
pi calculus. Cambridge university press, 1999.

[17] Johan van Benthem. The logic of time: a model-
theoretic investigation into the varieties of temporal on-
tology and temporal discourse, volume 156. Springer
Science & Business Media, 2013.

