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Abstract 

This paper considers the dynamics of electricity demand in response to changes arising from 

low-carbon policies and socio-economic developments. As part of an investigation into the 

evolution of such systems on small economically-developed islands, endogenous electricity 

demand and associated policies are studied for the Azorean island of São Miguel. A 

comprehensive System Dynamics (SD) model covering the period 2005 − 2050 is presented 



 

 

which captures both historical behaviours and real-world influences on the endogenous demand 

dynamics of an island-based electricity system. The impact of tourism, energy efficiency 

and electric vehicles (EV) expansion allied with associated policy options, are critically 

evaluated by the SD model using a series of scenarios. The model shows that energy efficiency 

measures exhibit the most significant long-term impact on electricity demand, while in 

contrast, policies to increase tourism have a much less direct impact and EV expansion has 

thought-provoking impacts on the long-term demand, although this is not as influential as 

energy efficiency measures.  

 

Keywords: Endogenous electricity demand; Island electricity systems; System dynamics; 

Electric-vehicles expansion; Energy efficiency; Tourism 

1. Introduction 

Policy makers worldwide are attempting to reduce the emission of harmful greenhouse gases 

produced during electricity generation, while simultaneously either preserving or enhancing 

energy security. This challenge is compounded by the desire to achieve the required changes 

without greatly increasing economic costs which would risk an erosion of national economic 

competitiveness. For large electricity systems such as for a major country or continent, the 

inherent system complexities present an intractable challenge (Bompard et al., 2012), so a more 

pragmatic option is to consider a smaller, but nevertheless complete, autonomous electricity 

system as the case study. It is in this context that this paper focuses on a specific island-based 

electricity system, namely that of São Miguel in the Azores.  

São Miguel has a set of attributes which make it particularly attractive for this case study:  

• It is part of Portugal in the European Union and it is economically developed.  



 

 

• It is of sufficient size and complexity to emulate the attributes of larger systems.  

• It has neither electrical connections to any other island nor to the mainland.  

• While the island has some political autonomy, electricity prices are not set locally but are 

determined administratively in Lisbon, so the electricity system on the island is not 

economically isolated (EDA, 2008).  

Economically developed island systems differ from similarly prosperous larger scale systems 

in that they generally do not endogenously develop new technologies. They lack size and 

complexity and are too small for effective economic competition when considering more 

sustainable future pathways (Eurelectric, 2012). They also do not usually have local price 

formation so electricity prices can be modelled as an exogenous variable, largely independent 

of local economic conditions. The electricity provision for island systems has historically been 

dominated by a dependency on imported, heavy fuel oil and diesel, and as a consequence, the 

energy system, and the island's economic growth, have been linked to fossil fuel prices. The 

literature suggests that typical small island consumers and stakeholders have no power to 

influence such fuel prices as they are exogenous to the island, even though they are politically 

semiautonomous (EDA, 2008; ERSE, 2014, 2012). 

Furthermore, there is growing evidence that it is important to understand the key lessons that 

allow smaller semi-autonomous systems to become sustainable and then to extend them to 

larger networks (Ilic et al., 2013). As a result, these systems offer an ideal testbed to investigate 

endogenous demand dynamics and renewables penetration (Eurelectric, 2012). For example, 

Weisser (2004) examined the main economic and technological obstacles for incorporating 

renewables within small island systems, while (Ilic et al., 2013; Parness, 2007; Pina et al., 

2012) studied such testbed systems. 



 

 

However, they did not consider endogenous demand dynamics and complexity, but instead 

principally focused on economic and/or technical provisions for demand within these systems. 

However, other studies including (Jordan, 2013; Steel, 2008) suggest that demand dynamics 

cannot be ignored, being inexorably tied to the structure of the system. Indeed, an 

understanding of demand dynamics can reveal unexpected causal behaviours leading to new 

policies, and hence useful sustainability guidelines for the future. System dynamics (SD) 

(Forrester, 1961; Sterman, 2000) affords a methodology for understanding the structure of an 

island electricity system and its response to policies using a micro-world model (Morecroft, 

1988). SD offers a platform for novel endogenous modelling of the demand dynamics of an 

island electricity system and in identifying the most important and influential energy policies 

that may impact upon long-term demand within the system. 

In this paper, the long-term endogenous electricity demand of São Miguel is modelled to derive 

a better understanding of the inherent dynamics of the future demand within an island context. 

Importantly, the Azorean islands have already been extensively studied over the last decade by 

researchers from MIT and Carnegie Mellon University, together with Portuguese academic 

collaborators and the Portuguese Government as “a living laboratory” for sustainable energy 

solutions (MIT-Portugal, 2013). This has led to a rich repository of available data for further 

studies. A new SD model has been developed to exploit this relevant historical data using 

realistic responses of investors and consumers to policy drivers and system variables. An SD 

model can characterise the most important feedbacks and causal relations, together with the 

stock and flow structures within a system. The model was used to obtain a rigorous knowledge 

of the key demand dynamics and to evaluate policies and their implications for the development 

of the island's electricity system. It studied policies that facilitate low-carbon systems, whilst 

ensuring the security of the electricity supply. 



 

 

Hence, insights into the effects of key policies on the structure and dynamical behaviour of the 

evolving endogenous electricity demand within island electricity systems were provided. 

The future demand dynamics of the system have been analysed based on three independent 

policy drivers highlighted by (Bothelo, 2015; Eurelectric, 2012; Nunes, 2015): These are (a) 

Electrification via electric vehicles (EV); since this is a focus of island systems for increasing 

the low demand during night-time periods. (b) The effects of energy efficiency; viewed as 

essential to ensure energy security. (c) The influence of tourism; since island systems are 

concerned about the impact on their electricity systems of a fluctuating number of visitors 

(European Commission, 2013). Assorted scenarios are critically analysed which emphasise in 

turn, each of these policy drivers, and gauge the most important and interesting ones to 

policymakers, for meeting long-term electricity supply security and environmental concerns. 

The SD model also details the priority policy areas and determines whether long-term system 

responses may be counter-intuitive as the island pursues exogenous and politically-driven low-

carbon policies. The next section presents the background to the low-carbon issues and 

challenges and the inherent types of policies and strategies used in island electricity systems 

 

2. Energy policy and strategy for island systems 

Island systems have traditionally been heavily reliant on fossil fuels, with the main issues being 

high and volatile fuel costs and the limited scale for cheaper fossil fuel generation options such 

as coal and natural gas. The drive towards low-carbon objectives, while remaining flexible and 

reducing the dependency on expensive oil imports has created a strong economic incentive to 

change the system’s status quo (Eurelectric, 2012). While the use of renewable energy sources 

avoids future unknown fuel costs and associated risks, there is the risk of high upfront capital 

costs. This may be absorbed by the mainland, such as in this case study, via economic and 



 

 

policy links, whilst ensuring the long-term security of the electricity supply for meeting the 

demand.  

However, apart from costs, there are other emerging issues such as the nexus between 

reliability and availability of renewables, and the sustainability and economic stability they can 

provide for the electricity demand. Most renewables are not base-load which can give rise to 

concerns over the supply security of such systems. Barrett, (2006) and Warren, (2014) 

highlighted  possible general solutions to these security challenges including  building new 

capacity (a costly venture due to the infrequent peak time users they can command); increasing 

interconnections with other countries (restrictive especially for geographically isolated 

islands); developing and using large-scale energy storage technologies (an immature solution 

which is very expensive); location-dependent pumped hydro systems (not always feasible to 

build); and demand-side management (currently a theoretically rich but practically limited 

solution). These low-carbon objectives and considerations give rise to the added system 

complexity and highlight the need, and opportunity, to gain insights into the long-term 

endogenous evolution of electricity demand. 

For island systems, the challenges are greater since they may be unable to make use of mainland 

solutions as suggested by Barrett, (2006) and Warren, (2014). These electricity systems face 

great uncertainty in their demand with proportionally large daily and seasonal variations.  The 

variations can be further perturbed by small changes in efficiency measures, economic activity, 

and consumption patterns, without the benefits of large system balancing area, smoothing 

effects. These issues are highlighted in (Eurelectric, 2012) where the authors detail an overview 

charter towards a sustainable island energy future. In São Miguel, for example, consumption 

has a demand curve trough during the night, of approximately 50-60% of the peak daytime 

consumption (EDA, 2016; ISLE-PACT, 2012). This large discrepancy contributes to hindering 

the advent of more renewables, and the low-carbon agenda because fossil fuels are needed for 



 

 

the peaking demand in the day and also throughout the night for stabilising the power system 

frequency. However, policy emphasis on the electrification of the transport sector, through the 

encouragement of light-duty, EVs on the island, provides an opportunity to raise the level of 

the night-time trough, allowing for more renewables capacity and helping to further mitigate 

CO2 emissions (Bothelo, 2015). Implications for the island’s electricity demand policies are 

thus far reaching, and clarity is required in prioritising important policy decisions to shape a 

secure and sustainable future for island electricity systems.  

For example, there is the issue of unnecessarily increasing the generation capacity on an island 

electricity system, which was a strategy proposed by Barrett, (2006) and Warren, (2014). Given 

that economically-developed island, systems are already endowed with high levels of reserve 

legacy fossil-based capacity, further large-scale investments in either fossil fuel or renewables 

capacity may not be justified given the amount of latent capacity available (EDA, 2016). This 

excess capacity is however required to maintain reliability and some security of supply, by 

providing a wider range of electricity production units (there is usually a preference for several 

smaller generation units instead of one large generator). The electricity provider in São Miguel 

estimates that capacity margins are above 30% so the impetus for renewables is more focused 

on reducing CO2 emissions and on achieving fuel independence (EDA, 2016). Meeting energy 

security concerns by building new capacity is not advisable unless this is coupled to the aim of 

replacing decommissioned fossil generation with renewable sources.  

Another alternative mainland solution, (Eurelectric, 2012) is the concept of inter-island grid 

interconnectivity. However, this is infeasible in most cases, since the island systems are almost 

always geographically too distant for economic interconnections. Also given considerations 

are the prospects of demand-side management and large-scale pumped hydro energy storage 

(Barrett, 2006; Eurelectric, 2012; Warren, 2014). Demand-side management considered here 

is not the explicit real-time matching of demand to the available supply with automated load-



 

 

shifting mechanisms (Warren, 2014). However, this is considered as the charging of EVs 

during periods of low electricity demand. The prospect for pumped-hydro storage is also 

limited due to the geographical constraints of most small island systems. For example, the 

energy company in São Miguel has undertaken evaluation studies into the siting of a pumped-

hydro project and concluded that no suitable conditions exist for the required dams but that 

smaller reservoir storage is possible (Bothelo, 2015). However, there is a need for island 

electricity systems to adopt low-carbon energy-related policies and solutions to explore the 

impacts of changing economy-driven products such as tourism. (Haney et al. 2010) postulate 

that low-carbon energy policies support a means of reduced electricity consumption through 

energy efficiency policies and demand-response/demand-side management mechanisms. 

Similarly, the International Energy Agency (IEA, 2008) identified a trend towards increasing 

energy efficiency measures as an essential element in overcoming the challenges facing the 

energy sector. While true for large interconnected systems, it has not been proven for small-

island systems, where the focus is to maximize electrification, via the use of EVs, while 

minimizing the curtailment of the installed intermittent renewable capacity and increasing their 

economy-driven products such as tourism (European Commission, 2013).   

Recent studies promote the electrification of the global transportation sector as a means of 

adding further renewables capacity and enhancing the long-term security of the electricity 

supply (Aghaei et al., 2016; Kintner-Meyer et al., 2007; Paterakis and Gibescu, 2016; 

Shokrzadeh and Bibeau, 2016). Current island electricity system research suggests that this 

also holds within these systems (Baptista et al., 2009; IEA, 2013; Parness, 2007). The authors 

highlight that accelerated adoption of EV can facilitate the quick removal of fossil generation 

in smaller isolated systems by matching the renewable-based supply with the demand. A policy 

favouring EV thus provides the opportunity to operate the vehicles principally on renewables 

that would have otherwise been curtailed when the demand load is low i.e., at night-time. While 



 

 

a minimal technical amount of fossil generation will be necessary to balance the frequency of 

the electricity system, the energy capacity released from the renewables can be used to charge 

the EVs to eliminate the problem. The potential environmental benefits are significant 

including a diminished need for fossil fuel to run cars and power generators which also satisfies 

the low-carbon agenda whilst ensuring the security of the electricity supply to meet the long-

term demand dynamics. 

Baptista et al. (2009) used São Miguel to analyse the impact of introducing EVs, applying a 

short-term discrete scenario-based life-cycle approach to quantify their impact on the demand 

and CO2 emissions. Crucially this analysis did not extend to considering longer-term system 

factors, hence a key motivation behind this paper is to investigate further using the SD 

methodology for an island system, to provide the necessary understanding and insights, given 

its ability to reflect long-term demand dynamics and policy impacts on electricity systems 

(Ford, 1997; Jordan, 2013; POLES, 2016; Steel, 2008). Furthermore, SD has previously been 

applied to address many  aspects of energy policy from the past and present electricity grid 

systems including capacity planning, operating investments, electricity market simulations, 

balancing of fuel/technology mixes for grid system performances and electrification using EV 

(Arango et al., 2002; Caravajal et al., 2011; Ford, 1997; Jordan, 2013; Sanchez et al., 2007; 

Teufel et al., 2013). An SD methodology has not previously been adopted to analyse a small 

island endogenous electricity demand. Previous energy policy studies conducted on islands like 

the Azores include, TIMES MARKAL models for demand-side management strategies (Pina 

et al., 2012), a least-cost unit-commitment model analysis to determine the expected cost 

savings from introducing energy storage into existing electrical power grid networks (Cross-

Call, 2013), and multi-criteria decision methods to compare energy storage and other planning 

options for sustainable development (Silva, 2013). Additionally, Parness, (2007), made use of 

an economic dispatch and unit-commitment model to explore the environmental sustainability 



 

 

options on São Miguel, focusing on the optimal charging strategies for EVs needed to reduce 

electricity and transportation costs and minimize CO2 emissions. Collectively, these studies do 

not reflect endogenous demand dynamics of the system but do include the use of exogenous 

demand growth. This paper, therefore, focuses on making the demand dynamics endogenous 

to provide stakeholder insights into the emerging system characteristics and ultimately leading 

to more informed policy decisions to satisfy evolving demand.  

The new SD model captures the endogenous demand dynamics of the system for various 

scenarios, including energy efficiency, electrification, and tourism, to identify which are most 

important as the island pursues environmental objectives and supply security. It is distinct from  

(Matthew et al., 2016, 2015) and (Balnac et al., 2009), which also used SD studies of an island 

electricity system. Balnac et al. (2009) used Threshold-21 (T21) for applying SD to aid policy-

making in an integrated manner on the island of Mauritius. Although supply and demand were 

endogenous to their model, it assumed a least-cost-first rule for allocating demand to the 

different generating sets and also did not provide a resolution about the structure of the different 

sectors of electricity consumption and the relevant energy policies. The key to the new SD 

model is the structure of the demand sectors and the high level of endogeneity exhibited by the 

demand of the system. (Matthew et al., 2016, 2015) which were built to consider the investment 

criteria for fossil-based island systems and the influences of learning curves on renewables 

integration within such systems. Additionally, these models used an exogenous data 

extrapolation of the island demand, while the new São Miguel SD model aims to define the 

long-term endogenous demand and to elicit the most important and influential policies given 

the emerging trends and challenges from the environmental and energy security concerns. 

Details of the model are presented in the next section.  

 

 

 



 

 

3. Electricity demand model 

The case study with the necessary attributes highlighted for this work is the island of São 

Miguel. It is a part of the archipelago of nine Portuguese islands about 1,500 km west of 

mainland Portugal within the Atlantic Ocean. São Miguel is the largest island in the Azores, 

both in terms of size - 744.55 Km2 and population -140,000 inhabitants. The main electricity 

utility in São Miguel, Electricidade dos Açores (EDA), serves all nine islands as a fully 

regulated utility with a few independent power producers which sell their electricity (less than 

2% of total production) to the EDA utility (EDA, 2016). Electricity customers pay the same 

retail prices rates as mainland Portugal according to national law, so tariffs are effectively 

subsidized by the rest of Portugal (Cross-Call, 2013). For EDA, electricity consumption can be 

allocated to consumer types of residential, commercial services, industrial and public services 

(EDA, 2016, 2008). EDA statistics from 2005 to 2015 show that residential and commercial 

services make up approximately 30-35% respectively of the total demand. Public services have 

a share of about 15% while industrial demand stands at approximately 20% of the total. 

Additionally, the daily load duration curves have loads between 70 and 30 MW for the vast 

majority of hours in 2015 (EDA, 2016). According to (ERSE, 2014, 2012), the annual 

electricity consumption grew by more than 3% a year for the 5 years prior to 2014 and future 

demand is expected to rise by similar margins. Furthermore, the island Gross Domestic Product 

(GDP) has grown by an average of 2% per year since 2005 (European Commission, 2013), 

signalling optimism within the electricity consumption growth forecast. Also embedded in the 

framework is the political oversight by the Regional Directorate for Energy which is tasked 

with overseeing the promotion and execution of sustainable and environment-friendly energy 

systems.  

  

 



 

 

3.1.  Model Structure 

An SD model of the island electricity system has been developed to evaluate the influence on 

demand of different policy options. A scenario-based method has been employed, in which 

different set-ups are independently investigated, in line with the three policy options identified 

in Section 4.  For each scenario, the model is simulated on a monthly time-step over a 45 years’ 

time horizon from 2005 until 2050, with the goal of studying the average long-term and 

endogenous electricity demand.  

Each sector of electricity consumption is modelled independently in its entirety (which includes 

the energy efficiency policy implementations) and then all the sectors are aggregated to obtain 

the total system demand. Residential consumption is modelled in terms of birth, deaths, and 

migration, together with the standard-of-living index (World Bank, 2016) as a proxy for the 

demand-growth per household. The commercial services sector take account of the growth-rate 

in the monthly average number of night stays resulting from tourism and its influence on the 

consumption in this sector. It also captures influences of the exogenous GDP change for new 

commercial services consumption. The industrial sector captures the number of changing 

industries as influenced by the exogenous GDP growth and the resulting industrial 

consumption growth rate. The public services sector reflects influences of the external GDP on 

the public services consumption growth rate. The contribution to total demand from EVs is 

implemented with inputs from the EV policy, its enactment year and duration. Additionally, it 

is continuously verified that this desired number satisfies the long-term supply versus demand 

mismatch, and the short term day/night hourly demand imbalance. This day/night hourly 

demand imbalance is determined by using the hourly demand for all months within the years 

2013-2015 (Bothelo, 2015). Using this hourly data from each month, the minimum and 

maximum hourly demand values are determined and the differences are calculated. The 



 

 

respective differences of the minimum and maximum demand for each month are then 

normalised using the maximum hourly demand occurring within that month. This is 

implemented as a pre-processing step prior to the model simulation and a normalised 

minimum/maximum profile is built from the 1095 data pairs (i.e. daily pairs spanning the three 

year period). The data points are randomly chosen during simulations for determining the 

threshold amount of EVs necessary to handle the day/night hourly demand imbalance. 

The main components of the model are the consumer sectors of the electricity consumption 

(which includes EV adoption), the energy efficiency policy influences, and some supply and 

energy-storage aspects based on exogenous capacity portfolios (fractional percentage of the 

total installed capacity) determined by the current renewables and energy-storage policies. 

Figure 1 illustrates the mental model of the complete system which comprises three main 

feedback loops. As defined in the SD methodology, it is a high-level causal diagram, 

summarising the main feedback loops captured by the model and the exogenous influences on 

the model.  



 

 

 

Figure 1: Mental model hypothesis of the key demand-driven components in the 

electricity system 

Shown in Figure 1, the balancing effect, EV electrification loop (green loop) is central to the 

system. This loop is influenced exogenously by the electricity supply capacity. The electricity 

supply capacity variable is driven by the electricity storage, renewables and fossil generation 

capacities which are in turn driven by their respective portfolios. The portfolio values have a 

direct impact on the generation capacity since, in the absence of other drivers, the electricity 

system converges on this fraction of total installed capacity during the model simulation. For 

this study, the storage and renewables capacity portfolios are fixed as a fraction of total 



 

 

capacity, as determined by the specific case study. Hence they are held constant throughout the 

simulation. The electricity storage is linked to the renewables capacity portfolio which in turn 

influences the fossil fuel generation capacity portfolio.                                                                                       

The point of interaction of the electricity supply capacity with EV electrification loop is the 

supply capacity vs. net demand mismatch. This mismatch is determined in the model as a value 

between 0 and 1. This variable is vital for checking that the system has the long-term supply to 

meet demand. For example, if the demand/supply capacity ratio is greater than 1 the supply is 

not sufficient to meet the demand, which is a worst case scenario for the system. The mismatch 

is reinforced by the electricity supply which, in turn, reinforces the EV adoption and the net 

electricity demand within the system. The net electricity demand, however, has a balancing 

effect back onto the supply capacity vs. net demand mismatch. The reinforcement of the supply 

capacity vs. net demand mismatch on the EV adoption is captured as a threshold influence. If 

the mismatch is higher than the threshold (set at 0.8) then the EV policy is not enforced to 

ensure that the supply is sufficient for the new demand. The exogenous EV policy also 

reinforces EV adoption. This EV policy is defined as a desired percentage of EVs from the 

total amount of light-duty vehicles within the island in 2015, which is the start time for EV 

policy within the island system. The desired value of 6%, equivalent to approximately 2000 

electric vehicles, is used for the policy implementation in this study (Bothelo, 2015; Nunes, 

2015). The policy-based EV adoption is implemented using the goal-seeking approach given 

in (Sterman, 2000). Non-policy based EV adoption was implemented using the (Bass, 1969) 

diffusion model. In addition, the EV adoption is influenced by the day-night imbalance loop 

(black loop) which balances the EV adoption variable. If the day/night hourly demand 

imbalance is high then the incentives to adopt EVs is much higher than usual. This increase in 

EVs, however, balances the day/night hourly demand imbalance, closing this balancing loop. 

Also shown is the energy efficiency reduction loop (purple loop) which captures the balancing 



 

 

effect of the energy efficiency measures on the net electricity demand. Energy efficiency policy 

is applied to give the required load reduction adoption which is reinforced by the net electricity 

demand. This exogenous energy efficiency policy is implemented independently within the 

different sectors of the system. 

The resulting net electricity demand is equivalent to the consumer consumption with energy 

efficiency measures applied to the system. This total consumer consumption is derived from 

the endogenous EV adoption and energy efficiency influences together with the residential, 

commercial, industrial, and public services consumer types tied to the exogenous (GDP 

influenced) local economic activity. In the case of the residential and commercial consumer 

types there are exogenous influences from the population and overnight tourist stays, 

respectively. Relevant historical data for these key variables are used within the model (EDA, 

2016; European Commission, 2013; ISLE-PACT, 2012). The model captures the endogenous 

electricity demand changes across all island electricity consumer types given the scenarios are 

driven by electricity supply security and environmental concerns. Other exogenous factors used 

within the model are the renewables and energy-storage policy portfolios and the fossil capacity 

portfolio which reflects the percentage of capacity required by the specific supply technology 

to satisfy the demand. In addition, the seasonality effects on the capacity factor of the 

renewables generation were exogenous while external adoption of tourism, system profitability 

and differentiated renewables technology (here aggregated and assumed to be geothermal) are 

excluded from the model. The detailed parts of the model in Figure 1 were implemented using 

standard SD formulations and mechanisms in the Vensim software package (Ventana Systems, 

2016). 

 

 

 

 

 



 

 

 

 

3.2.  Model Assumptions  

One of the assumptions in the SD model is that capacity investments within a specific 

generation technology are the result of the respective exogenous policy requiring portfolio 

contributions from each type of generation technology.  For example, investments for 

renewables capacity are driven by the renewables capacity portfolio. However, the aggregated 

total capacity investments needed to meet the long-term demand are based on the expected 

electricity demand trends. Therefore, the average monthly long-term demand is considered as 

a key performance indicator of the model. Additionally, the short-term daily profile load curves 

used for matching the tolerable amount of EVs that can be charged during the low-demand 

trough period of the historical load duration curves, are pre-processed and used as a proxy 

within the model. The difference between the peak and trough of the short-term daily profiles 

is the desired amount of EV electrification and is reflected well within the model. In the EV 

policy part of the model, EVs are assumed to be light-duty and charge once per day for 

approximately 8-10 hours (which, given the geographical constraints of the island, is a 

reasonable assumption). Furthermore, the projected demand growth rate for the island is not 

used explicitly nor are economic consumption elasticities considered, but the GDP forecast is 

used as a proxy for determining the yearly increases in the absolute consumption of each 

consumer type. Finally, it is assumed that there are no cost considerations for new capacity 

builds or CO2 emissions in this model, and that tourism growth is a totally exogenous entity 

and any influence on the GDP of the island system is neglected.  

One constraint on the SD model is that it gives the average consumption and not the true peak 

demands and troughs for the various consumer types within the system. Consequently, the 

model does not account for the short-term hourly balancing of the grid system, although it does 



 

 

capture the demand supply gaps for filling the low demand periods. However, crucially the 

model gives key insights into the structure of the system and reflects all the important feedbacks 

that drive the system. 

 

3.3.  Model validation 

To validate the SD model, a number of structural validity procedures are performed (Barlas, 

1989; Qudrat-Ullah and Seong, 2010). The first involves integration error testing to check that 

different integration methods do not give divergent results. Additionally, further validation 

includes defining the boundary adequacy of the model by defining what is exogenous to the 

model (i.e., GDP) and what is endogenous (i.e., the average demand and installed renewables 

capacity) and separating these from what has been excluded from the model, such as investment 

costs. This gives the context and gives confidence for the correct usage of the model, namely 

understanding the long-term endogenous demand within the system. Key variables used like 

electricity prices and consumption data were verified with EDA and with global data sources 

(EDA, 2016; European Commission, 2013; Ilic et al., 2013; ISLE-PACT, 2012). It is important 

to stress the dimensional consistency and structural verification of the model are built into the 

modelling software (Sterman, 2000; Ventana Systems, 2016). The Vensim package gives an 

error and does not run accurately if the equations do not satisfy this level of consistency. Some 

extreme condition testing has also been completed, which has sensitivity to inclusion/exclusion 

of different policies and to low/high values of the initial GDP. 

Finally, it has been checked that the new SD model emulates the real system accurately during 

the calibration period (2005-2016), by taking into consideration historical data, domain 

expertise from EDA and theoretical formulations. The calibration period is followed by the 

simulation period, which gives insights into the future of the system after all available historical 

data. Within this calibration period, the patterns of behaviours being exhibited by important 



 

 

system variables should be mimicked by the model. For example, shown in Figure 2 is the 

plotted historical data of the monthly consumer demand from 2005 to mid-2016 (red curve), 

compared to the simulated average monthly demand (blue curve) over the same period.  

 

Figure 2: Fitness of base model output data to the real data 

Visually, the simulated model output reflects the trend of historical data considering that the 

historical data are discrete monthly values whilst the model output is the average monthly 

value. However, a statistical measure of fit R2, (which measures the covariance) was used 

together with the Theil inequality statistics to characterise the source of error for analytical 

comparisons (Pierson and Sterman, 2013; Sterman, 2000). For the data series shown in Fig. 2, 

R2 = 5% which indicates that the average monthly demand does not point-wise replicate the 

historical data. However, the new model is designed to analyse the long-term behaviour that 

results from short-term monthly consumption movements. The cyclic point-by-point historical 

data consist of slight divergences from the long-term average consumption trends. 



 

 

These short-term monthly consumption divergences may be due to seasonality consumption 

effects not captured within the model. By using the Theil inequality statistics (Sterman, 2000), 

a method which decomposes the Mean Square Error into UM (bias-unequal means of model 

and actual data), US (unequal variations) and UC (unequal covariations), the source of error 

between the simulated and historical data series can be determined. For the Fig. 2 data series, 

Theil statistics found that UM is 0.12, US is 0 and UC is 0.88 which suggests the error is 

concentrated in the unequal covariations. This implies the model has the same mean and trends 

as the data but differs from the point-wise data., so the data fit compares favourably to other 

SD models (Pierson and Sterman, 2013), for example.  

 

4. Policy scenarios for demand dynamics 

To generate plausible scenarios to critically evaluate the evolution of the endogenous electricity 

demand, as mentioned in Section 1, three key system factors that influence energy-related 

policies are considered, namely: (i) energy efficiency; (ii) tourism growth; and (iii) 

electrification of the transport sector (light-duty EV). These were chosen based on the 

literature, (Bothelo, 2015; ISLE-PACT, 2012; Nunes, 2015) and because they are deemed to 

be potentially important drivers for the future of the evolving electricity system. In addition to 

these three scenarios, a baseline (business as usual) case has been included. The scenario 

considers the system in 2005 to mid-2016, together with the past and present policies and the 

current economic and social aspects. However, the existing renewables policy, which was 

enacted in mid-2008 to achieve approximately 75% renewable capacity by 2020, has been 

revised to 50%, based on the current rate of its installation (EDA, 2016). This value has been 

used for all scenarios.  

The key features of the four test scenarios are: 



 

 

 

4.1 Scenario 1: Business as usual  

The island population is determined by the current birth and death rates along with the GDP 

growth rate, both being extrapolated from the 2005–2016 data. The current policy for an island-

wide, energy efficiency target of 6% decrease in consumption over the next 10–15 years 

starting from 2012 is implemented. No EV policy or market influences are assumed aside from 

a normal increase in EV (based on the purchasing rate of new EVs in 2015). The growth rate 

in the number of overnight tourists stays is determined from the 2005–2016 data to be 0.14% 

(SREA, 2016), and extrapolated into the future.  

4.2 Scenario 2: Tourism impact 

This scenario examines the plausible impact of changing tourism on the demand of the 

electricity system. It uses the Scenario 1 characteristics apart from the overnight tourist stays 

growth rates. For tourism growth rates, given from the historical data (SREA, 2016), two 

different cases are studied, namely, a reduction in the growth rate from 0.14% per month to 

0.07% per month from 2016 until 2050 and an increase in the growth rate of 0.14% per month 

to 0.28% per month from 2016 until 2050. Furthermore, these two cases are of interest to EDA 

and the Regional Directorate for Energy of the Azores (Bothelo, 2015; Nunes, 2015). The 

scenario seeks to establish upper and lower bounds on the tourism impact upon the system. It 

is assumed that no new hotel construction is warranted due to the low existing occupancy rate 

on the island of 32% (ISLE-PACT, 2012; SREA, 2016), and the growth rate has only been 

doubled for this scenario.  

4.3 Scenario 3: Energy efficiency measures 

This scenario encapsulates Scenario 1, apart from variations in the energy efficiency policy. 

Two case studies are considered: namely, the doubling (to 12%) and tripling (to 18%) of the 



 

 

original policy targets across the policy timeline of 10-15 years. This is a long-term energy 

efficiency target so in the SD simulation, the energy efficiency policy measures are 

discontinued after 15 years. It is also assumed that the energy efficiency measures are fully 

adopted by the consumers (so there are no adoption dynamics) since the extreme non-adoption 

will be reflected in the “business as usual” (Scenario 1) case.  

4.4 Scenario 4: EV expansion 

This scenario examines the possible influence of EV expansion. The baseline case is the 

purchasing rate of EV on the island in late 2015. It is also assumed that light-duty vehicles are 

the target for EV expansion. The baseline case is compared to three other policy cases: a 

market-based adoption policy for diffusion of technologies (Bass, 1969), a target of 

approximately 2000 EVs by 2020 (as suggested by EDA) (Bothelo, 2015), and a combination 

of the 2020 EV and the market-based adoption policies.  

 

 

5. Results Discussion  

5.1. Scenario-specific demand dynamics 

5.1.1 Tourism impact 

Figure 3 displays the influence of changing the growth rate of the number of overnight stays 

and the corresponding average monthly demand. The bottom half of Figure 3 displays the 

effects on hotel long-term demand trends, while the upper half shows the resultant effects on 

the system-wide long-term electricity demand trends. In both cases, the “business as usual” 

scenario, the black curve in the bottom half of the figure and the red curve in the top half of the 

figure, lies between the reduced and the increased overnight stays growth rates. However, the 



 

 

demand is seen to be high within the hotel consumption portion from 2016 onwards but this is 

only evident by a very small change from 2040 onwards within the total system demand. This 

phenomenon occurs because the hotel sector commands a very small share of the consumption 

within the island system. Hence with a doubling or even tripling of the hotel consumption, 

there will not be visible effects in the shorter term.   

 

Figure 3: Impact of varying scenarios of tourism changes on the total monthly demand 

of the electricity system 

A pragmatic conclusion from these results is that tourism on São Miguel has a low long-term 

electricity demand impact and that policies that either increase or decrease tourism do not 

significantly affect system-wide demand. However, it is evident that the consumer demand 

within the hotel sector will be increased by a significant amount in the case of increasing the 

overnight stays rate and decreased in the case of decreasing the overnight stays rate, compared 

to the “business as usual” scenario. It is important to stress that the tourism share of the total 

system consumption is initially very low, as the cause for the observations. An island system 



 

 

that has a relatively large share of demand based on tourism will show more influential 

dynamics including a higher trajectory on the long-term demand.   

5.1.2 Energy efficiency measures 

Figure 4 shows the varying energy efficiency impacts on the whole system, for the long-term 

average monthly demand of electricity. The energy efficiency measures are considered for the 

aggregated system as a whole and not restricted to specific consumer types. Current energy 

efficiency policy of 6% demand reduction from 2012 for 15 years (proposed by EDA and the 

Regional Directorate of Energy) is reflected by a slight dip in the trend of the load curve (red 

curve) for the “business as usual” scenario shown in Figure 4. The effects on the long-term 

demand load of doubling and tripling (blue and green curves respectively) the required demand 

reductions over the same timelines show greater deviations from the initial trend of the load 

curve, with tripling the reductions having the largest effect.  

 

Figure 4: Impact of energy efficiency measures on the total monthly demand of the 

electricity system 



 

 

The results reveal that energy efficiency measures can be applied as a blunt policy tool with 

high impact. Reductions in consumption in the long-term are guaranteed if efficiency measures 

are applied in the shorter term (10-15 years) with more aggressive targets being set. This means 

energy efficiency policies have a significant impact on the demand dynamics of the electricity 

system and can be applied as an additional safeguard for long-term energy security. 

5.1.3 EV expansion 

The introduction of EVs within island systems such has the Azores has been very slow and 

without any policy support (Nunes, 2015). This is contrary to the mainland Portugal where 

there are various incentives initiated to encourage their adoption. In 2016, São Miguel has a 

fleet of approximately 50 EVs. Given the current low uptake on the island and in the absence 

of other major changes, the “business as usual” scenario has been modelled revealing that there 

will be approximately 110 EVs on São Miguel by 2050, based on the 2015 purchasing rate.  

EV expansion for the electrification of the transportation sector is integral to increasing the 

renewables capacity of the island system. Since the base case has a small number of EVs there 

is considerable potential for policies to drive their expansion. These include setting explicit 

target numbers or incentivising the market adoption of EV. The comparisons shown in Figure 

5 provides insight into the resulting number of EVs with policies differing from the “business 

as usual” case (red curve). Figure 5 also shows (right-hand scale) the equivalent amounts of 

long-term monthly demand that will be added to the electricity network from these different 

policy scenarios. The number of EVs and their trajectory to 2050 shows greatly differing 

dynamics depending on the chosen policy. The blue line indicates the number of EV to 2050 

following market-based expansion based on adoption diffusion. The hybrid policy (grey curve) 

of planning for a fixed amount of vehicles by 2020 and then supporting market adoption, yields 

the most impact on the penetration of EV.  



 

 

 

Figure 5: Model output for the number of EV adopters and monthly EV consumption 

under varying cases of EV expansion policies 

Interestingly, the results reveal that a 2020 policy which has no on-going support to encourage 

the sustained use of EV (green curve) will lead to a gradual decline in EV numbers and EV-

based electricity demand in the longer term. This is because after an EV has passed its lifetime 

it will be discarded. If the 2020 policy is no longer in force, then, as adopted EVs reach their 

end of life, they are no longer used within the system. This leads to a long-term decline in 

consumption caused by the removal of EVs. In contrast, with the hybrid case in which the 2020 

policy target is used along with market adoption and leads to an exponential increase in the 

number of EVs and equivalent electricity demand.  

Figure 6 shows the EV impact on the whole system, for the long-term average monthly demand 

of electricity. It reveals that the hybrid policy has the highest impact on long-term demand 

dynamics and that EV expansion can have a marginally small or high impact on the long-term 

demand dynamics and presents challenges for policymakers. As shown in (Bakker and Jacob 



 

 

Trip, 2013; Green et al., 2014) government intervention can be useful to facilitate/lead EV 

adoption, however, policies must be carefully applied to avoid compromising security in 

meeting this demand. Conversely, the environmental benefits and advent of more renewables 

capacity, facilitated by high amounts of electrification of the transportation sector encourages 

EV expansions in the absence of policy targets or incentives (IEA, 2013). 

 

Figure 6: Impact of different EV expansion policies on the total monthly demand of the 

electricity system 

This analysis reveals that EV expansion is potentially more interesting in terms of the long-

term impact compared to both tourism growth and energy efficiency measures, though energy 

efficiency remains the most powerful for guiding the long-term demand dynamics. In addition, 

supply-side influenced demand such as energy efficiency will have a narrower range of impacts 

on the long-term demand compared to demand-side influenced factors such as EVs. The range 

of possible outlooks for the EVs on the long-term demand can vary from being negligible to 

being very large. 



 

 

 

 

5.2.   Long-term demand and supply confidence bounds 

Figure 7 shows the confidence bounds on the long-term demand of the system as determined 

from a series of 200 Monte Carlo Marko Chain simulations randomly sampling the four 

scenarios detailed in Section 4. Key variables, their ranges, and related information sources are 

given in Appendix, Table A.1. The result shows that the demand can be tightly bounded with 

a 75% probability given the combinations of different policies for electrification, energy 

efficiency and tourism, implying that long-term demand dynamics driven by policy can provide 

a stable outlook for the system. However, careful considerations must be given to the policy 

choices since the 95% confidence bounds (blue regions ) are upwardly skewed over a larger 

uncertainty range when compared to the mean (red line).  

 

Figure 7: Total monthly demand sensitivity of the electricity system for the different 

policies from 2005 to 2050 



 

 

 Figure 8 displays the Monte Carlo simulation confidence bounds for the installed renewable 

capacity in MW. These bounds have been calculated from 200 runs of the combinations of the 

scenarios detailed in Section 4. The greater disparity that is evident in the 75% -100% 

confidence bounds is mainly driven by the renewable energy policies. The results reveal that 

the installed renewables pathway based on a 50% portfolio share is consistent with observations 

to 2016. However as the time-period extends, the scenario combinations driving the renewables 

policy introduces uncertainty. The lower confidence bound is guided by the energy efficiency 

measures whilst the upper part is bounded by the policies relating to the electrification of the 

transport sector. This implies that greater electrification will, in the long-term, lead to more 

renewable capacity within isolated island systems. 

 

Figure 8: Sensitivity of the total installed renewable capacity of the electricity system for 

the different policies from 2005 to 2050 

 



 

 

6. Conclusion and Policy Implications 

The new SD model presented in this paper has analysed a series of policy scenarios which 

emphasise differing critical factors for the long-term endogenous demand dynamics and 

identify the most important and interesting factors for policymakers when considering their 

environmental and energy security objectives. By applying a series of pragmatic assumptions, 

the policies for electrification of the transportation sector, energy efficiency measures and 

increased tourism activity provide an insightful understanding of the demand dynamics of an 

island electricity system. Based on the model behaviour for these scenarios, it can be concluded 

that the long-term demand trajectory is significantly influenced by implementing successful 

energy efficiency measures. This is, however, a brute force solution for reducing the long-term 

monthly demand and can be a useful policy for safeguarding the energy security of the system. 

EV expansion is not as influential, although it can still provide medium-to-large stimuli to the 

long-term demand dynamics. This is demonstrated by the different demand projections for EV 

expansion by 2050. Longer-term demand is uncertain with both small and large changes 

feasible depending upon the way EV are adopted and related policies are pursued. If specific 

policy targets are withdrawn, once they have been achieved, then long-term demand will 

converge closer to the “business as usual” path. This shift is small compared to a hybrid policy 

involving the market effects, which is very large for such adoption of EVs. In such cases, the 

long-term demand dynamics can diverge from the “business as usual” scenario. To achieve 

higher levels of electrification, the chosen policy can be guided by the key stakeholder, by, for 

example, replacing company and government vehicles with EVs and actively promoting their 

benefits and encouraging the rest of the island to adopt EVs, a concept embraced by the 

Regional Directorate of Energy (Nunes, 2015). 



 

 

Finally, for islands such as São Miguel policies relating to conventional tourism have a very 

low impact on the long-term monthly consumption trends, indicating that systems with a very 

small initial tourism economy need a substantial increase in tourism if this is to impact the 

long-term demand trends. The implemented tourism policies in this case study made little 

impression on the long-term trajectory of system demand, implying that isolated island systems 

with a low economic share of tourist activities are largely unaffected by energy-related policies 

which focus solely on tourism. Furthermore, for isolated island systems pursuing low-carbon 

objectives, it is the policy behaviour of the locals rather than externals (tourists) that will make 

the key impact on the future electricity system. This can, however, be different in smaller and 

less developed island systems than the one studied in this paper, but fundamentally what 

matters to any island system is knowing that its mechanisms are able to reduce the demand as 

a safeguard and eliminate the need for additional generating capacity. EV electrification 

policies are useful in reducing the environmental impacts of high CO2 emissions; however, 

they have a lower impact on the long-term demand than successful energy efficiency measures. 

The model provides new clear insights into the most important and influential policies for the 

endogenous demand dynamics from the key socio-techno-economic aspects typical to the 

structure of island electricity systems. This new SD model provides a novel approach to 

identifying the most influential and efficient policies by understanding the structure of the 

system useful for the long-term electricity consumption of island systems. The approach gives 

sustainability guidelines and policy directions for prospective energy solutions. Demand policy 

implications are important in making informed decisions and being aware of which policies 

are the priority where the focus for energy security and environmental issues must be directed. 

This is essential for understanding how the policies impact on the overall long-term 

endogenous demand. 
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