
Noname manuscript No.
(will be inserted by the editor)

Dynamic ridge polynomial neural network with
Lyapunov function for time series forecasting

Waddah Waheeb · Rozaida Ghazali ·
Abir Jaafar Hussain

Received: date / Accepted: date

Abstract The ability to model the behaviour of arbitrary dynamic system
is one of the most useful properties of recurrent networks. Dynamic ridge
polynomial neural network (DRPNN) is a recurrent neural network used for
time series forecasting. Despite the potential and capability of the DRPNN,
stability problems could occur in the DRPNN due to the existence of the
recurrent feedback. Therefore, in this study, a sufficient condition based on
an approach that uses adaptive learning rate is developed by introducing a
Lyapunov function. To compare the performance of the proposed solution
with the existing solution, which is derived based on the stability theorem for
a feedback network, we used six time series, namely Darwin sea level pressure,
monthly smoothed sunspot numbers, Lorenz, Santa Fe laser, daily Euro/Dollar
exchange rate and Mackey-Glass time-delay differential equation. Simulation
results proved the stability of the proposed solution and showed an average
21.45% improvement in Root Mean Square Error (RMSE) with respect to
the existing solution. Furthermore, the proposed solution is faster than the
existing solution. This is due to the fact that the proposed solution solves
network size restriction found in the existing solution and takes advantage
of the calculated dynamic system variable to check the stability, unlike the
existing solution that needs more calculation steps.

Waddah Waheeb
Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn
Malaysia, Batu Pahat, Johor, Malaysia
E-mail: waddah.waheeb@gmail.com

Rozaida Ghazali
Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn
Malaysia, Batu Pahat, Johor, Malaysia
E-mail: rozaida@uthm.edu.my

Abir Jaafar Hussain
Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
E-mail: a.hussain@ljmu.ac.uk

2 Waddah Waheeb et al.

Keywords Dynamic ridge polynomial neural network · Recurrent neural
network · Higher order neural network · Time series forecasting · Adaptive
learning rate · Lyapunov function

1 Introduction

Time series is a sequence of observations for a variable of interest made over
time. Time series is used in many disciplines for things such as daily exchange
rate price, quarterly sales and annually sunspots numbers. Time series fore-
casting is defined as an estimation of the future behaviour of a time series
using current and past observations [30].

Various methods for time series forecasting have been developed. From
statistics-based to intelligence-based, there are a range of methods available
to make a forecast. Intelligent methods such as Artificial Neural Networks
(ANNs) have been successfully used in time series forecasting [9, 22, 34, 52].
During training, ANNs use historical data to build a model that has the ability
to forecast future observations.

ANNs have a non-linear input-output mapping nature that allow them to
approximate any continuous function with an arbitrary degree of accuracy.
ANNs are less susceptible to model misspecification than other parametric
non-linear methods because the non-linear input-output mapping in ANNs is
generated with little priori knowledge about the non-linearity in the series [37,
52].

Higher order neural networks (HONNs) have been used successfully for
time series forecasting [9, 16, 22, 23, 39, 41]. They have a single layer of train-
able weights which enables faster network training. Ridge Polynomial Neural
Network (RPNN) [43] is a HONN that maintains fast learning and powerful
mapping properties, which makes it suitable for solving complex problems [23].

For time series forecasting, an explicit treatment for the dynamics involved
is needed for neural network models because the behaviour of some time series
signals are related to past inputs that present inputs depend on [24]. For
that, a recurrent version of the RPNN was proposed and named Dynamic
Ridge Polynomial Neural Network (DRPNN) by [24]. Recurrent networks learn
the dynamics of the series over time and store them in their memory, and
then use these memories when forecasting [40]. RPNN and DRPNN have been
successfully applied to forecast time series [9, 22–24], with DRPNN the most
suitable for time series forecasting.

Despite the potential and capability of the DRPNN, the problems of com-
plexity and difficulty of training could occur in the DRPNN [22]. To tackle
these problems, a sufficient condition for the convergence of the DRPNN was
derived based on the stability theorem for a feedback network proposed by
Atiya [11]. This solution adjusts the weights of the network to generate net-
work outputs that get as close as possible to the desired output [22]. However,
this solution could be too restrictive in some cases where a large network is
necessary [11]. Therefore, feedback network stability theorem is restrictive and

Title Suppressed Due to Excessive Length 3

causes lower forecasting accuracy with many time series where more accurate
forecasts are needed such as financial or disaster forecasting.

In an attempt to overcome the stability problems for DRPNN, in this work
a sufficient condition based on an approach that uses adaptive learning rate
is developed by introducing a Lyapunov function. Such approach has been
used effectively with different recurrent ANNs models such as fully connected
recurrent networks [31], recurrent wavelet elman neural network [33] and self-
recurrent wavelet neural network [54].

The contributions made by this study are as follows:

– To tackle the problems of complexity and difficulty of training for DRPNN,
a sufficient condition based on an approach that uses adaptive learning rate
is developed by introducing a Lyapunov function. Then, we applied it for
time series forecasting.

– A comparative analysis of the proposed solution with the existing solu-
tion was completed using six time series, namely Darwin sea level pres-
sure, monthly smoothed sunspot numbers, Lorenz, Santa Fe laser, daily
Euro/Dollar exchange rate and Mackey-Glass time-delay differential equa-
tion.

– The forecasting performance of DRPNN with the proposed solution was
compared with other models in the literature.

The remainder of this study is organized as follows. In Section 2, we review
the dynamic ridge polynomial neural network and the existing solution for its
stability. In Section 3, we present the proposed solution. Section 4 describes the
experimental design. Section 5 presents results and discussion. The conclusion
is given in Section 6.

2 Related works

The following subsections describe the dynamic ridge polynomial neural net-
work and stability issue found in it.

2.1 Dynamic ridge polynomial neural network (DRPNN)

Time series forecasting requires explicit treatment of dynamics because present
inputs of the time series depend on some past inputs [22]. Neural networks with
recurrent connections are dynamic systems with temporal state representa-
tions. Due to their dynamic structure, they have been successfully used for
time series forecasting [14, 22, 36]. Dynamic ridge polynomial neural network
(DRPNN) is a recurrent neural network. It has the extension architecture and
functionality of the feedforward ridge polynomial neural network (RPNN). By
incorporating the recurrent connection, DRPNN is better able to model the
dynamics of time series as compared to RPNN and many other higher order
neural networks techniques as found in [9, 21,22,24].

4 Waddah Waheeb et al.

The structure of DRPNN is shown in Fig. 1. DRPNN is constructed from
a number of increasing order of Pi-Sigma units [42] with the addition of a
recurrent connection from the output layer to the input layer. This recurrent
connection feeds the network output to the summing nodes in each Pi-Sigma
units, thus allowing them to see the resulting output of the previous sample.
All weights are fixed to unity except the weights link the inputs with the first
summing layer as shown in Fig. 1.

Fig. 1: Dynamic Ridge Polynomial Neural Network. Z1 denotes the time delay
operator.

DRPNN uses a constructive learning algorithm based on the asynchronous
updating rule of the Pi-Sigma unit. That means that DRPNN starts with a
small basic structure, then grows by adding Pi-Sigma unit of increasing order
to its structure as the learning proceeds until the desired mapping task is car-
ried out with the required degree of accuracy. Real Time Recurrent Learning
algorithm [51] is used to update network weights. The output of the DRPNN
network are given by:

y(t+ 1) ≈ σ

(
k∑
i=1

Pi(t+ 1)

)
(1)

Pi(t+ 1) =

i∏
j=1

(hj(t+ 1)) (2)

hj(t+ 1) =

m+1∑
g=1

wgjZg(t) (3)

Title Suppressed Due to Excessive Length 5

Zg(t) =

{
xg(t) 1 ≤ g ≤ m
y(t) g = m+ 1

(4)

where k is the number of PSNN blocks, σ is a non-linear transfer function,
m is input vector dimension size, w is a trainable weight, x is an input and
y(t) is network output at previous time step.

Sum squared error is used as a standard error measure for training the
network as follows [22,24]:

E(t+ 1) =
1

2

∑
e(t+ 1)2 (5)

where

e(t+ 1) = d(t+ 1)− y(t+ 1) (6)

where d(t+ 1) is the desired output and y(t+ 1) is network output. At every
time, the weights between inputs g and sigma l are updated as follows:

4wgl = −η ∗
(
∂E(t+ 1)

∂wgl

)
(7)

where η is the learning rate. The value of ∂E(t+1)
∂wgl

is determined as:

∂E(t+ 1)

∂wgl
= e(t+ 1) ∗ ∂e(t+ 1)

∂wgl
(8)

∂e(t+ 1)

∂wgl
= −∂y(t+ 1)

∂wgl
(9)

∂E(t+ 1)

∂wgl
= −e(t+ 1) ∗ ∂y(t+ 1)

∂wgl
(10)

∂y(t+ 1)

∂wgl
=

∂y(t+ 1)

∂Pk(t+ 1)
∗ ∂Pk(t+ 1)

∂wgl
(11)

From (1) to (4), we have:

∂y(t+ 1)

∂wgl
= (y(t+1))

′
∗

 k∏
j=1,j 6=l

hj(t+ 1)

∗(Zg(t) + w(m+1)l ∗
∂y(t)

∂wgl

)
(12)

Assume DY as the dynamic system variable, which is defined as a set of
quantities that summarizes all the information about the past behavior of the
system that is needed to uniquely describe its future behavior [26], where DY

is:

DY
gl(t+ 1) =

∂y(t+ 1)

∂wgl
(13)

6 Waddah Waheeb et al.

Substituting (13) into (12), we have:

DY
gl(t+1) =

∂y(t+ 1)

∂wgl
= (y(t+1))

′
∗

 k∏
j=1,j 6=l

hj(t+ 1)

∗(Zg(t) + w(m+1)l ∗DY
gl(t)

)
(14)

The initial values are DY
gl(t) = 0, and y(t) = 0.5 to avoid zero value of

DY
gl(t) = 0 [22,24].

Weights updating rule is derived by substituting (14) into (8) then (7),
such that

4wgl = η ∗ e(t+ 1) ∗DY
gl(t+ 1) (15)

Finally,

wnewgl = woldgl +4wgl (16)

2.2 Stability issue for DRPNN

The ability to model the behaviour of arbitrary dynamic system is one of the
most useful properties of recurrent networks. Hence, the recurrent feedback in
DRPNN enhances its forecasting performance as found in [9, 22, 24]. Despite
the potential and capability of the DRPNN, the problems of complexity and
difficulty of training could occur in the DRPNN [22]. These problems can be
summarized in two main points. First, calculating the gradients and updating
the weights of the DRPNN is difficult because the dynamic system variables
affect both the gradient and the output. Second, the learning error may not be
monotonically decreasing which could lead to long convergence time. To tackle
these problems, a sufficient condition for the convergence of the DRPNN was
derived based on the stability theorem for a feedback network proposed by
Atiya [11].

This stability theorem adjusts the weights of the network to generate net-
work outputs that get as close as possible to the desired output [22]. According
to [22], the condition for DRPNN to converge based on the feedback network
stability theorem is described by:

max
 A∑
k=1

k∑
L=1

|WL(M+2)| ∗
k∏

S=1,S 6=L

M+2∑
m=1

|WSm|

 <
1

(max|f ′ |)
(17)

where A is the number of PSNN blocks, WL(M+2) is the weights that link the
recurrent node with hidden layer nodes, and f is a nonlinear transfer function.

The pseudo code used to update the weights of DRPNN based on the
feedback network stability theorem is as follows:

Title Suppressed Due to Excessive Length 7

Algorithm 1 Constructive learning algorithm for the DRPNN with feedback
network stability theorem

Set EpochID = 0.
Assign suitable values to εthreshold, η, r, δr, δη and Epochthreshold.
loop

Calculate Pi using Equation (2)
A:

for all training samples do
Calculate actual network output using Equation (1)
Calculate the dynamic system variable using Equation (14)
Update weights by applying the asynchronous update rule in Equation (16)

. START STABILITY CALCULATION
Network stability calculation for both sides in Equation (17)

. END STABILITY CALCULATION
end for
Calculate current epoch’s error (εc)
if εc < εthreshold or EpochID > Epochthreshold then

Stop learning
end if
EpochID ← EpochID + 1
εp ← εc
if |(εc − εp)/εp| ≥ r then

Go to Step A
else

. START STABILITY CHECKING
if Stability condition in Equation (17) is not satisfied then

Stop learning
end if

. END STABILITY CHECKING
P̂k ← Pk
r ← r ∗ δr
η ← η ∗ δη
k ← k + 1

end if
end loop

where εthreshold: Mean Squared Error (MSE) threshold for the training
phase; εc, εp: the training MSE’s for the current epoch and previous epoch,
respectively; r: threshold for successive addition of new PSNN blocks; η: initial
learning rate; δr, δη: decreasing factors for r and η, respectively; k: degree of
PSNN, as well as EpochID, and Epochthreshold : number of training epochs
and maximum number of epochs to finish training, respectively.

The feedback network stability theorem was used with recurrent networks
for problems such as pattern recognition and time series forecasting as shown
in Table 1. However, this solution is restrictive in some cases where a large
network is necessary [11] or when working with constructive learning because
it stops the learning with small number of hidden units. Furthermore, when we
are working with time series forecasting, we are considering only the problem of
learning trajectories, not learning fixed points [12]. Therefore, another solution
is needed to solve network size restriction and overcome stability issue.

8 Waddah Waheeb et al.

Table 1: Studies used the feedback network stability theorem

Model name Problem Stability theorem role

RBP [13] Time independent pat-
tern recognition

Used to guarantee a solution
for the network

RPSN [28] Differential pulse code
modulation image cod-
ing

Used to derive a condition for
RPSN to converge

RPSN [29] Time series forecasting Used to derive a condition for
RPSN to converge

DRPNN [22] Time series forecasting Used to derive a condition for
DRPNN to converge

Hybrid neural network
[25]

Classification of graph
structured data

Used to guarantee the conver-
gence of the state vector

DRPNN = Dynamic ridge polynomial neural network
RBP = Recurrent backpropagation
RPSN = Recurrent pi-sigma neural network

3 Proposed solution for DRPNN stability issue based on Lyapunov
function

In an attempt to overcome the stability problems for DRPNN, in this work a
sufficient condition based on an approach that uses adaptive learning rate is
developed by introducing a Lyapunov function. Such approach has been used
effictively with different models such as fully connected recurrent networks [31],
recurrent wavelet elman neural network [33], Adaptive Network based Fuzzy
Inference System [44], dynamic neural network [53] and self-recurrent wavelet
neural network [54].

First, let us define a Lyapunov function as follows:

V (t) =
1

2
e2(t) (18)

where e(t) represents the error that is calculated by differencing the desired
value from the predicted value. We use this error function because the DRPNN
model is used to minimize it.

According to Equation (18), the change in the Lyapunov function can be
determined by:

4V (t) = V (t+ 1)− V (t) =
1

2

[
e2(t+ 1)− e2(t)

]
(19)

The error difference can be represented by [33,53]:

e(t+ 1) = e(t) +4e(t) (20)

e(t+ 1) ∼= e(t) +

[
∂e(t)

∂w

]T
4w (21)

Title Suppressed Due to Excessive Length 9

where 4w represents the weight change. Based on Equations (9), (13) and
(15), we have:

e(t+ 1) ∼= e(t)− η ∗ e(t) ∗
[
DY (t)

]T ∗DY (t) (22)

e(t+ 1) ∼= e(t)(1− η ∗
[
DY (t)

]T ∗DY (t)) (23)

From Equations (19) and (23), 4V (t) can be represented as:

4V (t) =
1

2
η ∗ e2(t) ∗

[
DY (t)

]T ∗DY (t)(η ∗
[
DY (t)

]T ∗DY (t)− 2) (24)

4V (t) =
1

2
η ∗ e2(t) ∗

(
‖ DY (t) ‖F

)2
(η ∗

(
‖ DY (t) ‖F

)2 − 2) (25)

where ‖ . ‖F is the Frobenius norm which is calculated by using trace func-
tion [44].

A sufficient condition to ensure stability is4V (t) < 0. Therefore, Equation
(25) leads to:

0 < η <
2

(‖ DY (t) ‖F)
2 (26)

Notice that Equation (26) suggests an upper bound of η for a sufficient con-
dition to ensure stability in DRPNN. If the learning rate is controlled to be
within the bounds in Equation (26), the convergence and the stability are guar-
anteed based on the analysis of a Lyapunov function, as derived in Appendix
A.

The pseudo code that we will use for DRPNN to update its weights based
on Lyapunov function is as follows:

Algorithm 2 Constructive learning algorithm for the DRPNN with Lyapunov
function

Set EpochID = 0.
Assign suitable values to εthreshold, η, r, δr, δη and Epochthreshold.
loop

Calculate Pi using Equation (2)
A:

for all training samples do
Calculate actual network output using Equation (1)
Calculate the dynamic system variable using Equation (14)

. START STABILITY CHECKING
if η outside the bounds in Equation (26) then

Stop learning
end if

. END STABILITY CHECKING
Update weights by applying the asynchronous update rule in Equation (16)

end for
Calculate current epoch’s error (εc)
if εc < εthreshold or EpochID > Epochthreshold then

Stop learning
end if

10 Waddah Waheeb et al.

EpochID ← EpochID + 1
εp ← εc
if |(εc − εp)/εp| ≥ r then

Go to Step A
else

P̂k ← Pk
r ← r ∗ δr
η ← η ∗ δη
k ← k + 1

end if
end loop

4 Experimental design

The aim of this section is to provide a step by step methodology that we
will use to compare the performance between the proposed solution and the
existing solution to forecast time series.

Time series used in the experiments

Six time series have been used in our work, namely Darwin sea level pres-
sure (Darwin SLP), monthly smoothed sunspot numbers (Sunspot), Lorenz
(Lorenz), Santa Fe laser (Laser), daily Euro/Dollar exchange rate (EUR/USD)
and Mackey-Glass time-delay differential equation (Mackey-Glass).

The first time series is the Darwin sea level pressure time series which
consists of monthly values of the Darwin sea level pressure for the years 1882-
1998. The dataset can be downloaded from [1].

A sub-series of the monthly smoothed sunspot time series from November
1834 to June 2001 was downloaded from [4]. This time series is sensitive to
initial conditions because it can be seen as chaotic systems with noise [8].

The third time series is Lorenz time series obtained from [2]. It is a long
synthetic chaotic time series of 16384 samples. The last 4000 samples are
considered in this work.

Santa Fe laser time series obtained from a far-infrared laser. This time
series has periods of oscillations with increasing amplitude, followed by sudden,
difficult to predict, activity collapses [20]. Santa Fe laser time series can be
downloaded from [6]. Six inputs were used for one-step-ahead forecasting as
reported in [46].

The daily Euro/Dollar (EUR/USD) exchange rate contains 781 observa-
tions covering the period from January 3, 2005 to December 31, 2007 [27]. The
data can be collected from [5,7].

The last time series is the well-known Mackey-Glass time series which is
defined as follows:

dx

dt
= βx(t) +

αx(t− τ)

1 + x10(t− τ)
(27)

where t is a variable, x is a function of t, and τ is the time delay. The initial
values of the series are α = 0.2, β = −0.1, x(0) = 1.2, and τ = 17. It is known

Title Suppressed Due to Excessive Length 11

that with this setting the series shows chaotic behaviour. From the generated
time series, 1000 points were extracted as explained in [35]. This series can be
found in the file mgdata.dat in MATLAB [35] or in [3].

The time series settings used in this research are shown in Table 2. The
used intervals for training and out-of-sample sets for all used time series are
shown in Fig. 2.

Table 2: Time series information.

Time series Input-output data pairs Training
samples#

Out-of-
sample
samples#

Darwin SLP [x(t − 11), x(t − 6), x(t − 3), x(t − 2), x(t −
1);x(t+ 1)]

933 467

Sunspot [x(t−4), x(t−3), x(t−2), x(t−1), x(t);x(t+1)] 1000 1000
Lorenz [x(t− 3), x(t− 2), x(t− 1), x(t);x(t+ 1)] 2000 2000
Laser [x(t − 19), x(t − 10), x(t − 9), x(t − 7), x(t −

1), x(t);x(t+ 1)]
1000 9093

EUR/USD [x(t− 10), x(t− 5), x(t);x(t+ 5)] 625 156
Mackey-Glass [x(t− 18), x(t− 12), x(t− 6), x(t);x(t+ 6)] 500 500

Network topology and training

Table 3 shows network topology and training parameters used in this paper.
These settings are based on [9, 22,24] or by trial and error.

Table 3: Network topology and training.

Setting Value
Learning rate (η) range [0.01-1]
Momentum range [0.4-0.8]
Initial weights range [-0.5,0.5]
Number of input units Input points as given in Table 2
Transfer function Sigmoid function
Number of output units One unit
Stopping criteria for DRPNN – Maximum number of epochs =3000 or,

– After accomplishing the 5th order network learning or,
– Network learning becomes unstable.

Threshold for successive addi-
tion of a new PSNN (r)

[0.00001,0.1]

Decreasing factors for n (δη) 0.8
Decreasing factors for thresh-
old (δr)

[0.05,0.2]

12 Waddah Waheeb et al.

(a) Darwin sea level pressure (b) Monthly smoothed sunspot numbers

(c) Lorenz (d) Santa Fe laser

(e) Daily Euro/Dollar exchange rate (f) Mackey-Glass

Fig. 2: Time series used

Since we used sigmoid transfer function and to follow [22, 24], we scaled
the data in the range [0.2, 0.8]. The equation to scale the data is given by:

ẋ = (maxnew −minnew) ∗
(

x−minold
maxold −minold

)
+minnew (28)

Title Suppressed Due to Excessive Length 13

where ẋ refers to the normalized value, x refers to the observation value,
minold and maxold are the minimum and maximum values of all observations,
respectively. minnew and maxnew refer to the minimum and maximum of the
new scaled series.

Performance metrics

In this research work, the performance of the networks was evaluated using
Root Mean Squared Error (RMSE), Normalized Mean Squared Error (NMSE),
training time and network size. Furthermore, we carried out t-test with a
significance level of 0.05 to highlight the significant performance. The equation
for RMSE and NMSE metrics are given by:

Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)
2

(29)

Normalized Mean Squared Error (NMSE):

NMSE =
1

Nσ2

N∑
i=1

(yi − ŷi)
2

(30)

σ2 =
1

N − 1

N∑
i=1

(yi − ȳ)2 (31)

ȳ =
1

N − 1

N∑
i=1

yi (32)

where N , y and ŷ represent the number of out-of-sample data, actual output
and network output, respectively.

Results and discussion

In this section, the simulation results for the forecasting of the six time series
are presented and discussed. We carried out all simulations on a machine with
Intel Core i7-3770XPU@3.40GHz, and 4GB of RAM.

14 Waddah Waheeb et al.

Table 4: Root Mean Squared Error (RMSE) improvement of DRPNNLyapunov

to DRPNNfeedback.

Time series DRPNNLyapunov DRPNNfeedback Improvement to DRPNNfeedback %
Darwin
SLP

1.1521 1.2405∗ 7.13%

Sunspot 2.7781 2.7781 ≈ 0%
Lorenz 0.0876 0.1161∗ 24.55%
EUR/USD 0.007 0.0079∗ 11.39%
Mackey-
Glass

0.0131 0.0252∗ 48.02%

Laser 9.3152 14.9324∗ 37.62%
Average of improvement % 21.45%

These are the de-normalized results.
∗, means the DRPNNLyapunov has significant performance than DRPNNfeedback using
t-test.

Table 5: Normalized Mean Squared Error (NMSE) improvement of
DRPNNLyapunov to DRPNNfeedback.

Time series DRPNNLyapunov DRPNNfeedback Improvement to DRPNNfeedback %
Darwin
SLP

0.1932 0.2239∗ 13.71%

Sunspot 0.0016 0.0016 ≈ 0%
Lorenz 0.00015 0.00028∗ 46.43%
EUR/USD 0.0866 0.1092∗ 20.70%
Mackey-
Glass

0.0034 0.0173∗ 80.35%

Laser 0.0440 0.1007∗ 56.31%
Average of improvement % 36.25%

These are the de-normalized results.
∗, means the DRPNNLyapunov has significant performance than DRPNNfeedback using
t-test.

Best average simulation results

For fair and more robust comparative evaluation, an average of 30 independent
runs are performed for all the neural networks. This was done to avoid any
influence due to initial internal state such as random weights initialization. The
average performance for the two neural networks using RMSE and NMSE
metrics is shown in Table 4 and Table 5, respectively. DRPNNfeedback and
DRPNNLyapunov refer to the existing DRPNN with feedback network stability
theorem and the proposed DRPNN with Lyapunov function, respectively. Note
that in these two tables we de-normalized the forecasted value and compared
it with the original desired value.

As seen from Table 4 and Table 5, the forecasting performance of the
DRPNNLyapunov network is significantly better than the DRPNNfeedback net-
work in all time series except Sunspot time series. The reason for the absence
of any significance in Sunspot is because both networks found best average

Title Suppressed Due to Excessive Length 15

Table 6: Network size and average training time for DRPNNLyapunov and
DRPNNfeedback.

Network size Avg. training time in seconds
Time series DRPNNLyapunov DRPNNfeedback DRPNNLyapunov DRPNNfeedback
Darwin SLP 70 42 199 421
Sunspot 7 7 299 405
Lorenz 36 36 538 463
Laser 80 24 308 412
EUR/USD 50 5 137 234
Mackey-Glass 90 36 65 89
Improvement to
DRPNNfeedback

-122% 23.62%

Network size equals the number of weights and biases.

simulations with same parameters setting and network size. Although the net-
work size for both networks are equal with Lorenz time series as shown in
Table 6, there is a significance in the performance with DRPNNLyapunov. This
is because the parameter settings for the best average for both networks are
different.

Results in Table 4 and Table 5 show an average 21.45% improvement
in RMSE and an average 36.25% improvement in NMSE with respect to
DRPNNfeedback network. That means that using the proposed solution helps
DRPNN to grow and find more suitable parameter settings during training,
thus helping to enhance the forecasting performance for the network. The
summary of Table 6 shows that the proposed solution needs more size than
the existing solution. However, network size does not increase training time.
This is because the proposed solution takes advantage of the calculated dy-
namic system variable to check the stability, unlike the existing solution that
needs more calculation steps. The training time with Lorenz time series for
DRPNNLyapunov is bigger than DRPNNfeedback because it needs more epochs
to learn from this long time series.

Fig. 3 shows the subtraction of the RMSE of DRPNNfeedback from the
RMSE of DRPNNLyapunov with all time series in the 30 simulations. And for
NMSE, the subtraction results were plotted in Fig. 4. In these stem plots,
a stem in the positive y axis means DRPNNLyapunov has smaller error than
DRPNNfeedback in that simulation experiment, but if the stem is in the nega-
tive y axis, DRPNNfeedback has smaller error than DRPNNLyapunov. As seen
from these stem plots, the majority of the stems are in the positive y axis. We
can also notice the absence of any stem in some simulations especially with
Sunspot time series. This is because there is no difference in the performance.

16 Waddah Waheeb et al.

(a) Darwin sea level pressure (b) Monthly smoothed sunspot numbers

(c) Lorenz (d) Santa Fe laser

(e) Daily Euro/Dollar exchange rate (f) Mackey-Glass

Fig. 3: RMSE difference between DRPNNfeedback and DRPNNLyapunov with
time series used

Title Suppressed Due to Excessive Length 17

(a) Darwin sea level pressure (b) Monthly smoothed sunspot numbers

(c) Lorenz (d) Santa Fe laser

(e) Daily Euro/Dollar exchange rate (f) Mackey-Glass

Fig. 4: NMSE difference between DRPNNfeedback and DRPNNLyapunov with
time series used

Learning analysis for DRPNNLyapunov

Fig. 5 shows the evolution of RMSE during the learning of DRPNNLyapunov.
Each spike shown in the figures comes from the introduction of a new Pi-Sigma

18 Waddah Waheeb et al.

block to DRPNNLyapunov. It can be seen from these figures that the learning
curves for DRPNNLyapunov are remarkably stable and RMSE continuously
reduced every time Pi-Sigma block is added to the network. Note that the
RMSE values in these subfigures are normalized values.

(a) Darwin sea level pressure (b) Monthly smoothed sunspot numbers

(c) Lorenz (d) Santa Fe laser

(e) Daily Euro/Dollar exchange rate (f) Mackey-Glass

Fig. 5: Learning curves based on the best DRPNNLyapunov simulation with
time series used

Title Suppressed Due to Excessive Length 19

Comparison of the performance of various existing models

In this section, we compare the performance of DRPNNLyapunov with other
models in the literature. For a fair comparison with recent studies, this study
compared the de-normalized results for the DRPNNLyapunov with de-normalized
published results in the literature.

Tables 7 and 8 show the comparison results for generalization capabilities
using different methods for the Sunspot and Mackey-Glass time series, re-
spectively. As was observed, DRPNNLyapunov alone outperforms many hybrid
methods. Therefore, hybridizing DRPNNLyapunov with other models could
produce higher forecasting accuracy. The best RMSE for Darwin SLP, Lorenz,
Laser and EUR/USD time series using DRPNNLyapunov is 1.1144, 0.04667,
6.54212 and 0.0068, respectively. The best forecasting for DRPNNLyapunov

using out-of-sample data are shown in Figs. 6- 11. The forecast values were
plotted with respect to observed values, as shown in Fig. 12, which show a
strong relationship between forecasted and observed values with most time
series.

Table 7: Comparison of the performance of various existing models on Sunspot
time series.

Model RMSE NMSE
FNN [19] 6.4905 0.0174
ART-FNN [19] 6.2204 0.0160
Modified-ART-FNN [19] 5.7173 0.0135
PSNN [47] - 0.0044
FLNN [47] - 0.0015
DRPNNLyapunov (proposed) 1.9542 0.0008
Brain emotional learning-based RFS [38] - 0.000664

ART, adaBoost.regression and threshold; FLNN, functional link neural network; FNN,
fuzzy neural networks; DRPNN, dynamic ridge polynomial neural network; PSNN,
pi-sigma neural network; RFS, recurrent fuzzy system.

20 Waddah Waheeb et al.

Table 8: Comparison of the performance of various existing models on Mackey-
Glass time series.

Model RMSE
Fuzzy modeling method with SVD [50] 0.0894
Gustafson-Kessel fuzzy clustering method + KFA with SVD [49] 0.0748
Orthogonal function neural network + recursive KFA based on SVD [48] 0.05099
Adaptive fuzzy inference system with local research [55] 0.045465
FLNN [47] 0.03656
Beta basis function neural networks + DE algorithm [17] 0.030
Dynamic evolving computation system [15] 0.0289
Backpropagation Network Optimized by Hybrid K-means-Greedy [45] 0.015
Modified DE and the radial basis function [18] 0.013
PSNN [47] 0.0118
DRPNNLyapunov (proposed) 0.0105
Takagi-Sugeno fuzzy system-singleton + simulated annealing [10] 0.00898
Functional-link-based neural fuzzy network-cultural cooperative PSO [32] 0.008424

DE, differential evolution; FLNN, functional link neural network; DRPNN, dynamic ridge
polynomial neural network; KFA, kalman filtering algorithm; PSO, particle swarm
optimization; PSNN, pi-sigma neural network; SVD, singular value decomposition.

Fig. 6: Out-of-sample forecasting for Darwin sea level pressure time series
based on the best DRPNNLyapunov simulation

Title Suppressed Due to Excessive Length 21

Fig. 7: Out-of-sample forecasting for Sunspot time series based on the best
DRPNNLyapunov simulation

Fig. 8: Out-of-sample forecasting for Lorenz time series based on the best
DRPNNLyapunov simulation

22 Waddah Waheeb et al.

Fig. 9: Out-of-sample forecasting for Laser time series based on the best
DRPNNLyapunov simulation

Fig. 10: Out-of-sample forecasting for EUR/USD time series based on the best
DRPNNLyapunov simulation

Title Suppressed Due to Excessive Length 23

Fig. 11: Out-of-sample forecasting for Mackey-Glass time series based on the
best DRPNNLyapunov simulation

Limitations of DRPNNLyapunov

Apart from improved forecasting accuracy and training speed, there is one
main limitation of DRPNNLyapunov compared to DRPNNfeedback, which is
network size. This is because the proposed solution solves network size restric-
tion found in DRPNNfeedback, which stops the network from growing. This
implies a trade-off between forecasting accuracy and the amount of memory.
Overall, we would favor DRPNNLyapunov over DRPNNfeedback for its more
accurate and faster training, even while sacrificing network size, especially for
some applications such as financial or disaster forecasting that require more
accurate forecasts.

Conclusion

In this study, a sufficient condition based on an approach that uses adaptive
learning rate was developed by introducing a Lyapunov function. This solution
was proposed to tackle the problems of complexity and difficulty of training for
DRPNN. This study demonstrated the effectiveness of the proposed solution
by testing it on six time series. This study compared the proposed solution
with the existing solution which is derived based on the stability theorem
for a feedback network. Simulation results showed that the DRPNN with the

24 Waddah Waheeb et al.

(a) Darwin sea level pressure (b) Monthly smoothed sunspot numbers

(c) Lorenz (d) Santa Fe laser

(e) Daily Euro/Dollar exchange rate (f) Mackey-Glass

Fig. 12: Correlation function between forecast and observed values for time
series used based on the best DRPNNLyapunov simulation

Title Suppressed Due to Excessive Length 25

proposed solution improves the forecasting accuracy as well as the training
speed as compared with the existing solution.

Appendix A

Theorem 1 Let η be the learning rate parameter of the connecting weights of the DRPNNLyapunov.
Then the convergence and stability are guaranteed if η is chosen as

0 < η <
2

(‖ DY (t) ‖F)2
(A.1)

Proof Let us define a Lyapunov function as follows:

V (t) =
1

2
e2(t) (A.2)

According to Equation (A.1), the change in the Lyapunov function can be determined
by:

4V (t) = V (t+ 1)− V (t) =
1

2

[
e2(t+ 1)− e2(t)

]
(A.3)

The error difference can be represented by [33,53]:

e(t+ 1) = e(t) +4e(t) (A.4)

e(t+ 1) ∼= e(t) +

[
∂e(t)

∂w

]T
4w (A.5)

where 4w represents the weight change. Since,

∂e(t)

∂w
= −

∂y(t)

∂w
(A.6)

DY (t) =
∂y(t)

∂w
(A.7)

4w = η ∗ e(t) ∗DY (t) (A.8)

Thus,

e(t+ 1) ∼= e(t)− η ∗ e(t) ∗
[
DY (t)

]T
∗DY (t) (A.9)

e(t+ 1) ∼= e(t)(1− η ∗
[
DY (t)

]T
∗DY (t)) (A.10)

e(t+ 1) ≤ ‖e(t)‖‖(1− η ∗
[
DY (t)

]T
∗DY (t))‖ (A.11)

e(t+ 1) ≤ ‖e(t)‖‖(1− η ∗
(
‖ DY (t) ‖F

)2
‖ (A.12)

if η is between the bounds in Equation (A.1), the term ‖(1−η ∗
(
‖ DY (t) ‖F

)2‖ in Equation
(A.12) is less than 1. Therefore, the sufficient condition to ensure stability, which is4V (t) <
0, is guaranteed. The error will converge to zero as t→∞, which lead to a stable learning.
This completes the proof of the theorem.

26 Waddah Waheeb et al.

References

1. Darwin sea level pressure time series. URL http://research.ics.aalto.fi/eiml/

datasets/darwin.dat. Last Accessed: 2017-01-07
2. Lorenz time series. URL http://www.physics.emory.edu/faculty/weeks//research/

tseries1.html. Last Accessed: 2017-01-07
3. Mackey-glass time series. URL https://raw.githubusercontent.com/dodikk/

neuro-mut/master/src/NetworkConverter/Samples/mgdata.dat. Last Accessed: 2017-
01-07

4. Monthly smoothed sunspot time series. URL http://www.sidc.be/silso/datafiles.
Last Accessed: 2017-01-07

5. Pacific exchange rate service. URL http://fx.sauder.ubc.ca/data.html. Last Ac-
cessed: 2017-01-07

6. Santa Fe laser time series. URL http://www.comp-engine.org/timeseries/

time-series_data_source/source-151/. Last Accessed: 2017-01-07
7. XE currency converter. URL http://www.xe.com/currencytables/. Last Accessed:

2017-01-07
8. Abarbanel, H.: Analysis of observed chaotic data. Springer Science & Business Media

(1996)
9. Al-Jumeily, D., Ghazali, R., Hussain, A.: Predicting physical time series using dynamic

ridge polynomial neural networks. PLoS ONE 9(8), 1–15 (2014). DOI 10.1371/journal.
pone.0105766

10. Almaraashi, M., John, R.: Tuning of type-2 fuzzy systems by simulated annealing to
predict time series. In: Proceedings of the World Congress on Engineering, vol. 2, pp.
976–980 (2011)

11. Atiya, A.F.: Learning on a general network. In: Neural information processing systems,
pp. 22–30. American Institute of Physics (1988)

12. Atiya, A.F., Parlos, A.G.: New results on recurrent network training: unifying the al-
gorithms and accelerating convergence. IEEE Transactions on Neural Networks 11(3),
697–709 (2000). DOI 10.1109/72.846741

13. Behrens, H., Gawronska, D., Hollatz, J., Schurmann, B.: Recurrent and feedforward
backpropagation for time independent pattern recognition. In: Neural Networks, 1991.,
IJCNN-91-Seattle International Joint Conference on, vol. ii, pp. 591–596 vol.2 (1991).
DOI 10.1109/IJCNN.1991.155401

14. Chatterjee, S., Nigam, S., Singh, J.B., Upadhyaya, L.N.: Software fault prediction using
nonlinear autoregressive with exogenous inputs (narx) network. Applied Intelligence
37(1), 121–129 (2012). DOI 10.1007/s10489-011-0316-x

15. Chen, Y., Lin, C.T.: Dynamic parameter optimization of evolutionary computation for
on-line prediction of time series with changing dynamics. Applied Soft Computing 7(4),
1170 – 1176 (2007). DOI http://dx.doi.org/10.1016/j.asoc.2006.01.004

16. Dash, S.K., Bisoi, R., Dash, P.K.: A hybrid functional link dynamic neural network and
evolutionary unscented kalman filter for short-term electricity price forecasting. Neural
Computing and Applications 27(7), 2123–2140 (2016). DOI 10.1007/s00521-015-2011-z

17. Dhahri, H., Alimi, A.: Automatic Selection for the Beta Basis Function Neural Networks,
pp. 461–474. Springer Berlin Heidelberg, Berlin, Heidelberg (2008). DOI 10.1007/
978-3-540-78987-1 42

18. Dhahri, H., Alimi, A.M.: The modified differential evolution and the rbf (mde-rbf) neural
network for time series prediction. In: The 2006 IEEE International Joint Conference on
Neural Network Proceedings, pp. 2938–2943 (2006). DOI 10.1109/IJCNN.2006.247227

19. Dong, Y., Zhang, J.: An improved boosting scheme based ensemble of fuzzy neural
networks for nonlinear time series prediction. In: 2014 International Joint Conference
on Neural Networks (IJCNN), pp. 157–164 (2014). DOI 10.1109/IJCNN.2014.6889431

20. Fouad, S., Tino, P.: Ordinal-based metric learning for learning using privileged infor-
mation. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp.
1–8 (2013). DOI 10.1109/IJCNN.2013.6706799

21. Ghazali, R., Hussain, A.J., Al-Jumeily, D., Lisboa, P.: Time series prediction using
dynamic ridge polynomial neural networks. In: 2009 Second International Conference on
Developments in eSystems Engineering, pp. 354–363 (2009). DOI 10.1109/DeSE.2009.35

http://research.ics.aalto.fi/eiml/datasets/darwin.dat
http://research.ics.aalto.fi/eiml/datasets/darwin.dat
http://www.physics.emory.edu/faculty/weeks//research/tseries1.html
http://www.physics.emory.edu/faculty/weeks//research/tseries1.html
https://raw.githubusercontent.com/dodikk/neuro-mut/master/src/NetworkConverter/Samples/mgdata.dat
https://raw.githubusercontent.com/dodikk/neuro-mut/master/src/NetworkConverter/Samples/mgdata.dat
http://www.sidc.be/silso/datafiles
http://fx.sauder.ubc.ca/data.html
http://www.comp-engine.org/timeseries/time-series_data_source/source-151/
http://www.comp-engine.org/timeseries/time-series_data_source/source-151/
http://www.xe.com/currencytables/

Title Suppressed Due to Excessive Length 27

22. Ghazali, R., Hussain, A.J., Liatsis, P.: Dynamic ridge polynomial neural network: Fore-
casting the univariate non-stationary and stationary trading signals. Expert Systems
with Applications 38(4), 3765 – 3776 (2011). DOI http://dx.doi.org/10.1016/j.eswa.
2010.09.037

23. Ghazali, R., Hussain, A.J., Liatsis, P., Tawfik, H.: The application of ridge polynomial
neural network to multi-step ahead financial time series prediction. Neural Computing
and Applications 17(3), 311–323 (2008). DOI 10.1007/s00521-007-0132-8

24. Ghazali, R., Hussain, A.J., Nawi, N.M., Mohamad, B.: Non-stationary and stationary
prediction of financial time series using dynamic ridge polynomial neural network. Neu-
rocomputing 72(1012), 2359 – 2367 (2009). DOI http://dx.doi.org/10.1016/j.neucom.
2008.12.005

25. Gnana Jothi, R.B., Meena Rani, S.M.: Hybrid neural network for classification of graph
structured data. International Journal of Machine Learning and Cybernetics 6(3), 465–
474 (2015). DOI 10.1007/s13042-014-0230-8

26. Haykin, S.: Neural networks and learning machines, vol. 3. Pearson Education Upper
Saddle River (2009)

27. Huang, S.C., Chuang, P.J., Wu, C.F., Lai, H.J.: Chaos-based support vector regressions
for exchange rate forecasting. Expert Systems with Applications 37(12), 8590 – 8598
(2010). DOI http://dx.doi.org/10.1016/j.eswa.2010.06.001

28. Hussain, A., Liatsis, P.: Recurrent pi-sigma networks for DPCM image coding. Neuro-
computing 55(12), 363 – 382 (2003). DOI 10.1016/S0925-2312(02)00629-X

29. Hussain, A.J., Liatsis, P., Tawfik, H., Nagar, A.K., Al-Jumeily, D.: Physical time series
prediction using recurrent pi-sigma neural networks. International Journal of Artificial
Intelligence and Soft Computing 1(1), 130–145 (2008)

30. Kitagawa, G.: Introduction to time series modeling. CRC press (2010)
31. Leclercq, E., Druaux, F., Lefebvre, D., Zerkaoui, S.: Autonomous learning algorithm

for fully connected recurrent networks. Neurocomputing 63, 25 – 44 (2005). DOI
http://dx.doi.org/10.1016/j.neucom.2004.04.007. New Aspects in Neurocomputing:
11th European Symposium on Artificial Neural Networks

32. Lin, C.J., Chen, C.H., Lin, C.T.: A hybrid of cooperative particle swarm optimization
and cultural algorithm for neural fuzzy networks and its prediction applications. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
39(1), 55–68 (2009). DOI 10.1109/TSMCC.2008.2002333

33. Lin, C.M., Boldbaatar, E.A.: Autolanding control using recurrent wavelet elman neural
network. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45(9), 1281–
1291 (2015). DOI 10.1109/TSMC.2015.2389752

34. Madhiarasan, M., Deepa, S.N.: A novel criterion to select hidden neuron numbers in
improved back propagation networks for wind speed forecasting. Applied Intelligence
44(4), 878–893 (2016). DOI 10.1007/s10489-015-0737-z

35. MATLAB: Mackey-glass time-delay differential equation (2016).
URL http://www.mathworks.com/examples/fuzzy-logic/mw/

fuzzy-ex38166291-predict-chaotic-time-series
36. Najibi, E., Rostami, H.: Scesn, spesn, swesn: Three recurrent neural echo state networks

with clustered reservoirs for prediction of nonlinear and chaotic time series. Applied
Intelligence 43(2), 460–472 (2015). DOI 10.1007/s10489-015-0652-3

37. Panda, C., Narasimhan, V.: Forecasting exchange rate better with artificial neural net-
work. Journal of Policy Modeling 29(2), 227 – 236 (2007). DOI http://dx.doi.org/10.
1016/j.jpolmod.2006.01.005

38. Parsapoor, M., Bilstrup, U.: Chaotic time series prediction using brain emotional
learning–based recurrent fuzzy system (belrfs). International Journal of Reasoning-
based Intelligent Systems 5(2), 113–126 (2013)

39. Ren, Y., Suganthan, P., Srikanth, N., Amaratunga, G.: Random vector functional
link network for short-term electricity load demand forecasting. Information Sciences
367368, 1078 – 1093 (2016). DOI http://dx.doi.org/10.1016/j.ins.2015.11.039

40. Samarasinghe, S.: Neural networks for applied sciences and engineering: from funda-
mentals to complex pattern recognition. CRC Press (2006)

41. Sermpinis, G., Laws, J., Dunis, C.L.: Modelling commodity value at risk with psi sigma
neural networks using openhighlowclose data. The European Journal of Finance 21(4),
316–336 (2015). DOI 10.1080/1351847X.2012.744763

http://www.mathworks.com/examples/fuzzy-logic/mw/fuzzy-ex38166291-predict-chaotic-time-series
http://www.mathworks.com/examples/fuzzy-logic/mw/fuzzy-ex38166291-predict-chaotic-time-series

28 Waddah Waheeb et al.

42. Shin, Y., Ghosh, J.: The pi-sigma network: an efficient higher-order neural network for
pattern classification and function approximation. In: Neural Networks, 1991., IJCNN-
91-Seattle International Joint Conference on, vol. i, pp. 13–18 vol.1 (1991). DOI 10.
1109/IJCNN.1991.155142

43. Shin, Y., Ghosh, J.: Ridge polynomial networks. IEEE Transactions on Neural Networks
6(3), 610–622 (1995). DOI 10.1109/72.377967

44. Shoorehdeli, M.A., Teshnehlab, M., Sedigh, A.K., Khanesar, M.A.: Identification us-
ing ANFIS with intelligent hybrid stable learning algorithm approaches and stability
analysis of training methods. Applied Soft Computing 9(2), 833 – 850 (2009). DOI
http://dx.doi.org/10.1016/j.asoc.2008.11.001

45. Tan, J., Bong, D., Rigit, A.: Time series prediction using backpropagation network
optimized by hybrid k-means-greedy algorithm. Engineering Letters 20(3), 203–210
(2012)

46. Tikka, J., Hollmn, J.: Sequential input selection algorithm for long-term prediction of
time series. Neurocomputing 71(1315), 2604 – 2615 (2008). DOI http://dx.doi.org/10.
1016/j.neucom.2007.11.037

47. Waheeb, W., Ghazali, R.: Chaotic time series forecasting using higher order neural
networks. International Journal on Advanced Science, Engineering and Information
Technology 6(5) (2016)

48. Wang, H.: Modeling of nonlinear systems based on orthogonal neural network with
matrix value decomposition. In: 2012 Third International Conference on Intelligent
Control and Information Processing, pp. 298–301 (2012). DOI 10.1109/ICICIP.2012.
6391564

49. Wang, H., Lian, J.: Fuzzy prediction of chaotic time series based on fuzzy clustering.
Asian Journal of Control 13(4), 576–581 (2011)

50. Wen, Y., Wang, H.: Fuzzy prediction of time series based on kalman filter with svd de-
composition. In: 2009 Sixth International Conference on Fuzzy Systems and Knowledge
Discovery, vol. 4, pp. 458–462 (2009). DOI 10.1109/FSKD.2009.133

51. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent
neural networks. Neural Comput. 1(2), 270–280 (1989). DOI 10.1162/neco.1989.1.2.270

52. Wong, W., Xia, M., Chu, W.: Adaptive neural network model for time-series forecasting.
European Journal of Operational Research 207(2), 807 – 816 (2010). DOI http://dx.
doi.org/10.1016/j.ejor.2010.05.022

53. Yabuta, T., Yamada, T.: Learning control using neural networks. In: Robotics and
Automation, 1991. Proceedings., 1991 IEEE International Conference on, pp. 740–745
vol.1 (1991). DOI 10.1109/ROBOT.1991.131673

54. Yoo, S.J., Choi, Y.H., Park, J.B.: Generalized predictive control based on self-recurrent
wavelet neural network for stable path tracking of mobile robots: adaptive learning
rates approach. IEEE Transactions on Circuits and Systems I: Regular Papers 53(6),
1381–1394 (2006). DOI 10.1109/TCSI.2006.875166

55. Zhang, H., Liu, X.N.: Local search for learning algorithm in adaptive fuzzy inference sys-
tem. In: 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery,
pp. 93–96 (2012). DOI 10.1109/FSKD.2012.6233957

	Introduction
	Related works
	Proposed solution for DRPNN stability issue based on Lyapunov function
	Experimental design

