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1 Introduction 9 

Urban development brings an increase in impervious surfaces that reduces rainfall infiltration to 10 

underlying soils and surface storage capacity (Booth, 1991) with a concomitant rise in the degree of 11 

artificial drainage that acts to convey runoff through more efficient pathways (Boyd et al., 1994). The 12 

combined effects include an increase in storm runoff (Burn and Boorman, 1993) and volume (Kjeldsen et 13 

al., 2013), reduction in baseflows (Simmons and Reynolds, 2013) and shortening of catchment response 14 

times (Smith et al., 2005; Anderson, 1970) resulting in a more flashy response (Baker et al., 2004). 15 

Urbanisation thus presents a particular challenge to planners as the development of previously rural or 16 

low urban density catchments will potentially alter the rainfall-runoff response and require careful 17 

planning to manage the changes in the timing and quantity of water moving through the catchment. 18 

Coupled with projected increased frequency of extreme rainfall events as a result of climate change, this 19 

poses a significant environmental risk in the form of pluvial and fluvial flooding (Bell et al., 2012; 20 

Eigenbrod et al., 2011; Poelmans et al., 2011).  21 

Many studies on the hydrological impacts of urbanisation have been based on field observations (e.g. 22 

Hood et al., 2007; Kauffman et al., 2009; Sheeder et al., 2003) and increasingly utilise models calibrated 23 

to observations (Bach et al., 2014). In both cases, suitable hydrological metrics are required to quantify 24 

hydrological response and subsequently attribute response to differences in land use. Arbitrary flow 25 

statistics are not always suitable for quantifying the hydrological impacts of land-use change (LUC) 26 

(Mcintyre et al., 2013) and for urban storm events, Braud et al. (2013) show the storm hydrograph 27 

provides the most suitable means for comparing hydrological response. In addition, relevant 28 

information describing how the catchment differs from a control or baseline condition is required. LUC 29 

in urban areas is highly complex and as such the diversity of the urban fabric is generally represented by 30 

either: urban land-use type (e.g. urban/suburban: Morton et al., 2011), density of urban development 31 
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(e.g. dwelling units per acre: Jacob and Lopez, 2009), and most generally imperviousness (Arnold and 32 

Gibbons, 1996; Dams et al., 2013).  33 

While impervious surfaces are important for driving urban runoff, permeable surfaces still have an 34 

important role in urban catchments (Berthier et al., 2004) and can make up a considerable portion of 35 

the catchment area. In UK cities, gardens alone account for between 22% and 27% of city area (Loram et 36 

al., 2007). The partitioning of precipitation between runoff and infiltration on pervious soils is affected 37 

by soil type (Boorman et al., 1995) and the soil-moisture state of the soil (Brady, 1984), but in urban 38 

areas factors such as compaction have also been shown to significantly alter the hydrological response 39 

(Yang and Zhang, 2011). Antecedent soil moisture has been shown to have variable impacts upon runoff 40 

across different urban surfaces and  in different soil-moisture states (Hollis and Ovenden, 1988; Hood et 41 

al., 2007; Smith et al., 2013; Ragab et al., 2003) leading to considerable uncertainty when modelling the 42 

hydrological response of mixed urban-rural catchments (Kjeldsen et al., 2013). Given the current interest 43 

in the role of soils in urban catchments as part of green infrastructure to control storm runoff and 44 

reduce flooding (Kelly, 2016; POST, 2016) this uncertainty highlights a pressing need to better 45 

understand the role of soil moisture in urban soils in altering the impacts of urbanisation on runoff from 46 

storm events.   47 

The relationship between urbanisation and storm runoff on the basis of change in impervious area has 48 

become generalized in lumped hydrological model structures (e.g. ReFH:  Kjeldsen, 2007) to characterise 49 

the urban environment (Salvadore et al. 2015). However, despite early indications that impervious area 50 

alone is insufficient to explain catchment response (Hall, 1977), there has been limited empirical 51 

research (e.g. Braud et al. 2013; Sillanpää and Koivusalo, 2015) on the link between urbanisation and 52 

storm runoff across a suitable range of hydrological metrics. While there have been a number of studies 53 

investigating ecological diversity along an rural-urban gradient (e.g. McDonnell et al., 1997; Clergeau et 54 

al., 1998; Kroll et al., 2012) few have investigated hydrological response along an rural-urban gradient 55 
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(e.g. Schoonover and Lockaby, 2006). The objectives of this study, therefore, are to assess: (i) whether a 56 

lumped-catchment spatial measure of urbanisation can explain the observed variability in catchment 57 

response to storm events along a rural-urban gradient; and (ii) the extent to which antecedent soil 58 

moisture conditions modify that relationship. These objectives provide the structural sub-headings used 59 

the following Methods, Results and Discussions sections.  60 

2 Study Sites 61 

The Thames basin in southern England (Fig. 1) is the largest drainage basin in the UK (Crooks and Kay, 62 

2015) and has a temperate mid-latitude climate. The basin contains the rapidly urbanising towns of 63 

Swindon (Population 210,000) and Bracknell (Population 77,000). Both are located in low-lying river 64 

catchments gauged by the Environment Agency (EA) at Water Eaton (station number 39087) and 65 

Binfield (station number 39052) respectively. High spatial and temporal resolution monitoring of flow 66 

and precipitation was undertaken over a four year period from May 2011 to October 2015 across eight 67 

independent sub-catchments within these two river catchments (Fig. 1; Table 1).  68 

 69 

FIGURE 1: EA catchments at Swindon and Bracknell, showing study catchments, monitoring locations 70 

and land cover. Inset shows EA catchment locations within Thames basin and the United Kingdom.  71 

 72 

3 Methods 73 

3.1 Hydro-meteorological urban monitoring networks 74 

Precipitation was monitored at 8 locations (shown as Raingauge in Fig. 1) at a 15 min resolution with 75 

tipping bucket raingauges (Casella TBRG), with network design following BSI (2012a). Data were quality 76 

controlled for errors relating to low/high intensity, missing data, and synchronization between sensors, 77 
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following national (BSI, 2012b) and international guidelines (WMO, 1994; WMO, 2008). Additional 15 78 

min rainfall data from tipping bucket raingauges located within the catchment at Swindon (R249744) 79 

and close to the catchment boundary at Bracknell (R274918), were provided by the EA (shown as EA 80 

raingauge in Fig. 1). These are quality controlled and in-filled using observations from a national 81 

network, and provided a continuous and robust source of data for in-filling and calibration of monitoring 82 

raingauge observations when data were missing or erroneous. Estimates of areal rainfall for both 83 

catchments were obtained using arithmetic and Thiessen polygon weighting methods (BSI, 2012b). The 84 

Thiessen polygon approach, widely used in urban hydrological studies (e.g. Blume et al., 2007; Yue and 85 

Hashino, 2000), was found suitable for Swindon due to the distribution of monitoring raingauges and 86 

central location of the EA gauge relative to the study-sub-catchments. For Bracknell the arithmetic mean 87 

was judged to be more appropriate due a number of factors including: i) the relative size of the study 88 

area and overall distribution of observation gauges across the catchment (BSI, 2012b), ii) recurring 89 

issues of under-catch or tampering for observation gauges; and iii) the overall effect of a low weight 90 

applied to the EA gauge if the Thiessen polygon approach was used (being located outside of the study 91 

sub-catchments – see Fig. 1) which significantly reduced observation accuracy relative to this gauge.  92 

Discharge was monitored at 5 min resolution using ultrasonic Doppler shift instruments (Unidata 93 

Starflow 6526H), with a velocity and depth accuracy of ±2% and ±0.25% respectively, mounted to the 94 

bed of suitable hydraulic structures according to ISO (2010).  Depth and velocity data were quality 95 

controlled, and processed using measured cross sections to derive flow using the methods outlined by 96 

Blake and Packman (2008). Ratings developed from spot-gaugings of depth and flow (SonTek 97 

FlowTracker) were used to calibrate observations of depth and velocity across the channel cross section, 98 

and increase accuracy. Additional concurrent flow data at a 15 minute resolution for each catchment 99 

outlet EA gauging station (39087, 39052: Fig. 1) were provided by the EA.  100 
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3.2 Objective 1: Hydrological response along a rural-urban gradient 101 

3.2.1 Catchment characterization 102 

Catchment descriptors (Table 2) for the EA catchments and the selected study catchments were 103 

obtained from the UK Flood Estimation Handbook (FEH) web service ( https://fehweb.ceh.ac.uk/). These 104 

indicate that the catchments are sufficiently similar in altitude (ALTBAR), climate (SAAR; RMED-1H), soil 105 

(SPRHOST, PROPWET), and baseflow indices (BFIHOST) to allow comparison among the study sub-106 

catchments. Catchment area was determined using a combination of a 10 m resolution digital terrain 107 

model (DTM) and storm drainage mapping to accurately identify catchment boundaries as these can be 108 

altered by urban development and artificial drainage (Braud et al., 2013). The study catchments differ 109 

geomorphically in area (AREA), slope (DPSBAR) and mean drainage path length (DPLBAR), while the 110 

predominant difference in land use was in terms of urban extent (URBEXT). Although the Bracknell study 111 

catchments have slightly higher levels of pond/reservoir attenuation (FARL), they are all >0.9 which is 112 

not considered to have a significant effect on high flows (Bayliss, 1999). 113 

URBEXT provides a readily available index of UK catchment urban land cover for use in hydrological 114 

applications and is a key catchment descriptor used in flood estimation procedures in the UK (IH, 1999). 115 

URBEXT is a weighted fraction of Urban and Suburban land cover (Bayliss, 1999: Eq.1) and is derived 116 

here for 2015 from contemporary mapping of land cover mapping products (Morton et al., 2011). 117 

“Suburban” is defined as mixed development and green space, while “Urban” areas contain near 118 

continuous development with few green spaces (Fuller et al., 2002). URBEXT is used here to identify the 119 

relative extent of urban development and impervious surfaces within catchments and has been shown 120 

by Miller & Grebby (2013) to provide a robust measure of imperviousness for catchment scales. For the 121 

study catchments the URBEXT ranges from 0.06 for a predominantly rural study catchment to 0.60 for a 122 

well-developed town centre study catchment containing mixed urban land cover (Table 2). 123 
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 𝑈𝑅𝐵𝐸𝑋𝑇 = 𝑈𝑟𝑏𝑎𝑛 + 0.5 𝑆𝑢𝑏𝑢𝑟𝑏𝑎𝑛 1)  

 124 

3.2.2 Event identification 125 

A wide range of methods exist to select storm events based on either identifying a rainfall event (Hollis 126 

& Ovenden, 1988), isolating peak runoff values in a series (Smith et al. 2013), or a combination of the 127 

two (Burns et al. 2005). Events were selected across the eight catchments (Table 2) using a set of pre-128 

defined criteria applied in sequence (Table 3). Hydrograph separation, event window definitions and 129 

time-based metric definitions are shown in Figure 2. The first stage involved identifying isolated rainfall 130 

events based upon exceedance of a pre-defined value. The second stage utilised an automated baseflow 131 

separation technique that drew upon a  combination of methods reviewed in study of published event-132 

based hydrograph separation methods by Blume et al. (2007). This identified the starting point in the 133 

hydrograph rising limb and applied a linear interpolation to the point at which the hydrograph recession 134 

meets baseflow – defined as the minimum value within a baseflow-end ‘window’. Finally visual analysis 135 

of rainfall-runoff plots was used to filter out erroneous or multiple events.   136 

 137 

FIG 2: Hydrograph separation with event instants used to select independent events and time instants 138 

used to derive time-based metrics of storm events 139 

 140 

3.2.3 Metrics of hydrological response 141 

A number of hydrological response metrics were identified to be important in quantifying storm runoff 142 

in urban catchments. Following correlation analysis seven, independent, volume- and time-based 143 

hydrograph metrics were selected (Table 4: Fig. 2). Volume-based metrics facilitate comparison in the 144 
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quantity of storm runoff between the study catchments. Time-based metrics aid comparison of shape 145 

and duration based elements of hydrological response to rainfall events.  146 

Peak flow (QMAX) and direct runoff (DR) provide a measure of runoff response during an event, while 147 

the percentage runoff (PR) expresses the conversion of rainfall to runoff. Time-to-peak (TP), also known 148 

as time-of-rise, indicates catchment responsiveness on the rising limb of the hydrograph (Mcdonnell et 149 

al., 1990). Flood duration (Ɵ) provides an indication of overall hydrograph shape relative to direct runoff 150 

duration and indicates the ‘flashiness’ or kurtosis of catchment response to runoff (Braud et al., 2013). 151 

Lag-time provides a measure of the duration between rainfall and runoff and was calculated using two 152 

methods reported by Dingman (1994) (Fig. 2). As study catchments varied by both area and to a lesser 153 

degree slope (Table 1), hydrograph metrics must therefore be scaled to account for geomorphic 154 

differences. While volume-based metrics can be converted to specific discharge using study catchment 155 

area (runoff per unit area), it can be more difficult to compare time-based metrics.  Lag-time, for 156 

example, has been shown to be a function of both area and slope (Watt and Chow, 1985).  157 

Flood duration has been shown by Robson & Reed (1999) to be a function of TP: 158 

 Ɵ = 2.99 𝑇𝑃
0.77 2) 

 159 

while TP itself has been shown by Kjeldsen (2007) to be a function of a number of FEH catchment 160 

descriptors (r2 = 0.74): 161 

 𝑇𝑃= 𝑃𝑅𝑂𝑃𝑊𝐸𝑇−1.09𝐷𝑃𝐿𝐵𝐴𝑅0.6(1 + 𝑈𝑅𝐵𝐸𝑋𝑇)−3.34𝐷𝑃𝑆𝐵𝐴𝑅−0.28 3) 

 162 
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The descriptor PROPWET does not differ significantly between catchments and URBEXT is used to define 163 

the urban gradient, leaving the remaining parameters DPLBAR and DPLBAR to scale TP and Ɵ for each 164 

catchment so that standardised values (TPS and Ɵs) are available for direct comparison:  165 

 𝑇𝑃𝑆 = 
𝑇𝑃

𝐷𝑃𝐿𝐵𝐴𝑅0.60 𝐷𝑃𝑆𝐵𝐴𝑅−0.28 4) 

 166 

 Ɵ𝑆 
= 

Ɵ

𝐷𝑃𝐿𝐵𝐴𝑅0.60 𝐷𝑃𝑆𝐵𝐴𝑅−0.28 5) 

 167 

Catchment lag-time is related to the ratio L/√S, where L is basin length and S is slope, and that the ratio 168 

provides a means of comparing lag-times between catchments of different area and slope (Anderson, 169 

1970; Laenen, 1983). Slope is taken from the FEH catchment descriptor DPSBAR (Bayliss, 1999) while 170 

length is estimated from mapping (Table 1). Scaled TLC and TLPP are thus standardised to TLCS and TLPPS: 171 

 
𝑇𝐿𝐶𝑆=

𝑇𝐿𝐶

𝐿 √𝑆⁄
 

6) 

 172 

 
𝑇𝐿𝑃𝑃𝑆=

𝑇𝐿𝑃𝑃

𝐿 √𝑆⁄
 

7) 

 173 

Data normality was tested using the Shapiro-Wilk statistic and subsequently transformed if found to be 174 

non-normal (p<0.05) using the Box-Cox transformation (Box and Cox, 1964). Thyer et al. (2002) indicate 175 

that the Box-Cox transformation is widely used for transforming hydrological data to a normal, or 176 

Gaussian, distribution, as required for parametric tests such as ANOVA. Where metric values could take 177 

a zero, a minor positive offset was applied prior to transformation, with any constant subtracted from 178 

later analyses. All response metrics required transformation as data was highly non-normal. Log 179 
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transformation of each metric provided some improvement but subsequent step-wise Box-Cox 180 

transformation (2 decimal places) with power parameter values (λ) to reduce the Shapiro-Wilk p statistic 181 

was undertaken using an optimization routine for each metric and proved more effective. Independent 182 

testing of the transformation on each sites data distribution was undertaken to ascertain that the result 183 

was a normal distribution for each study catchment, and not simply the dataset as a whole. Shapiro-Wilk 184 

p statistics values for independent sites were found to be significantly higher than the un-transformed 185 

site values and dataset as a whole, and histograms became more normal in appearance. This validated 186 

the use of the applied Box-Cox transformation λ values. It was not possible to transform URBEXT as it’s 187 

bounded, while the distribution of SMD is heavily skewed towards zero for long periods limiting any 188 

transformation to a normal distribution. Statistical analysis for difference in geometric means between 189 

study catchments and along the urban gradient utilised analysis of variance (ANOVA). Tukey’s ‘Honest 190 

Significance Difference’ (HSD) function was utilised to confidence intervals on the means of each site 191 

and was found suitable as it incorporates an adjustment for sample size to counter the potential bias 192 

towards sites with more data. The resulting values were recorded for each site to identify significant 193 

differences between study catchments and between soil moisture conditions.  194 

3.3 Objective 2: Role of antecedent soil moisture  195 

Antecedent soil moisture conditions have been shown to affect the responsiveness of a catchment to 196 

rainfall (Penna et al., 2011) and are considered important initial conditions in a range of hydrological 197 

models that seek to model storm runoff generation (e.g. TOPMODEL: Quinn and Beven, 1993; ReFH: 198 

Kjeldsen, 2007). Soil moisture deficit (SMD) defines the amount of amount of water required for a soil to 199 

reach field capacity and provides an indication of antecedent soil moisture, shown to affect high flow 200 

generation (Michele and Salvadori, 2002). SMD was obtained for the EA catchments from the relevant 201 

40 km x 40 km grid squares of the UK Meteorological Office rainfall and evaporation system (MORECS) 202 

(Hough and Jones, 1997).  203 



11 
 

To classify the antecedent condition Meyles et al. (2003) have shown that a classification of preferred 204 

states in soil moisture applied in Australia by Grayson et al. (1997) holds true for the UK, whereby ‘wet’ 205 

soils with a value at or around field capacity (SMD = 0) will generate more runoff while ‘dry’ soils with 206 

higher SMD generate less runoff. We defined a wet catchment as one near to field capacity and used 207 

observed data to identify the value at which conditions could be classed as wet and more conducive to 208 

runoff generation. To determine a suitable break in SMD with which to classify soils as either wet or dry 209 

we used MORECS SMD data and peak flow data to identify a value indicative of a seasonal change that 210 

has observable impacts on runoff generation from the two least urban catchments (S2, B1: Table 2). The 211 

variable response of catchments under wet and dry conditions was tested statistically to ascertain if the 212 

antecedent soil moisture of catchments play a contributory role in determining the response of 213 

catchments along the urban gradient. 214 

4 Results  215 

4.1 Objective 1: Hydrological response along a rural-urban gradient 216 

4.1.1 Hydrological summary 217 

Rainfall data over this period highlight two important periods (Fig. 3). First the relatively low rainfalls 218 

experienced during the winter of 2011/12 in contrast to the following wet spring and winter of 2012/13, 219 

(Parry et al., 2013). Second, the winter storms of 2013/14 during which the UK endured its wettest 220 

winter on record and suffered considerable widespread flooding (Muchan et al., 2015). Event rarity was 221 

assessed using the updated FEH 2013 DDF model (Stewart et al. 2015) available from the FEH Web 222 

Service (fehweb.ceh.ac.uk).  Storms were generally found to not be extreme, with a summer storm on 223 

29/07/2015 (29 mm in 6 hours: return period, T = 4.5 years) being the only event exceeding a return 224 

period of 2 years, and the largest storm occurring on 23/12/2013 (32 mm in 23 hours: T = 1.6 years). 225 

Flows show a similar monthly pattern but were higher at all times in Swindon than at Bracknell, 226 
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primarily a result of the large baseflow contribution from the sewage treatment works within the 227 

catchment. In the Swindon catchment there were some gaps in the flow data (Fig. 3) during summer 228 

2014 due to a recording malfunction.  229 

 230 

FIGURE 3: Monthly rainfall and flow for Environment Agency rainfall and gauging stations at Swindon 231 

(39087) and Bracknell (39052). The blue upper envelope marks the long-term maximum monthly rainfall 232 

for Swindon. 233 

 234 

4.1.2 Selected events 235 

Figure 4 shows a breakdown of the selected 336 useable events by catchment and season – with 236 

summer defined as April to September. The mean number of useable events per season at all sites was 237 

21, and variability in the number of events at each sites primarily reflects the length of monitoring data 238 

available but also the quality of data at sites and periods of equipment malfunction. The data indicates 239 

that study catchments with lower levels of urbanisation URBEXT ≤ 0.26) exhibit more winter than 240 

summer events compared to the  study catchments with higher urbanisation levels where summer 241 

events are dominant.  242 

 243 

FIGURE 4: Histogram of storm events by site and season (summer defined as April to September) for 244 

each sub-catchment with mean frequency of all study catchments indicated by dashed red line. 245 

 246 
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4.1.3 Standardizing time-based metrics 247 

Across the eight sub-catchments, Pearson’s product moment of coefficient of correlation (ρ) revealed 248 

AREA to be highly correlated with mean and maximum drainage path length (DPLBAR: ρ =0.99; LDP: ρ = 249 

0.96) but not with slope (DPSBAR: ρ = -0.11). URBEXT was not correlated with other catchment 250 

descriptors (ρ < 0.3). To assess the effectiveness of the scaling on removing the effects of area (AREA) 251 

and slope (DPSBAR) the relationships between both descriptors and time-based metrics - before and 252 

with the resulting scaling applied - are assessed and illustrated in in Figure 5.   253 

 254 

FIGURE 5: Time-based hydrograph metrics against AREA and DPSBAR before (a, b) and after (aS, bS) 255 

scaling (eqs. 4 – 7). Data are fitted with a linear model fitted with significance (p) of fitted model slope (* 256 

denotes p < 0.05) and model equation reported. Grey shading shows the 95% confidence interval.  257 

 258 

Prior to scaling, the clear relationship between AREA and time–based metrics is evident (Fig. 5a), with 259 

the relationship being both positive and significant (p < 0.05). Following scaling (Fig 5aS) the effect of 260 

AREA has been removed, with a near zero and non-significant slope (p > 0.05). Scaling has the effect of 261 

increasing metric values in the smaller study catchments (below 5km2), and having little impact on the 262 

larger study catchments – with some minor variability due to slope. DPSBAR is also shown to have a 263 

significant effect upon all four metrics (p < 0.05) (Fig. 5b) however the relationship is negative. Scaling 264 

(Fig 5bS) results in a near zero regression slope for all time–based metrics, primarily through increases to 265 

values in the steeper catchments, and significantly reduces the relationship except TLCS. In summary, the 266 

scaling methods have proved effective at removing the effects of catchment size and slope. 267 
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4.1.4 Analysis of storm hydrographs along rural-urban gradient 268 

The variability in response among study catchments along the rural-urban gradient is illustrated in 269 

Figure 6, showing the area weighted event hydrographs for each study catchment. Some general 270 

patterns can be observed as URBEXT increases tenfold from S2 (0.06) to S3 (0.60).  271 

 Baseflow is clearly a higher proportion of flow in the less urban study catchments, and while it 272 

generally drops with increasing urbanisation, there is clear inter-catchment variability. 273 

 Variability in hydrograph shape across the selected events (grey) compared to the mean (red) 274 

generally decreases with urbanisation. 275 

 The mean hydrograph peak is significantly lower than the largest event, particularly in the more 276 

rural catchments (URBEXT ≤ 0.14).  277 

 For study catchments with URBEXT ≥ 0.26 the hydrograph becomes flashier but there is clear 278 

inter-catchment variability that does not follow the urban gradient.  279 

 280 

FIGURE 6: Comparison of area weighted event hydrographs (grey) and mean hydrograph (red) among 281 

study catchments (Table 1, Fig. 1) with catchment UREBEXT in brackets (ordered top left to bottom right 282 

by URBEXT) 283 

 284 

The hydrographs in Figure 6 demonstrate some of the generalised observations that are applied to 285 

urban catchments reported in the literature, but also indicate that there are inter-catchment differences 286 

that do not fit such generalizations. Table 5 and Figures 7 and 8 outline statistical analyses of how the 287 

metrics vary along the urban gradient of catchments studied.  288 

 289 
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FIGURE 7: Boxplots of normalised peak flow (Qmax), storm runoff (DR), and percentage runoff (PR) across 290 

the study catchments – URBEXT in brackets. Box-plots sharing the same letter have means that are not 291 

significantly different. 292 

 293 

An analysis of the volume-based metrics (Fig. 7) reveals significant increases in peak flows (Qmax) 294 

between the less urban (URBEXT ≤ 0.14) and more urban (URBEXT ≥ 0.26) catchments. The pattern is 295 

less clear for PR, and DR does not become significantly higher until URBEXT reaches 0.42 (S4). There is 296 

an apparent increase in the means along the urban gradient (Table 5), however there is no consistent 297 

trend and few significant differences between the more urban study catchments despite very different 298 

levels of urbanisation (0.26 – 0.6). The only signficant difference observed is a higher Qmax at S5. 299 

 300 

FIGURE 8: Box-plots of scaled and normalised time-to-peak (TPS), flood duration (ƟS), time lag-to-peak 301 

(TLPPS), and time lag-to-centroid (TLCS) across study catchments – URBEXT in brackets. Box-plots sharing 302 

the same letter have means that are not significantly different.  303 

 304 

The time-based metrics (Fig. 8) show an overall reduction in all metrics along the urban gradient but 305 

with significant inter-catchment variability. There are differences between the less urban study 306 

catchments (URBEXT ≤ 0.14) and most metrics suggest longer response times for these compared to 307 

shorter times in more urban study catchments (URBEXT ≥ 0.26). The pattern in the more urban study 308 

catchments varies between metrics, with ƟS showing the greatest variability between study catchments 309 

and highlighting a significantly shorter flood duration (1.6 h) at S5 (Table 5) than all other study 310 

catchments. The differences between B2 and S1, both of similar URBEXT, and the lack of difference 311 
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between S1 and S4, despite a large difference in URBEXT, both suggest controls being in place that alter 312 

the response time. Taken together the time-based metrics demonstrate that while there is a drop in 313 

response times between the less urban and more urban study catchments, there is no clear urban 314 

gradient among the more heavily urbanised study catchments and that URBEXT is a poor indicator of 315 

catchment response time in such heavily modified catchments.  316 

4.2 Objective 2: Role of antecedent soil moisture 317 

A value of 7.6 mm was identified as being the value separating a seasonal change from typically wet soils 318 

during winter (October – March) to dry soils during summer (April – September). To validate this we also 319 

assessed flow data and observed that the value was also indicative of a change in runoff response as 320 

evinced in peak flows from the two least urban catchments (S2, B1: Fig. 9). The value is close to the 321 

6 mm value used in the UK flood estimation methods to distinguish between a wet and dry catchment 322 

(Bayliss, 1999).   323 

Plots of antecedent soil moisture deficit versus each of the metrics (Fig. 9) provide an indication of the 324 

relationship between antecedent soil moisture and runoff response. For all volume-based metrics, 325 

broadly similar relationships between SMD and storm response are observed within catchments of 326 

similar URBEXT. The least urban study catchments (S2 and B1) show similarly rapid decrease in PR, DR 327 

and QMAX with increasing SMD. For the study catchments with an URBEXT of 0.26 only S1 shows a 328 

consistently negative relationship with SMD. For the more heavily urban study catchments 329 

(URBEXT≥0.42) little or no change in metric values with increasing SMD is demonstrated, except a 330 

positive relationship with Qmax at site S5.  331 

 332 

FIGURE 9: Change in metrics (Table 4) with SMD by catchment with linear fit and 95% confidence 333 

intervals shown in grey. (Y axis is log scale) 334 
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 335 

The time-based metrics reveal less significant and less consistent changes along the urban gradient, 336 

compared to the volume-based metrics (Fig. 9) reflecting the increased variability observed in Figure 8. 337 

The relationship between SMD and response time for the less urban study catchments is not significant, 338 

while for those at URBEXT 0.26 the relationship is consistently negative, in particular showing that at S1, 339 

increasingly dry conditions result in a rapid drop in TPS and Ɵs. The heavily urban study catchments 340 

(URBEXT≥0.44) are not significantly affected by SMD, although there is a weak positive relationship 341 

between TLPPS and SMD in S5. 342 

The interaction between site and soil moisture has been shown to be significant (p < 0.05) across all 343 

selected metrics and Table 6 reports the differences between study catchments under dry and wet 344 

antecedent conditions. Antecedent soil moisture was found to significantly reduce all volume-based 345 

metrics in dry conditions for study catchments with an URBEXT of 0.06 and 0.14, but not the majority of 346 

more urban study catchments (URBEXT≥0.26). This was particularly evident at S2 where QMAX (74.3 ls-347 

1km-2 ), DR (2.4 mm) and PR (17.2%) under wet conditions were between 750% and 1200% higher than in 348 

a dry  state (9.8 ls-1km-2, 0.2 mm, and 2% respectively), reflecting the large range of values recorded as 349 

shown in Figure 8. The exception was found comparing DR and PR at S1 where values in dry (0.9 mm and 350 

7.2%) were significantly less than wet conditions (8.6 mm and 53.9%), explaining the large ranges shown 351 

in Figure 8. Except S1 the results suggest antecedent soil moisture does not significantly affect the 352 

volume of runoff generated during storm events or the variability along the urban gradient between the 353 

more urban study catchments.  354 

Despite a large range of TPS and ƟS values (Fig. 8) and clear effects upon volume-based metrics (Table 5) 355 

no significant difference has been shown in the response time of the least urban S2 and B1 under drier 356 

conditions for any metric (Table 6). While response time values decrease under drier conditions the lack 357 
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of a significant reduction in response times is reflected in all study catchments except S1 (URBEXT=0.26) 358 

and to a lesser degree catchment B3 where only TPS is reduced when dry.  No substantial change is 359 

observed in the pattern of TLPPS along the urban gradient. In summary, there is no consistent pattern of 360 

antecedent soil moisture affecting the timing of runoff along the urban gradient, with only site S1 361 

exhibiting consistent impacts across the applied metrics.  362 

5 Discussion  363 

5.1 Objective 1: Hydrological response along a rural-urban gradient 364 

This study builds upon early and contemporary empirical studies into the impacts of urbanisation on 365 

runoff (e.g. Hall, 1977; Boyd, 1995; Roy and Shuster, 2009; Zhang and Shuster, 2014) to determine if a 366 

lumped-catchment spatial measure of urbanisation explains variability in catchment response to 367 

observed storm events along a rural-urban gradient.  368 

The volume-based metrics (Fig. 7) show an increase in urbanisation between an URBEXT of 0.14 and 369 

0.26 acts to increase peak flow generation, while the increase in storm runoff and percentage runoff is 370 

more gradual. While no specific threshold value is provided with which to identify at what level the 371 

effects of urbanisation on storm runoff become apparent, the ranges identified adds to the evidence of 372 

there being a gradual change in behaviour along an urban gradient between more rural and more urban 373 

catchments (Shuster et al., 2005; USGS, 2003; Sillanpää and Koivusalo, 2015; Mejía et al., 2015) and fit 374 

within the range of reported threshold values of between 5% (Kjeldsen, 2010), to around 20-25% (Brun 375 

and Band, 2000). An increase in the volume of runoff with increasing urbanisation is a common finding 376 

from urban hydrological studies (Leopold, 1968; Jacobson, 2011; McGrane, 2015), particularly for less 377 

extreme storms (Hollis, 1975). Our observation of no systematic increases in runoff volume metrics 378 

across the more urban catchments (URBEXT ≥ 0.26) is however, not well reflected in the wider 379 

literature. The results could indicate that either: i) the volume of runoff is not affected by changes in 380 
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urban extent within this range, or ii) there exist differences between the catchments that act to render 381 

them similar in volume of response. The former theory is substantiated by observations from Hammer 382 

(1972) and Miller et al. (2014) who found the impacts of progressive urban expansion would be more 383 

extreme at lower levels of development in smaller catchments, but there is little similar evidence to 384 

support the lack of variability in more heavily modified catchments. The data is perhaps also suggestive 385 

of a threshold being crossed and the catchments passing into such an altered state in which pervious 386 

areas are so fragmented and altered as to effect no significant change in the volume of runoff with 387 

increasing urbanisation, agreeing with the ‘stressed’ ecosystem classification proposed by Schueler 388 

(2000) for catchments with 26-100% impervious cover. Explanations for the latter could include 389 

variability in the actual imperviousness of urban surfaces, as no surface is truly 100% impervious (Hollis, 390 

1988) and imperviousness varies over time, with season, and by surface type (Redfern et al., 2016). 391 

There is also the role that distribution and connectivity of pervious and impervious surfaces relative to a 392 

catchment outlet and storm drainage will play in making such truly effective impervious area (Shuster et 393 

al., 2005; Graf, 1977). Other contributory factors include observations that impacts of urban land cover 394 

vary with rainfall magnitude (Gallo et al., 2013b) and that rural contributions become increasingly 395 

important with greater storm magnitude (Sheeder et al., 2003). 396 

Reduction in catchment response time with urbanisation is another common finding from urban studies 397 

(Fletcher et al., 2013; McGrane, 2015) and while there were more significant reductions in time-based 398 

metrics along the rural-urban gradient compared to volume metrics, the pattern between the more 399 

urban catchments (URBEXT≥0.26) was highly variable and requires consideration of drivers other than 400 

urban extent. That significant differences were observed between the less urban study catchments 401 

(URBEXT≤0.14) compared to more urban study catchments fits well with observations from reported 402 

literature that urbanisation generally will reduce time-to-peak (Williams, 1976; Sillanpää and Koivusalo, 403 

2014), flood duration (Braud et al., 2013) and lag-time (Anderson, 1970). What is clear however from 404 
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the more urban study catchments (URBEXT≥0.26) is that once catchments become more heavily 405 

modified other processes not represented by URBEXT start to significantly affect the conveyance time of 406 

runoff. 407 

The observations reported here are of international interest as empirical observations in small urban 408 

catchments are limited and imperviousness is widely used in catchment scale studies. The limitations of 409 

spatial measures of urbanisation such as imperviousness for attribution and modelling are increasingly 410 

being identified in international studies, particularly where stormwater infrastructure is present 411 

(Meierdiercks et al. 2010) and when considering high flows (Ogden et al. 2011; Braud et al. 2013). 412 

Runoff timing in particular has been shown to be more a function of stormwater infrastructure than land 413 

use (Smith et al. 2013). Accordingly there is growing interest in the application of alternative measures 414 

of urbanisation such as methods to characterize urban form using landscape metrics (Jiao, 2015).  415 

5.2 Objective 2: Role of antecedent soil moisture 416 

We found antecedent soil moisture to affect the quantity of runoff generated in storm events for some 417 

of the study catchments but to have little effect on the more urbanised study catchments 418 

(URBEXT≥0.42). The clear relationship between soil moisture and runoff volume in catchments with 419 

large rural areas is demonstrative of significant correlations between runoff and antecedent soil 420 

moisture reported in the literature (Meyles et al., 2003; Penna et al., 2011; Zhang et al., 2011). The 421 

diminished role of soil moisture in more urban catchments is less clear, some evidence suggesting 422 

wetter soils cause higher runoff (Ragab et al., 2003) and other studies finding antecedent soil moisture 423 

does not significantly impact storm hydrological response (Smith et al., 2013). The latter view, as found 424 

here, supports the view of Shuster et al. (2005) who surmised a reduction in soil water storage potential 425 

with increased impervious area, as shown by Booth et al. (2002), correspondingly decreases the 426 

importance of antecedent soil moisture in runoff. 427 
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The lack of an observed relationship between SMD and time-based metrics suggests that soil moisture 428 

does not generally control how quickly catchments respond to storm events, the flashiness of the 429 

response, or the lag-time between the rainfall and runoff. That no differences were observed in the least 430 

urban catchments was surprising as studies under more natural catchments show that antecedent 431 

conditions can affect catchment response times (Penna et al., 2011; Haga et al., 2005). Similarly there is 432 

evidence from more urban studies that under drier conditions lag-times are increased in locations with 433 

more green space (Hood et al., 2007), but again this was not replicated in this study. 434 

The combined results from both volume- and time-based metrics suggest some evidence for SMD 435 

affecting runoff volume in less urban catchments but not the timing of storm runoff. This suggests that 436 

in rural catchments a reduced runoff volume in drier conditions is not accompanied by a significant 437 

decrease in catchment response time. The lack of any consistent impact of SMD on either volume of 438 

timing of runoff in the more urban catchments (URBEXT ≥ 0.26), except S1, suggests it does not play a 439 

role in runoff generation when developed areas begin to dominate the catchment land cover. The 440 

significant reductions in both volume- and time-based metrics at S1 under drier conditions is further 441 

evidence of this, whereby despite a high URBEXT the dominant land cover is Rural (64.5%: Table 1). 442 

Under such conditions it is likely to be effectively reducing the contributing area of storm runoff as the 443 

majority of rainfall infiltrates into the previous soil storage space.  444 

The role of soil moisture in runoff generating processes remains uncertain in urban environments with 445 

mixed pervious and impervious surfaces (McGrane, 2015) and requires further study considering the  446 

current international research interest into the role that urban green spaces and SuDS are in controlling 447 

flooding (Palla and Gnecco, 2015) and their value in terms of ecosystem services (Duku et al. 2015).  448 
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5.3 Contributing urban factors not covered by URBEXT or imperviousness 449 

The limitations of using a lumped spatial measure of urbanisation such as URBEXT or imperviousness are 450 

particularly evident in observations from: i) catchments with similar levels of URBEXT but accompanied 451 

by highly divergent responses to storm events; and ii) catchments with similar responses but different 452 

levels of URBEXT. The response of the study catchments could be explained by a number of potential 453 

factors explored within the wider international literature,  454 

Urban drainage - Evidence from other studies suggests a combination of increased peak flows 455 

and reduced response times may be a result of storm drainage systems that act to speed up the 456 

conveyance of runoff and increase peak flow (Roy and Shuster, 2009) especially when the 457 

connectivity of these systems is high (Shuster et al., 2005). Events from S5 (0.46) would seem to 458 

be indicative of such a catchment, and the catchment drainage is dominated by artificial 459 

drainage. It has been shown that for larger catchments impervious area and road density are 460 

good explanatory variables for lag-times (McEnroe and Zhao, 2001) but at smaller scales it 461 

becomes necessary to consider the effective impervious area (EIA) (Booth and Jackson, 1997). 462 

This is the hydraulically connected impervious area where runoff travels over impervious 463 

surfaces directly to storm drainage (Han and Burian, 2009). This has been shown to vary 464 

considerably between development types (Roy and Shuster, 2009) and be potentially much less 465 

than total impervious area (TIA) (Ebrahimian et al., 2016). A number of studies have sought to 466 

relate TIA to EIA, however low fits of linear relationships between the two measures are 467 

reported, with variations according to age of developments, local topography, ownership, and 468 

regulations. (Alley and Veenhuis, 1983; Wenger et al., 2008; Roy and Shuster, 2009). A paired 469 

catchment study by Hood et al. (2007) provides a particularly relevant example of how variable 470 

the response of a similarly urban catchment can be due to the drainage layout and connectivity. 471 

Clearly URBEXT or imperviousness alone cannot provide this level of information, highlighting 472 
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the need for ancillary information on urban drainage and its connectivity, particularly in smaller 473 

urban catchments.  474 

Soils - S1 (0.26) had reductions in both volume- and time-based metrics with drier conditions, 475 

while other study catchments with large rural fractions (S2, B1) only had decreases in runoff 476 

volume, and the similarly urban B2 (0.26) was unaffected by SMD. This is indicative of a seasonal 477 

or soil-moisture related control mechanism independent of URBEXT that is controlled by the 478 

high relative non-urban fraction, as previously discussed. It suggests that while catchments S1 479 

and B2 have a similar URBEXT and level of pervious surfaces, the fragmented pervious ‘urban’ 480 

soils in the mainly Suburban B2 do not respond in the same way as the continuous ‘rural’ soils. 481 

This highlights the need to consider the relative extent of undeveloped areas surfaces, not just 482 

pervious and impervious surfaces, as urban soils may not behave like more natural rural soils.  483 

Urban distribution - Distribution of urban area towards the outlet can lead to a flashier response 484 

(Zhang and Shuster, 2014) possibly explaining the particularly fast response at B2 whereby 485 

urbanisation appears concentrated towards the monitoring point. A measure of location of 486 

impervious surfaces relative to the catchment outlet would provide some clear measure of such 487 

a factor. Such a measure is already available as a catchment descriptor in the UK (URBLOC: 488 

Bayliss, 2000) but has not to date been used in flood estimation, primarily as the focus has been 489 

upon larger less urban catchments.  490 

Artificial attenuation – Despite being significantly more urban, the adjacent B3 (URBEXT = 0.44; 491 

Urban = 16%: Table 1) and B2 (URBEXT = 0.26; Urban = 3.5%) have surprisingly similar responses 492 

as measured by both volume and time-based metrics. Both are highly modified with large scale 493 

drainage systems, but the wider literature suggests that in B3 the presence of retention ponds 494 

have which have been noted are likely to have some form of artificial control that act to slow 495 
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down the movement of water and reduce flood peaks, and (Table 1). Such impacts are 496 

supported from wide variety of observations comparing catchments with and without 497 

stormwater controls (Hood et al., 2007) or the impacts of implementing SuDS (Palla and Gnecco, 498 

2015) and form a key element of sustainable flood management in urban areas (Defra, 2014). A 499 

catchment measure of artificial attenuation from SuDS features would complement catchment 500 

descriptors for urban drainage in cases where the former is designed to cancel out the latter, 501 

and be additional to natural attenuation.  502 

Natural attenuation – S4 (0.42) has response times similar to a catchment that is less urbanised 503 

(S1: 0.26) but no indication of seasonal SMD control, and longer times than catchments of 504 

similar URBEXT (B3: 0.44, S5:0.46). This is perhaps indicative of features that act to attenuate 505 

the runoff response such as sustainable urban drainage systems (SuDS) (Jarden et al., 2015) 506 

which have been noted as only isolated instances within the catchment (Table 1). More likely, 507 

given its size and location, is that flows are attenuated by a large area of natural green space 508 

(Fig. 1) that has been observed to frequently flood, a solution often outlined in literature on 509 

urban flood management to attenuate peak flows (Wilby, 2007, Hamel et al., 2013; CIWEM, 510 

2010). These surfaces are not currently included in the natural attenuation index used here 511 

(FARL) that covers only rivers and lakes but are considered in a more recent descriptor for flood 512 

plan extent (FPEXT) (Kjeldsen et al., 2008). The FEH FPEXT values for S4 are however low (0.077) 513 

but another FEH index of location (FPLOC) (0.74) indicates this area is located such that is has a 514 

large contributing area and could play a greater role in attenuating upstream flows. Such 515 

indexes when combined with more information on the spatial distribution of impervious 516 

surfaces and storm drainage could be of particular use in attributing the for the reduced 517 

response times of urban catchments with such large continuous features of green space 518 

downstream of urban areas.  519 
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Urban soils and soil moisture - While the observations of the role of SMD in urban storm runoff 520 

are valuable given the paucity of studies on urban soil hydrology (Ossola et al., 2015) a degree of 521 

caution must be attached in that SMD here is derived from MORECS and is not from measured 522 

data within the urban catchments. Given urban soils can be highly modified and compacted, 523 

with resulting reduced water holding capacity (Chen et al., 2014) in-situ SMD could be highly 524 

divergent from MORECS values and infiltration potential reduced, resulting in runoff more 525 

typical of impervious surfaces (Redfern et al., 2016). Shuster et al. (2005) note that the hysteric 526 

behaviour of soils could also be changed and alter the lag-times of runoff. More detailed 527 

information on local soils, their state, and local soil moisture could provide a better picture on 528 

the overall level of perviousness and the role of soils in small urban catchments. This could 529 

involve some resampling of local soils and tests to ascertain compaction, with results used to 530 

alter catchment soil indexes such as HOST used here.  531 

Further investigation would be required to define more hydrologically relevant measures of land use 532 

and antecedent conditions and to determine whether they improve attribution of storm runoff in small 533 

urban catchments. Additionally, the practical implications for implementation in methods such as the 534 

FEH require additional assessment, as there are limited gauged sites in small urban catchments 535 

(Faulkner et al. 2012) and benefits might only occur at certain scales.   536 

5.4 Study limitations 537 

This study has been based upon using high-resolution monitoring equipment to study detailed rainfall-538 

runoff processes at the resolutions and locations necessary to better understand the impacts of 539 

urbanisation on both the volume and timing of runoff, but has a number of limitations that could be 540 

improved in further research: 541 
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- While data availability over the monitoring period is variable between study catchments this 542 

reflects the real-world constraints of urban hydrological monitoring and difficulties of working 543 

with high-resolution data (Hutchins et al., 2016).  544 

- Errors and uncertainty occur in data, but by following standard guidance on data collection and 545 

quality control, and using modern monitoring technology, these have been minimised.   546 

- Event lag-times of were calculated from areal rainfall, and this could affect the reported lag-547 

times accuracy, particularly in small catchments. This was minimised by having a good coverage 548 

of observation gauges (Fig. 1). Further research could focus on spatial variability of rainfall and 549 

storm type relationships with observed response.   550 

- For the more urban study catchments (URBEXT≥ 0.42) there was a bias towards more summer 551 

events (Fig. 2), however this could simply reflect the lack of significant runoff being generated 552 

during summer in more rural catchments. 553 

- SMD was derived for a large area which, given the scale and variability of land use within the 554 

catchments studied may be unrepresentative. In addition, Hess et al. (2016) have shown that 555 

the spatial variability of evapotranspiration is low in this region. 556 

- Study locations are in a temperate climate and results may not be transferrable to semi-arid 557 

(Hawley and Bledsoe, 2011) or cold climates (Sillanpää and Koivusalo, 2015).  558 

6 Conclusion 559 

This study used high-resolution rainfall-runoff data from 8 small catchments at varying levels of 560 

urbanisation, in order to determine if a spatial measure of urbanisation can explain variability in 561 

catchment response to storm events along a rural-urban gradient and whether antecedent soil moisture 562 

modifies the relationship between urbanisation and storm runoff. The results suggest that generalised 563 

relationships between urbanisation and storm runoff, whereby increased urbanisation leads to higher 564 

peak flows and increased runoff, along with reduced catchment response times, are not well 565 
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represented in real-world data. The observations showed that runoff volume per unit area has little 566 

variation once catchments become significantly urbanised (URBEXT ≥ 0.42), and that the both volume 567 

and timing of runoff in particular are likely to be affected by other factors in addition to urban extent or 568 

impervious cover. Analysis of antecedent soil moisture and hydrological metrics suggest that SMD only 569 

affects runoff volume in catchments dominated by “Rural” (non-urban) land cover, and runoff timing 570 

does not follow any clear rural-urban gradient. Taken together the results suggest only minor 571 

improvements could be gained in attribution of storm runoff through refined estimates of impervious 572 

surfaces at such scales, and that further work is required to determine what contributing factors are 573 

causing the observed variability in timing of runoff along the rural-urban gradient.  574 
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TABLE 1: Land cover and hydrologically relevant features of the Study catchments (B1 – B3 Bracknell, S1 – S5 Swindon) 856 

  Land cover (%)   

Study 

catchment Urban  Suburban  Rural  Catchment land cover and hydrological description 

B1 0.7 27.1 72.2 
Mixed farmland with low density housing development in upper reaches. Natural drainage channel with large inline water body in upper 

reach.  

B2 3.5 44.4 52.1 
Suburban high-density housing with woodland. Natural drainage channel with inline retention features and STW outfall in upper reaches that 

imports waste-water from outside of catchments. 

B3 16 55.5 28.4 
Town centre with mixed housing, industry and commercial with forested areas and green spaces. Highly modified drainage channel passing 

mostly underground and through storm retention ponds.  

S1 19 16.5 64.5 
Town centre commercial, housing and industry with grazing farmland in upper reaches. Natural drainage channel with large number of storm 

drainage inflows. 

S2 0 12.1 87.9 Predominantly rural grazing farmland with pockets of housing. Natural drainage channel with floodplain and small ponds. 

S3 31.4 57.1 11.5 
Town centre with mixed housing, industry and commercial with green spaces along stream corridor. Predominantly natural drainage channel 

with significant storm drainage inflows and some channelisation in upper reaches.  

S4 1.3 80.7 18 
High-density peri-urban housing and commerce with large central green space. Natural drainage channel with storm drainage inflows, isolated 

SuDS, and natural catchment area reduced due to storm-drainage in S5. 

S5 16.3 59.7 24.1 High-density peri-urban housing and commercial development with isolated green spaces. Fully artificial storm drainage with isolated SuDS.  

 857 

  858 
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Table 2: Catchment flow data records and FEH catchment descriptors (* HOST refers to the Hydrology Of Soil Type classification used in the UK 859 

(Boorman et al., 1995), ** indicates derived values) 860 

  EA_39052 B1 B2 B3   EA_39087 S1 S2 S4 S4 S5 

AREA** (km2)  51.96 18.37 12.49 12.55 

 

82.5 28.97 3.24 5.98 3.09 2.18 

Data start 10/1987 10/2013 10/2013 11/2014 

 

10/1987 11/2013 11/2013 05/2011 04/2011 04/2011 

ALTBAR - Mean catchment altitude 

(mASL) 75 72 84 80 

 

109 121 122 102 110 110 

BFIHOST - Base flow index derived 

from HOST* 0.36 0.29 0.51 0.43 

 

0.39 0.38 0.67 0.32 0.43 0.43 

SPRHOST - Standard HOST* 

percentage runoff  41.5 44.7 34.6 38.2 

 

42.6 42.5 25.5 46.6 40.2 40.2 

DPLBAR** - Mean drainage path 

length (km) 7.46 4.77 3.9 3.75 

 

9.31 5.82 2.12 2.84 2.11 1.79 

Length - Maximum catchment 

length from outlet (km) 8.56 5.31 6.08 6.26 

 

15.03 6.69 3.07 4.08 3.14 2.44 

DPSBAR - Catchment steepness 

(m/km) 24.7 17.9 25.8 30.2 

 

27.4 35.8 33.8 14 33.7 40.61 

FARL - Index of flood attenuation 

from reservoirs and lakes 0.94 0.93 0.98 0.96 

 

0.99 1 0.94 1 1 1 

PROPWET - Index of proportion of 

time soils are wet 0.29 0.29 0.29 0.29 

 

0.34 0.34 0.34 0.34 0.34 0.34 

RMED-1H - Median annual max 1 12.6 12.6 12.7 12.6 

 

9.6 9.6 9.7 9.4 9.6 9.6 
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hour rainfall (mm) 

SAAR - 1961-90 standard-period 

average annual rainfall (mm) 676 679 686 672 

 

698 707 712 683 688 688 

URBEXT2015** - Fractional urban 

extent in 2015 0.24 0.14 0.26 0.44   0.26 0.26 0.06 0.6 0.42 0.46 

  861 
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TABLE 3: Event selection criteria (illustrated in Figure 2).  862 

Stage 1 - 

Rainfall 

- Minimum 2mm rainfall in 4 hours to define rainfall event (0.5mm/hr) 

- Events separated by period defined by baseflow window (Bf.window) 

- No rain exceeding 0.5 mm occurs during pre-event period (Ev.pre - Ev.start) 

and zero rainfall 2 hours prior to event start  

- No rain exceeding 0.2 mm following event end (Ev.end) 

- No gaps between rainfall ‘spikes’ during event window (Ev.start – Ev.end) 

exceeding 3 hours 

Stage 2 – Storm 

runoff and 

baseflow 

- Only single event hydrographs 

- Baseflow calculated for event runoff  

Stage 3 - 

Rainfall-runoff 

- User selection of timing for periods defining post event window (Ev.post) 

and baseflow window (Bf.window) based on catchment size and hydrograph 

- No significant increase in flow before rainfall event start (Ev.start) 

- No rainfall driving runoff post event recession (Ev.post) 

- No mistiming in response – e.g.  significant delay between rainfall and runoff 

  863 
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TABLE 4: Selected volume- and time-based hydrograph metrics used to quantifying storm runoff 864 

Hydrograph metric Description Reference application 

Volume-based      

Qmax (l/s/km2) Peak flow during a storm event - expressed over a unit of catchment area Hollis & Ovenden (1998) 

PR (%) Measure of the percentage of rainfall generating direct runoff  Burn & Boorman (1993) 

DR (mm) Stormflow over and above baseflow occurring if storm did not occur Shaw et al. (2011) 

Time-based  

  TP (h) Time to peak flow from start of storm runoff  Galllo et al. (2013); IH (1999) 

Ɵ (h) 

Flood duration of event hydrograph corresponding to Q/Qmax = 0.5 in 

median hydrograph Braud et al. (2013) 

TLPP (h) Lag time between peak rainfall intensity and peak hydrograph flow Scheeder et al. (2003) 

TLC (h) Lag time between event centroid of rainfall and centroid of hydrograph Hall (1984) 

  865 
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Table 5: Mean values for each selected metric across the study catchments, in order of URBEXT. Means with the same letter across study 866 

catchments are not significantly different to each other.  867 

Catchment S2 B1 B2 S1 S4 B3 S5 S3 

URBEXT 0.06 0.14 0.26 0.26 0.42 0.44 0.46 0.6 

n 36 38 26 26 85 11 50 64 

Qmax (l s-1 km-2) 47.5 c 33.7 c 105.2 ab 95.4 b 141.6 a 192.4 a 719.4 d 116.9 ab 

DR (mm) 1.5 c 1.7 bc 1.9 ab 4.5 ab 2.8 a 3.3 a 3.2 a 2.6 a 

PR (%) 10.9 d 12.5 bd 16.6 ab 28.8 ac 23.6 ac 26.6 ac  28.2 c 24.8 ac 

         TPS (h) 13.3 d 8.7 cd 4.1 ab 7.1 ac 8.2 c 4.9 ac 2.7 b 4.6 a 

ƟS (h) 39.0 e 15.2 f 4.8 a 11.2 cd 9.6 d 4.4 ab 1.6 f 6.8 bc 

TLPPS (h) 21.0 e 10.9 f 4.8 a 7.5 bd 9.0 d 3.6 abc 3.4 ac 4.8 bc 

TLCS (h) 15.1 d 8.2 e 1.2 a 4.7 c 5.8 c 1.5 ab 2.0 b 2.3 a 

  868 
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Table 6: Mean metric values for each study site under wet and dry conditions. Values sharing the same superscript letter are not significantly 869 

different, while highlighted values indicates catchment means that are significantly different between wet and dry conditions as defined using 870 

soil moisture deficit (SMD).   871 

  Wet (SMD ≤  7.6mm) 

 

Dry (SMD >  7.6mm) 

Catchment S2 B1 B2 S1 S4 B3 S5 S3   S2 B1 B2 S1 S4 B3 S5 S3 

URBEXT 0.06 0.14 0.26 0.26 0.42 0.44 0.46 0.6 

 

0.06 0.14 0.26 0.26 0.42 0.44 0.46 0.6 

n 21 17 10 12 35 5 23 24 

 

15 21 16 14 50 6 27 40 

SMD 1.7 0.6 0.3 0.8 1.3 0.0 1.1 0.9   64.6 61.6 59.2 64.7 59.3 83.9 57.0 63.6 

Qmax (l s-1 km-2) 74.3 bc 57.8 c 102.8 abc 152.4 ab 149.1 a 154.5 ab 667.1 d 118.6 ab 

 

9.8 c 14.1 c 106.7 ab 46.4 b 136.4 a 224.1 a 763.9 d 115.8 a 

DR (mm) 2.4 a 3.1 a 2.5 a 8.6 b 3.2 a 3.0 ab 3.8 ab 2.7 a 

 

0.2 d 0.6 cd 1.5 ab 0.9 bc 2.6 a 3.6 a 2.6 a 2.5 a 

PR (%) 17.2 a 21.9 a 19.8 ab 53.9 c 26.4 ab 27.5 ab 34.0 b 29.4 ab 

 

2.0 e 4.9 de 14.7 ab 7.2 bd 21.5 c 25.9 ac 23.1 ac 22.1 c 

                  TPS (h) 15.1 d 9.8 cd 5.0 ab 11.4 ab 8.5 cd 5.9 abc 3.0 b 4.7 a 

 

10.7 e 7.8 de 3.2 abc 3.3 de 8.0 bd  4.0 abcd 2.4 c 4.5 a 

ƟS (h) 43.7 c 16.1 b 6.1 a 18.3 b 10.0 a 4.8 a 2.1 d 7.5 a 

 

32.4 c 14.5 f 3.9 a 5.1 ab 9.2 d 4.0 ab 1.2 e 6.4 b 

TLPPS (h) 21.1 c 10.7 bc 5.6 a 10.1 b 9.3 b 4.1 a 3.8 a 4.9 a 

 

20.7 c 11.0 d 4.2 a 5.2 a 8.8 d 3.2 ab 3.1 ab 4.7 b 

TLCS (h) 15.9 d 8.4 c 1.5 a 8.1 c 5.7 c 1.4 ab 1.7 b 2.2 a   14.0 c 8.0 e 1.0 a 1.7 a 5.7 d 1.6 ab 2.1 b 2.4 a 
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FIGURE 1: EA catchments at Swindon and Bracknell, showing study catchments, monitoring locations 

and land cover. Inset shows EA catchment locations within Thames basin and the United Kingdom. 
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FIG 2: Hydrograph separation with event instants used to select independent events and time instants 

used to derive time-based metrics of storm events 
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FIGURE 3: Monthly rainfall and flow for Environment Agency rainfall and gauging stations at Swindon 

(39087) and Bracknell (39052). The blue upper envelope marks the long-term maximum monthly rainfall 

for Swindon.  
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FIGURE 4: Histogram of storm events by site and season (summer defined as April to September) for 

each sub-catchment with mean frequency of all study catchments indicated by dashed red line. 
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FIGURE 5: Time-based hydrograph metrics (Table 4) against AREA and DPSBAR before (a, b) and after (aS, 

bS) scaling (eqs. 4 – 7). Data are fitted with a linear model fitted with significance (p) of fitted model 

slope (* denotes p < 0.05) and model equation reported. Grey shading shows the 95% confidence 

interval.  
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FIGURE 6: Comparison of area weighted event hydrographs (grey) and mean hydrograph (red) among 

study catchments (Table 1, Fig. 1) with catchment UREBEXT in brackets (ordered top left to bottom right 

by URBEXT) 
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FIGURE 7: Boxplots of normalised peak flow (Qmax), storm runoff (DR), and percentage runoff (PR) across 

the study catchments – URBEXT in brackets. Box-plots sharing the same letter have means that are not 

significantly different. 

 

  



54 
 

 

FIGURE 8: Box-plots of scaled and normalised time-to-peak (TPS), flood duration (ƟS), time lag-to-peak 

(TLPPS), and time lag-to-centroid (TLCS) across study catchments – URBEXT in brackets. Box-plots sharing 

the same letter have means that are not significantly different.  
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FIGURE 9: Change in metrics (Table 4) with SMD by catchment with linear fit and 95% confidence 

intervals shown in grey. (Y axis is log scale) 

 

 


