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SUMMARY

How cells position their proteins is a key problem in
cell biology. Targeting mRNAs to distinct regions of
the cytoplasm contributes to protein localization by
providing local control over translation. Here, we
reveal that an interdependence of a protein and
cognate mRNA maintains asymmetric protein distri-
bution in mitotic Drosophila neural stem cells. We
tagged endogenous mRNA or protein products of
the gene miranda that is required for fate determina-
tion with GFP. We find that the mRNA localizes like
the protein it encodes in a basal crescent in mitosis.
We then used GFP-specific nanobodies fused to
localization domains to alter the subcellular distribu-
tion of the GFP-tagged mRNA or protein. Altering the
localization of the mRNA resulted in mislocalization
of the protein and vice versa. Protein localization
defects caused by mislocalization of the cognate
mRNA were rescued by introducing untagged mRNA
coding for mutant non-localizable protein. Therefore,
by combining the MS2 system and subcellular nano-
body expression, we uncovered that maintenance
of Mira asymmetric localization requires interaction
with the cognate mRNA.

INTRODUCTION

A key problem for cells is to position their protein content

correctly to ensure function in the right place. Positioning of pro-

teins is complex, and it has become clear that one important

element in this process is mRNA localization [1–3]. This raises

the question how a given transcript governs the distribution of

its protein product [4].

Genome-wide studies in Drosophila embryos revealed that

transcript distribution frequently predetermined localization of

the encoded proteins [5]. Moreover, the translation of mRNAs

during transport to specific subcellular compartments is

frequently repressed, which is lifted at the final destination

[6, 7]. Therefore, mRNA localization and local control of transla-

tion are important factors influencing protein distribution.

However, the role of mRNAs is not limited to being the source

of protein production. An emerging body of evidence suggests

that coding mRNAs can have independent functions [8]. In

zebrafish, Squint (Sqt), a Nodal-related signaling molecule

belonging to the transforming growth factor b (TGF-b) super-

family, is involved in mesoderm induction and left-right axis

specification. In addition, sqt mRNA can function in dorsal

ventral axis specification [9]. During Xenopus development,

vegT mRNA localizes to the vegetal cortex of the oocyte and

seems to play a scaffolding role because oocytes depleted of

VegT mRNA have a disorganized cytokeratin structure [10,

11]. Furthermore, during Drosophila oogenesis, the 30 UTR of

oskar (osk), a gene required for abdomen and germ cell forma-

tion [12], has a non-coding function that provides a scaffold to

assemble ribonucleoprotein (RNP) complexes required for

oocyte development [13]. Thus, mRNAs can provide essential

non-coding functions that are linked to cell polarization and

important for development.

Here, we address how mRNAs contribute to protein distribu-

tion in the context of asymmetrically dividing Drosophila neuro-

blasts (NBs). In these cells, fate determination depends on differ-

ential protein distribution at the cortex along the apico basal axis

in preparation for division [14, 15]. At the apical pole, the Par

complex, including aPKC, Par6, and Par3/Bazooka, assembles

[16–19]. This drives the basal localization of two adaptor pro-

teins: Miranda (Mira) and Partner of Numb (Pon). This is impor-

tant for basal localization and segregation of fate determinants,

including Prospero and Numb to daughter cells, that are called

ganglion mother cells (GMCs) [20–23]. Whereas it has become

clear that posttranslational modification of Mira is important

to initiate its restricted localization basally [24, 25], how Mira

localization is maintained through mitosis is unclear.

Intriguingly, many transcripts encoding for the molecular

machinery behind NB asymmetry, including those of mira,

show polarized distribution [5, 26–32]. The contribution of

mRNA localization to NB polarity has only been marginally

addressed. Mutation in egalitarian (egl; coding for a protein

required for mRNA localization [33]) resulted in inscmRNA mis-

localization in embryonic NBs, and insc mRNA doses were

further found to be critical for correct execution of NBs division

[27]. Loss of another RNA-binding protein Staufen (Stau) [34]

was shown to affect pros mRNA localization [35], a condition

that did not bring about any immediate defects, but when

pros gene doses were simultaneously reduced led to problems

in cell fate specification [36]. However, Egl and Stau are able to

bind to several mRNAs [37, 38], limiting the use of mutation in

these genes to address the role of the localization of transcripts

from individual genes.
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mira mRNA has been reported to localize apically in mitotic

NBs, whereas Mira protein forms basal crescents in mitosis

[26, 30]. Mutation in mira leads to cell fate transformation [39],

which can trigger tumor-like growth of larval brains [40]. We

therefore decided to address whether and how the localization

of mira mRNA contributes to asymmetric Mira localization in

mitosis.

We applied a variation of an approach used in cell culture cells

to directly manipulate the localization of mRNA from a single

gene [41]. Using genetically encoded tools, we were able to

manipulate the subcellular localization of mRNA in NBs within

the developing nervous system of Drosophila. We tagged

endogenous mira mRNA with GFP using the MS2 system [42].

We then used nanobodies directed against GFP (hereafter GFP

binding protein [GBP]), which, when fused to subcellular locali-

zation domains, can mislocalize GFP-tagged proteins [43]. We

show that this can effectively redirect GFP-tagged mRNA in

NBs using single-molecule fluorescent in situ hybridization

(smFISH) [44] and use this to study mira mRNA localization

in NBs.

RESULTS

miramRNA Localizes to the Apical Spindle Pole and in a
Basal Crescent in Mitotic Neuroblasts
To address the role of mira mRNA localization, we developed

methods to visualize it in living and fixed Drosophila larval

brain NBs. Using gene editing, we generated an mRNA null

mutant for mira by replacing part of its 50 UTR and part of the

first exon with an attP site. Animals homozygous for this allele

(miraKO) die as embryos, as described for mira loss-of-function

alleles [20]. Inserting the wild-type sequence into the attP site

(miraWT-rescue) fully rescues (not shown) lethality of miraKO.

From this line, we derived various mira alleles by site-directed

transgenesis [45] (see Figure S1). We further made a bacterial

artificial chromosome (BAC) rescue construct for Mira, in which

the protein was tagged with mCherry and the mRNA with MS2

stem loops in the 30 UTR.
In living whole-mount brains, we detected MCP::GFP apically

enriched when mira mRNA carries MS2 stem loops (�42% of

NBs; n = 92), but not in controls (MCP::GFP carries a nuclear

localization signal; Ctrl: Movie S1; no obvious GFP patterns;

n = 23). In mitosis, GFP signal is readily detectable on the apical

poles of spindles (Movie S2). In mitotic NBs in primary cell cul-

ture, where we can better select for NBs with lower MCP::GFP

expression, GFP spots appear in a basal crescent that segre-

gates to daughter cells (Figure 1A and related Movie S3;

n = 15). Therefore, mira mRNA appears to localize in at least

two different pools in living mitotic NBs.

To confirm that the GFP patterns correspond to mira mRNA,

we usedmira smFISH on fixed samples. These probes were spe-

cific because their signal dropped to background levels in clones

formiraKO (n = 5; Figure 1B). In controlw1118NBs in whole-mount

brains, mira mRNA was apically enriched at the cortex in inter-

phase. In mitosis, mira mRNA was found on the apical spindle

pole and in a basal crescent in mitosis (Figure 1C). Similar local-

ization patterns were observed in NBs in primary cell culture

detecting mira mRNA using MCP::GFP (Figure 1D) and smFISH

(Figure 1E).

Therefore, GFP-tagged mira mRNA and mira smFISH reveal

similar distribution throughout the NB cell cycle in whole-mount

brains and primary culture. We conclude that MS2-tagged mira

faithfully reports mira mRNA localization and that at least two

pools of localized mira mRNA can be distinguished in mitotic

NBs (Figure 1F): mira mRNA localizes apically as previously

described [26, 30]. Additionally, mira mRNA localizes in a basal

crescent that segregates to daughter cells during NB division.

mira mRNA Localization to the Apical Spindle Pole
and to the Basal Cortex Is Differently Controlled
The identification of two pools of localizedmiramRNA prompted

us to address whether their localization mechanisms were the

same. We therefore analyzed egl mutants, a gene involved in

mRNA localization in Drosophila [33, 37] and stau mutants,

because Stau is required for the basal localization of pros

mRNA localization in NBs [35]. Given the localization around

the apical spindle pole, we also tested whether microtubules

were required for mira mRNA localization and whether pre-

venting microtubule nucleation from the interphase centrosome

by knocking down Centrobin (Cnb) [46] had any consequences

for mira mRNA localization.

We find that egl is not essential for mira mRNA localization in

NBs, as both pools remain detectable (Figures 2A and S2A). In

contrast, removing Stau or knocking down Cnb appears to

reduce mira mRNA localization to the apical spindle pole, but

mira basal crescents remain unaffected (Figure 2A). Further-

more,miramRNA localization to the apical spindle pole is highly

sensitive to colcemid, whereas basal crescents are not (Fig-

ure 2A). Intriguingly, GFP-tagged mira redistributes to the basal

NB pole upon microtubule depolymerization in living mitotic

NBs in primary cell culture (Movie S4). Therefore, mira mRNA

on the apical spindle pole is sensitive to loss of Stau, reduced

Cnb levels, and microtubule depolymerization, whereas basal

mira crescents are not. Thus, depending on where it localizes,

mira mRNA might be differently controlled.

mira mRNA and Protein Localization Is Spatially
Correlated
Because NBs mutant for stau or expressing cnb RNAi disrupt

mira localization on the apical spindle pole but do not have prob-

lems in terms of NB cortical polarity establishment [30, 46], we

focused on mira mRNA localized in the basal crescent. We

observed that Miranda protein and mRNA localization overlap

at the basal pole (Figure 2B). Because, upon microtubule depo-

lymerization,miramRNA appears to relocate to the basal pole in

mitotic NBs (Movie S4), mira mRNA appears to be attracted to

localized Mira. We asked next whether mira mRNA localization

always follows that of Mira protein.

We applied an approach used to alter the subcellular localiza-

tion of GFP-tagged proteins involving GFP binding protein (GBP)

fused to apically localized Bazooka (GBP::Baz) [43]. We gener-

ated homozygous Mira::GFP flies in which mira mRNA localizes

in the two pools in NBs, as observed inw1118 in NBs (Figure S2B;

n = 11metaphaseNBs from three optic lobes brains). In contrast,

when we co-expressed GBP::Baz, defects in brain morphology

are induced that are likely to reflect consequences of altered

Mira segregation. Indeed, Mira::GFP is ectopically recruited to

the apical pole of mitotic NBs, but mira mRNA is mostly

2 Current Biology 27, 1–11, July 24, 2017

Please cite this article in press as: Ramat et al., Maintenance of Miranda Localization in Drosophila Neuroblasts Involves Interaction with the Cognate
mRNA, Current Biology (2017), http://dx.doi.org/10.1016/j.cub.2017.06.016



Figure 1. miranda mRNA Localizes in Two Different Pools in Mitotic Neuroblasts

(A) Time-lapse imaging frames showing GFP-taggedmiramRNA (wor-Gal4,UAS-MCP::GFP;BAC{mira::mCherry-(MS2)}) in a NB in culture (related toMovie S3).

Labels are as indicated. GFP spots are at the apical centrosome (arrow) and at the basal cortex (arrowheads), which are inherited by the GMC (t3, arrowheads).

(B)mira smFISH on whole-mount brains harboringmiraKO homozygous mutant MARCM clones (GFP+). Dotted lines outline clones (arrow,mira smFISH signal in

neighboring control cells).

(C) mira smFISH on a w1118 brain. NBs at the indicated cell-cycle stages are shown. Arrowheads, basal mira mRNA crescents and mira segregating to GMCs;

arrows, apically localized mira mRNA; dotted blue lines, NB outline at telophase.

(D) GFP-taggedmiramRNA (wor-Gal4, UAS-MCP::GFP; mira::mCherry-(MS2)) in NBs in culture. The cell-cycle stage is indicated. Arrowheads, basalmiramRNA

crescents; arrows, apical mira mRNA; asterisk, nucleolar MCP::GFP signal.

(E) mira smFISH on NBs in culture. Arrowheads, basal mira mRNA crescents; arrows, apical mira mRNA.

(F) Illustration of mira mRNA (blue dots) localization in NBs in interphase and mitosis.

See also Figure S1. Scale bars indicate 10 mm.
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cytoplasmic (Figure S2B; �80%; n = 20 metaphase NBs from

four optic lobes). Therefore, mira mRNA localization is lost

when Mira is force localized apically.

Force-localizing Mira by GBP::Baz might result, however, in

abnormal NBs or alter the ability of Mira protein to interact with

binding partners. We therefore sought to mislocalize Mira protein

by othermeans. CorrectMira localization requires several factors,

including an intact actin network [47] and the activity of aPKC [18].

Intriguingly, in mitotic NBs, Mira protein and mRNA are cyto-

plasmic upon actin network disruption or enriched on the entire

NB cortex upon aPKC inhibition by Lgl3A overexpression [48]

(Figures 2C and 2D). We also tested whether removing an impor-

tant localization domain (BH motif) [24, 49] from Mira affectsmira

mRNA localization. We find that, when deleting the BH motif

within Mira, Mira protein and mRNA become cytoplasmic in

mitosis and both decorate specifically cortical microtubules in

interphase (Figures 2C and 2D; see Movie S5). Thus, the localiza-

tion of the mRNA follows the altered localization of the protein.

Finally, we tested whethermiramRNA localizes normally when

it codes for an aberrant protein, unable to localize. To this end, we

analyzed mira mRNA localization in miraL44 homozygous mutant

NB clones. In these mutants, mRNA is produced, but due to a

frameshift mutation, an altered protein results that is unable to

localize [50]. In homozygous mutant miraL44 NB clones, the mira

mRNA is diffusely localized (n = 23; Figure 2E). Therefore, mira

mRNA localization appears to be determined by Mira protein.

Expression of GFP-Binding Protein Fused to a
Subcellular Localization Domain in Neuroblasts
Efficiently Redirects GFP-Tagged mRNA
The finding that the mRNA follows the localization of the protein

could indicate that the mRNA plays a role in localizing the pro-

tein. To test this, we sought to mislocalize the mRNA and mea-

sure the effects on Mira protein localization in NBs by combining

the MS2 and GBP approaches.

We first assayed whether a GFP-tagged but unrelated mRNA

with a diffuse localization pattern can be induced to localize

apically (Figure 3A). To this end, we generated animals that ex-

pressmcherry-(MS2) mRNA from themira locus (see Figure S1).

In NBs that express MCP::GFP, mcherry-MS2 mRNA, but

not GBP::Baz, mcherry mRNA, is diffusely localized in mitosis

(Figure 3B). Strikingly, in the presence of GBP::Baz, mcherry

mRNA is induced to co-localize with GFP. This appears to be

the apical pole because it opposes basal Mira protein crescents

(100%; n = 17; Figures 3B and 3C).

In this condition, mCherry protein remains detectable in

the cytoplasm but never formed apical crescents (0/51 NBs;

Figure 3B). Importantly, NB polarity as measured by aPKC, Mira,

and Numb antibody staining is unaffected (Figures 3B and 3C).

Thus, combining the MS2 system to tag mRNA with GFP and

subcellular GBP expression can be used to ectopically position

mRNA without perturbing NB cortical polarity.

Tethering mira mRNA at the Apical Cortex of Mitotic
Neuroblasts Affects Basal Mira Protein Localization
Wenext applied this technique to NBs in which GFP-taggedmira

transcripts are the only source of mira mRNA. In the absence of

GBP, GFP-tagged mira mRNA localizes in the two pools and

cortical polarity is unaffected (Figures 4A–4C and S3A). We first

tested the effect of using GBP fused to the localization domain of

PON to target MCP::GFP to the basal pole [43]. MCP::GFP now

forms a basal crescent opposite to the mRNA pool on the apical

spindle pole, but this has no apparent effect onmiramRNA local-

ization, NB polarity, or Mira protein localization (Figures 4A–4C

and S3A).

In contrast, in the presence of GBP::Baz, to mislocalize the

mRNA to the apical NB pole, GFP forms apical crescents and

so does mira mRNA, which largely depletes it from the basal

pole of mitotic NBs. Whereas aPKC and Numb localization is

similar to the control, Mira protein is unable to form a basal cres-

cent and becomes mostly cytoplasmic (80% of metaphase NBs;

n = 83; Figures 4A–4CandS3), which is rescued at telophase (Fig-

ure 4C). Absence of crescents in metaphase is unlikely to be

caused by a gross reduction of Mira protein, because Mira levels

as determined bywestern blot appear to be comparable between

controls, in the presence of GBP::Pon or GBP::Baz (Figure 4D).

Furthermore, cytoplasmic Mira levels appear to be elevated

when the mRNA is tethered apically (Figure S3B). Thus, altering

the localization of mira mRNA by GBP::Baz, albeit transiently,

specifically affects Mira protein localization, which does not

appear to be a consequence of compromised translation.

BasalmiramRNAMaintains Mira Protein Localization in
Mitosis
Howcould basalmiramRNA affectMira protein localization? The

mRNAmight serve as a source for local translation. Alternatively,

in trans interaction ofmiramRNA andMira protein might stabilize

the localization of both at the basal cortex. To distinguish these

possibilities, we sought to rescue Mira protein localization by

addingmiramRNA lacking MS2 stem loops into the background

that caused Mira protein localization defects and tested whether

Mira protein localization was rescued. We chose mira mRNA

from alleles, coding for protein unable to localize. If mira mRNA

served as a local source of translation, Mira protein localization

Figure 2. mira mRNA and Mira Protein Localization Patterns Are Spatially Correlated

(A) Right: Quantification of the effect of the indicated conditions on mira mRNA localization to the apical spindle pole and basal crescents in mitotic NBs from

whole-mount larval brains (colcemid [50 mM]). Error bars, SD. Left: mira smFISH on homo or heterozygous staury9 NBs. Arrowheads, basal mira crescents.

(B) A live metaphase-arrested (50 mM colcemid) BAC{mira::mCherry-(MS2)} NBs expressing MCP::GFP by wor-Gal4 (bright spot in cytoplasm likely to reflect a

centrosome). Arrowheads, basal crescents of Mira protein and mRNA (related to Movie S4).

(C) Top: schematic representation of Mira protein and mRNA localization under the indicated conditions. Middle: Mira protein localization detected with

Mira::mCherry (or Mira antibody in ctrl and Lgl3A). Bottom: mira smFISH. Arrowheads, Mira protein and mRNA localization. LatA was used at 5 mM. Pictures

showing protein and mRNA are from different cells, except for miraDBH::mCherry in interphase.

(D) Frequency of the observed mRNA mislocalization patterns shown in (C).

(E) smFISH using probes directed against mira mRNA on whole brains in which homozygous miraL44 mutant MARCM clones (GFP+) have been generated.

Arrowheads, diffuse mira mRNA signal. Dotted lines outline mutant NBs. 3D surface plot represents mRNA signal intensities.

See also Figures S1 and S2. Scale bars indicate 5 mm in (C) and 10 mm in (A), (B), and (E).

Current Biology 27, 1–11, July 24, 2017 5

Please cite this article in press as: Ramat et al., Maintenance of Miranda Localization in Drosophila Neuroblasts Involves Interaction with the Cognate
mRNA, Current Biology (2017), http://dx.doi.org/10.1016/j.cub.2017.06.016



should not be rescued. IfmiramRNA and protein crescents were

restored, mira mRNA could be required independently of

translation.

We tested two mira alleles that fulfill these criteria. We used

miraL44 (containing a two-base insertion resulting in a frameshift

and the production of an aberrant protein unable to localize

[50]). We further engineered miraSTOP by substituting one base

to generate an early stop codon. Homozygous mirastop embryos,

similar to those homozygous formiraKO, die at the end of embryo-

genesis. Importantly,miraSTOP expressesmRNA at levels compa-

rable to controls.miraSTOP carries a hemagglutinin (HA) tag at the

C terminus of the Mira coding frame, and HA antibody staining

revealed a band of �70 kDa in brain extracts of heterozygous

miraSTOP animals, likely to reflect a truncated protein initiated

from a second ATG (positioned 648 bases downstream, which

would have a predicted molecular weight of �66 kDa). The pre-

dicted truncated protein would lack the N-terminal region known

to be required cortical association of Mira [50]. Consistently, HA

staining on heterozygous miraSTOP larval brain NBs reveals only

diffuse cytoplasmic signal, showing that this truncated protein is

unable to localize in basal crescents, even in the presence of

wild-type Mira protein (Figures S3C–S3F).

Only very few animals transheterozygous for mira-(MS2) and

miraKO (the necessary control background for the rescue exper-

iment) progressed to larval stages in the presence of MCP::GFP

andGBP::Baz, suggesting that insufficient Mira function remains

in these animals. Therefore, we added an additional copy of

MS2-tagged mira mRNA using the BAC rescue construct.

Consequently, control animals for this experiment carry two

alleles coding for mira mRNA that can be tagged with GFP and

the mRNA null allelemiraKO. In this background, in the presence

ofMCP::GFP,miramRNA localizes normally inmetaphase (n=26

metaphase NBs from eight optic lobes; Figure 5A). Furthermore,

adding GBP::Baz to mislocalize the mRNA apically efficiently

redirects the mRNA to the apical pole (n = 44 metaphase NBs

from 12 brain lobes; Figure 5A). As observed before (Figure 4),

Mira becomes cytoplasmic in metaphase NBs (Figure 5A).

We then exchanged miraKO with either miraL44 or miraSTOP to

provide mira mRNA that cannot be apically tethered and tested

whether basal mRNA localization would be restored. To distin-

guish between GFP-tagged and untagged mRNAs, we simulta-

neously used smFISH probes for all mira transcripts (mira

smFISH, detecting MS2 tagged and untagged mira mRNA) and

probes specific for the sequence harboring the MS2 stem loops

(ms2 smFISH; see also Figure S4). When we introducedmiraL44,

as expected,mira smFISH as well asms2 smFISH reveals strong

overlapping signal at similar levels at the apical NB pole co-local-

izing with GFP (Figure 5B). Importantly, basal mRNA crescents

become detectable and we detect significant mira smFISH

signal, basally revealing individual dots. We also detected ms2

Figure 3. Efficient Induction of GFP-Tagged mRNA Localization by Subcellular Expression of GBP Fused to a Localization Domain

(A) Strategy to mislocalize GFP-tagged mcherry mRNA (mcherry-(MS2)) to the apical pole in mitotic NB using GBP::Baz (see Figure S1 for details).

(B) NBs in whole-mount brain preparations. Relevant genetic elements and labels are as indicated. Arrowhead, apically recruitedmcherrymRNA and GFP (note

the mCherry protein is not recruited apically). Right row: polarity markers are unaffected by tethering mcherry mRNA apically.

(C) Left: quantification of the efficiency of mcherry mRNA tethering to the apical pole by GBP::Baz. Right: quantification of the effect of mcherry mRNA apical

tethering on cortical polarity markers (unpaired t test). All upstream activating sequence (UAS) constructs were driven by wor-Gal4.

See also Figure S1. Scale bars indicate 10 mm for panels involving mcherry smFISH and 5 mm in panels showing cortical polarity markers.
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signal basally, albeit in a more diffuse pattern (Figures 5B and

5C). Thus, basal mRNA crescents can be restored, and this

pool is enriched for mRNA stemming from the miraL44.

As a consequence of introducing miraL44 or miraSTOP, basal

Mira protein localization was significantly rescued (Figures 5B

and 5C). Therefore, it appears that providing mRNA that cannot

bemislocalized by GBP contributes to restore basal Mira protein

crescents, despite coding for protein unable to localize. These

results prompt the possibility that Mira protein and mRNA can

interact in trans.

Mira Protein and mRNA Interact
To test in trans interaction more directly, we made use of the

observation that Mira forms weak apical crescents when mira

mRNA was mislocalized apically (21/30 NBs; Figure 6A, inset).

If Mira protein was able to interact in trans with cognate

mRNA, tethering GFP-tagged mira mRNA coding for untagged

Mira protein apically should recruit Mira::mCherry, produced

by mRNA devoid of MS2 stem loops provided by another allele.

Indeed, we were able to detect faint Mira::mCherry crescents

apically, whereas mcherry mRNA did not appear to be enriched

apically in NBs transheterozygous for mira::mcherry::HA and

mira-(MS2) (Figure 6A). Therefore, Mira::mCherry can be re-

cruited to mira mRNA encoded by a different allele.

We further tested whether Mira protein and mRNA can be

found in a complex. Indeed, Mira::mCherry can co-immunopre-

cipitate MCP::GFP, depending on MS2 stem loops in the mRNA

(Figure 6B), supporting the notion that Mira mRNA and protein

can be found in a complex. These results suggest that normally

mira mRNA may contribute to maintain Mira protein basally

through in trans interaction, which may be direct or require

further factors.

DISCUSSION

In this study, we address how localized mRNA contributes to

protein distribution during asymmetric division of Drosophila

NBs. We demonstrate that combination of the MS2 system

and subcellular nanobody (GBP) expression can be used to redi-

rectmRNAwithin cells to study the function ofmRNA localization

(Figure 3). Using this approach, we reveal a mechanism that

operates in NBs to maintain asymmetric distribution of Mira.

Figure 4. Tethering mira mRNA to the Apical Cortex in Mitosis Leads to Mira Protein Localization Defects

(A and B) mira mRNA (A) and Mira protein and polarity marker localization (B) in NBs from mira-(MS2) homozygous brains in the indicated backgrounds.

Arrowheads, basal localization of GFP and mira mRNA; arrows, apical localization of GFP and mira mRNA.

(C) Quantification of Mira localization in metaphase (met) and telophase (telo) under the indicated conditions. See Figure S3A for quantification of the localization

of the other markers shown in (B) (unpaired t test).

(D) Western blot from larval brain extracts from animals of the indicated background. Quantification of Mira intensity relative to lamin is shown below (unpaired

t test). Error bars, SD. All UAS constructs were driven by wor-Gal4.

See also Figures S1 and S3. The scale bar indicates 5 mm.
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In NBs, mira mRNA localizes in two distinguishable pools. It

segregates asymmetrically on the mitotic spindle (Figure 1), the

function of which is unclear.

miramRNA localization in a basal crescent (Figure 1) seems to

be functionally important, however, because directing it away

from the basal cortex results in Mira localization defects in

mitosis (Figure 4). These defects do not appear to be caused

by a gross reduction in protein levels (Figure 4). Consistently,

Mira localization is restored at telophase, suggesting that then

Mira levels are normal. Restored Mira asymmetry might be

caused by the telophase rescue phenomenon [51, 52]. However,

Baz that is apically localized in mitosis also redistributes basally

Figure 5. Mira Protein Localization Can Be Rescued by Untagged mira mRNA Encoded by a Different Allele

(A) Transheterozygous mira-(MS2) and miraKO NB expressing MCP::GFP in the absence or presence of GBP::Baz. First row: mira smFISH (red). Second row:

cartoons of mira mRNA localization. Third row: effect on Mira protein localization. Fourth row: Mira channel alone (boxed area shown enlarged in Figure 6A).

Arrow: apical mira mRNA and protein; arrowheads, basal mira mRNA and protein.

(B) Protein localization rescue experiment. A cartoon of strategy is shown. A NB transheterozygous for mira-(MS2) and miraL44 expressing MCP::GFP and

GBP::Baz, labeled for GFP, tubulin, DNA (shown in top row), and smFISH formira andms2 (second row). Arrowheads, basalmira smFISH signal; large arrowhead,

basalms2 smFISH signal. Third row: cartoon of experiment. NBs transheterozygousmira-(MS2) and miraL44 ormira-(MS2) andmiraSTOP expressing MCP::GFP

and GBP::Baz are shown. Arrowheads, basal Mira crescents; arrows, apical MCP::GFP and Mira protein.

(C) Left: frequency of basalmira smFISH andms2 smFISH signal (mira smFISH quantification:�GBP,miraKO: 21 NBs/9 optic lobes [OLs]; +GBP,miraKO: 44 NBs/

12 OLs; +GBP, miraL44: 21 NBs/17 OLs. ms2 smFISH: +GBP, miraKO: 33 NBs/8 OLs; +GBP, miraL44: 23 NBs/6 OLs). Right: frequency of basal Mira protein

crescents (�GBP,miraKO: 26 NBs/8 OLs; +GBP,miraKO: 115 NBs/33 OLs; +GBP,miraSTOP: 108 NBs/27 OLs; +GBP,miraL44: 82 NBs/20 OLs). Error bars, SD. All

NBs in this figure carry the BAC{mira::mcherry-(MS2)} construct on the second chromosome. Blue diamonds, average percentage; Mann-Whitney U test.

See also Figures S1, S3, and S4. Scale bars indicate 10 mm.
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at telophase (M.H. and J.J., unpublished data). Because mis-

localization of mira mRNA is induced with a GBP::Baz fusion,

the efficiency ofmiramRNA removal from the basal cortex might

be less efficient as mitosis progresses.

mira mRNA is, however, unable to localize in the absence of

Mira protein (Figure 2E). Thus, rather than positioning the protein,

the mRNA functions in maintaining Mira localization. Mira might

be stabilized by in trans interaction with the cognatemRNA at the

basal pole through positive feedback (Figure 6C). A similar

mechanism operates also in theDrosophila oocyte, where Oskar

protein regulates the localization of the cognate mRNA through

positive feedback [53]. This view is supported by our finding

that Mira can be ectopically recruited to mRNA provided by a

different allele (Figure 6A) and that both can be found in a com-

plex (Figure 6B). How Mira protein and mRNA interact remains

Figure 6. Mira Protein and mRNA Interact

(A) Top left: inset of Figure 5A; arrow, apical Mira

protein crescents induced by apically tethering the

mRNA by which it is encoded. Top right: strategy

used to test whether mira mRNA and protein

interact in trans. A NB in a brain transheterozygous

for mira-(MS2) and mira::mcherry::HA expressing

MCP::GFP and GBP::Baz is shown. Arrows,

Mira::mCherry can be detected apically co-local-

izing with GFP (42% of metaphase NBs; n = 21).

mcherry smFISH on whole-mount brains of the

same background. Arrowheads, mcherry signal is

enriched basally. RNA signal intensities are shown

in 3D surface plot.

(B) Co-immunoprecipitation of MCP::GFP (mRNA)

by mCherry from brain lysates. All samples express

MCP::GFP. (a) mcherry-(MS2), (b) mira::mcherry,

and (c)mira::mcherry-(MS2) are shown. B, beads; I,

10% input; S, 10% supernatant. Arrow, residual

GFP signal as blots were first probed for GFP. All

UAS constructs were driven by wor-Gal4.

(C) Model.

See also Figure S1. The scale bar indicates 10 mm.

unclear. The mcherry mRNA with diffuse

localization (Figure 3) contained the full-

length 50 and 30 UTRs of mira (see Fig-

ure S1B), which are therefore not sufficient

to mediate this interaction. Furthermore,

the BH motif within Mira seems dispens-

able for protein and mRNA interaction

(Figure 2C). Moreover, the interaction

might occur directly or involve further

binding partners, but Stau seems not to

be mediating this because mira mRNA

crescents are detectable in stau mutant

NBs (Figure 2A) that do not show Mira

localization defects [30].

We never detected apical mCherry

protein crescents when mcherry mRNA

was tethered apically (Figure 3B), sug-

gesting that mCherry protein rapidly dif-

fuses away from its clustered mRNA.

However, this is different for Mira, which

can be detected in faint crescents at the

apical pole when its mRNA is tethered there (Figure 6A). Phos-

phorylation by aPKC prevents the ability of Mira to be retained

at the apical cortex [24]. Therefore, the faint crescents are

likely to be a consequence of interaction with the apically teth-

ered cognate mRNA. Apical crescents may then appear

weaker as normal basal crescents, because aPKC activity

might break the positive feedback apically. Alternatively,

GBP-tethered mira mRNA may not be efficiently able to

interact with Mira protein.

Our data cannot rule out a contribution of local translation to

basal Mira crescents. The miraL44 and miraSTOP alleles used

are translated. Moreover, we detect also mRNA coding for

wild-type Mira protein basally in the rescue experiments (Figures

5B and 5C) and the interaction of Mira protein in the biochemical

assay (Figure 6B) may reflect interaction due to the process of
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translation. Given that Mira localizes in crescents only for a few

minutes in mitosis, it remains unclear whether local translation

would be an efficient way to increase Mira protein levels in that

time frame, however.

In any case, asymmetric mRNA localization either by serving

as a local source of translation or by reinforcing protein localiza-

tion through in trans interaction of protein and cognate mRNA

may contribute to ensure different levels of protein concentration

in particular subcellular locations as a means to strengthen cell

polarization in general.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-Miranda C. Gonzalez N/A

Rabbit polyclonal anti-aPKC (C-20) Santa Cruz Biotechnology Cat# sc-216

Guinea pig anti-Numb J. Skeath N/A

Rat monoclonal anti-HA (clone 3F10) Roche Cat# 11867423001

Rabbit polyclonal anti-Egl R. Lehmann N/A

Mousse monoclonal anti-GFP Roche Cat# 11814460001

Rabbit polyclonal anti-mCherry Abcam Cat# ab167453

Mousse monoclonal anti-Lamin (clone ADL101) DSHB Cat# ADL101 s

Mousse monoclonal anti-Tubulin (clone 12G10) DSHB Cat# 12G10

Rabbit polyclonal anti-b Actin Sigma Cat# A2066

Donkey anti-Rabbit IgG Alexa-647 Life Technologies Cat# A21244

Donkey anti-Guinea pig IgG Alexa-647 Life Technologies Cat# A21450

Donkey anti-Rat IgG Alexa-647 Invitrogen Cat# A21247

F(ab’)2-Goat anti-Rabbit IgG HRP Life Technologies Cat# A24537

Goat anti-Rat IgG HRP Life Technologies Cat# A10549

F(ab’)2-Goat anti-Mouse IgG HRP Life Technologies Cat# A24518

Bacterial and Virus Strains

NEB 5-alpha Competent E. coli NEB Cat# C2987I

Chemicals, Peptides, and Recombinant Proteins

Collagenase from Clostridium histolyticum Sigma Cat# C0130

Fibrinogen from human plasma Sigma Cat# F3879

Thrombin from bovine plasma Sigma Cat# T7513

Insulin from bovine pancreas Sigma Cat# I0516

Colcemid - CAS 477-30-5 Calbiochem Cat# 234109

Latrunculin A Sigma Cat# L5163

RiboLock RNase Inhibitor Thermo Scientific Cat# EO0381

RFP-Trap_MA Chromotek Cat# rtma

cOmplete Protease Inhibitor Cocktail Roche Cat# 11697498001

Formaldehyde solution Sigma Cat# F8775

Critical Commercial Assays

Gibson Assembly MasterMix NEB Cat# E2611

NucleoSpin RNA XS Macherey-Nagel Cat# 740902

qScript cDNA Synthesis Kit VWR Cat# 733-1173

PerfeCTa SYBR Green FastMix VWR Cat# 733-1381

Experimental Models: Organisms/Strains

D. melanogaster: w1118 Bloomington Drosophila

Stock Center

BDSC: 3605; Flybase:

FBst0003605

D. melanogaster: RNAi of Cnb Vienna Drosophila

Resource Centre

VDRC: P{GD11735}v28651;

Flybase: FBst0457594

D. melanogaster: MCP::GFP under UAS promoter [54] N/A

D. melanogaster: Gal4 under worniu promoter [55] N/A

D. melanogaster: mCherry::Jupiter under UAS promoter C. Doe N/A

D. melanogaster: FRT82B miraL44 [50] Flybase: FBal0082443

D. melanogaster: Line to generate MARM clones HS-Flp, UAS-GFPnls, tubulin-

Gal4; FRT82B Gal80

[56] N/A
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by Jens Januschke

(j.januschke@dundee.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly lines
Flies were raised on molasse-based food at 25�C. For whole mount brains and neuroblasts primary culture experiments, male and

female early L3 larvae were used. Mitotic clones were generated by heat-shocking larvae 24h and 48h post hatching for 1 hr

at 37�C. w1118 (Bloomington); UAS-MCP::GFP (M. Leptin [54]); worniu-Gal4 (C. Doe [55]); UAS-mCherry::Jupiter (C. Doe)

FRT82B mirL44 (Matsuzaki [50]); hsFLP22, UAS-GFPnls, tubulin-GAl4; FRT82B gal80 [56]; UAS-cnb-RNAi (VDRC) ; Baz::GFP

[57]; staury9 (D. StJohnston); eglWU50 and eglPR29 [33]; UAS-lgl3A::GFP (J. Knoblich [62]); UAS-GBP::Baz and UAS-GBP::Pon

(M. Gonzalez-Gaitan [43]).

New mira alleles generated in this study (for details on their cloning and characteristics, see Method Details section): BAC{mira::

mcherry-MS2}; miraWT; mira-(MS2); mira::mcherry-(MS2); mira::mcherry::HA; miraSTOP, miraDBH::mCherry, mcherry-(MS2) and

mira::eGFP.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

D. melanogaster: baz::GFP [57] N/A

D. melanogaster: stauRY9 D. St Johnston Flybase: FBal0032815

D. melanogaster: eglWU50 [33] N/A

D. melanogaster: eglPR29 [33] N/A

D. melanogaster: Lgl3A::GFP under UAS promoter [48] N/A

D. melanogaster: GBP::Baz under UAS promoter [43] N/A

D. melanogaster: GBP::Pon under UAS promoter [43] N/A

D. melanogaster: BAC{mira::mcherry-MS2} This paper N/A

D. melanogaster: miraKO This paper N/A

D. melanogaster: miraKO This paper N/A

D. melanogaster: miraWT This paper N/A

D. melanogaster: mira-(MS2) This paper N/A

D. melanogaster: mira::mcherry-(MS2) This paper N/A

D. melanogaster: mira::mcherry::HA This paper N/A

D. melanogaster: miraSTOP This paper N/A

D. melanogaster: miraDBH::mcherry This paper N/A

D. melanogaster: mcherry-(MS2) This paper N/A

D. melanogaster: mira::GFP This paper N/A

Oligonucleotides

Forward primer for mira amplication in qPCR: CCATGTGGATCAGTTGAAGG This paper N/A

Reverse primer for mira amplication in qPCR: ATTCTCACTGGTCAGGGCTT This paper N/A

Forward primer for tubulin amplication in qPCR: TGTCGCGTGTGAAACACTTC [58] N/A

Reverse primer for tubulin amplication in qPCR: AGCAGGCGTTTCCAATCTG [58] N/A

Recombinant DNA

pSL-MS2-12X [42] Addgene #27119

BAC CH322-11P04 BAC PAC Resources CH322-11P4

RIVwhite [59] N/A

eTC GFP beta-actin full length [60] Addgene #27123

pTriEx-mCherry::LANS4 Kuhlman B. Addgene # 60785

Software and Algorithms

Fiji [61] https://fiji.sc/
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Genotypes per figure
Figure 1

d w1118

d hsFlp22 tub-Gal4 UAS-nls::GFP ;; miraKO FRT82B/FRT82B Gal80

d wor-Gal4 UAS-MCP::GFP; mira::mcherry-(MS2)

d wor-Gal4 UAS-MCP::GFP UAS-tub::mcherry ; BAC{mira::mcherry-(MS2)} Df (3R)oraI9, e

Figure 2

d w1118

d wor-Gal4

d eglPR29/eglWU50

d staury9

d wor-Gal4 / UAS-cnb RNAi

d wor-Gal4 UAS-MCP::GFP; BAC{mira::mcherry-(MS2)})} Df (3R)oraI9, e

d Baz::GFP ;; BAC{mira::mcherry-(MS2)}

d wor-Gal4/UAS-lgl3A::GFP

d miraDBH::mcherry/ miraDBH::mcherry

d hsFLP22 tub-Gal4 UAS-nls::GFP ;; miraL44 FRT82B/FRT82B Gal80

Figure 3

d wor-Gal4 UAS-MCP::GFP; mcherry-(MS2)

d wor-Gal4 UAS-MCP::GFP UAS-tub::mcherry/UAS-GBP::Baz; mcherry-(MS2)

d wor-Gal4 UAS-MCP::GFP/UAS-GBP::Baz; mcherry-(MS2)

Figure 4

d wor-Gal4 UAS-MCP::GFP UAS-tub::mcherry ; mira-(MS2)/mira-(MS2)

d wor-Gal4 UAS-MCP::GFP UAS-tub::mcherry/UAS-GBP::Baz ; mira-(MS2)/mira-(MS2)

d wor-Gal4 UAS-MCP::GFP UAS-tub::mcherry/UAS-GBP::Pon ; mira-(MS2)/mira-(MS2)

d w1118

Figure 5

d wor-Gal4 UAS-MCP::GFP UAS-tub::mcherry/ BAC{mira::mcherry-(MS2)} ; mira-(MS2)/miraKO

d wor-Gal4 UAS-MCP::GFP UAS-tub::mcherry/ BAC{mira::mcherry-(MS2)} ; UAS-GBP::Baz ; mira-(MS2)/miraKO

d wor-Gal4 UAS-MCP::GFP UAS-tub::mcherry/ BAC{mira::mcherry-(MS2)} ; UAS-GBP::Baz ; mira-(MS2)/miraL44

d wor-Gal4 UAS-MCP::GFP UAS-tub::mcherry/ BAC{mira::mcherry-(MS2)} ; UAS-GBP::Baz ; mira-(MS2)/miraStop

Figure 6

d wor-Gal4 UAS-MCP::GFP/UAS-GBP::Baz; mira-(MS2)/mira::mcherry::HA

d wor-Gal4 UAS-MCP::GFP; mcherry-(MS2)

d wor-Gal4 UAS-MCP::GFP; mira::mcherry

d wor-Gal4 UAS-MCP::GFP; mira::mcherry-(MS2)

Neuroblasts primary culture
Brainswere dissected in collagenasebuffer [800mgNaCl, 200mgKCl, and 5mgNaH2PO4, 100mgNaHCO3and 100mgD(+)Glucose in

100ml ddH2O] and incubated for 20min in collagenase (0.2mg/ml, SigmaC0130). Brainswere then transferred into a drop of fibrinogen

(10mg/ml, Sigma f-3879) dissolved in Schneider’s medium (SLS-04-351Q) on a 25mmGlass bottom dish (WPI). Brains were manually

dissociatedwith needles before the fibrinogenwas clotted by addition of thrombin (100U/ml, Sigma T7513). Schneider’smediumcom-

plementedwith FCS, Fly serumand Insulin (Sigma I0516)was then added and cellswere kept at RT for 1 hr.Whenmentioned in the text,

drugs (DMSO, LatA 5mM and Colcemid 50mM) were dissolved in supplemented Schneider’s medium.

METHOD DETAILS

Immunohistochemistry
Brains were dissected in PBS 1X, fixed in 4% Formaldehyde (FA, Sigma F8775) for 20min at RT and washed 3X 10min in PBS-Triton

1% before incubation with primary antibody (overnight, 4�C). Brains were washed 3X 10min in PBS-Triton 1% and incubated for 1 hr
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at RT with secondary antibody. Before mounting in Vectashield (VectorLabs, H-1000), brains were incubated for 30min in 50:50 PBS/

Glycerol. Primary antibodies: Rabbit anti-Miranda (1:250, gift from C. Gonzalez), Rabbit anti-aPKC (1:500, Santa Cruz), Guinea pig

anti-Numb (1:500, gift from J.Skeath) and Rat anti-HA (1/500, ROCHE 3F10). Secondary antibodies: donkey anti-Rabbit Alexa-647

(1/1000, life technologies), donkey anti-Guinea Pig Alexa-647 (1/1000) and donkey anti-Rat Alexa-647 (1/1000). Microscopy was per-

formed using a Leica-SP8 CLSM (60x Water objective, NA1.2). Data was processed and analyzed using FIJI [61]. In all cases the

sample size n provided reflects all samples collected for one experimental condition, unless specified otherwise in the figure legends.

Experimental conditions were repeated at least twice to account for technical and biological variation. For Figure 5C, data from the

different genotypes was pooled and Mira basal crescents per optic lobe were counted blind.

smFISH
Whole mount brain: Brains were dissected in PBS 1X, fixed in 4% FA (Sigma F8775) for 1 hr, washed in PBS 1X and then permea-

bilized overnight in 70% ethanol. Brains were then washed 5min in wash buffer (WB: formamide, 2X SSC and DEPC water) and

hybridized overnight at 45�C under shaking with 125nM probe (Stellaris) in hybridization buffer (HB: formamide, 2X SSC, dextran

glucose and DEPC water). After removal of the HB, brains were incubated 30min in pre-heated WB, then 30min WB with DAPI

and mounted (Pro-Long Gold antifade reagent, Molecular probes #P36934).

NBs primary culture: NB cultures were prepared as described above and washed 3X in PBS 1X and fixed for 30min in 4% FA. Cells

were permeabilized overnight with 70%ethanol, quickly washedwithWBbefore hybridization with probes for 4 hr at 45�C. Cells were

washed 30min with WB and 30min with WB + DAPI before mounting (Pro-Long Gold antifade reagent).

Microscopywas performed using a Leica-SP8CLSM (60xWater objective, NA1.2). Datawas processed and analyzed using FIJI. In

all cases the sample size n provided reflects all samples collected for one experimental condition, unless specified otherwise in the

figure legends. Experimental conditions were repeated at least twice to account for technical and biological variation.

Live imaging
NB cultures were prepared as described above and imaged using a 100x OIL objective NA1.45 on a spinning disk confocal micro-

scope. Data was processed and analyzed using FIJI. In all cases the sample size n provided reflects all samples collected for one

experimental condition. Experimental conditions were repeated at least twice to account for technical and biological variation.

Cloning and recombineering
For the generations of the different constructions, pSL-MS2-12X (Addgene, #27119) was the source for MS2 stem loops, CH322-

11P04 was the source for themira sequences and eTC GFP beta-actin (Addgene, #27123) was the source for the eGFP sequences.

BAC{mira::mcherry-MS2}, obtained by BAC recombineering based on CH322-11P04. InDroso functional genomics (Rennes,

France) was used to generate miraKO by gene editing (see Figure S1). Sequences for miraWT; mira-(MS2); mira::mcherry-(MS2);

mira::mcherry::HA;miraSTOP,miraDBH::mCherry,mcherry-(MS2) andmira::GFP were cloned using Gibson assembly into the RIVwhite

vector [59]. These constructions were then injected (University of Cambridge, Drosophila Microinjection Services) with phiC31 inte-

grase system using miraKO as landing site.

Formira-(MS2), mira::mcherry-(MS2) andmcherry-(MS2), MS2 loops sequences were added in-between the coding sequence and

mira 30UTR. FormiraDBH::mCherry, amino acids 72-110 of Mira are deleted. FormiraSTOP, Gibson assembly was used to induce a sub-

stitution and changing the 8th N-terminal amino acid into a stop codon (TTG to TAG) and to add an HA tag into Mira C-terminal region.

Co-Immunoprecipitation
Brains were lysated in extraction buffer [25mM HEPES pH6.8, 50mM KCl, 1mMMgCl2, 1mM DTT, 125mM sucrose, protease inhib-

itor and RiboLock RNase Inhibitor (Thermo Scientific)]. After 10min centrifugation at 4�C, lysate was applied to RFP-Trap beads

(ChromoTek) and incubate for 1h at 4�C on a rotative wheel. Beads were washed five times in RIPA buffer [50mM Tris-HCl pH7.5,

1% NP-40, 1% sodium desoxycholate, 0.1% SDS, 1mM EDTA and 1mM NaCl]. Samples were then processed for western blotting.

Experimental conditions were repeated twice to account for technical and biological variation.

Western blotting
Samples were homogenized in RIPA extraction buffer [10 mM Tris/Cl (pH 7.5), 150 mM NaCl, 5 mM EDTA, 0.1% SDS, 1% Triton

X-100, 1% Deoxycholate and protease inhibitor cocktail (Roche)]. Blots were probed with rabbit anti-Miranda (1/500), rat anti-HA

(1/1000, ROCHE 3F10), rabbit anti-Egl (1/2500, gift from R. Lehmann), mousse anti-GFP (1/1000, ROCHE 11814460001), rabbit

anti-mCherry (1/1000, Abcam ab167453), mouse anti-Lamin (1/500, DSHB ADL101), mouse anti-Tubulin (1/2000, DHSB 12G10)

and rabbit anti-b-actin (1/3000, SIGMA) antibodies. HRP-conjugated secondary antibodies (anti-rabbit, -rat and -mouse from Life

Technologies) were revealed by chemiluminescent detection (Pierce).

RNA extraction and qPCR
Quantitative PCR (Q-PCR) was performed on a Bio-Rad CFX Connect with PerfeCTa SYBR Green SuperMix (Quanta) on cDNA syn-

thesized (using qScript cDNA Mix; Quanta) from 1 mg total RNA (Nucleospin RNA XS; Macherey-Nagel) extracted from stage 9-12

embryos. For each experiment, samples were made in triplicate and experiments were repeated at least twice to account for tech-

nical and biological variation.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All experiments were at least done in three biological repeats that served as the basis for the statistical analysis. Unpaired t test and

Mann-Whitney U test were performed in Microsoft Excel for Mac 2011. The data in Figure 5C compares the percentage of observed

phenotypes inmitotic NBs per optic lobe. Since the number ofmitotic NBs in optic lobes varies and cannot be controlledwe assumed

that the data was not normally distributed. While we scored a high number of NBs, the basis for the statistical testing were three bio-

logical repeats. Therefore we used the Mann-Whitney U test to reject the hypothesis that the distributions are identical.
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