
How to Supercharge the Amazon T2:

Observations and Suggestions

Jiawei Wen, Lihua Ren

College of William and Mary

Williamsburg, VA, USA

{jwen01, lren01}@email.wm.edu

Feng Yan

University of Nevada

Reno, NV, USA

fyan@unr.edu

Daniel J. Dubois, Giuliano Casale

Imperial College London

London, UK

{daniel.dubois, g.casale}@imperial.ac.uk

Evgenia Smirni

College of William and Mary

Williamsburg, VA, USA

esmirni@cs.wm.edu

Abstract—Cloud service providers adopt a credit system to
allow users to obtain periods of performance bursts without
additional cost. For example, the Amazon EC2 T2 instance
offers low baseline performance and the capability to achieve
short periods of high performance using CPU credits. Once a
T2 instance is created and assigned some initial credits, while
its CPU utilization is above the baseline threshold, there is a
transient period where performance is boosted and the assigned
CPU credits are used. After all credits are used, the maximum
achievable performance drops to baseline. Credits accrue pe-
riodically, when the instance utilization is below the baseline
threshold. This paper proposes a methodology to increase the
performance benefits of T2 by seamlessly extending the duration
of the transient period while maintaining high performance. This
extension of the high performance transient period is combined
with proactive migration to further take advantage of the initially
assigned credits. We conduct experiments to demonstrate the
benefits of this methodology for both single-tier and multi-tier
applications.

I. INTRODUCTION

Cloud computing [1], [2] has become nowadays a well
established paradigm [3], [4]. Many cloud platforms, such as
Amazon EC2 [5], Google Compute Engine [6], and Microsoft
Azure [7], offer flexible cloud computing services, enabling
cloud users to quickly launch jobs by requesting the desired
amount of resources through the Internet without maintaining
their own hardware, paying only for the need-based resources.

As a widely-used cloud platform, Amazon EC2 has been
extensively studied [8], [9], [10], [11], [12], [13], [14]. These
studies range from comparing the performance of EC2’s offer-
ings to other cloud platforms, to the peculiarities of specific
instance offerings of EC2, and to performance comparisons
when applications (single-tier and multi-tier) are migrated from
a traditional data-center environment to Amazon EC2.

The focus on this paper is on the most opportune usage
of Amazon EC2’s T2 instance types. T2 instances are initially
allocated CPU credits, which can be spent to allow bursts of
performance above the baseline, and periodically accrued then
the load is under the baseline. These instances are designed
for applications that do not pose consistent demands to CPU
resources, for example, web services characterized by short
bursts of heavy load. In this work we focus not only on making
the most efficient use of T2 instances for this type of cloud
services, but also for cloud services that require non-bursty,
i.e., consistent CPU demands.

We consider two types of benchmarks: single tier bench-
marks with different intensities in CPU demands and TPC-W,
a multi-tier application, that is a well accepted transactional
web benchmark that simulates a business oriented transactional
web server [15]. For the single-tier benchmarks, we show
that by using cpulimit [16] it is possible to increase the
initial transient time period where CPU is used well-above
its baseline T2 performance. It is possible to extend this
transient period of high performance up to five times at the
beginning of the instance launch. For such cloud services, it is
possible to estimate the duration of this transient period where
performance is sustained at a much higher level than baseline
and estimate when CPU throttling stabilizes and periodic
bursty allocation starts. For the multi-tier case, we also observe
that the use of cpulimit can be tremendously beneficial for
user-perceived performance, but the duration of the transient,
high performance period cannot be easily predicted. Yet, in
both cases we show that for applications that execute for a short
term (up to several hours for the case of TPC-W), it is possible
to achieve superior performance than the baseline one offered
by T2. Beyond the transient period, where the CPU is throttled
by the burstiness mechanism, the improvements of cpulimit
are small. This makes us consider proactive migration, i.e.,
enable a checkpoint/restart mechanism by launching a new
instance when the steady-state low performance period starts.
Previous work [17] illustrates how to launch several t2.micro
instances across different locations to avoid the CPU throttling
penalty for long-duration jobs, but its major shortcoming re-
mains the migration frequency, which can result in significant
performance penalties. In this paper we show that cpulimit
can significantly reduce the migration frequency of long-
running jobs on T2. Our experiments demonstrate that we can
effectively reduce the migration frequency up to 80% and that
the proposed proactive approach enables a seamless migration
scheme.

The rest of the paper is organized as follows: we first
introduce some necessary background about T2 instance in
Section II. Then we conduct workload characterization to
understand the relationship between application performance
and the variation of CPU credits in Section III. Based on the
observations from Section III, we propose our cpulimit and
proactive migration approach in Section IV. In Section V, we
evaluate the proposed approach. We discuss related works in
Section VI. Finally, we conclude this study in Section VII.

II. BACKGROUND

An Amazon EC2 instance is a virtual server in Amazon’s
Elastic Compute Cloud (EC2) for running applications on
the Amazon Web Services (AWS) infrastructure. AWS offers
a host of different types of instances, each optimized for
different user needs. T2 instances are “burstable performance
instances" that provide a baseline CPU performance which can
be temporarily increased in case of need. T2 instances include
t2.nano, t2.micro, t2.small, t2.medium, and t2.large variations.
The f1 and g1 instances in Google Compute Engine [6] are
another example of burstable performance instances. In this
paper, we focus on characterizing and making better use of
t2.micro instances (as the algorithm of Google f1 and g1
instances is not disclosed).

According to the AWS documentation [18], T2’s CPU
performance is controlled by a mechanism based on CPU
credits. One CPU credit provides the performance of a full
CPU core for one minute, i.e., one CPU credit is equal to
one vCPU running at 100% CPU utilization for one minute.
The same rule also applies to other combinations of vCPUs,
utilization, and time. Equivalently, one CPU credit allows one
vCPU running at 50% utilization for two minutes. In addition,
each newly started instance is granted a healthy initial CPU
balance, which is increased at a fixed rate by continuously
receiving credits according to the instance size. When a T2
instance uses CPU resource that is equal to or less than its
baseline performance level, the difference between earned and
spent CPU credits are stored in the credit balance for up to
24 hours. The 24 hours expiration mechanism establishes the
cap.

We list the configurations of t2.micro, t2.small and
t2.medium in Table I [18], including the initial CPU credit
balance, the receiving rate of CPU credits, the baseline per-
formance level as a percentage of a full core performance,
and the maximum earned CPU credit balance. Using t2.micro
as an example, assuming that 1 CPU credit can support 1-
minute full performance, its initial CPU credit (which is 30
in this example) should be depleted in 30 minutes; the value
of the columns CPU credits earned per hour and Baseline
performance show that a t2.micro instance earns 6 CPU
credits per hour, and Baseline performance, the maximum CPU
utilization allowed; the ceiling amount of CPU credits of a
t2.micro instance is 144, which is the number of credits earned
in 24 hours when CPU utilization is 0%.

III. WORKLOAD CHARACTERIZATION

In this section, we characterize the performance of bench-
mark applications running on CPU-credit-based t2.micro in-
stance and motivate our approach. We select three single-tier
benchmarks: Hmmer [19] from SPEC CPU2006, Avrora [20]
from the DaCapo, and Sysbench hybrid [9] customized from
the Sysbench suite [21]. Since CPU credits on T2 are ac-
crued/subtracted according to CPU usage, we select three
benchmarks that differ in their intensity of CPU demand.

• Hmmer : a CPU intensive benchmark used for search-
ing sequence databases for sequence homologs and
for making sequence alignments using hidden Markov
models. This is a very CPU intensive benchmark, with
minimal IO usage.

• Avrora : a collection of programs that run on a grid
of AVR micro controllers. CPU is the dominating
resource again but its usage is less intensive comparing
to Hmmer.

• Sysbench hybrid : a customized workload that spends
nearly equal time on CPU and IO proposed in [9]. It
performs prime number calculations and file opera-
tions. Essentially, it consists of a combination of the
two standard Sysbench benchmarks: Sysbench CPU
and Sysbench IO [21].

According to AWS, T2 instances are best suited for work-
loads that do not use CPU consistently, yet occasionally can
take advantage of a CPU burst. T2 instances are therefore ap-
propriate for general purpose workloads, including web servers
and developer environments. Using the above benchmarks, we
evaluate how is CPU alloted to them across time. We report
on the service rate (requests/minute) provided by t2.micro, i.e.,
on the number of requests completed per minute. Figure 1
illustrates the service rate as a function of time and each point
represents the average service rate for 5 minutes. We observe
that there are two periods for each plot: a credit depleting
period (CDP) and a stable period (SP). The credit depleting
period starts from the moment an instance is launched to the
point that the instance has used all its CPU credits. The stable
period starts after the credit depleting period. Because the
instance has depleted all the CPU credits, during its stable
period, CPU-throttling occurs and only 10% of CPU utilization
is allowed. Therefore, the average service rate during the stable
period is significantly lower than during the credit depleting
period. See, for example, how the curve significantly drops
across all benchmarks and not just only for Hmmer which
is the least suitable for T2. Another important observation is
that the credit depleting period is short across all benchmarks
(regardless whether it is CPU intensive or CPU/IO balanced,
see the similarities across Hmmer and Sysbench). Therefore,
migrating the application to a new instance after the credit
depleting period [17] is an option that we intent to adopt, as
the migration performance penalty may be tolerable compared
to the low performance of the stable period. The figure also
clearly illustrates the periodic performance bursts after the
initial depleting period. This is because Amazon uses a conser-
vative way to measure CPU utilization, so a small number of
credits can still be earned during the baseline experiment. This
makes the performance spike a bit when Amazon recalculates
the performance periodically and detects a credit balance that
is larger than zero.

To further understand the performance change in different
periods, we plot the CDF of service times, i.e., the user per-
ceived performance, for four half-hour windows, as shown in
Figure 2. The figure illustrates the user-perceived performance
due to CPU throttling as credits are depleted. Within each half
hour period, service times can be diverse especially for Avrora
and Sysbench, and deteriorate as time progresses.

IV. METHODOLOGY

In this section, we propose a methodology to maximize the
“value" of CPU credits. One naive way is to introduce explicit
time periods within the application (e.g., “sleep" periods)
where CPU is not used. This action may delay credit depletion,

Initial CPU credit CPU credits earned per hour Baseline performance Maximum allowed CPU credit balance

t2.micro 30 6 10% 144

t2.small 30 12 20% 288

t2.medium 60 24 40% 576

TABLE I: Configuration information for t2.micro, t2.small, and t2.medium . The configure information includes initial CPU
credit allocation received at launch, the rate at which CPU credits are received, the baseline performance level as a percentage
of a full core performance, and the maximum allowed CPU credit balance that an instance can achieve.

0 1 2 3 4

10
1

10
2

Time (hour)

A
v
e

ra
g

e
 S

e
rv

ic
e

R
a

te
 (

#
 /

m
in

)

(a) Hmmer

0 1 2 3 4
10

0

10
1

Time (hour)

A
v
e

ra
g

e
 S

e
rv

ic
e

R
a

te
 (

#
 /

m
in

)

(b) Avrora

0 1 2 3 4

10
0

10
1

Time (hour)
A

v
e

ra
g

e
 S

e
rv

ic
e

R
a

te
 (

#
 /

m
in

)

(c) Sysbench Hybrid

Fig. 1: Average service rate across time for different bench-
marks using a t2.micro instance. The time window for com-
puting average service rate is 5 minutes.

0 5 10 15
0

0.5

1

Service Time (s)

C
D

F

Hmmer

0 20 40 60 80
0

0.5

1

Service Time (s)

C
D

F

Avrora

0 20 40 60 80
0

0.5

1

Service Time (s)

C
D

F

Sysbench Hybrid

Fig. 2: CDF of service times for different benchmarks. The
time window is 0.5 hours. There are 48 CDF plots for the
entire 24-hour experiment. Here we only show the first four
plots in the interest of space. The CDFs for half hour intervals
beyond the 1.5− 2 hour window are very similar to the ones
during the 1.5− 2 hour window.

but it often results in longer user end-to-end execution time [9].
Here, we first propose to use cpulimit, a tool which limits
the CPU usage of a process (expressed in percentage, not in
CPU time). The basic premise is to extend the credit depleting
period for each instance via cpulimit, but after credits are
depleted to renew them via the migration to a new instance.

A. Extending the Credit Depleting Period

We propose to extend the initial transient period by reduc-
ing credit consumption via judicious use of the cpulimit

mechanism. In general, the more cpulimit reduces CPU
consumption, the longer the extension of the credit depleting
period. Yet, if this is done too aggressively, the performance
benefits of reducing CPU usage diminish. For instance, if we
limit CPU utilization at 10%, it is equivalent to the CPU
throttling that Amazon enforces after all CPU credits have been
used. Clearly, there is no performance benefit in this situation.

Cpulimit allows the user to quantify CPU usage, e.g.,
cpulimit = 90% means we limit the CPU utilization of a

0 20 40 60 80 100
10

0

10
1

10
2

cpulimit (%)

A
v
e
ra

g
e
 S

e
rv

ic
e

R
a
te

 (
#
 /
 m

in
)

Hmmer

Avrora

Sysbench hybrid

Fig. 3: Service rate as a function of cpulimit for different
benchmarks. Note that cpulimit of 100% equals to the no
cpulimit case, which is the case shown in Figure 1.

full CPU core to a max of 90%. In order to get a better under-
standing of how cpulimit impacts the performance of an ap-
plication, we perform experiments with various cpulimits
using the benchmarks described in Section III. We report the
average service rate of credit depleting period under different
cpulimits for different benchmarks, see Figure 3. For the
CPU intensive application Hmmer, the service rate degrada-
tion is almost proportional to cpulimit reduction. For the
less CPU intensive applications Avrora and Sysbench hybrid,
the service rate degradation has a similar changing trend as
Hmmer but smaller degradation rate when lower cpulimit
is applied. In order to meet the performance requirement of
cloud services while making the most of CPU credits, it is
important to identify the optimal cpulimit that maximizes
the credit depleting period while still maintaining an acceptable
user response time. Since there are many factors that can
impact the performance effect of cpulimit (e.g., instance
type, application characteristics), it is not straight-forward to
model accurately the performance change as a function of
cpulimit. Here, we propose to build a performance refer-
ence table by running profiling experiments. One important
observation from Figure 3 is that the curves are nearly linear,
therefore it is possible to only run a few experiments and
populate the reference table via linear interpolation. With
the performance reference table, we can search the optimal
cpulimit using a given performance requirement.

B. Proactive Migration

Cpulimit extends the credit depleting period but not
infinitely, eventually throttling is going to be enforced by AWS.
One natural way to get new CPU credits is to migrate to a
new instance. Migration is expensive: service is interrupted
as AWS does not support live migration. Here we propose a
proactive migration approach aiming at minimizing the service
interruption impact during migration.

The migration overhead consists of two components: first,
the time to start the new VM; second, the time to copy the

data and current application status from the old VM to the
new VM. The average time to start a new VM is 90 seconds as
reported in [22]. The time to copy data and current application
varies across applications and can also be different for the
same application at different time points. In Amazon EC2, data
can be stored in Networking File System (NFS) so that both
the old and the new instances have the same access to the
data: this saves the time to copy data from old instance to
new instance in the case of using VM local storage during
migration. Regarding copying the application status, we use
CRIU [23] to checkpoint the application status to NFS and then
resume it in the new VM. The time to do it is a function of the
data cached in memory and the transfer speed between memory
and NFS. This process usually takes less than one minute [17].
Note that it is not possible to copy the application status in
advance as the status is updated instantly. However, if we can
predict the time when migration needs to be enabled, then we
can start the new VM in advance to reduce migration duration.
With the optimal cpulimit identified in Section IV-A, we
do profiling experiments to measure the length of the credit
depleting period under the optimal cpulimit. Then the time
to start the new VM can be computed as Tnew = TCDP −Tlaunch,
where TCDP is the profiled duration of credit depleting period
and Tlaunch is the time for starting a VM. Using proactive
migration, the migration cost is reduced to (i) the time to
checkpoint and resume the current application status; (ii) the
time to start a new VM (the time to copy data across instances
is already eliminated).

C. Multi-tier Cloud Services

Cloud services are often multi-tier applications and can
benefit from the T2 burstiness offered by AWS. Our aim
is to illustrate here that even for multi-tier applications, it
is possible to use cpulimit and proactive migration to
maximize user-perceived performance. We propose to use a
central coordinating component, see Figure 4 that can identify
the ideal cpulimit and schedule the migration of the dif-
ferent tiers. The central coordinating component collects the
results from profiling experiments by adjusting the cpulimit
at different tiers. Differently from the single-tier case, there
can be multiple combinations of cpulimit at different tiers
that can meet the performance requirement. To identify the
optimal cpulimit combination from candidate combinations,
we need to compare the overall migration overhead between
different candidate combinations. Note that when one of the
tiers is migrating, the entire service is interrupted, so the
migration overhead is the accumulated migration duration
across different tiers.

Assume there are M tiers and each tier has a migration fre-
quency of Fm and migration duration of Tm, where m = 1...M.
If there is no overlap between the migration of different tiers,

the migration overhead is
M

∑
m=1

Fm ∗ Tm. However, if different

tiers can migrate at the same time, then the migration overhead
can be reduced. Here we define the tier with the smallest
migration frequency as the main tier and schedule migration of
other tiers when the main tier needs migration. We denote the
migration frequency of the main tier as Fmax. When all tiers
migrate together, the migration duration is dominated by the
tier with the longest migration duration Tmax. To minimize the

Fig. 4: Schematic view of the proposed approach.

migration overhead, we select from the candidate combinations
the one with min(Fmax ∗Tmax).

V. EVALUATION

In this section, we evaluate our methodology proposed
in Section IV. We first evaluate the effectiveness of using
cpulimit to extend the credit depleting period. Then we
evaluate our proactive migration approach. Finally, we com-
pare our approach against an upgraded instance type.

A. Extend credit depleting period using cpulimit

To verify the effectiveness of extending credit depleting
period by using cpulimit, we consider both single-tier and
multi-tier benchmarks. All experiments are run on Amazon
T2 instances using the default Amazon Machine Image (AMI)
with Ubuntu Server 12.04 LTS in the us-east-1a (Virginia)
availability zone.

1) Single-Tier Cloud Service: We use three benchmarks:
Hmmer, Avrora, and Sysbench hybrid, which are introduced
in Section III. For each benchmark, we experiment with
cpulimit from 10% to 80%, as well as the baseline case
(i.e., no cpulimit). We report average service rate for a
24-hour period, see Figure 5. As expected, lower cpulimit
level yields better extension in credit depletion period, e.g.,
for the cases with cpulimit levels equal to or smaller than
40%, the credit depletion period is significantly longer in all
benchmarks. To take a closer look, we zoom-in the first 3-hour
plot for cpulimit of 60% and 80% for Avrora, see Figure 5
(d). Compared with the baseline, we can see that even with
only 60% and 80% cpulimit, the credit depletion period is
still noticeable longer.

2) Multi-Tier Cloud Service: We use the multi-tier bench-
mark TPC-W [15] in our evaluation. TPC-W is implemented
as a typical three-tier architecture: client, front-end web server
(web), and back-end database server (db). Each tier is set up as
one t2.micro instance. In our experiments, three types of TPC-
W mixes are considered: browsing, ordering, and shopping. We
first run the baseline experiments, i.e., without cpulimit. We
observe that the front-end never depletes its CPU credit while

0 4 8 12 16 20 24

10
1

10
2

Time (hour)

A
v
e
ra

g
e
 S

e
rv

ic
e

R
a
te

 (
#
 /
 m

in
)

(a) Hmmer

0 4 8 12 16 20 24
10

0

Time (hour)

A
v
e
ra

g
e
 S

e
rv

ic
e

R
a
te

 (
#
 /
 m

in
)

(b) Avrora

0 4 8 12 16 20 24

10
0

10
1

Time (hour)

A
v
e
ra

g
e
 S

e
rv

ic
e

R
a
te

 (
#
 /
 m

in
)

(c) Sysbench hybrid

0 1 2 3

10
0

Time (hour)

A
v
e

ra
g

e
 S

e
rv

ic
e

R
a

te
 (

#
 /

 m
in

)

(d) Avrora: zoom-in view for cpulimit of 60%
and 80%

Fig. 5: Average service rate of the t2.micro instance under dif-
ferent cpulimits for Avrora, Hmmer, and Sysbench hybrid.

the back-end database server runs out of CPU credits very fast
and becomes the bottle-neck throughout the rest of experiment.
Therefore, no cpulimit is necessary for the front-end server.
For the db tier, we apply cpulimit to extend the credit
depleting period to improve its performance.

For multi-tier cloud service, we use the client response
time (RT) as the performance measure of interest. We report
the average RT per hour for browsing, shopping, and ordering,
see Figures 6, 7, and 8 respectively. All figures present results
for two load levels: 300 and 700 clients. In Figure 6, we
observe that credit depleting period can be well extended under

low request arrival load (e.g., 300 clients). A relatively low
cpulimit (e.g., 30%) can get a significant extension of credit
depleting period, therefore maintaining good performance for
a longer period comparing to the baseline case. For higher
arrival load (e.g., 700 clients), we can see that for both baseline
and cpulimit experiments, the credit depleting periods are
much shorter than for the low load case. To further illustrate
the performance change, we also report the CDF of RT for
3-hour window using cpulimit of 70%. In the interest of
space, we only show the first 3 windows and the rest windows
are very similar to the third window, see Figure 9.

In general, if aggressively limiting the CPU usage (e.g.,
30%), the credit depleting period is extended at the cost of
less user performance improvement. If conservatively limiting
the CPU usage (e.g., 70%), there is less improvement in
extending the credit depleting period, but more benefits for
user performance during this credit depleting period. Another
interesting observation is that when cpulimit is applied, the
response time can be even better than the baseline case. This
is a direct outcome of the fact that cpulimit helps regulate
flow across tiers. The reason is that flows of arrivals from the
non-bottleneck tier to the bottleneck tier is regulated [24]. This
effect persists in shopping and ordering mixes.

0 10 20
0

10

20

30

40

Time (hour)

A
v
e

ra
g

e
 R

T
 (

s
)

baseline

cpulimit

(a) Client = 300,cpulimit =
30%

0 10 20
0

10

20

30

40

Time (hour)

A
v
e

ra
g

e
 R

T
 (

s
)

baseline

cpulimit

(b) Client = 300,cpulimit =
70%

0 10 20
0

20

40

60

80

Time (hour)

A
v
e

ra
g

e
 R

T
 (

s
)

baseline

cpulimit

(c) Client = 700,cpulimit =
30%

0 10 20
0

20

40

60

80

Time (hour)

A
v
e

ra
g

e
 R

T
 (

s
)

baseline

cpulimit

(d) Client = 700,cpulimit =
70%

Fig. 6: Average response time (t2.micro) for browsing: differ-
ent cpulimit with different arrival intensities.

B. Minimize Migration Penalty

Our approach minimizes the migration penalty by reducing
the migration frequency. To evaluate the ability to minimize mi-
gration penalty, we demonstrate credit depletion period length,
migration frequency, reduced migration frequency compared
to [17], as a function of cpulimit, see Figure 10. As shown

0 10 20
0

10

20

30

40

Time (hour)

A
v
e

ra
g

e
 R

T
 (

s
)

baseline

cpulimit

(a) Client = 300,cpulimit =
30%

0 10 20
0

10

20

30

40

Time (hour)

A
v
e

ra
g

e
 R

T
 (

s
)

baseline

cpulimit

(b) Client = 300,cpulimit =
70%

0 10 20
0

20

40

60

80

Time (hour)

A
v
e

ra
g

e
 R

T
 (

s
)

baseline

cpulimit

(c) Client = 700,cpulimit =
30%

0 10 20
0

20

40

60

80

Time (hour)

A
v
e

ra
g

e
 R

T
 (

s
)

baseline

cpulimit

(d) Client = 700,cpulimit =
70%

Fig. 7: Average response time (t2.micro) for shopping: differ-
ent cpulimit with different arrival intensities.

0 10 20
0

10

20

30

40

Time (hour)

A
v
e

ra
g

e
 R

T
 (

s
)

baseline

cpulimit

(a) Client = 300,cpulimit =
30%

0 10 20
0

10

20

30

40

Time (hour)

A
v
e

ra
g

e
 R

T
 (

s
)

baseline

cpulimit

(b) Client = 300,cpulimit =
70%

0 10 20
0

20

40

60

80

Time (hour)

A
v
e

ra
g

e
 R

T
 (

s
)

baseline

cpulimit

(c) Client = 700,cpulimit =
30%

0 10 20
0

20

40

60

80

Time (hour)

A
v
e

ra
g

e
 R

T
 (

s
)

baseline

cpulimit

(d) Client = 700,cpulimit =
70%

Fig. 8: Average response time (t2.micro) for ordering: different
cpulimits with different arrival intensities.

10
−2

10
0

10
2

0

0.5

1

RT (s)

C
D

F

baseline
cpulimit

(a) browsing 0-3h

10
−2

10
0

10
2

0

0.5

1

RT (s)

C
D

F

baseline
cpulimit

(b) browsing 3-6h

10
−2

10
0

10
2

0

0.5

1

RT (s)

C
D

F

baseline
cpulimit

(c) browsing 6-9h

10
−2

10
0

10
2

0

0.5

1

RT (s)

C
D

F

baseline
cpulimit

(d) shopping 0-3h

10
−2

10
0

10
2

0

0.5

1

RT (s)

C
D

F

baseline
cpulimit

(e) shopping 3-6h

10
−2

10
0

10
2

0

0.5

1

RT (s)

C
D

F

baseline
cpulimit

(f) shopping 6-9h

10
−2

10
0

10
2

0

0.5

1

RT (s)

C
D

F

baseline
cpulimit

(g) ordering 0-3h

10
−2

10
0

10
2

0

0.5

1

RT (s)

C
D

F

baseline
cpulimit

(h) ordering 3-6h

10
−2

10
0

10
2

0

0.5

1

RT (s)

C
D

F

baseline
cpulimit

(i) ordering 6-9h

Fig. 9: Response time CDFs (t2.micro) for browsing (first
row), shopping (second row), and ordering (third row) with
cpulimit= 70%.

in Figure 10 (a), the credit depletion period length is approx-
imately 0.67 hours for the baseline case. When cpulimit

decreases to 10%, the credit depletion period length is gradu-
ally extended to 16.0 hours. A longer credit depletion period
implies that less migration is needed. Figure 10 (b) shows the
migration frequency as a function of cpulimit. Compared
to the baseline (i.e., cpulimit = 100%), the frequency is
greatly reduced as cpulimit reduces. For the baseline case,
36 new instances are launched during the 24-hour experiment.
In the case of cpulimit = 80%, the necessary number of
new instances decreases to 29; in the case of cpulimit =
10%, the number of new instance needed further decreases
to 2. Figure 10 (c) shows how much migration frequency is
reduced compared to the approach in [17]. As shown in the
plot, the amount of reduced migration frequency increases as
cpulimit becomes smaller and there are significant savings
compared to [17].

In summary, the state-of-the-art approach [17] still suffers
from a high migration cost due to the high migration frequency.
By employing cpulimit and proactive migration together,
our approach can effectively reduce migration frequency and
minimize migration penalty, providing much better perfor-
mance benefits.

C. Performance and Cost Compared to Upgrading the In-
stance Type

A direct way to improve performance is to use an upgraded
instance type such as t2.small. The only drawback of such

0 20 40 60 80 100
0

3

6

9

12

15

18

cpulimit (%)

C
D

P
 L

e
n
g
th

 (
h
o
u
r)

Hmmer

Avrora

Sysbench hybrid

0 20 40 60 80 100
0

0.3

0.6

0.9

1.2

1.5

1.8

cpulimit (%)

M
ig

ra
ti
o
n
 F

re
q
u
e
n
c
y
 (

#
 /
 h

o
u
r)

Hmmer

Avrora

Sysbench hybrid

(a) Credit Depletion Period Length (b) Migration Frequency

0 20 40 60 80 100
0

0.3

0.6

0.9

1.2

1.5

1.8

cpulimit (%)

R
e
d
u
c
e
d
 M

ig
ra

ti
o
n
 F

re
q
u
e
n
c
y

 (
#
 /
h
o
u
r)

Hmmer

Avrora

Sysbench hybrid

(c) Reduced Migration Frequency

Fig. 10: Credit Depletion Period length, Migration Frequency,
and Reduced Migration Frequency as a function of cpulimit
level, where Migration Frequency represents the number of
instances launched per hour, and Reduced Migration Fre-
quency represents the reduced migrations compared to the no-
cpulimit case.

approach is the fact that t2.small instances cost twice more than
micro ones. Here, we compare the performance and cost when
using our approach in t2.micro instance compared to using the
native mechanism of Amazon (i.e., no cpulimit nor migration)
in t2.small instance. We also use the approach in [17] (i.e.,
equivalent to cpulimit of 100% case) as a reference. For
easy comparison, we still use Hmmer, Avrora, and Sysbench
hybrid. We first compare the performance using the CDF of
service times, see Figure 11. It is clear that micro instance,
using any cpulimit in our approach beats the Amazon
default mechanism running on small in all the three cloud
services.

Next we compare the cost between our approach and
Amazon default mechanism, see Figure 12. It is clear that
micro instances with cpulimit result in significant perfor-
mance improvement over the micro baseline but even the small
baseline case. Note that for different cpulimit, the cost
is slightly different due to the different migration frequency
during which there are two instances on at the same time,
which results in double costs. Overall, our approach has
obvious advantage in both performance and cost compared to
upgrading the instance type.

VI. RELATED WORK

Infrastructure-as-a-Service (IaaS) cloud instances have
been extensively studied in the literature. Some works focus
on performance exploration of single-tier cloud services. The
work in [8] compares the performance (execution time of
multiple types of workloads) of three popular Cloud IaaS
providers: Amazon EC2, ElasticHosts, and BlueLock. The
work in [9] characterizes EC2 T1 instances and propose an

adaptive algorithm to diminish host-level throttling. The idea
is managing CPU consumption through idleness injection de-
cided based on the workload characteristics at runtime. In [10],
the authors analyze the performance and scalability variations
when a multi-tier application is migrated from a traditional
datacenter environment to Amazon EC2. The authors in [25]
experimentally compare performance and costs between Ama-
zon EC2 and RDS through mysqlslap and TPC-W benchmarks,
showing that EC2 is more suitable for simple workloads and
low-cost scenarios

Amazon EC2 T2 instances are controlled by a credit-based
bursting mechanism and there are few studies on this type
of instance. The work in [26] is one of such studies, which
explores performance and cost efficiency of T2 instances
on single-tier cloud services. The authors also state that the
instances controlled by credit-based bursting mechanisms (e.g.,
T2) are more suitable for CPU-bound applications with an
average utilization of less than 40%. The work in [17] mea-
sures performance characteristics of EC2 t2.micro at different
locations over time, and finally proposes a proactive migration
approach to avoid CPU-throttling penalty for long-duration
jobs. Although the migration approach enables applications
to avoid experiencing performance penalty of throttling, it
might introduce a large number of migrations during which
the running benchmark is suspended, leading to large latency.

In [22], the authors study the startup time of cloud VMs
across Amazon EC2, Windows Azure, and Rackspace: they
analyze the relationship between the VM startup time and
different factors such as time of the day, OS image size,
instance type, data center location, and the number of instances
acquired at the same time, thus providing the necessary bases
for our proactive migration approach.

In this work, we focus on transparently extending the high
performance period while minimizing the cost introduced in
migration. In this way, users can get supercharged performance
of T2 instances without paying the high premium of upgrading
to a more performant instance.

VII. CONCLUSION

In this work, we propose a methodology for making better
use of Amazon T2 instances. The proposed methodology
extends the high performance periods offered by Amazon EC2
T2 and employs a proactive migration approach to reduce the
cost in generating new high performance periods. The core
of this methodology is judiciously selecting the cpulimit

for transparent extension of high performance period and
reducing the frequency of VM migrations. We evaluate our
approach using both single-tier and multi-tier cloud services.
The experimental results demonstrate the effectiveness and
efficiency of our approach in improving the performance of
cloud services (up to one order of magnitude) and reducing
the VM migration cost (up to 80%).

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” FGCS, vol. 25, no. 6, pp. 599–
616, 2009.

0 5 10 15 20
0

0.5

1

Service Time (s)

C
D

F

0 20 40 60
0

0.5

1

Service Time (s)

C
D

F

0 20 40 60 80
0

0.5

1

Service Time (s)

C
D

F

Fig. 11: Performance comparison between our approach running on t2.micro and baseline mechanism running on t2.small. We
also show the Checkpoint based approach running on t2.micro as a reference.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

m
icro_baseline

sm
all_baseline

m
icro_C

heckpoint

m
icro_Lim

it80

m
icro_Lim

it60

m
icro_Lim

it40

m
icro_Lim

it20

m
icro_Lim

it10

N
o

rm
a

liz
e

d
 C

o
s
t

Hmmer

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

m
icro_baseline

sm
all_baseline

m
icro_C

heckpoint

m
icro_Lim

it80

m
icro_Lim

it60

m
icro_Lim

it40

m
icro_Lim

it20

m
icro_Lim

it10

N
o

rm
a

liz
e

d
 C

o
s
t

Avrora

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

m
icro_baseline

sm
all_baseline

m
icro_C

heckpoint

m
icro_Lim

it80

m
icro_Lim

it60

m
icro_Lim

it40

m
icro_Lim

it20

m
icro_Lim

it10

N
o

rm
a

liz
e

d
 C

o
s
t

Sysbench hybrid

Fig. 12: Cost comparison between our approach running on t2.micro and baseline t2.small. We also show the checkpoint-based
approach running on micro as a reference.

[2] B. P. Rimal, A. Jukan, D. Katsaros, and Y. Goeleven, “Architectural re-
quirements for cloud computing systems: An enterprise cloud approach,”
JGC, vol. 9, no. 1, pp. 3–26, Mar. 2011.

[3] L. A. Barroso, “Warehouse-scale computing: Entering the teenage
decade,” SIGARCH CAN, vol. 39, no. 3, 2011.

[4] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter as a

Computer: An Introduction to the Design of Warehouse-Scale Machines,

Second Edition, ser. Synthesis Lectures on Computer Architecture.
Morgan & Claypool Publishers, 2013.

[5] Amazon, “Amazon EC2.”

[6] Google, “Google Compute Engine,” https://cloud.google.com/.

[7] Microsoft, “Microsoft Azure,” http://azure.microsoft.com.

[8] K. Salah, M. Al-Saba, M. Akhdhor, O. Shaaban, and M. I. Buhari,
“Performance evaluation of popular cloud iaas providers,” in ICITST,
2011, pp. 345–349.

[9] J. Wen, L. Lu, G. Casale, and E. Smirni, “Less can be more: Micro-
managing vms in amazon EC2,” in IEEE CLOUD, 2015, pp. 317–324.

[10] D. Jayasinghe, S. Malkowski, J. Li, Q. Wang, Z. Wang, and C. Pu,
“Variations in performance and scalability: An experimental study in
iaas clouds using multi-tier workloads,” IEEE TSC, vol. 7, no. 2, pp.
293–306, 2014.

[11] B. Kaminski and P. Szufel, “On optimization of simulation execution
on amazon EC2 spot market,” SMPT, vol. 58, pp. 172–187, 2015.

[12] V. Persico, P. Marchetta, A. Botta, and A. Pescapè, “Measuring network
throughput in the cloud: The case of amazon EC2,” CN, vol. 93, pp.
408–422, 2015.

[13] P. C. Kokkinos, T. A. Varvarigou, A. Kretsis, P. Soumplis, and E. A. Var-
varigos, “Sumo: Analysis and optimization of amazon EC2 instances,”
JGC, vol. 13, no. 2, pp. 255–274, 2015.

[14] M. Kiran, K. Maiyama, H. Mir, B. Mohammed, and A. Al-Ou’n,
“Agent-based modelling as a service on amazon EC2: opportunities and
challenges,” in UCC, 2015, pp. 251–255.

[15] W. D. Smith, “TPC-W: Benchmarking an ecommerce solution,” 2000.

[16] A. Marletta, “CPU Usage Limiter for Linux,” http://cpulimit.
sourceforge.net/.

[17] R. K. Mehta and J. Chandy, “Leveraging checkpoint/restore to optimize
utilization of cloud compute resources,” in LCN Workshops, 2015, pp.
714–721.

[18] “Amazon EC2 T2 instances.”

[19] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH
CAN, vol. 34, no. 4, pp. 1–17, Sep. 2006.

[20] S. M. Blackburn et al., “The DaCapo benchmarks: Java benchmarking
development and analysis,” in OOPSLA, New York, NY, 2006, pp. 169–
190.

[21] A. Kopytov, “SysBench manual,” 2014.

[22] M. Mao and M. Humphrey, “A performance study on the VM startup
time in the cloud,” in IEEE CLOUD, 2012, pp. 423–430.

[23] “CRIU.”

[24] N. Mi, G. Casale, L. Cherkasova, and E. Smirni, “Burstiness in multi-
tier applications: Symptoms, causes, and new models,” in Middleware.
Springer-Verlag New York, Inc., 2008, pp. 265–286.

[25] Y. Yamasaki and M. Aritsugi, “A case study of iaas and saas in a public
cloud,” in IC2E, 2015, pp. 434–439.

[26] P. Leitner and J. Scheuner, “Bursting with possibilities - an empirical
study of credit-based bursting cloud instance types,” in UCC, 2015, pp.
227–236.

