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Abstract

In human-robot communication it is often important to relate robot sensor readings
to concepts used by humans. We suggest to use a virtual sensor (one or several
physical sensors with a dedicated signal processing unit for recognition of real world
concepts) and a method with which the virtual sensor can be learned from a set
of generic features. The virtual sensor robustly establishes the link between sensor
data and a particular human concept. In this work, we present a virtual sensor for
building detection that uses vision and machine learning to classify image content
in a particular direction as buildings or non-buildings. The virtual sensor is trained
on a diverse set of image data, using features extracted from grey level images. The
features are based on edge orientation, configurations of these edges, and on grey
level clustering. To combine these features, the AdaBoost algorithm is applied. Our
experiments with an outdoor mobile robot show that the method is able to separate
buildings from nature with a high classification rate, and extrapolate well to images
collected under different conditions. Finally, the virtual sensor is applied on the
mobile robot, combining classifications of sub-images from a panoramic view with
spatial information (location and orientation of the robot) in order to communicate
the likely locations of buildings to a remote human operator.
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1 Introduction

The use of human concepts is very important in robot-human communication.
Skubic et al. [1] discuss the benefits of human spatial concepts (which they
call linguistic spatial descriptions) for different types of robot control, and
point out that these descriptions are especially important for novice robot
users. To enable human operators to interact with mobile robots in, e.g., task
planning, or to allow the system to use data from external sources, e.g. GIS,
it is necessary for the robot to be able to relate its sensor readings to human
spatial concepts. We believe that virtual sensors can facilitate robot-human
communication. Here, a virtual sensor is understood as one or several physical
sensors with a dedicated signal processing unit for recognition of real world
concepts. As an example of a virtual sensor, this paper describes a virtual sen-
sor for building detection using methods for classification of views as buildings
or nature based on vision. The purpose is to detect one very distinctive type
of object that is often used by humans, for example, in textual description of
route directions. The suggested method to obtain a virtual sensor for building
detection is based on learning a mapping from a set of generic features to
a particular concept. It is therefore expected that the same method can be
extended to virtual sensors for representation of other human concepts.

Many systems for building detection, both for aerial and ground-level images,
use line and edge related features. Building detection from ground-level images
often uses the fact that, in many cases, buildings show mainly horizontal and
vertical edges. In nature, on the other hand, edges tend to have more randomly
distributed orientations. Inspection of histograms based on edge orientation
confirms this observation. Histograms of edge direction in different scales can
be classified by, e.g., support vector machines [2]. Another method, developed
for building detection in content-based image retrieval, uses consistent line
clusters based on edge orientation, edge colors, and edge positions [3]. For
more references on ground-level building detection, see [2].

This paper presents a learned virtual sensor for building detection. The pro-
posed method combines different types of features such as edge orientation,
grey level clustering, and corners into a system with high classification rate.
The method is applied on a mobile robot as a virtual sensor for building de-
tection in an outdoor environment and is expected to be extendable to other
classes, such as windows and doors. We use AdaBoost for learning a classifier
that classifies close range monocular grey scale images into ‘buildings’ and
‘nature’. AdaBoost has the ability to select the best so-called weak classifiers
and produces a strong classifier as a linear combination of the weak classifiers.
Bayes Optimal Classifier, BOC, is used as an alternative classifier for com-
parison. BOC uses the variance and covariance of the features in the training
data to weigh the importance of each feature.
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The paper is organized as follows. Section 2 describes the set of features from
which the weak classifiers are calculated. The classifiers that are compared
in this paper are described in Section 3 (AdaBoost) and Section 4 (Bayes
classifier). Section 5 presents the image sets used to evaluate the classifiers
and an analysis of the most important weak classifiers as found in the training
phase. Section 6 shows the results from the performance evaluation and Section
7 describes an experiment using the virtual sensor for building detection on a
mobile robot. Finally, conclusions are given in Section 8.

2 Feature Extraction

We select a large number of image features that are supposed to capture
the properties of man-made structures. These features can be divided into
three groups. The first type of features is derived from edge orientation and
uses the property that man-made structures, especially buildings, often have
a high content of vertical and horizontal edges. The second type of features
combines the edges into more complex structures such as corners. Based on
the observation that buildings often contain surfaces with constant grey level,
the third type of features uses grey level clusters. The particular set of features
in this work was selected with regard to a virtual sensor for building detection.
In general, i.e., as a base for different virtual sensors, a more generic set of
features has to be used. However, the concept of the virtual sensor presented
in this paper does not need to be modified if the feature set is extended.

The features used for building detection are described in Sections 2.1-2.3.
They are numbered 1 to 24 and all features except 9 and 13 are normalized in
order to avoid scaling problems. The parameters that have been used in the
computation of the features are found in Table 1.

2.1 Edge Orientation

For edge detection we use Canny’s edge detector [4]. It includes a Gaussian
filter and is less sensitive to noise than other edge detectors. For line extraction
in the edge image an algorithm implemented by Peter Kovesi 2 was used. This
algorithm includes a few parameters that have been optimized empirically
(µ1 − µ3, see Table 1). The absolute values of the lines’ orientation are used
to calculate the following features:

(1) 3-bin histogram of absolute edge orientation values.

2 http://www.csse.uwa.edu.au/∼pk/Research/MatlabFns/, University of Western
Australia, Sep 2005
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(2) 8-bin histogram of absolute edge orientation values.
(3) Fraction of vertical lines (bin no. 1 of feature 1) out of the total number.
(4) Fraction of horizontal lines (bin no. 3 of feature 1).
(5) Fraction of non-horizontal and non-vertical lines (bin no. 2 of feature 1).
(6) As 1) but based on edges longer than Θ1% of the longest edge.
(7) As 1) but based on edges longer than Θ2% of the shortest image side.
(8) As 1) but weighted with the lengths of the edges.

The 3-bin histogram has limits of [0 , 0.2 , π/2 − 0.2 , π/2] and the 8-bin
histogram [0 , π/16 , . . . , 7π/16 , π/2] radians. Values for the vertical (3),
horizontal (4) and intermediate orientation lines (5) are taken from the 3-bin
histogram and normalized with the total number of lines. Features 6, 7, and
8 try to eliminate the influence of short lines.

2.2 Edge Combinations

The lines extracted from the image (as described above) are then combined
to form corners and rectangles. The features based on these combinations are:

(9) Number of right-angled corners as defined below.
(10) 9) divided by the number of edges.
(11) Fraction of right-angled corners with direction angles equal to 45◦ + n ·

90◦ ± β2, n ∈ 0, . . . , 3.
(12) 11) divided by the number of edges.
(13) The number of rectangles, see text below.
(14) 13) divided by the number of corners.

We define a right-angled corner as two lines with close end points and 90◦±β1

angle in between. During the experiments β1 = 20◦ was used. Features 9 and 10
are based on the number of corners. For buildings with vertical and horizontal
lines from doors and windows, the corners most often have a direction of
45◦, 135◦, 225◦ and 315◦, where the direction is defined as the ‘mean’ value
of the orientation angle for the respective lines. This is captured in features
11 and 12. From the lines and corners defined above, rectangles representing
structures such as windows are calculated. Corners can be used multiple times
to form rectangles. The number of rectangles is used in features 13 and 14.

2.3 Grey Levels

Buildings are often characterized by large homogeneous areas in their facade,
while nature images typically show larger variation. Other areas in images,
however, can also be homogeneous as for example roads, lawns, water and the
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sky. Features 15 to 24 are based on grey levels. We use an equally spaced 25-
bin grey level histogram, normalized by the image size and sum up the largest
bins. This type of feature works globally in the image. To find local areas
with homogeneous grey levels we search for the largest 4-connected areas with
the same grey levels as used for the 25-bin grey level histogram. The features
based on grey levels are:

(15) Largest value in grey level histogram.
(16) Sum of the 2 largest values in grey level histogram.
(17) Sum of the 3 largest values in grey level histogram.
(18) Sum of the 4 largest values in grey level histogram.
(19) Sum of the 5 largest values in grey level histogram.
(20) Largest 4-connected area.
(21) Sum of the 2 largest 4-connected areas.
(22) Sum of the 3 largest 4-connected areas.
(23) Sum of the 4 largest 4-connected areas.
(24) Sum of the 5 largest 4-connected areas.

Parameter Value Description

Θ1 20% Threshold for long lines in feature 6

Θ2 10% Threshold for long lines in feature 7

β1 20◦ Max. angle deviation for forming right-angled corners

β2 15◦ Angle tolerance for corner direction

µ1 2 pixels Maximum deviation in pixels when calculating straight lines

µ2 0.05 rad Maximum angle difference between lines that should be merged

µ3 2 pixels Maximum gaps between lines that should be merged

Table 1
Description of used parameters.

3 AdaBoost

AdaBoost is the abbreviation for adaptive boosting. It was developed by
Freund and Schapire [5] and has been used in diverse applications, e.g., as
classifiers for image retrieval [6], for ball tracking with soccer-robots [7], and
to classify laser scans for learning of places in indoor environments [8,9]. The
latter work provides a nice demonstration of the use of machine learning and
a set of generic features to transform sensor readings into human concepts.

The main purpose of AdaBoost is to produce a strong classifier by a linear
combination of weak classifiers, where weak means that the classification rate
has to be only slightly better than 0.5 (better than guessing). The principle
of AdaBoost is as follows (see [10] for a formal algorithm). The input to
the algorithm is a number, N , of positive (buildings) and negative (nature)
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examples. The training phase is a loop. For each iteration t, the best weak
classifier ht is calculated and a distribution Dt is recalculated. The boosting
process uses Dt to increase the weights of hard training examples in order to
focus the weak learners on the hard examples.

The general AdaBoost algorithm does not include rules on how to choose
the number of iterations T of the training loop. The training process can
be aborted if the distribution Dt does not change, otherwise the loop runs
through a manually determined number of iterations T . Boosting is known to
be not particularly prone to the problem of overfitting [10]. We used T = 30
for training and did not see any indications of overfitting when evaluating the
performance of the classifier on an independent test set.

To be able to handle feature arrays from the histogram data, we use a minimum
distance classifier, MDC. We use Dt to bias the hard training examples by
including it in the calculation of a weighted mean value for the MDC prototype
vector:

~ml,k,t =

∑

{n=1...N |yn=k}
~f(n, l)Dt(n)

∑

{n=1...N |yn=k} Dt(n)

where ~ml,k,t is the mean value array for iteration t, class k, and feature l and
yn is the class of the nth image. The features for each image are stored in
~f(n, l) where n is the image number. For evaluation of the MDC at iteration
t, a distance value dk,l(n) for each class k (building and nature) is calculated
as

dk,l(n) =
∥

∥

∥

~f(n, l) − ~ml,k,t

∥

∥

∥

and the shortest distance for each feature l indicates the winning class for that
feature.

4 Bayes Classifier

It is instructive to compare the result from AdaBoost with another classifier.
For this purpose we have used Bayes Classifier (see e.g. [11] for a derivation).
Bayes Classifier, or Bayes Optimal Classifier, BOC, as it is sometimes called,
classifies normally distributed data with a minimum misclassification rate.
The decision function is
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dk(~x) = ln P (wk) −
1

2
ln

∣

∣

∣

~Ck

∣

∣

∣ −
1

2
[(~x − ~mk)

T ~C−1

k (~x − ~mk)]

where P (wk) is the prior probability (here set to 0.5), ~mk is the mean vector

of class k, and ~Ck is the covariance matrix of class k calculated on the training
set, and ~x is the feature value to be classified.

Not all of the defined features can be used in BOC. Linear dependencies
between features give numerical problems in the calculation of the decision
function. Therefore normalized histograms can not be used, hence features 1,
2, 6, 7, and 8 were not considered. The set of features used in BOC was 3, 4,
9-15, 17, 20, 23. This set was constructed by starting with the best individual
feature (see Figure 3, Section 5.3) and adding the second best feature etc.,
while observing the condition value of the covariance matrices.

5 Experiment Set-Up

5.1 Image Sets

We have used three different sources for the collection of nature and building
images used in the experiments:

• Set 1 is taken by an ordinary consumer digital camera. The images were
taken over a period of several months in our intended outdoor environment.

• Set 2 consists of stored images from manually controlled runs with a mobile
robot, performed on two different occasions.

• Set 3 contains images downloaded from the Internet using Google’s Image
Search. For buildings the search term building was used. For nature images,
the search terms nature (15 images), vegetation (20 images), and tree (15
images), were used.

Table 2 presents the different sets of images and the number of images in each
set. Set 1, 2 and 3 are disjunctive in the sense that they do not contain images
of the same buildings or nature. The digital camera used in Set 1 was used
in order to collect images from a larger area than was practical when using
a mobile robot as in Set 2. Set 3 was collected in order to verify the system
performance with an independent set of images. The first images found by
Google with a minimum resolution of 240× 180 pixels containing a dominant
building or nature scenes were downloaded. Only images that directly applied
to the search term and were photos of reality (no arts or computer graphics)
were used. Borders and text around some images were removed manually.
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Fig. 1. Example of images used for training. The uppermost row shows buildings in
Set 1. The following rows show buildings in Set 2, nature in Set 1, and nature in
Set 2, respectively.

All images were converted to grey scale and stored in two different resolutions
(maximum side length 120 pixels and 240 pixels, referred to as size 120 and 240
respectively), enabling a comparison of the classification rate and robustness at
different resolutions. The comparatively low resolution challenges the system
with a rather difficult classification task and allows for fast computation of the
classifier. We further decided to investigate the classifier performance with low
resolution images so that the algorithm could later be applied to sub-windows
in a full image, e.g., for application on a mobile robot in order to communicate
the likely locations of buildings to a remote human operator. Examples of
images from Set 1 and 2 are shown in Figure 1.

Set Origin Area Buildings Nature

1 Digital camera Urban 40 40

2 Mobile camera Campus 66 24

3 Internet search Worldwide 50 50

Total number 156 114

Table 2
Number of collected images. The digital camera is a 5 Mpixel Sony (DSC-P92)
and the mobile camera is a Sony XC-999 camera module mounted on an iRobot
ATRV-Jr.
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5.2 Test Description

Four tests were defined for evaluation of our system. Test 1 shows whether
it is possible to manually collect training data with a consumer camera and
use this to train a classifier for the intended platform, the mobile robot. In
Test 2, the classifier is learned and tested with disjunctive subsets of images
from the same environment using both local image sets 1 and 2 together. Test

3 tests how well the learned model, trained with local images, extrapolates
to images taken around the world. Test 4 evaluates the performance on the
complete collection of images. It is the same as Test 2 but all three data sets
are used instead of only set 1 and set 2. Table 3 summarizes the test cases.
These tests have been performed with AdaBoost and BOC separately for each
of the two image sizes. For Test 2 and 4, a random function is used to select
the training partition and the remaining images were used for the evaluation
of the classifiers. This procedure was repeated Nrun times.

No. Nrun Train Set Test Set

1 1 1 2

2 100 90% of {1,2} 10% of {1,2}

3 1 {1,2} 3

4 100 90% of {1,2,3} 10% of {1,2,3}

Table 3
Summary of the tests described in the text (Nrun is the number of runs).

5.3 Analysis of the Training Results

The distribution Dt that is updated by AdaBoost controls the influence of
the training examples in the calculation of the weak classifiers. Therefore, a
multitude of different weak classifiers can be computed from the same features.
Figure 2 presents statistics on the usage of different features in Test 2. The
feature most often used for image size 240 is the orientation histogram (2).
For image size 120, features 2, 8, 13 and 14 dominate. Figure 3 shows how
each individual feature manages to classify images in Test 2. Several of the
histograms based on edge orientation are in themselves close to the result
achieved for the classifiers presented in the next section. Comparing Figure 2
and Figure 3 one can note that several features with high classification rates
are not used by AdaBoost to the expected extent, e.g., features 1, 3, 4, and 5.
This can be caused by the way in which the distribution ~Dt is updated. Because
the importance of correctly classified examples is decreased after a particular
weak classifier is added to the strong classifier, similar weak classifiers might
not be selected in subsequent iterations.

As a comparison to the test results presented in Section 6, the result obtained
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Fig. 2. Histogram describing the feature usage by AdaBoost in Test 2 as an average
of 100 runs, using image size 120 (upper) and 240 (lower).
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Fig. 3. Histogram of classification rate of individual features in Test 2 as an average
of 100 runs, image size 120 (upper) and 240 (lower).

on the training data using combinations of image sets is also presented in
Table 4.
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Sets Size Classifier Build. [%] Nat. [%] Total [%]

1 120 AdaBoost 100.0 100.0 100.0

BOC 100.0 100.0 100.0

1,2 120 AdaBoost 97.2 100.0 98.2

BOC 95.3 93.8 94.7

1,2,3 120 AdaBoost 89.7 94.7 91.9

BOC 86.5 94.7 90.0

1 240 AdaBoost 100.0 100.0 100.0

BOC 100.0 100.0 100.0

1,2 240 AdaBoost 100.0 100.0 100.0

BOC 98.1 100.0 98.8

1,2,3 240 AdaBoost 98.7 99.1 98.9

BOC 95.5 98.2 96.7

Table 4
Results on the training image sets in Table 2.

6 Results

Training and evaluation were performed for the tests specified in Table 3
with features extracted from images of both size 120 and 240. The results are
presented in Tables 5 and 6 respectively. The tables show the mean value of
the total classification rate, the standard deviation for tests 2 and 4 where
the training and test sets were selected randomly, and the mean value of
the classification rates for building images and nature images separately. The
results from AdaBoost and BOC were obtained with the same training and
testing data.

Test no. Classifier Build. [%] Nat. [%] Total [%]

1 AdaBoost 81.8 91.7 84.4

BOC 93.9 58.3 84.4

2 AdaBoost 93.0 91.8 92.6 ± 5.8

BOC 95.7 89.0 93.4 ± 5.5

3 AdaBoost 68.0 90.0 79.0

BOC 72.0 74.0 73.0

4 AdaBoost 86.6 89.8 87.9 ± 6.2

BOC 86.4 88.5 87.3 ± 6.0

Table 5
Results for Test 1-4 using images with size 120.

A classification rate of over 92% was found in Test 1 for image size 240. This
shows that it is possible to build a classifier based on digital camera images
that achieves very good results with images from a different camera on our
mobile robot, even though the corresponding image sets (Set 1 and 2) have
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Test no. Classifier Build. [%] Nat. [%] Total [%]

1 AdaBoost 89.4 100.0 92.2

BOC 95.5 87.5 93.3

2 AdaBoost 96.1 98.3 96.9 ± 4.3

BOC 98.1 95.7 97.2 ± 4.0

3 AdaBoost 88.0 94.0 91.0

BOC 90.0 82.0 86.0

4 AdaBoost 94.1 95.5 94.6 ± 3.8

BOC 94.8 93.4 94.2 ± 4.7

Table 6
Results for Test 1-4 using images with size 240.
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Fig. 4. Distribution of the 20 most frequently misclassified images from AdaBoost
(grey) and BOC (white), using image size 120 (upper) and 240 (lower).

structural differences, see Section 5.1.

Test 2 is the most interesting test for us. This uses images that have been
collected with the purpose of training and evaluating the system in the in-
tended environment for the mobile robot. This test shows high (and highest)
classification rates. For both AdaBoost and BOC they are around 97% using
the image size 240.

Figure 4 shows the distribution of wrongly classified images for AdaBoost
compared to BOC. It can be noted that for image size 120 several images
give both classifiers problems, while for image size 240 different images cause
problems.
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Test 3 is the same type of test as Test 1. Both train on one set of images and
then validate on a different set. Test 3 shows lower classification rates than
Test 1 with the best result for AdaBoost using image size 240. This is not
surprising since the properties of the downloaded images differ substantially
from the other image sets. The buildings in Set 3 are often larger and located
at a greater distance from the camera. The same can be noted in the nature
images, where Set 3 contains a number of landscape images that do not show
close range objects. The conclusion from this test is that the classification still
works very well and that AdaBoost generalizes better than BOC.

Test 4 is the same type of test as Test 2 but with a larger and more diverse
set of images. Accordingly the classification rate is lower for Test 4, especially
for image size 120. On closer inspection, it was found that disproportionately
many of the misclassified images were from Set 3 (Internet). For both image
sizes 60% of the misclassified images came from Set 3.

To investigate the scale invariance we trained two classifiers as in Test 2 with
images of size 120 and evaluated them with images of size 240 and vice versa.
The result is presented in Table 7 and should be compared to Test 2 in Tables
5 and 6. The conclusion from this test is that the learned classifiers have scale
invariant properties over a certain range and that AdaBoost performs substan-
tially better than BOC in this respect, which again demonstrates AdaBoost’s
better extrapolation capability.

Train Test Classifier B. [%] N. [%] Total [%]

120 240 AdaBoost 94.2 96.7 95.1 ± 4.2

BOC 93.0 94.3 93.5 ± 5.3

240 120 AdaBoost 95.1 90.8 93.6 ± 6.0

BOC 100.0 44.8 80.5 ± 6.7

Table 7
Results for Test 2 using training with images sized 120 and testing with images
sized 240 and vice versa.

7 Virtual Sensor For Building Detection

We have used the learned building detection algorithm to construct a virtual
sensor. This sensor indicates the presence of buildings in different directions
related to a mobile robot. In our case we let the robot perform a sweep with
its camera (±120◦ in relation to its heading) at a number of points along its
track. The images are classified into buildings and ‘nature’ (or non-buildings)
using AdaBoost trained on set 1. The experiments were performed using a
Pioneer robot equipped with GPS and a camera on a PT-head. Figure 5 shows
the result of a tour in the Campus area. The blue arrows show the direction
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Fig. 5. Classification of images used as a virtual sensor pointing at the two classes
(blue arrows indicate buildings and white lines non-buildings).

towards buildings and the white lines point toward non-buildings. Figure 6
shows an example of the captured images and their classes from a sweep with
the camera at the first sweep point (the lower left sweep point in Figure 5).
This experiment was conducted with yet another camera 3 and during winter,
and the result was qualitatively found to be convincing. Note that the good
generalization performance of AdaBoost is further demonstrated by the fact
that the classifier was trained on images taken in a different environment and
season.

8 Conclusions

We have shown how a virtual sensor for pointing out buildings along a mobile
robot’s track can be designed using image classification. Virtual sensors relate
robot sensor readings to a human concept. They are applicable, for example,
when semantic information is necessary for communication between robots and
humans or for building a semantic map. For these cases a limited number of
virtual sensors are needed. The suggested method using machine learning and
generic image features will make it possible to extend virtual sensors to a range
of other important human concepts such as doors, cars and trees. To handle
these new concepts, features that capture their characteristic properties should
be added to the present feature set. Apart from that, the method suggested
in this paper does not have to be modified to add new human concepts.

Two classifiers intended for use on a mobile robot using vision to discriminate
buildings from nature were evaluated. The results from the evaluation show

3 ImagingSource DFK 41F02 digital camera
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Fig. 6. Example of one sweep with the camera. The blue arrows point at images
classified as buildings and the red lines point at non-buildings.

that high classification rates can be achieved, and that Bayes classifier and
AdaBoost have similar classification results in the majority of the performed
tests. The number of wrongly classified images is reduced by about 50% when
the images with side length 240 pixels are used instead of those with 120
pixels. The learned classifiers showed scale invariant properties over a cer-
tain range, demonstrated by cross tests where we trained the classifier with
one image resolution and tested on the other resolution. The benefits gained
from AdaBoost include the highlighting of strong features and its improved
generalization properties over the Bayes classifier.
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