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Abstract�Distortion of the OCDMA auto-

correlation width by fiber chromatic dispersion can 

severely influence incoherent OCDMA transmission 

based on picosecond multi-wavelength pulses. To the 

best of our knowledge, we report for the first time the 

use of SOA for manipulation of the OCDMA auto-

correlation consisted of multi-wavelength code 

carriers in order to provide needed compensation. 

The OCDMA transmission system was based on two- 

dimensional wavelength-hopping time-spreading (2D-

WH/TS) codes with 8 ps multi-wavelength pulses as 

the code carriers. Different techniques deploying 

SOA for auto-correlation width adjustment were 

investigated and their effectiveness was 

subsequently verified on the OCDMA transmission 

through a 17 km long fiber optic testbed connecting 

Strathclyde and Glasgow Universities.  

 
Index Terms�Incoherent OCDMA, chromatic 

dispersion, chirp, gain dynamics, semiconductor 

optical amplifier. 

 

I. INTRODUCTION 

hromatic dispersion management is important for high 

data rate incoherent fiber-optic communication [1] but 

is essential for incoherent OCDMA transmission based on 

schemes using multi-wavelength picosecond code carriers 

[2,3]. As these code carrier pulses are short, transmitted 

codes will be strongly affected by CD even if the 

transmission distance will change by a few meters. One 

example is the addition of an optical fiber in order to 

relocate the OCDMA transmitter or receiver [2]. If CD is not 

properly implemented, the recovered OCDMA auto-

correlation by an OCDMA decoder will show temporal 

skewing amongst individual wavelength code carriers 

thereby severely impacting OCDMA system performance 
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[3]. The impact of CD on 2D-WH/TS codes was analyzed in 

[4]. It has been shown that the CD related pulse distortion 

and related time skewing will cause undesirable broadening 

of recovered OCDMA auto-correlation. The auto-correlation 

surrounding cross-correlation will be also impacted by CD 

leading to reduced auto-to-cross-correlation ratio. This in 

turn will increase the multi-access interference noise and 

crosstalk leading to performance degradation and a drastic 

reduction in the number of simultaneous users [4]. To fully 

mitigate the CD impact on the OCDMA system would 

therefore require addressing both, auto and cross 

correlation compensations.   

To mitigate CD a number of CD compensation techniques 

have been demonstrated using dispersion shifting fibers 

(DSF) [5], fiber Bragg gratings (FBG) [6], planar lightwave 

circuits (PLC) [7], virtually imaged phased arrays (VIPA) 

[8], and arrayed waveguide gratings (AWG) [9]. These 

techniques are based on different approaches:  

 � PLC technique uses a thermo-optic phase control 

consisting of Mach-Zehnder interferometers [7]. 

 � In VIPA, a quadratic phase distribution is used to 

achieve dispersion compensation between -1006 ps/nm to 

+834 ps/nm. 

 � In AWG, a lens is deployed in the middle of a double-

AWG structure and dispersion is controlled through the 

strength of the parabolic phase signature [9].  

In a number of existing techniques the insertion loss 

poses limitations [8] or the compensation range is affected 

by an intra-channel third order dispersion [6].  

A Semiconductor Optical Amplifier (SOA) was also 

investigated for the chromatic dispersion compensation 

(CDC) of a data transmission which uses a single 

wavelength as the data carrier [12]. The advantage of using 

SOA is that, it offers a convenient tunable approach to CD 

compensation [10-13]. The concept behind using an SOA for 

distorted OCDMA auto-correlation width adjustment is 

based on exploiting refractive index and gain changes in a 

biased SOA [12,14,15]. Such changes can be introduced by a 

variety of ways: 

• by varying the SOA bias current, 

• through an SOA gain depletion,  

• by injecting an optical continuous wave (cw) called 

continuous wave holding beam (CW/HB) together with data 

Managing Dispersion Affected

OCDMA Auto-correlation Based on 

PS Multi-wavelength Code Carriers 

Using SOA 

Md Shakil Ahmed, Mohamed S. Kh. Abuhelala and Ivan Glesk 

C 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

2

signal at the SOA input or  

• by using an optical pulse stream called an Optical 

Pulse Holding Beam (for short OP/HB).  

The above will result in SOA’s refractive index changes 

[14]. Now, the interaction between the chirp triggered by 

these SOA changes and the incoming data pulses affected 

by CD can be exploited for managing CD effects [16].  

To the best of our knowledge, we report for the first time 

an experimental investigation of the possibility of using 

SOA to mitigate the effect of CD on the 2D-WH/TS OCDMA 

auto-correlation width resulted from decoding two-

dimensional wavelength-hopping time-spreading (2D-

WH/TS) codes based on picosecond multi-wavelength 

carriers. The approach was applied to the recovered 

OCDMA auto-correlation of an incoherent OCDMA system 

based on two dimensional wavelength-hopping time-

spreading codes, with 8 ps multi-wavelength pulses as code 

carriers. 

 

II. EXPERIMENTAL SETUP 

A 17 km-long OCDMA testbed as shown in Fig. 1 was 

used to study the effectiveness of an SOA for simultaneous 

multi-wavelength CD compensation. This was for the 

transmission of an incoherent OCDMA system based on 

short multi-wavelength code carriers (four wavelengths, 

each pulse featuring 8 ps Full Width at Half Maximum 

(FWHM)).  

 

 
Fig. 1. OCDMA testbed to evaluate SOA CDC capabilities, OSC-

optical supercontinuum, OC-optical circulator, EDFA-erbium doped 

fiber amplifier, BPF-tunable bandpass filter, SOA-semiconductor 

optical amplifier, OSA-optical spectrum analyzer, SO-sampling 

oscilloscope, ODL-optical delay line, Att-optical attenuator, ps ML 

Laser-picosecond erbium doped fiber mode-locked laser, CW HB-

continuous wave holding beam, OP/BH-optical pulse holding beam. 

 

The data traffic was generated by four OCDMA 

transmitters. After propagation in the testbed, it was 

presented to an OCDMA receiver which was matched to the 

USER-1 encoder, producing a code-weight four OCDMA 

auto-correlation peak. The OCDMA used 2D-(4,47) 

wavelength-hopping time-spreading (WH/TS) prime codes 

[21]. WH/TS prime codes is a class of two dimensional (2D: 

wavelength-time) incoherent (direct-detection), 

asynchronous codes that support wavelength hopping 

within time-spreading codes over Galois field of prime 

numbers with zero auto-correlation sidelobes (for ease of 

self-synchronization) and periodic cross-correlation 

functions of at most one (for minimal multiple-access 

interference) [21].   

Each code consisted of four wavelength carriers based on a 

100 GHz ITU grid; ǌ1 = 1551.72 nm, ǌ2 = 1550.92 nm, ǌ3 = 

1552.52nm, ǌ4 = 1550.12 nm. These were positioned into 47 

time chips (each of 8 ps duration) to create 2D-(4,47) WH/TS 

USER-1 to USER-4 codes. Wavelength carriers were 

generated by spectral slicing of a 3.2 nm wide optical 

supercontinuum (OSC). OSC resulted from a compression of 

a 1.8 ps FWHM laser pulse generated by an Erbium doped 

fiber mode-locked laser (MLL) (PriTel Inc.) running at 2.5 

Gb/s. Using a 1×4 power splitter, OSC was supplied into 

four OCDMA code generators based on FBG encoders (OKI 

Industries, Japan) each producing a unique 2D-(4,47) 

WH/TS OCDMA code. Each code uses all four wavelengths 

by positioning them accordingly into chips. Chips occupied 

by the USER-1 through USER-4 codes are (1-ǌ2, 21-ǌ4, 24-

ǌ1, 39-ǌ3); (1-ǌ1, 17-ǌ2, 31-ǌ3, 47-ǌ4); (1-ǌ3, 11-ǌ1, 29-ǌ4, 37-ǌ2) 

and (1-ǌ4, 13-ǌ3, 23-ǌ2, 43-ǌ1), respectively. Each code was 

then passed through the corresponding data modulator. 

Data traffic from all users was then combined by a 4 × 1 

power combiner, re-amplified by an 18 dBm EDFA-1 and 

launched into a 17 km long bidirectional fiber link 

connecting The University of Strathclyde and Glasgow 

University. The link was then compensated for CD by using 

a commercially available dispersion compensating fiber 

module (DCM). The matching DCM was selected based on 

the testbed link length determined from OTDR 

measurements. Both, BPF-1 and BPF-2 are 3.2 nm wide 

tunable bandpass filters with central wavelength set to 

1551.32 nm to ensure all four 2D-WH/TS OCDMA code 

wavelength carriers are passed, and block ASE from EDFA-

2 and SOA, respectively. 

 

III. MANAGING COMPENSATION OF OCDMA AUTO-

CORRELATION BY SOA 

First we will discuss the operation of the SOA based 

compensation. SOA we used was Kamelian OPA-20-N-C with 

the gain recovery time τG = 75 ps. At the 2.5 Gb/s data rate, 

the User-1 auto-correlation peaks are separated by τACsepar = 

400 ps. The decoding of the User-1 own 2D-WT/TS code 

produces a User-1 auto-correlation with the code weight w 

(no auto-correlation side-lobes) and the cross-correlation 

bound to one (if also simultaneous users are transmitting) 

[21]. If USER-2 to USER-4 are also transmitting (i.e., the 

number of simultaneous users is N = 4), due to the User-1 

decoding process the cross-correlation surrounding the 

decoded User-1 auto-correlation peak will be represented by 

12 (w × (N-1)) codes carrier pulses separated from each 

other by τCCsepar ~T/12 = 33 ps (we have assumed an even 

cross-correlation spreading). Note that τCCsepar is much 

smaller than the SOA recovery (τG = 75 ps). Now, when the 

auto-correlation peak surrounded by the cross-correlation 

enters the SOA compensator, only the highest intensity 

auto-correlation peak can significantly influence the SOA 

gain dynamics via full or partial depletion of its gain. 
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in Fig. 6. It can be seen that more compression (i.e. smallest 

R) was achieved when OP/HB entering the SOA was 

overlapped with the USER-1 OCDMA auto-correlation peak 

(0 ps delay). This is because the combined optical peak 

power from both overlapping pulses (relative delay equal to 

zero) maximizes the SOA gain depletion, and thus creates 

preferred conditions for the compression by SOA. 

 

 
Fig. 6. Coefficient R vs relative delay between OP/HB and the 

USER-1 OCDMA auto-correlation, case when I = 50 mA, OP/HB 

optical power was 12.9 mW and ASE from EDFA-2 was present (no 

BPF-1 present).  

 

In addition, instead of using a locally generated OP/HB 

for controlling the SOA gain dynamics, an all-optical clock 

recovery from the incoming OCDMA traffic [20] can be 

implemented for OP/HB generation. This will also help to 

eliminate a possible timing jitter between locally generated 

OP/BH and recovered OCDMA auto-correlation. 

 

IV. CONCLUSION 

We have investigated the SOA for its use to compensate the 

OCDMA auto-correlation broadening/skewing due to the 

fiber link chromatic dispersion. Our investigation was 

applied to an incoherent OCDMA transmission system 

based on 2D-(4,47) WH/TS OCDMA codes with multi-

wavelength picosecond pulses as code carriers. The results 

were obtained for different SOA control parameters: (1) 

varying drive current, (2) changing the power of CW and 

optical pulses used as holding beams (CW/HB and OP/HB), 

(3) presence of ASE from EDFA at SOA input, and (4) the 

role of a relative delay between OP/HB and the OCDMA 

auto-correlation at the SOA input. We have also shown that 

if the compensation is applied directly to the recovered 

OCDMA auto-correlation, only a single control pulse per the 

data bit is needed to simultaneously affect all four 

wavelength code carriers. To conduct our investigations we 

used a 17 km long fiber-optic testbed connecting The 

University of Strathclyde and Glasgow University. We have 

shown that the back-to-back 10 ps FWHM OCDMA auto-

correlation composed of multi-wavelength picosecond code 

carriers, when distorted by a 17 km long propagation in the 

partially compensated fiber optic testbed, can be either 

compressed down to or further broadened to values between 

8 and 21 ps by controlling the SOA chirp. This makes the 

demonstrated SOA approach to OCDMA auto-correlation 

compensation an attractive option for implementation in 

incoherent OCDMA systems based on ps multi-wavelengths 

code carriers. To fully mitigate the impact of CD on the 

OCDMA system performance would also require addressing 

cross-correlation compensation by using SOA with its gain 

recovery time shorter than the chip-width.   
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