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Highlights

• Physical insight into the accuracy of iLES methods for turbulent boundary

layers.

• Order of accuracy in iLES affects turbulence anisotropy and symmetry.

• Highest anisotropy correlates with maximum Reynolds stress and mini-

mum flatness.

• High-order iLES comparable to DNS using coarser resolution.
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Physical insight into the accuracy of finely-resolved

iLES in turbulent boundary layers.

Konstantinos Ritos1,∗, Ioannis W. Kokkinakisa, Dimitris Drikakisa

aUniversity of Strathclyde, Glasgow, G1 1XJ, UK

Abstract

This paper investigates the numerical accuracy of implicit Large Eddy Sim-

ulations (iLES) in relation to compressible turbulent boundary layers (TBL).

iLES are conducted in conjunction with Monotonic Upstream-Centred Scheme

for Conservation Laws (MUSCL) and Weighted Essentially Non-Oscillatory

(WENO), ranging from 2nd to 9th-order. The accuracy effects are presented

from a physical perspective showing skewness, flatness and anisotropy calcu-

lations, among others. The order of the scheme directly affects the physical

representation of the TBL, especially the degree of asymmetry and anisotropy

in the sub-layers of the TBL. The study concludes that high-order iLES can

provide an accurate and detailed description of TBL directly comparable to

available DNS and experimental results.

Keywords: iLES, High-Order, TBL, Supersonic

1. Introduction

Design processes in engineering applications require satisfying various con-

straints in order to adhere to design quality standards. Through careful planning

and availability of instrumentation/apparatus that conform to the necessary

specifications, experimental results can considerably assist during the design5

stage. However, most experiments are deemed cumbersome and require consid-

erable time to plan, execute and later analyse. This is particularly true when

∗Corresponding author
Email address: konstantinos.ritos@strath.ac.uk (Konstantinos Ritos)
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an iterative process or optimization approach is required early on in the de-

sign phase. Furthermore, availability of diagnostic instrumentation limits the

amount of useful information that can be extracted.10

Computational methods offer the possibility of a high turnover of results

and ample amounts of available data, allowing for a plethora of variations to

the initial design of a product to be investigated. They are increasingly becom-

ing more popular and widely used from simple low speed flows to hypersonic

aerodynamics and heat transfer studies of complex geometries [1]. However,15

they are still treated with some caution and due care as the solutions provided

can contain significant inaccuracies. For example in fluid flow simulations these

are caused mostly by the number of assumptions associated with turbulence

modelling as well as the excessive numerical dissipation of schemes particularly

when simulations are performed on coarse grids.20

In an effort to combine the high fidelity of Direct Numerical Simulation

(DNS) with the computational efficiency of classical Large Eddy Simulation

(LES) led to the development of implicit LES (iLES). This concept emerged

from observations reported by Boris et al. [2] and has been applied successfully

to model several complex flows in engineering and other fields. The use of iLES25

in free and wall-bounded flows has been justified by Fureby and Grinstein [3],

while a validation of the method through theoretical analysis has been presented

by Margolin et al. [4]. In incompressible flows, it is possible to develop an op-

timised stencil with regard to numerical dissipation [5], however, in the case

of compressible flows the numerical method should be monotonic with respect30

to the thermodynamics quantities. More recently, Kokkinakis and Drikakis [6]

presented iLES results of a weakly compressible turbulent channel flow, conclud-

ing that iLES can achieve near DNS accuracy while utilising significantly less

computational resources. At the same time, and independently of [6], Poggie

et al. [7] applied compressible iLES to study TBL flows resulting in the same35

conclusions.

In this paper, the accuracy of high-order, shock-capturing schemes along

with any caveats, are investigated in conjunction with iLES to near-wall tur-

3
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bulent boundary layer (TBL) flows. The effects of numerical dissipation for

schemes with accuracy ranging from 2nd to 9th-order are investigated in su-40

personic TBL. The accuracy of each iLES variant is scrutinised through the

calculation of higher-order statistics, i.e. skewness, flatness, and their direct

comparison with available DNS and experimental data. The results show that

higher order iLES schemes are particularly well suited for simulating TBL and

also highlight their capability to provide a physical insight in near-wall super-45

sonic flows.

2. The Simulation Case

The in-house block-structured grid code CNS3D is used to solve the Navier-

Stokes equations using a finite volume Godunov-type method for the convec-

tive terms. The inter-cell numerical fluxes of the convective terms are calcu-50

lated by solving the Riemann problem using the reconstructed values of the

primitive variables at the cell interfaces. The reconstruction stencil is a one-

dimensional swept unidirectional stencil. The Riemann problem is solved using

the so-called Harten, Lax, van Leer, and (the missing) Contact (HLLC) approx-

imate Riemann solver [8, 9]. Two different flux limiting approaches have been55

implemented in conjunction with the HLLC solver, namely the: (i) Monotone

Upstream-centred Schemes for Conservation Laws (MUSCL) and (ii) Weighted-

Essentially-Non-Oscillatory (WENO). Titarev and Toro [10] investigated the

accuracy of WENO schemes with HLLC , but not within the iLES framework.

The flow physics are analysed with three variations of the iLES approach,60

with their accuracy ranging from 2nd to 9th order. In particular, these are

the MUSCL piecewise linear 2nd-order limiter [11] (henceforth labeled M2), the

MUSCL 5th-order limiter [12] (henceforth labeled M5), and the WENO 9th-

order scheme [13] (henceforth labeled W9). The viscous terms are discretised

by a second-order central scheme. The solution is advanced in time by using65

a five-stage (fourth-order accurate) optimal strong-stability-preserving Runge-

Kutta method [14]. Further details of the numerical aspects of the code are

4
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L u∞ T∞ M P∞

0.061 m 588 m/s 170 K 2.25 23.8 kPa

ρ∞ Tw/T∞ µ∞ Tu ReL

0.488 kg/m3 1.9 1.167× 10−5 Pa s 3% 1.5× 106

Table 1: Simulation parameters. u∞, T∞, M , P∞, ρ∞, µ∞ are the freestream velocity,

temperature, Mach number, pressure, density and viscosity, respectively. Tw is the wall

temperature, Tu is the turbulence intensity at the inlet and ReL is the Reynolds number

based on the freestream properties and the length of the plate (L).

given in [6] and [15] and references therein.

The simulation is set up similarly to that used in the study of Poggie et al. [7]

for ease of comparison with other numerical and experimental data produced70

under similar flow conditions. A supersonic flow over a flat plate at Mach

number M = 2.25 that is fully turbulent in the region close to the outlet is

considered. Based on the freestream properties and the length of the plate (L),

the incoming flow has a Reynolds number of 1.5×106. Further flow parameters

are given in Table 1.75

Periodic boundary conditions are used in the spanwise (z) direction. In the

wall-normal (y) direction, a no-slip isothermal wall (with a temperature Tw

of 323 K) is used similar to [16]. High-order implementation of the boundary

conditions requires fictitious cells to be added inside the wall. The velocity

components on these cells are linearly extrapolated from the computational80

cells inside the domain. The temperature is linearly extrapolated using the

specified wall temperature, while the density is calculated from the equation of

state considering zero pressure gradient normal to the wall. Supersonic outflow

conditions are imposed at the outlet, while far-field conditions are applied on the

upper boundary opposite of the wall. A synthetic turbulent inflow boundary85

condition is used to produce a freestream flow with a superimposed random

turbulence.

The synthetic turbulent inflow boundary condition is based upon the digital

5
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filter (DF) method documented in [17, 18, 19, 20, 21] and, specifically validated

in the framework of the present iLES code CNS3D in [20, 21]. According to90

DF, instead of using a white-noise random perturbation at the inlet, energy

modes within the Kolmogorov inertial range scaling with k−5/3, where k is

the wavenumber, are introduced into the turbulent boundary layer. No large-

scale energy modes scaling with k4 are introduced. A cutoff at the maximum

frequency of 50 MHz is applied, since the finest mesh used in this study would95

under-resolve higher values. The turbulence intensity at the inlet (Tu) is set

as ±3% of the intensity of the freestream velocity. This perturbation has been

found to be sufficient to trigger bypass transition and turbulence inside the

simulation domain (Fig. 1).

The number of mesh points and the mesh spacing are given in Table 2. The100

iLES calculations are performed on relatively fine meshes but still coarser than

required for DNS [7, 22]. This is highlighted in Table 2, where information

about the meshes used in previous DNS studies is included for comparison and

validation. The present mesh spacing (∆y) is scaled using the conventional

inner variable method ∆y+ = uτ∆y/νw, where uτ =
√

(τw/ρw) is the friction105

velocity, νw the near wall kinematic viscosity, τw the near wall shear stress, and

ρw the near wall density.

nx ny nz ∆x+ ∆y+w ∆y+e ∆z+

iLES 2591 277 139 9.06 0.497 6.26 8.53

DNS1[22] 1920 171 200 4.95-5.22 0.7 4.72-6.51 4.27-4.51

DNS2[22] 4160 221 440 5.58-5.86 0.7 9.42-12.35 4.75-4.99

DNS3[7] 22548 1277 1131 1.0 0.9 0.9 1.0

Table 2: Mesh parameters; nx, ny and nz are the number of mesh points. The ‘+’ sign denotes

dimensionless mesh spacing, as defined for ∆y+ in the text. The subscripts ‘w’ and ‘e’ denote

wall and boundary layer edge values, respectively.

In the next section, coarser meshes have been used to assess mesh conver-

gence. However, the main analysis into the physical insight of the methods has

6
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Figure 1: Iso-surfaces of Q-criterion, Q = 2(U∞/δ0)2, coloured by Mach number for all iLES

variants. Only a limited portion of the flow domain is shown on the left and zoom in the final

10% of the domain on the right.

been conducted by using the finest mesh resolution (see Table 2), which can110

be considered as an under-resolved DNS. Following this approach we were able

to discern that even at finer mesh resolutions the results are dependent on the

order of the scheme. Numerical stability issues associated with the W9 scheme

at finer mesh resolutions require further investigation by performing resolved

DNS. This is beyond the scope of the present study.115

7
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All of the calculations shown below are performed at the end of the plate in

the fully turbulent region, where the boundary layer has the properties presented

in Table 3. Various definitions of the Reynolds number are used in Table 3, i.e.,

Reθ = ρ∞U∞θ/µ∞, Reτ = ρwuτδ/µw, and Reδ2 = ρ∞U∞θ/µw, to simplify the

comparison of the present results with those of past and future publications. The120

momentum and boundary layer thicknesses are denoted by θ and δ, respectively.

The flow statistics at the calculation point are computed by averaging in time

over three flow cycles and spatially in the spanwise direction. The statistical

convergence of the simulations based on the Standard Error of the Mean (SEM),

is less than 2%. The total simulation time for each case is equal to six flow125

cycles, with the first three omitted from the calculations for statistical purposes.

Statistical convergence in the calculations has been achieved and averaging over

a longer period would not adversely impact on the accuracy. Furthermore,

comparing the present results against theoretical models, DNS and experiments

tested the accuracy of iLES.130

Reθ Reτ Reδ2 H M

W9 2170.0 414.0 1280.6 3.56 2.25

M5 1806.2 377.1 1065.9 3.51 2.25

M2 1593.8 344.6 940.5 3.72 2.25

DNS1[22] 1122.0 251.0 715 3.08 2.0

DNS2[22] 2377.0 497.0 1516.0 2.98 2.0

DNS3[7] - - 2000.0 - 2.25

Exp1[23] 4700.0 1050.0 2800 3.46 2.32

Exp2[24] 2400.0 501.0 1200.0 5.49 2.9

Exp3[25] 5100.0 1080.0 3100.0 2.00 2.28

Table 3: Boundary layer properties at the point of analysis. The same properties from previous

DNS and experimental studies are also presented. The compressible form of the momentum

thickness (θ) has been used. H = δ∗/θ is the shape factor, where (δ∗) is the displacement

thickness calculated for compressible flows.

8
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3. Physical Insight into Numerical Accuracy

The assessment of the various iLES approaches begins with basic flow statis-

tics for which a plethora of theoretical, numerical and experimental data are

available. A characteristic example is the van Driest velocity profile of the

TBL,

uV D =

∫ u+

0

√

ρ

ρw
du+ (1)

where the superscript ‘+’ denotes the usual wall scaling u+ = u/uτ . The nor-

malised van Driest velocity profile by its value on the edge of the boundary layer

is presented in Fig. 2 along with previous DNS calculations and experimental

measurements. Previous publications [22, 26] have shown that for adiabatic135

walls a satisfactory collapse of the data is expected in the overlap layer, and

also in the viscous sublayer. Small variations are expected for different Reynolds

number and all present iLES calculations should appear in-between the DNS

calculations of Pirozzoli et al.[22]. Only the high-order W9 satisfies this expec-

tation and it also perfectly collapses to previous experimental measurements140

[24, 25].

The iLES results presented in Fig. 2 and in all of the following figures are

from simulations utilising the same mesh and simulation parameters, restricting

the source of any observable differences to the accuracy of the iLES variant. To

support this argument and to highlight the absence of mesh resolution effects

Fig. 3a shows the van Driest transformed velocity profiles for different mesh

resolutions. The results on mesh G3, which consists of ∼ 36 million points,

differ by less than 2% from those obtained by the finest mesh (G4) consisting of

∼ 100 million points. The average error of the present simulations in comparison

to the DNS results of Pirozzoli et al.[22] is calculated using the results from Figs.

2 and 3a,

εAvg =
1

N

N
∑

i=1

‖ūDNS,i − ūiLES,i‖
ūDNS,i

, (2)

where N is the number of points used in the calculation of the average error.

The error bars in Fig. 3b show the standard deviation of the error from its

9
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Figure 2: Comparison of van-Driest-transformed mean velocity with reference DNS and ex-

perimental data (see table 3).

average value in various points. Both the mesh size and the iLES order signif-

icantly affect the computational cost of the simulation. For each iLES variant145

the computational cost is normalized by the computational time of W9 on the

coarsest mesh (G1). The W9 simulations on the coarser mesh G2 (∼ 10.5 million

mesh points) can achieve similar accuracy to the finest mesh (G4) simulations

of M5 and M2, thus reducing the computational cost by approximately eight-

fold. An extrapolated estimate of the computational cost that a DNS simulation150

would require is made based on the results of Fig. 3b using the W9 and found

that the present iLES simulations are ∼ 5 times less computationally expensive.

Other physical features of the TBL can be studied along with the effect

of the accuracy of the method on them. For example the attached-eddy hy-

pothesis [27, 28] predicts that logarithmic layers are formed for the variance of

attached variables accompanying an equilibrium layer. Perry & Li [29], based

on the aforementioned hypothesis, proposed that the variance of the velocity

10
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Figure 3: (a) Effect of mesh refinement on accuracy, van-Driest-transformed mean velocity,

all results are from simulation utilising the W9 scheme. (b) Accuracy and computational

cost comparison between different iLES variants and meshes used. The DNS simulation of

Pirozzoli et al.[22] (see tables 2 and 3) has been used as the reference, error bars show the

standard deviation of the values from the mean.
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fluctuations should scale as

u
′2
i

u2
τ

= Bi −Ailog(y/δ)− V (y+), (3)

where u′

i can be any of the fluctuating velocity components (u′, v′, or w′),

Bu = 2.39, Au = 1.03, Bw = 1.20. Aw = 0.475, while V (y+) accounts for

viscous corrections. The Reynolds normal and shear stresses τij = ρu′

iu
′

j/(ρwu
2
τ )155

are a common way to present the fluctuating velocity statistics (Figs. 4 and 5).

The two MUSCL variants of iLES significantly over-predict the τuu (Fig. 4a)

especially the peak region in the buffer zone of the TBL. However, the highest

order iLES (W9) has a very good agreement with all previous DNS results up

to about y+ ≈ 20 where the Reynolds similarity holds [30]. Further away from160

the wall it is typical to observe a strong dependence on Reynolds number for

results presented in inner scaling. This can explain the observed differences in

the logarithmic region between the various results because the local Reynolds

number is not equal. It is also notable that W9 is the only iLES variant that

produces the correct scaling of τuu in the logarithmic region according to the165

quantitative prediction of Perry & Li [29] (Eq. 3 with V = 0).

The effect of the iLES order is also noticeable in the calculation of τvv where

the low order schemes significantly under-predict it in the whole range of the

boundary layer (Fig. 4b). This observation can be associated with unresolved

turbulent scales that produce the small near-wall fluctuations. The W9 results170

along with the previously published DNS show a trend to Reynolds similarity

for y+ < 40. For higher values of y+, the Reynolds number dependence becomes

obvious.

In the presentation of τww (Fig. 5a) the accuracy of the iLES affects only the

logarithmic region, where the two MUSCL schemes under-predict the value of175

the normal Reynolds stress. For distances up to y+ ≈ 30 all simulations confirm

the Reynolds independence. The present results of normal Reynolds stresses

support the argument of Pirozzoli et al. [22] that turbulence dynamics over the

whole TBL have an incompressible behaviour because the present observations

agree very well with those made in previous publications of incompressible TBL180

12
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Figure 4: Comparison of Reynolds normal stresses with reference DNS and experimental data

(see table 3). In 4a the quantitative scaling prediction by Perry & Li (1990) [29] is also

included.

13



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

[30].

Regarding τuv in Fig. 5b, the high-order schemeW9 is in excellent agreement

with the experimental measurements and previous DNS in the viscous sublayer

as well as in the outer layer. The lower-order MUSCL schemes fail to achieve the

same levels of accuracy in the same regions. The minimum value is in the buffer185

region around y/δ = 0.1. In that occasion the two MUSCL schemes under-

predict the trough value, while W9 slightly over-predicts it. In the logarithmic

region (0.2 < y/δ < 0.5) all the iLES schemes deviate from the DNS and

experimental results, probably due to the mesh resolution in that region.

The effect of the iLES order on the physical representation of the TBL is190

further analysed by examining the skewness (Su = u′3/u′2
1.5

) and flatness (or

Kurtosis) (Fu = u′4/u′2
2
) of the streamwise velocity fluctuations, and similarly

for the normal (v) and spanwise (w) components. The skewness or third moment

is a measure of the asymmetry of the probability distribution of u′, while flatness

is the fourth moment that shows the frequency of events far from the mean value195

[31]. A value of skewness around zero and a value of flatness around 3 indicate a

Gaussian or symmetric probability distribution function. High values of flatness

indicate a highly intermittent flow. It is expected that close to the wall and

in the viscous sublayer the probability distribution of the streamwise velocity

fluctuations to be positively skewed, independent of the Reynolds number [22,200

32, 33].

This behaviour is verified in Fig. 6a where the present iLES results are

compared with previous DNS and experimental data. Flatness (Fig. 6b) is also

over the Gaussian limit due to the intermittent character of turbulence in the

near wall region. Skewness and flatness show a Reynolds number independence205

in the viscous sublayer and up to the log law region. In the buffer region the

minimum flatness value is observed at the same location as that for the zero-

crossing skewness (y+ ≈ 10) equivalently to the observation made by Österlund

& Johansson [34]. At the same y+ position the maximum normal Reynolds

stress τuu is also observed, which verifies the experimental observation of Ueda210

& Hinze [35].

14
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Figure 5: Comparison of Reynolds normal and shear stresses with reference DNS and experi-

mental data (see table 3). In 5a the quantitative scaling prediction by Perry & Li (1990) [29]

is also included.
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Further away from the wall and in the logarithmic region of the TBL, turbu-

lence returns to symmetry with Su ≈ 0 (but negative) and Fu ≈ 3 (Fig. 6). The

lower order MUSCL schemes predict a more asymmetric behaviour in contrast

to W9 and previous numerical and experimental data. Close to the bound-215

ary layer edge large negative values of skewness and positive values of flatness

are observed. This suggests strong intermittency in this region dominated by

small negative values of u′, with infrequent but intense positive values. The W9

scheme predicts with better accuracy the position of the highest asymmetry

when compared to the MUSCL schemes and also providing the best accuracy220

over the whole boundary layer. Previous simulations conducted by the authors

have shown that the mean flow quantities are not affected by the accuracy of the

viscous terms discretisation. However, it still remains to investigate the effects

of the discretisation of the viscous terms on high-order statistics, and this will

be part of a future study.225

The fluctuations of the normal component of the velocity are expected to

be less skewed but with more rare events that increase intermittency. This is

mirrored in the results shown in Fig. 7 where Sv is around zero up to the

logarithmic layer while Fv has values greater than 3 up to the same point. M2

predicts positive values of skewness, while M5 oscillates around zero and W9230

has mostly negative ones indicating a correlation of the Sv with the order the

scheme. Contradicting observations regarding Sv up to the logarithmic region

have been reported in the past [31, 36, 37, 38] with the W9 results being in

closer agreement with the experiments of Andreopoulos et al.[36]. They reported

values close to Sv < −1 near the wall with a cross-over to positive values at235

y+ ≈ 4.

The flatness of v′ has a constant value of Fv ∼ 3 over the log law region

showing a Reynolds number and method accuracy independence (Fig. 7b). For

decreasing y+ the flatness Fv is increasing in agreement with previous numerical

and experimental publications [32, 37, 38, 39]. At the boundary layer edge240

high levels of positive skewness and flatness are observed. This suggests strong

intermittency in this region with different characteristics than those observed
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Figure 6: Comparison of streamwise velocity fluctuations (u′) (a) skewness and (b) flatness

between the various iLES schemes and available DNS and experimental data (see table 3).

The black solid lines indicate the Gaussian limit for the high-order statistics, S ≈ 0 and F ≈ 3,

respectively.
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for u′. Specifically, Fig. 7 shows the dominance of small positive values of v′,

while high negative values of v′ are infrequent but more intense.

It has been confirmed experimentally by Balint et al. [38] that the skewness245

of the spanwise component is zero in a two-dimensional boundary layer because

of the symmetry of the mean flow. The present results in Fig. 8a show that w′

velocity fluctuations are symmetric up to the boundary layer edge with Sw ≈ 0

for all the variants of iLES and W9 having the smallest oscillations. Flatness has

a value higher than 3 near the wall due to possible rare events while it reaches250

the Gaussian limit in the logarithmic layer. The high value of flatness in the

viscous sub-layer has been also reported by Balint et al. [38]. Once more this

component of the velocity fluctuations is highly asymmetric in the boundary

layer edge as already observed for the other two components.

The three iLES variants are further scrutinised by calculating anisotropy over

the TBL. In order to quantify the level of anisotropy, Lumley and Newman [40]

introduced the anisotropy-invariant map (AIM). The AIM illustrates the second

and third mathematical invariants (II, III) of the Reynolds stress anisotropy

tensor

aij =
uiuj

k
− δij

3
, k = uiui (4)

with

II = aijaji = 2(λ2
1 + λ1λ2 + λ2

2), III = aijainajn = −3λ1λ2(λ1 + λ2), (5)

where λi are the eigenvalues of the anisotropy tensor. The anisotropy invariants255

(II, III) are nonlinear functions of the Reynolds stresses leading to a distorted

visual representation of anisotropy in turbulent quantities. This disadvantage

of the AIM was recently tackled by Banerjee et al. [41] with the barycentric

map.

According to Banerjee et al. [41] all possible anisotropy states of turbulence

can be described as a convex combination of the three limiting states of compo-

nentality. These limiting states can be placed at x1C = (1, 0), x2C = (0, 0) and

x3C = (1/2,
√
3/2) in Euclidean space. The first point x1C is the one-component

limit where turbulence is referred as rod-like or cigar-shaped. The second point
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Figure 7: Comparison of normal velocity fluctuations (v′) (a) skewness and (b) flatness be-

tween the various iLES schemes. The black solid lines indicate the Gaussian limit for the

high-order statistics, S ≈ 0 and F ≈ 3, respectively.
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Figure 8: Comparison of spanwise velocity fluctuations (w′) (a) skewness and (b) flatness

between the various iLES schemes. The black solid lines indicate the Gaussian limit for the

high-order statistics, S ≈ 0 and F ≈ 3, respectively.
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x2C is the two-component limit where turbulence has a disk or pancake-like

shape. The final point x3C indicate the three-component limit where turbu-

lence is isotropic and can be visualised by a sphere. These limiting points form

an equilateral triangle that does not introduce any visual bias of the limiting

states. A coordinate system based on the eigenvalues of the anisotropy tensor

can be defined such that

xB = λ1 − λ2 +
1

2
(3λ3 + 1), (6a)

yB =

√
3

2
(3λ3 + 1). (6b)

260

So the barycentric map is an equivalent linear representation of the anisotropy

invariants in terms of eigenvalues. The barycentric maps for each iLES scheme

are given in Fig. 9. In Eq. 6 only the eigenvalues of the Reynolds stress

anisotropy tensor are used to define (xB , yB) and as a result the barycentric

map trajectories contain no information about the physical domain. To address265

this problem the points in Fig. 9 are coloured based on the distance from the

wall (y/L). The red line indicating the base of the barycentric map denotes

the two-component limit where turbulence can be visualised as an ellipse. The

black solid line indicates the axisymmetric expansion limit where turbulence has

a prolate spheroid shape. Similarly the blue solid line indicates the axisymmet-270

ric contraction limit where turbulence has an oblate spheroid shape. The black

dashed line shows the plane strain limit where at least one of the eigenvalues is

equal to zero.

All paths of anisotropy states in Fig. 9 follow approximately the same pat-

tern, independent of the iLES scheme, which can be defined as follows for in-275

creasing y/L. Close to the wall turbulence is two-dimension having ellipsoidal

shape. Because of the strong mean shear, it moves then along the 2D-line to-

wards the one-dimensional state, to which it is closest in the mid buffer layer

around y+ ≈ 10. This is at the same point where the maximum τuu, mini-

mum Fu and zero Su coincide. Subsequently, the path follows the axisymmetric280
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Figure 9: Barycentric invariance maps from all iLES schemes. The colour bar indicates the

distance from the wall up to the boundary layer edge in non-dimensional units (y/L). The lim-

iting states of componentality are labeled with “x1C” for the one-component limit and “x2C”

for the two-component axisymmetric limit, and “x3C” for the three-component isotropic limit,

respectively. The red line indicates the two-component limit, the black line the axisymmetric

expansion limit and the blue line the axisymmetric contraction limit, respectively. The black

dashed line is the plane-strain limit.

expansion moving towards the plane strain limit, to which it is closest in the

log region of the boundary layer. Turbulence keep expanding ending up on the
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axisymmetric expansion limit close to an isotropic state at the boundary layer

edge.

Differences between the various iLES schemes can be observed on the amount285

of anisotropy at each state of the path. The highest order scheme starts from

a point closer to the plane strain limit compare to the other two variants. It

also approach it much closer in the log region of the boundary layer. On the

contrary it is the scheme that least approach the one-component limit in the

mid buffer layer and at the same time produce the lowest amount of anisotropy290

compared to the MUSCL schemes.

4. Conclusions

This paper presented a physical insight into the accuracy of three different

iLES approaches in TBL. The three iLES variants had an accuracy ranking

from 2nd to 9th order, while the comparison was made on a relatively fine mesh295

of ∼ 100 million points. A mesh independence study was also presented along

with the effects on accuracy and performance. A mesh consisting of 1/3 the

points of the finest mesh provided results less than 2% different compared to

it. The W9 is not only the most accurate method of the three presented (M2,

M5 and W9) on the same mesh resolution but it can also achieve superior300

computational efficiency when a specific level of accuracy is required. In the

future, the accuracy of the present and more advanced methods, like the ADER-

WENO [42, 43], can be studied in order to gain physical insight in more complex

flows.

The comparison between the three iLES variants was focused on velocity305

statistics, including high-order ones, analysing the effect of accuracy on the

symmetry and anisotropy of turbulence in each sub-layer of the TBL. A direct

comparison to previous DNS and experimental data is also provided, when avail-

able, concluding to a very good agreement with the highest order iLES variant

(W9).310

The analysis revealed that the point of highest anisotropy in the TBL coin-
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cides with the point of maximum normal Reynolds stress τuu, minimum flatness

Fu and zero-crossing skewness Su. It also supports the argument of previous

publications that turbulence dynamics inside the TBL exhibit an incompress-

ible behaviour. Near the wall and in the viscous sub-layer accuracy effects are315

minimal, on the contrary to the log law region of the TBL where bigger de-

viations were observed. Turbulence is almost isotropic at the boundary layer

edge, but highly asymmetric giving high values of skewness and flatness for all

velocity fluctuation components. The order of iLES accuracy affected not only

the magnitude of the asymmetry and anisotropy but also the location of the320

extrema.
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[34] J. M. Österlund, A. V. Johansson, Turbulence statistics of zero pressure-

gradient turbulent boundary layers, Tech. rep., Sweden: KTH Mechanics

(1999).410

[35] H. Ueda, J. O. Hinze, Fine-structure turbulence in the wall region of a

turbulent boundary layer, J. Fluid Mech. 67 (1975) 125–143.

[36] J. Andreopoulos, F. Durst, Z. Zaric, J. Jovanovic, Influence of Reynolds

number on characteristics of turbulent wall boundary layers, Exp. Fluids

2 (1984) 7–16.415

27



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

[37] T. G. Johansson, An experimental study of the structure of a flat plate

turbulent boundary layer using Laser-Doppler velocimetry, Ph.D. thesis,

Chalmers University of Technology, Göteborg (1988).
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