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The Influence of the Spatial Distribution of 2D

Features on Pose Estimation for a Visual Pipe

Mapping Sensor
Rahul Summan, Gordon Dobie, Graeme West, Stephen Marshall, Charles Macleod, Gareth Pierce

Abstract—This paper considers factors which influence the
visual motion estimation of a sensor system designed for visually
mapping the internal surface of pipework using omnidirectional
lenses. In particular, a systematic investigation of the error
caused by a non-uniform 2D spatial distribution of features on
the resultant estimate of camera pose is presented. The effect
of non-uniformity is known to cause issue and is commonly
mitigated using techniques such as bucketing, however, a rigorous
analysis of this problem has not been carried out in the literature.
The pipe’s inner surface tend to be uniform and texture poor
driving the need to understand and quantify the feature matching
process. A simulation environment is described in which the
investigation was conducted in a controlled manner. Pose error
and uncertainty is considered as a function of the number of
correspondences and feature coverage pattern in the form of
contiguous and equiangular coverage around a circular image
acquired by a fisheye lens. It is established that beyond 16 feature
matches between the images, that coverage is the most influential
variable, with the equiangular coverage pattern leading to a
greater rate of reduction in pose error with increasing coverage.
The application of the results of the simulation to a real world
dataset are also provided.

Index Terms—Structure from Motion, Pipe Scanning, Bucket-
ing.

I. INTRODUCTION

IN sensors systems which employ cameras for motion

estimation, it is commonly understood that uniform sam-

pling of feature correspondences across an image yields more

accurate estimates of relative motion in comparison to a

biased distribution of points [1]. However, in scenes which

contain highly variable textures in which feature points may

be clustered together, uniform sampling may not be possible.

This is of particular interest in the authors’ application area in

which a sensor with a spherical field of view camera is used

to perform Structure from Motion (SFM) within industrial

pipelines. In such a setting, non-homogeneously distributed

texture on the interior surface of the pipework can result in

the majority of feature points being concentrated in one area

of the image, see Figure 1. This shows a fisheye view down a

pipe with the features correspondences highlighted by the line

segments, the concentration of these features can clearly be

seen. Such non-uniform texture can be caused by the surface

finish of the material and or production method as well as

defects including cracks and corrosion. The novel contribution

of this paper is to provide a rigorous analysis, by way of

simulation, of the relationship between the spatial distribution

and number of features in the image and the accuracy of the

resultant estimate of camera pose. In addition to this, this

research provides a design tool for implementers within this

application area to assess the accuracy of their camera based

sensor systems.

Monitoring the condition of structural assets through peri-

odic inspection is of critical importance across many industries

[2], [3]. Visual inspection of the interior surface of pipework

in the nuclear and oil & gas industries is a priority inspection

area in terms of safety and maintaining process flow by

avoiding forced outages. Internal visual inspection is often

used as a first pass inspection to identify areas of concern

while volumetric imaging techniques such as ultrasound may

be used to obtain dimensional data from the external surface

of the pipe. However, due to access restrictions and potentially

hazardous environmental conditions, it is desirable to use the

visual data to also size defects. Such inspections are generally

carried out by mounting a camera with associated illumination

onto a push rod which is manually deployed into the pipework.

Alternatively the camera may be driven through the pipe with

a teleoperated tractor. In both cases, the inspection is a time

consuming activity which is error prone especially in the

manual deployment case due to probe orientation changes.

Furthermore, by investigating a large structure using a camera

with a relatively small field of view, it is very difficult to

appreciate the nature and extent of surface defects.

The research presented herein is of interest for a particular

engineering application concerned with visually mapping the

internal geometry of pipework in the nuclear industry. In

this application, a bespoke sensor system will be deployed

into the pipeline and capture synchronised data from an on-

board omnidirectional camera, laser line projector and inertial

measurement unit (IMU). The objective is to then convert the

resultant data into a 3D textured model of the surface of the

pipe using SFM [4] assisted by orientation measurements from

the IMU. Such a model will then be used to identify defects

such as cracks, pits and loss of wall thickness that will inform

a decision making process about the structural health of the

pipe.

II. 3D MODEL GENERATION APPLICATIONS IN PIPE

INSPECTION

There are a several examples in the literature which tackle

the problem of transforming internal pipework inspection data

into 3D models using SFM and Simultaneous Localisation

and Mapping (SLAM) [5]. Kannala [6] et al describes a

system for the automatic measurement and modelling of sewer
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pipes using video captured through a fisheye lens deployed

on a remotely operated tractor. Harris features are used in

an structure from motion algorithm implementing bundle

adjustment to estimate motion and a surface point cloud.

The model is created by fitting short tubular segments to the

point cloud enabling gentle bends to be captured. However,

no consideration is given to the visualisation of the data in

terms of texture mapping of the image sequence onto the

segments. Hansen et al in [7] describe a system for building a

model of the interior surface of liquefied natural gas fibreglass

pipes using only image data. As in [6], a fisheye lens is

used with a camera deployed on a mobile robot travelling

through the pipe. Sliding window bundle adjustment based on

Harris features is used to track the motion of the camera and

build a point cloud. Prior knowledge of the geometry of the

pipeline is incorporated by classifying images as belonging

to straight sections or junctions. A model fitting operation is

then performed to fit cylindrical pipe sections and T-junctions

accordingly. The authors present results on a relatively large

scale sample (32 m in length) and produce a texture mapped

model. In [8] Matsui et al describe a system based around a

video camera using a catadioptric lens and laser profiler to

track camera motion and construct a surface point cloud. An

issue associated with single camera systems is that the scale of

the scene cannot be estimate from image data alone. In [8], the

laser profiler serves to provide a scaling measurement whereas

[7] use the known pipe diameter to scale the model. In contrast

to [7], a mesh is applied to the point cloud thereby making

no assumptions regarding the underlying geometry. In Kahi

[9] describe a system composed of a forward facing camera

with SFM processing based on Lucas Kanade features.The

technique operates successfully on a feature rich steel pipe

sample and less accurately on concrete and glass reinforced

pipes the authors acknowledge that a wide field of view

lens could lead to higher accuracy and lower uncertainty on

such samples. In [10], Dobie et al develop a feature based

planar visual odometry system for use in industrial setting.

The matching performance of the Scale Invariant Feature

Transform (SIFT) [11] on images of aluminium, new steel,

rusted steel and bricks is considered in terms of features

density and match percentage. It is found that rusted steel and

brick produce the best matching results due to matte surface

finishes and rich texture.

III. RELATED WORK

It is well known that the calculation of two-view geometry

requires projections of 3D points which lie in a general 3D

configuration. If the 3D points are co-planar or if the camera

undergoes pure rotation there exists multiple solutions for the

fundamental matrix [4]. In the case of a spherical field of view

camera which is of interest in the pipe mapping context, given

two sets of matching features the Essential matrix, E, which

encodes the inter-frame camera motion forms the following

constraint between correspondences:

f(xi−1)Ef(xi) = 0 (1)

Fig. 1. Non-uniform distribution of SIFT correspondences in a stainless steel
pipe

where f(x) : R2 → R
3 is the function mapping from a pixel

x onto a unit vector routed at the origin of the sphere of

equivalence [12], [13] and xi−1 and xi are projections of the

same 3D point in images i and i − 1. The Essential matrix

may be computed with the five [14] or eight point algorithm

[15] and then decomposed into four possible estimates for the

transformation matrix i−1Ti, relating the camera coordinate

systems of images i− 1 and i:

i−1Ti =

[
R t

0 1

]
(2)

where R ∈ SO(3) is a rotation matrix and t ∈ R
3×1 is a unit

translation vector. The positive depth constraint may be used to

select the correct solution for perspective cameras. However,

this is not suitable for omnidirectional models such as those

for catadioptric lenses in which the field of view enables points

from behind the lens to be imaged. In this case, the correct

estimate is selected by the solution which yields the minimum

reprojection error, ereproj , defined as follows:

ereproj =

N∑

i

(xi − g(PiXi))
2 (3)

where g(X) : R3 → R
2 is the function mapping a world point

X to the pixel coordinates x and Pi = [R|t] is the projection

matrix of the ith camera.

The influence of pixel noise upon the estimate of the

fundamental matrix has been considered by Csurka et al [16]

in which Monte Carlo and analytical methods are presented

to characterise the uncertainty. Propagating this uncertainty

further to the estimate of the camera’s rigid body transform

of Equation 2 has been considered by Papadopoulo et al [17]

where an analytic formulation is presented. Importantly, the

effect of the spatial distribution of the 2D matches from which

these quantities are derived has not received rigorous analysis

in the literature. However, it is generally acknowledged that

feature correspondences should be sampled as uniformly as

possible over an image. This issue is commonly addressed by

dividing the image into a grid whose cell size is a function

of the area spanned by the features. A sampling method is

then employed to uniformly sample from this grid. Zhang
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(a) (b)

Fig. 2. Bucketing Schemes used for uniform correspondence sampling (a)
Rectangular grid (b) Polar grid

et al [1] introduced the idea of bucketing to select feature

correspondences to compute the fundamental matrix. The

method involves dividing the image into a b× b grid and then

associating correspondences with each cell, see Figure 2. One

correspondence is selected from eight randomly selected buck-

ets which are sampled without replacement. In this process, a

uniform random number generator is used to select a bucket in

which the probability of selecting the ith bucket is proportional

to the number of correspondences lying within it. The sampled

correspondences are used to instantiate a fundamental matrix

from which the residuals of the remaining correspondences

are computed. A statistical criterion based on the median is

then used to determine the best candidate solution. This idea

can be trivially extended to a spherical field of view camera by

sampling from sectors of the circular image. Rituerto et al [18]

consider bucketing in the context of feature track longevity

in conventional perspective and omnidirectional field of view

cameras. In the omnidirectional case the image is divided into

a polar grid. They establish that the polar bucketing scheme

allows for longer mean feature tracks in the context of a

moving ground vehicle.

Mičušı́k et al [19] present an algorithm to simultaneously

estimate an omnidirectional camera model and epipolar ge-

ometry from matching features. The accuracy of the computed

camera model is a function of the distribution of features in the

circular image. Namely, if features near the centre of the image

are used the resulting model is incorrect. By rejecting these

points and using the remaining matches the correct model can

be found. This idea is effected through a bucketing technique

which divides the image into concentric rings of equal area

from which the algorithm then samples.

Along similar lines but different in implementation, Mei

et al [20] suggested the idea of storing the features within

a quadtree data structure in order to sample 2D features

uniformly. The quadtree is a data structure which encodes

the spatial relationship between the features. Strasdat [21]

introduced an extension of this concept in the form of a depth

first search to select features uniformly from the quadtree.

Scaramuzza and Siegwart [22] present a visual odometry sys-

tem for an outdoor vehicle utilising an omnidirectional camera.

The system extracts SIFT features belonging to the ground

plane in order to estimate the plane induced homography

which is then decomposed into the rigid body motion. It is

possible for the SIFT points to reside in only half of the

received circular image and the authors recognise that this

yields an erroneous estimate using their standard algorithm.

When the spatial distribution of features is evaluated to lie in

half of the image, an alternative algorithm is used to estimate

the motion.

To the authors’ knowledge no systematic analysis of the

effect of spatial distribution on the accuracy of the computed

rigid body transform has been performed. This is of practical

relevance in the target application for several reasons. A non-

uniform spatial distribution of 2D features may arise from cap-

turing low texture images of generally homogeneous materials

used in the construction of the pipework. In addition to this,

blurred images may be acquired due to fast probe motion

causing a reduction in feature matches - this is especially

true for manual deployment. Omnidirectional lenses are often

used in this application to capture a cross sectional view of

the pipe surface in a single shot. However, the strong radial

distortion of such lenses cause the appearance features to

warp as they moves across the lens thus making the matching

process more challenging - this warping leads to a reduction

of feature matches. Hansen et al in [23] develop a version

of SIFT to account for such radial distortion, however, the

performance gains are negligible. Ultimately the estimated

pose of the probe will be used to direct remedial action if any

defects deemed to be a threat to safety are detected during the

inspection. To this end, this article seeks to investigate this

relationship under simple camera motion that is representative

of the pipe mapping application. The paper proceeds by

describing the simulation environment and the rationale behind

the distributions, the analysis tools and results from running

the simulation environment.

IV. SIMULATION ENVIRONMENT

A simulation environment was developed to consider the

accuracy of relative camera pose computed from two spherical

images as a function of feature coverage around the images

and the number of noise corrupted correspondences used in the

calculation. In accordance with the target application, the 3D

points originate from a cylindrical surface. Correspondences

were swept from Fmin up to Fmax in steps of size Fstep while

coverage was varied by generating sectors of angle, S, from

0◦ up to 360◦ according to two coverage patterns described

below. For a given Fstep, the sector angle, S, adhered to the

following constraint:

S ≥
360

Fstep

(4)

In the ideal simulation, each sector would contain an equal

number of matches such that coverage was the only varying

parameter. Therefore, the number of matches to be distributed

must be an integer multiple of the number of sectors at any

time. To enforce this constraint, given a maximum number of

sectors, U it follows that Fmin = Fstep = U !. This would only

be practical for U = 3 such that S = 120◦ and Fstep = 6.

However, a sector size of 120◦ was considered too large to

gain insight from the simulation. Increasing M = 4 would

mean that Fstep = 24, however, the low correspondence case
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(a) (b)

Fig. 3. Example of coverage patterns for two sectors (a) Contiguous (b)
Equiangular
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Fig. 4. Simulation of two cameras in a pipe with relative pose, c1Tc2 . The
3D points lie upon the surface of the pipe

was of interest, therefore, this constraint was relaxed. Note that

the five point algorithm was found to be numerically unstable

in some cases, therefore, the eight point algorithm was used

instead. As a result, 8 matches were required as a minimum

such that Fmin = Fstep = 8. In cases where M was not a

factor of the number of features to be distributed amongst the

sectors, the remainder were inserted sequentially from the first

sector.

Two classes of distribution pattern were considered with

respect to the coverage pattern of feature correspondences

in the image. Given a fixed sector angle S, the first case

incrementally adds feature correspondences from 0 to jS

degrees where j ∈ 1 . . . 360
S

to form a contiguous region

of the image this is shown in Figure 3(a). In the second

case, as shown in Figure 3(b), the feature correspondences are

added to j sectors equally separated by an angle of 360
j

− S.

An alternative approach would be to divide the image into

concentric rings in the manner of [19], however, this would

result in matches being distributed around 360◦ and thus

restrict the non-uniform coverage aspect of the study. The

feature correspondences were generated randomly and added

to the sectors such that patterns with higher density included

all points from a pattern with lower density. To prevent the

final results being a function of specific feature correspondence

patterns, the patterns were generated randomly and results

averaged over N Monte Carlo trials.

The simulation made use of the forward and backward

projection functions, f(X) and g(X) obtained from calibrating

a real camera with a fisheye lens [13] which was then used in

the experimental validation of the study described in a section

VIII. The camera had a resolution of 2048 × 2448 pixels and

was calibrated to subpixel accuracy. The acquired image was

a circle of radius 686 pixels with an inner circle of radius 180

pixels which contained no useful data as it pertained to the

central black region of the pipe. The pose of the first camera,
wTc1 , was set to be parallel and positioned along the main

axis of a pipe of radius 30 mm. Given knowledge of the field

of view of the camera it was possible to compute the width,

W , of the observed cross sectional area when centred in the

pipe. A second camera with pose, wTc2 , was translated by W
2

along the Z axis of the pipe relative to the first camera, thus

forming the transform matrices:

wTc1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,wTc2 =




1 0 0 0
0 1 0 0
0 0 1 W

2
0 0 0 1


 (5)

The constraint of translation only motion can be justified with

reference to the target application where the camera will be

approximately centralised in the pipe using circumferential

brushes. Random 3D feature points were generated to lie

within the region of intersection of the cameras view fields and

spanned an angle defined by the sector size. For each camera,

the 3D features were firstly transformed into the respective

coordinate frame and then projected to form the image. A

schematic of the setup is shown in Figure 4.

ciX = wT−1
ci

wX (6)

where wX ∈ R
4×1 is a homogeneous vector of a point

on the surface of the pipe and g(ciX) is its projection in

the image of camera ci. Through selection of the relative

pose defined by Equation 5, the image points associated

with each camera occupied 50% of the image. The image

points corresponding to the second image were perturbed with

additive white Gaussian noise of variance σ2 = 10 pixels2 to

simulate detector noise.

Using this simulation environment it was possible to gen-

erate a controlled number of feature matches with known

correspondence and varying coverage patterns. A summary of

the input parameters, computed quantities and outputs of the

simulation are shown in Table I.

V. ANALYSIS

The analysis proceeds in a similar manner to Strasdat et

al [24] in which a comparison of the performance of filtering

and optimisation for camera based 3D reconstruction is carried

out. Whereas Strasdat et al evaluate the uncertainty and

absolute error in reconstruction as a function of the number

of acquired images and extracted features, the variables of

interest in the present article are coverage and the number of

feature correspondences around a circular image. The different

parameter configurations of the simulation environment were
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Simulation Input Input Parameter Computed Quantity Simulation Output

3D Point X F
∑

〈Ci,Fj〉

2D Point x 1T̂2 e
F,C
t

Relative Pose 1T2 θF,C

Camera Model g(X), f(x)
Detector Noise σ2

Sector Size S

Feature Sweep F

Coverage Type Equiangular, Contiguous
TABLE I

SUMMARY OF SIMULATION PARAMETERS

evaluated in terms of uncertainty, translation error and angular

error, each error metric is discussed in turn.

The worst case configuration consisted of a single sector

populated with the minimum number of correspondences. A

comparison metric for uncertainty was used to express all other

coverage and correspondence configurations relative to this

case. Using the Monte Carlo approach, covariance matrices

were generated from the expectation of vectors representing

pose with the following form:

p̂ = [q̂x, q̂y, q̂z, t̂θ, t̂φ]
T (7)

where the rotation, R̂, of the estimated transformation was

converted into a unit length quaternion [25], q̂. Note that

the hat operator, ,̂ is used to denote an estimated quantity.

The axis of rotation, [q̂x, q̂y, q̂z]
T , was then extracted and

concatenated with the estimated direction vector expressed in

spherical coordinates as azimuth and elevation angles θ and

φ respectively. The axis angle encoding of rotation provided

by the unit quaternions and the use of spherical coordinates

allowed a minimal problem representation.

In order to compare the covariance resulting from different

coverage and correspondence configurations, a metric was

required for measuring the distances between these matrices.

Metrics such as the Jensen-Bregman LogDet divergence have

been proposed in [26] in the context of image feature descrip-

tors while [27] describe an approach based on the complex

Wishart distribution in the application of synthetic aperture

radar. In a similar manner to [24], Entropy measured in bits

was used to express the relative magnitude of the uncertainty

of the worst case coverage and correspondence configuration

against all other configurations. Entropy is defined as follows:

En(i,j) =
1

2
log2

det(
∑

〈Ci,Fj〉
)

det(
∑

〈C1,F1〉
)

(8)

where,
∑

〈C,F 〉 ∈ R
5×5, is a covariance matrix in which,

C, is the coverage index, F , is the feature count index and

det is the determinant operator. Geometrically, entropy can be

considered to be a ratio of covariance ellipsoid volumes.

Given knowledge of the fixed true transformation, 1T2, the

absolute error in rotation and translation were computed to

give meaningful metrics with respect to the target application.

For simplicity, they were computed separately rather than as

a combined error metric. The estimated translation vectors, t̂,

resulting from N Monte Carlo trials are of unit magnitude

due to the scaleless nature of monocular systems. In order

to compare them with the true motion of the camera, the

estimated translation vectors were scaled by the magnitude

of the true translation, |ttrue|, as follows:

t̂scaled = t̂|ttrue| (9)

such that the scaled translation error was in the unit of mm

and thus meaningful in the pipe mapping context. The error

was then calculated as the Root Mean Square Error (RMSE)

in the XY plane:

e
(F,C)
t =

√√√√ 1

N

N∑

u=0

(x̂u + ŷu)2 (10)

The rotation error was computed by forming the following

matrix:

R̃ = RR̂T (11)

which in the ideal case would be the identity matrix due to

rotation being orthonormal. This was then mapped onto a

scalar value [28] as follows:

θ(F,C) = cos−1(
tr(R̃)− 1

2
) (12)

where tr() is the trace operator.

It would be expected that each error metric would reduce

for increasing correspondence count and coverage for both the

contiguous and equiangular cases. Notwithstanding, it is the

rate of reduction caused by the different coverage patterns

that is of interest within this study. The following section

presents results obtained from executing Monte Carlo trials

of the simulation environment.

VI. RESULTS

The simulation environment was run for both the contiguous

and equiangular cases with the correspondence count sweeping

from 8 matches, in accordance with the 8-point algorithm, in

increments of 8 up to a maximum of 96 correspondences.

This granularity was considered sufficient to observe the key

properties of the error metrics. A sector angle of 60◦ was

selected, satisfying Equation 4, and offered less computational

expense than using the minimal value of 45◦. Note that the

development computer used to generate the error surfaces

contained a Core i7 CPU, 16GB of RAM and a GTX980M

GPU. Because each coverage pattern started with a single

sector and ended with full coverage the dependent variable

used in the performance metrics assumed the same set of
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Fig. 5. Equiangular (a) Entropy for equiangular coverage (b) RMSE for
equiangular coverage (c) Rotational error for equiangular coverage
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Fig. 6. Contiguous (a) Entropy for contiguous coverage (b) RMSE for
contiguous coverage (c) Rotational error for contiguous coverage

values for 16.7% and 100% coverage when sweeping through

the correspondence count. This was achieved by fixing the

seed of the random number generator which allowed for easier

comparison of error metrics. The detector noise variance was

set to 0.1 pixels2 while N = 500 trials were run to compute a

mean value for each performance metric. It was expected that

the equiangular coverage pattern would result in lower uncer-

tainty and lower estimation error of translation and rotation in

comparison to contiguous coverage. This supposition is borne

out by the previously defined metrics.

A. Entropy

The uncertainty in pose, expressed as entropy, is shown

in Figure 5 (a) for the equiangular case and in Figure 6

(a) for the contiguous case. In both graphs it is evident

that increased coverage causes entropy reduction as expected.

However, for the equiangular case, the curve descends and

plateaus at around ≈ −20 bits with a coverage angle of 50%

while the contiguous curve converges to a similar value at

a greater coverage angle of 83.3%. Is is clear that the rate

of reduction in the entropy-coverage projection of Figures

5 (a) and 6 (a) is greater than that for the rate due to

correspondence increase. This demonstrates that the coverage

of feature correspondences is more important beyond a certain

number of matches, M , in this simulation M ≥ 16. As in [24]

a continuous function of the form:

En(C,F ) = a1 log(C + a2) + a3 log(F + a4) + a5; (13)

could be used to model the surface generated from the discrete

points of the simulation assuming the large values along the

minimum match count line of the graphs are discounted.

B. Translation

As shown in Figures 5 (b) and 6 (b), the maximum error was

6.4 mm which coincided with the fewest correspondences and

least coverage. As expected, the minimum error was achieved

at full coverage and matches with a value of 0.031 mm. For the

equiangular case, at a coverage of 33% of the image circle, the

RMSE was 0.034 mm while the contiguous coverage assumed

an error of 0.195 mm. Thus with only 2 sectors separated

by an angle of 135◦ the error dramatically reduces to within

approximately 12% of the final value achieved at full coverage

and correspondence count. Only at a contiguous coverage of

83.3%, does the RMSE reduce to a comparable mean value of

0.036 mm. Note that the mean has been evaluated along the

feature count axis for M ≥ 16. For both coverage patterns an

increase in correspondences results in very little change in the

RMSE in terms of the RMSE-No of Matches projection when

M ≥ 16.

C. Rotation Error

Interestingly, the estimate of rotation appears to be much

less affected by coverage pattern in comparison to the trans-

lation error and entropy. This agrees with the results of

Rodehorst et al [29] in which relative pose algorithms are

evaluated for multi-camera setups. They establish that for all

tested algorithms, the estimate of camera rotation is much

more stable than translation. As shown in Figures 5 (c) and

6 (c), the introduction of two sectors leads to a substantial

reduction in error for coverage patterns. The coverage patterns

converge to a final mean value of 9.15 × 10−6◦. At 50%

coverage, the equiangular graph has essentially converged to

the minimum value while for the contiguous case the rotation

error has essentially converged to the final value at 83.3%

coverage. Again beyond, M ≥ 16, for the Angular Error-

Coverage projection the curves exhibit very little variability.

VII. DISCUSSION

The simulation has shown that the rate of reduction in the

error metrics is greater for equiangular coverage in comparison
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Fig. 7. Illustrative 2D example of concept

to contiguous coverage thus demonstrating that greater uni-

formity in coverage yields more accurate estimates of pose.

The error in rotation has been shown to be less affected

by the coverage pattern type, however, the equiangular case

converges to in effect the final value at a quicker rate than

contiguous coverage. Interestingly, beyond a minimum number

of correspondences, M ≥ 16, the rate of reduction effectively

plateaus for both patterns and coverage dominates.

The results may be explained through the simplified illus-

trative example shown in Figure 7. In this diagram, image 2

is rotated with respect to image 1 around the midpoint, (0, 0),
of the image and two feature points, x1 and x2, disturbed by

noise, e, and separated by a distance, d, are used to compute

the angle of this rotation. In the worst case the noise could

result in the features assuming the values, x1 + e and x2 − e,

which would cause an angular error, θerror, of:

θerror = arctan(
2e

d
) (14)

By increasing d, θerror → 0, for a fixed value of e. Although

simplified, this planar example serves to highlight the under-

lying cause for the reduction in error caused by more uniform

coverage in the image. The following section describes how

the results of the simulation could be applied to a real world

image sequence.

VIII. EXPERIMENTAL VALIDATION

In order to demonstrate the use of the simulated results

on real world data, an image sequence was acquired in

an environment representative of the target application. A

Point Grey Research Blackfly 2 camera with a fisheye lens

producing an image circle of diameter 686 pixels was used for

data collection. A ring of camera mounted LED’s was used

to generate approximately uniform lighting inside a stainless

steel pipe sample. The models g(X) and f(x) resulting from

calibration [13] were used to produce the simulation error

surfaces. Images were captured in discrete 10 mm steps

(delivered by a KUKA KR5 robot) along a distance of 150

mm of the central axis of the pipe, see Figure 8 for the

experimental setup. This allowed controlled steps between

successive images with no motion induced image blur. This

step size corresponded to approximately 50%overlap in the

images, in practice this would be the minimum desired overlap.

Because the simulation is evaluated on a finite grid, all

combinations of coverage and feature correspondence counts

Fig. 8. Experimental Setup. Point Grey Research Blackfly camera mounted
to KUKA KR5 for controlled linear motion

Coverage Type Match Count

Equiangular {0, 6, 0, 6, 0, 6}
{15, 0, 15, 0, 15, 0}

Contiguous {6, 6, 6, 6, 6, 6}
{7, 7, 7, 0, 7, 7}

{14, 14, 14, 0, 14, 0}
Either {0, 0, 0, 0, 16, 0}

TABLE II
COVERAGE PATTERN ENUMERATIONS

are not represented. The results of the simulation could be

mapped onto a real world setting in the following manner.

Given the feature correspondences extracted in a real image,

all possible coverage patterns that are represented in the sim-

ulation data could be enumerated. The error corresponding to

the nearest neighbour within the simulation could then be used

to estimate the expected error in the computed transform. The

alternative would be to fit a function to the simulation surfaces

that would map coverage and feature count to expected error

in the transform as described in VI.

A predefined sector size of S = 60◦ was chosen for

the experiment resulting in a six sector mask being applied

to the raw images. The number of correspondences in each

sector was then counted - an example is shown in Figure 10.

Prior to counting the number of matches, some basic filters

were used to reject gross outliers. The first filter removed

correspondences in which the line connecting matching fea-

tures crossed the inner circle of the image. The second filter

removed matches where the length of the line, L, connecting

matches satisfied the following constraint:

L > R2 −R1 (15)

The filtered matches were subsequently used in a Random

Sample Consensus [30] scheme to estimate the fundamental

matrix and ultimately camera pose as described by Equations

1 - 3.

Given the match counts in the image of Figure 10, c =
{15, 14, 15, 6, 16, 7} it was possible to enumerate the Equian-

gular and Contiguous coverage patterns shown in Table II,

some examples are shown visually in Figure 9.

The nearest neighbour, n, match to the simulation match
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(a) (b)

Fig. 9. Example of enumerated coverage patterns (a) Equiangular (b)
Contiguous

Fig. 10. An example image acquired inside the pipe segment. Polar bucketing
is applied followed by counting the number of correspondence in each sector.

count step, s, was computed as follows:

n = round(
ci

s
) (16)

where ci is the ith element of c. Assuming the noise level

contained in the simulation data is representative of the real

world noise level, it could be used in the manner of a lookup

table to place an upper bound on the expected transform

error where the lookup table is essentially a form of the

graphs shown in Figures 5 and 6 (b). A noise variance of

0.1 pixels2 was used to represent detector noise. Through

artificially masking out correspondences in post processing,

it was possible to control coverage thus allowing the same

dataset to be used to test the approach with different coverage

patterns. Clearly, with pipes composed from different materials

the distribution and number of correspondences will change

however the algorithm is still applicable since the simulation

data is independent of the imaged surface.

The true and predicted cumulative RMSE in translation

for different coverage patterns consisting of 33%, 50%, 83%

and 100% are shown in Figure 11. It can be seen that the

simulation data for 33% and 100% under estimates the error

while in the remaining cases, the error is over estimated. This

is due to using the nearest neighbour approach to generate

the simulation curves. Note that images were processed using

visual odometry leading to an increasing error with increasing

image pair. The error expressed as the difference between the

final values of the curves for each of the graphs in Figure

11 was 12.61 mm, 6.05 mm, 4.59 mm, 1.31 mm and 0.79

mm respectively. In each graph, with the exception of Figure

11(a) the curves due to the simulation can be seen to follow
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Fig. 11. Real error computed from known robot motion vs the predicted error
from the simulation for different percentage coverages (a) 33.3% (b) 50% (c)
66.6% (d) 83.3% (e) 100%

the general trend of the error curve computed with respect to

the robots motion.

The presented method allows an error to be estimated based

purely upon the spatial distribution and number of matches

which can be potentially fed into a Bayesian framework for

an overall estimate of pose uncertainty. Furthermore, this

operation can be performed at low computational cost since

it only involves indexing a lookup table. In context of pipe

mapping, this enables one to predict the error per metre

travelled through the pipework which is invaluable knowledge

with respect to remedial action.

IX. CONCLUSION

Camera sensors are used pervasively to estimate self-motion

in many applications. An image feature based approach is

often used to estimate motion where the accuracy of this

estimation is dependent upon both the distribution and number

of matched features. The novelty of this articles lies in the

rigorous analysis of the relationship between the accuracy

of pose estimation and distribution and number of matched

features to the authors knowledge such an analysis has

not been conducted before.This paper has considered factors

which influence the error and uncertainty associated with the

rigid body transform computed by an omnidirectional camera
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which forms part of a visual pipe mapping sensor. In partic-

ular, a quantitative measure of error and uncertainty on the

estimation of a rigid body transform caused by non-uniform

2D feature correspondence coverage and a variable number

of correspondences, perturbed by fixed pixel noise has been

investigated. Sampling the matches through bucketing is often

employed to mitigate bias and uncertainty in the computed

camera pose, however this may not always be possible. This

is true in the application of pipe mapping in which image

features may be clustered due to prominent structures such as

welds on an otherwise largely uniform texture surface. In such

cases, the investigation presented here enables an error to be

predicted from the percentage coverage of the matches and

the number of such matches. It has been established through

the development of a simulation environment, that the equi-

angular coverage pattern results in more accurate estimates

of pose in comparison to the contiguous case. A method has

been developed to apply the results of the simulation to a

real world example through using the simulation data as a

lookup table. In the target application, the described method

enables predictions with respect to the error incurred per metre

travelled to be computed thus providing invaluable data for

informing follow up remedial action.
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