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Abstract: This paper analyses the effect of replacing existing synchronous generators equipped 

with power system stabilizers (PSS) by DFIG based wind farms on the damping of power system 

oscillations in a multi-machine power system. A power system stabiliser was designed to 

enhance the capability of DFIG to damp power systems oscillations. The validity and 

effectiveness of the proposed controller are demonstrated on the widely used New England 10-

machine 39-bus test system that combines conventional synchronous generators and DFIG based 

wind farms using eigenvalue analysis and nonlinear simulation. The nonlinear simulation is used 

to demonstrate how the damping contribution of DFIG based wind farms is affected by different 

operating conditions within the same wind farm and stochastic wind speed behaviour. The results 

show that installing conventional fixed parameters PSS within reactive power control loop of 

DFIG rotor side converter has a positive damping contribution for a wide range of operating 

conditions. Furthermore, the results clearly show that DFIG based wind farms equipped with the 

proposed farm level PSS can damp power system oscillations more effectively than synchronous 

generators PSS.   

 

Keywords: Power system oscillations, power system stabilizer (PSS), doubly fed induction 

generator (DFIG), small signal stability, transient stability.  

 

1.  Introduction 

 Wind power penetration levels have significantly increased during the last decades.  According 

to the Global Wind Energy Council, the installed wind power capacity worldwide has exceeded 
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318 GW at the end of 2013 and will reach about 712GW by 2020 [1]. As wind power penetration 

into power systems increases additional integration considerations are needed and the most 

important ones are fault ride through capability, power oscillations damping and voltage support 

capabilities during network disturbances. All have are of direct concern to system stability. Poor 

damping of power oscillations and lack of reactive power support can deteriorate system stability 

and lead to  blackouts [2].  

 Currently, the most widely used wind turbine technology worldwide is doubly fed induction 

generator (DFIG) [3]. This type of wind turbines is not synchronously connected to the grid, 

hence they do not directly engage in power systems electromechanical oscillations nor do they 

produce new oscillatory modes [4], [5]. However, with the rapid increment of wind power 

penetration, DFIG wind turbines can affect the overall damping performance when replacing 

synchronous machines which are equipped with power system stabilizers (PSSs) [6]. Therefore, 

damping contribution of installed wind turbines is of significant important and this can be 

achieved by introducing an auxiliary PSS loop into the DFIG controller [5].  

  In recent years, several researchers have examined the capability of DFIGs for damping power 

oscillations [4-10]. In [6-10] an auxiliary DFIG damping controller within the active power 

controller is proposed. The results show that DFIG wind turbines equipped with PSS are able to 

damp low-frequency power system oscillations effectively. However, the controllers used in [7] 

and [9] are based on rotor flux magnitude and angle control (FMAC) approach which is different 

from the standard widely used vector control approach in commercial DFIG wind turbines [11]. 

Moreover, the damping of DFIG wind turbines shaft mode can be decreased, mechanical loads 

increases and mechanical system lifespan is reduced when active power modulation is used to 

damp power system oscillations [12]. Furthermore, reference [13] reported that the use of active 

power to damp system oscillations is adversely influenced by torque variations due to tower 

shadow. In addition, as wind turbines are required to support grid voltage, the effectiveness of 

using active power PSS can be degraded [10]. 

 As DFIGs are able to control real power and reactive power independently, reactive power 

modulation can be used to regulate the voltage and enhance their capability to damp power 

oscillations. Only a few papers have been published regarding attached PSSs to the reactive 

power controller of DFIGs to damp post-fault oscillations [12],[14-16]. The results presented in 

these papers show that DFIGs can effectively damp power system oscillations using an 
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additional control attached to the reactive power control circuit. However, none of them takes 

into account the impact of the stochastic wind speed behaviour on the proposed damping 

controller. Moreover, the studies carried out in [12] and [14, 15] do not consider the effect of the 

crowbar circuit when controlling both reactive and real power is deactivated and a large amount 

of reactive power is absorbed. 

In this paper, a comprehensive analysis is conducted to show the effect of replacing existing 

synchronous generators (SGs) equipped with PSSs by DFIG based wind farms on the damping of 

power system oscillations in a multi-machine power system. A power system stabiliser was 

designed to evaluate the capability of DFIGs to damp power systems oscillations. To avoid the 

negative effects of PSS active power modulation, a reactive power modulation PSS using a 

comprehensive system model is modelled and proposed in this study. As wind power is 

stochastic and fluctuates with the variation of wind speed, the capability of a wind farm to damp 

power system oscillations may be reduced. Therefore, the proposed conventional fixed 

parameters PSS should have the capability to damp power oscillations effectively under non-

uniform variable wind speeds across the wind farm. The feasibility of the proposed fixed 

parameters PSS is evaluated using the New England 10-machine 39-bus test system taking into 

account the non-uniform and variable wind speed profiles. 

   The paper is organized as follows. Section 2 presents the modelling of DFIG used in this 

study. DFIG proposed damping controller is described in Section 3. Section 4 presents the test 

system. The results and discussion are presented in Section 5. Finally, Section 6  summarises the 

main outcomes of this work. 

 

2.  Modelling of DFIG 

 The typical overall DFIG wind turbine structure is shown in Fig. 1 in which DFIG wind 

turbine comprises a wound rotor induction generator and back-to-back converters. The stator 

windings of the induction generator are connected directly to the grid while the rotor windings 

are connected to the grid via the back-to-back converter, which consists of the rotor and the grid 

sided converters (RSC) and (GSC). The power rating of the back-to-back converter is about 20% 

to 30% of the DFIG rating. With these converters, DFIG wind turbines can generate active 

power over a wide range of rotational speeds around the synchronous speed at constant voltage 

and frequency. Therefore, the magnitude and direction of the active power that flows between 
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the rotor and the grid is controlled.  The induction generator is linked to the wind turbine through 

a mechanical shaft system consisting of a high and a low speed shaft connected by a gearbox. A 

crowbar system is used in the event of over current to protect the converters and to achieve 

continuous operation of the DFIG. 

 

Fig. 1 overall DFIG wind turbine structure. 

 

 The instantaneous active and reactive power (Ps, Qs) of the DFIG stator can be controlled 

independently by the RSC as shown in Fig. 2(a). Regulating the DFIG terminal voltage can be 

achieved by using the stator side reactive power. The main purpose of the GSC is to maintain the 

converter dc link voltage within its acceptable limits and can be used to control the reactive 

power flow between the GSC and the grid as shown in Fig. 2(b). Both converters can be 

modelled as current controlled voltage source converters. There are several ways to control and 

supply a sinusoidal current at rotor frequency. The common approach is to use pulse width 

modulation (PWM) [17]. 
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Fig. 2 DFIG vector control scheme, a) RSC with the proposed PSS (dashed blue lines), b) GSC 

 

 The outer control loop of the RSC regulates independently both the DFIG stator real power Ps 

and reactive power Qs. The error signals generated from comparing reference signals with 

measured signals of reactive and active power are passed through proportional integral (PI) 

controllers to generate reference signals i
*

qr and i
*
dr of the dq axes current components 

respectively. These signals are compared to the measured current signals idr and iqr in the dq axes 

to form two voltage signals by the inner control loops. These voltage signals are compensated by 

the corresponding cross coupling voltage in dq axes to create vdr and vqr respectively. The 

generated voltage signals vdr and vqr are then passed to a pulse width modulation (PWM) [18], 

[19]. 

 In a similar way, DFIG-GSC outer control loop regulates the converter dc link voltage and the 

reactive power exchanges between the grid and the GSC to generate reference current signals i
*

dg 
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and i
*

qg of dq axes current components respectively. These signals are compared to measured 

current signals idg and iqg in the dq axes to form two voltage signals by the inner control loops. 

These voltage signals are compensated by the corresponding voltage in dq axes to generate dq 

voltage signals vdg and vqg respectively [18], [19]. 

 

3.  DFIG proposed damping controller 

 This section presents the design of a controller for DFIG based wind turbines to improve the 

damping of power system oscillations. The main function of the damping controller is to damp 

low-frequency power oscillations between 0.1 and 2 Hz, which are identified as local or inter-

area modes. The widely used conventional PSS is employed in the DFIG-RSC as shown in Fig. 

2(a) with dotted blue lines. The output signal of PSS is attached to the reactive power controller 

within RSC to help increasing the damping torque by controlling the reactive power produced by 

DFIG. The amplitude of oscillations can be reduced by changing the DFIG terminal voltage 

during the forward or the backward swing.  

 The conventional PSS consists of a stabilizer gain Kpss, a washout filter with time constant Tw 

(s), a second-order lead lead-lag compensator with time constants T1 to T4 (s), and an output 

limiter. The gain determines the amount of damping introduced by the damping controller. The 

single washout filter with time constant Tw =10s is a high pass filter used to allow a certain range 

of frequency and is anticipated to be active only through transient periods. The two-stage 

compensator block provides an appropriate lead or lag phase of the output signal in order to 

enhance the damping of power system oscillations. The limiter is used to assure that the output 

signal is under the control limits. In this study, the values of the limiter is set to ±0.1 pu. The 

transfer function of the PSS can be expressed by equation (1) [20]. 
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where, uin and upss are input and output signals of the controller respectively, Kpss is the gain, Tw 

is a washout time constant (seconds) and T1 to T4 are time constants of lead-lag compensator 

(seconds).
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 In order to enhance the damping of the poorly damped low frequency oscillations, critical 

oscillatory modes have to be modified.  Therefore, the poorly damped oscillatory modes must be 

excited by the chosen input signal and have to be visible in the chosen output signal. Input 

signals with higher magnitude of residue are more effective for damping the oscillatory modes 

[21].  

 Residue approach, which has been used for designing PSSs in synchronous generators, can 

also be used for designing PSSs for DFIG based wind turbines. The feedback signal and phase 

angle that needs to be compensated can be determined by the residue approach. Residue is a 

comprehensive index that measures the degree in which the selected mode is influenced by the 

controller. The residue Ri corresponding to a particular eigenvalue ith for a transfer function 

between a selected input u and output y can provide a measure of the mode’s sensitivity to the 

feedback control. Therefore, the residue method can give an indication of how the modes will be 

affected by the feedback control. Moreover, the residue is a complex value and thus the angle 

gives the direction in which the root locus leaves the associated pole. Hence the required phase 

compensation between the input and output of PSS can be calculated by the residue angle to give 

a positive contribution to the damping of the selected mode [22]. Fig. 3 shows a schematic 

illustration of the required phase compensation, where Ri  represents the phase angle of residue 

Ri and Hi  represents the PSS transfer function phase angle respectively.  

 

 

Fig. 3 Schematic illustration of compensation concept.  
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 As DFIG wind turbines are to some degree decoupled from the rest of the grid, the produced 

active power and the machine speed signals of DFIG wind turbines are not sensitive to the 

system oscillations. Moreover, these two signals are affected by tower shadow and torque 

variations. To avoid the use of wide area communications, the available local signals such as the 

deviations in pu of the DFIG based wind farm terminal voltage and frequency are examined 

using residue analysis. The mode’s sensitivity to input signal of PSS can be provided by the 

residue of any specific mode. In [2], detailed information of how to calculate the residues from a 

transfer function is given. The required phase angle compensation and the time constants can be 

taken from [23]:  
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(2) 

 

Where 
comp

  is the required phase angle compensation, Ri  represents the phase angle of residue 

Ri and mc represents the number of lead-lag blocks. 

 

Based on residue analysis results, frequency deviation signal is carefully chosen for successful 

damping of oscillations. The output signal of the PSS is connected to the DFIG-RSC reference 

voltage signal as can be seen in Fig. 2(a).  

The results of detailed small signal stability analysis conducted on the test system show that in 

case 3 (SGs G7, G9 in case 2 are replaced by equivalent DFIG-based wind farms) there is a 

critical mode (-0.149± j6.85) oscillating at 1.093Hz with a damping factor of 2.2%. To move this 

critical mode away from the right-hand side of the complex plane the DFIG that replaced G7 has 

to be fitted with a power system stabiliser.  

To calculate the residue’s phase angle Ri of the critical mode, the PSS is only implemented 

with a constant gain Kpss and washout filter with time constant Tw=10s. No phase compensation 
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blocks are involved at the moment. For different gain values, the critical mode must move in a 

straight-line direction as defined by the residue. The analysis was performed under different gain 

values. The result shows that the residue’s phase angle is 10.71°. In this case, the phase 

compensation blocks have to introduce a phase shift of 10.71° at 1.093Hz = 6.867 rad/s (the 

frequency of the critical mode).  

Employing equation (2) the Tlead and Tlag will be 0.1599s and 0.1325s respectively.  

To define the value Kpss , the gain increased incrementally from 0 to 200 and recorded against 

the mode. The best gain of 120 was obtained against the critical mode. 

The parameters of DFIG2 can be obtained by repeating the same process.  

The PSS parameters for both SGs and DFIG are given in Table 3 in the Appendix. 

 

4.  Test system 

The widely used New England 10-machine 39-bus system has been chosen as the test system in 

this study as shown in Fig. 4 [24]. The system consists of 10 SGs in which G1 is an equivalent 

external generator, 12 transformer, 46 transmission lines and 19 loads modelled as nonlinear ZIP 

loads (constant impedance Z, current I and power P) [25]. Every synchronous machine is 

equipped with (TGOV1) turbine governor and (IEEEX1) exciter. However, only synchronous 

generators G5, G7, G9 are fitted with (STAB1) PSS. The PSSs parameters, which are obtained 

by using the method mentioned in Section 3, are given in Table 3 (Appendix). The static and 

dynamic data of New England 10-machine 39-bus system can be found in [24]. 
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Fig. 4 Single line diagram of the New England 10-machine 39-bus system and the location of two DFIG based wind 

farms. 

 

 To examine the contribution of installed wind turbines toward power oscillations damping, two 

large-scale DFIG wind farms equipped with PSS are installed in the test system to replace two 

large synchronous machines G7 and G9. The total generated power from the two wind farms 

accounts for 22.6% of the total consumed power of the used test system.  

Each of the wind farms contains a large number of DFIG wind turbines. By modelling every 

turbine in the farm in the simulation tool, the complexity of the system and simulation time 

increases. Therefore, an aggregation technique is applied to decrease the large number of 

presented turbines. In many published papers the  simplest  aggregation technique is used and it 

represents the whole wind farm as a single large wind turbine [26].  

 This simple aggregation method assumes that all wind turbines within the wind farm are 

receiving the same wind speed and thus operating at the same operating point to produce the 

same power. However, in practice, the powers produced by wind turbines are different 

depending on wind speed variation and their location inside the wind farm due to the wake 

effect. Hence a  multi-machine equivalent method is used in this paper and it is more accurate 

when the turbines within the wind farm are facing different wind speeds [27]. 
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 In the second study scenario of cases 3 & 4, every wind farm is represented by three DFIG 

based wind turbines each operating at different operating points which are defined in Table 1. 

Moreover, each wind farm is exposed to a short-term wind speed variation which is a measured 

wind speed obtained by [3] from wind turbine manufacturers. Fig. 5(b&c) shows the wind speed 

patterns for both scenarios.  The two wind farms and the test system are modelled in detail and 

simulated by using NEPLAN software [28].  

 

Table 1 Different modes of operation of two wind farms 

Wind 

Farm 
Group 

Operation 

Mode 

Wind 

Pattern 

Stator 

Power 

Rotor 

Power 

Total 

Power 

I 

A 
Super- 

synchronous 

Fig.5(b) 

DFIG1 
240 36 276 

B Normal 
Fig.5(b) 

DFIG2 
167 -2 165 

C 
Sub- 

synchronous 

Fig.5(b) 

DFIG3 
139 -21 118 

II 

A 
Super- 

synchronous 

Fig.5(c) 

DFIG4 
350 53 403 

B Normal 
Fig.5(c) 

DFIG5 
245 3 248 

C 
Sub- 

synchronous 

Fig.5(c) 

DFIG6 
206 -31 175 
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Fig. 5  Wind speed patterns for (a) wind farms I& II in scenario A, (b) wind farm I in scenario B, (c) wind farm II in 

scenario B. 

5.  Results and discussion 

 In this study, four different cases and two scenarios are examined by small signal and transient 

stability to show the effects of replacing existing SGs equipped with PSSs by DFIG based wind 

farms have on the power oscillations damping, and to show the effectiveness of the proposed 

DFIG PSSs. 

The explanation of each case is:  

  Case 1: All generators are conventional SGs without PSSs. It is the base case. 

  Case 2: SGs G5, G7, G9 are each equipped with a PSS. The location of the PSSs used for 

synchronous generators is selected based on participation factor for each generator except 

G1, which is the equivalent external generator.  

  Case 3: SGs G7, G9 in case 2 are each replaced by an equivalent DFIG based wind farm 

without the proposed PSS whereas synchronous generator G5 is still equipped with its 

PSS. 

  Case 4: SG G7, G9 in case 2 are each replaced by an equivalent DFIG based wind farm 

equipped with the proposed PSS. 

 

For the two wind farms in cases 3& 4, two scenarios are included and are described below: 
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  Scenario A: each wind farm is represented as a single aggregated DFIG model operating at 

super-synchronous mode. The proposed conventional fixed parameters PSS for each DFIG 

based wind farm is designed based on this scenario. Moreover, to show the effect of wind 

speed variation on DFIG PSS, each wind farm is exposed to a different wind speed 

variation as shown in Fig. 5(a).  

  Scenario B: Each wind farm is represented as three aggregated DFIG model operating at 

different modes as shown in Table 1. In this scenario, the three aggregated groups in each 

wind farm are equipped with the proposed conventional fixed parameters PSS that used in 

Scenario A. Moreover, each wind farm is exposed to a different wind speed variation as 

shown in Fig. 5(b) and (c).   

A. Small signal stability analysis 

 A comprehensive small signal stability analysis was conducted on the used system for the four 

cases and the two scenarios. The main eigenvalues with damping factors less than 10% for each 

case and the two scenarios are presented in Table 2. It is clear that the test system without any 

PSS is unstable as there are two oscillatory modes that possess positive real parts.  Negative 

damping factors indicate that there are two growing oscillatory modes which can lead to system 

instability. The mode shape analysis of first mode shows that there are two groups of generators 

dominated by G9 and G5 swinging against each other. However, in the second case, in which 

SGs G5, G7 and G9 are equipped with PSS, the system is stable as the unstable modes are 

damped by the selected PSSs.   

 

Table 2  Main electromechanical modes 

Case Scenario 
Eigenvalue 

λ = σ + jω (pu) 

Damping 

Factor ζ (%) 

Frequency     

f (Hz) 
Dominant Machine 

1 - 

0.135±j5.63 -2.4 0.896 G09, G05 

0.047±j3.70 -1.3 0.589 G01, G05, G06, G09, 

G04 

-0.024±j5.71 0.4 0.909 G05, G02, G09, G08, 

G01 

-0.146±j6.82 2.1 1.086 G03,G02 

-0.171±j6.29 2.7 1.002 G06. G07, G02, G05 
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-0.37±j7.84 4.7 1.247 G04 

-0.414±j8.07 5.1 1.284 G07, G06 

-0.64±j7.97 8.0 1.269 G08, G10 

2 - 

-0.151± j 6.83 2.2 1.086 G03, G02 

-0.264± j 6.16 4.3 0.98 G02, G03, G06 

-0.654 ±j 7.53 8.7 1.199 G04,G06, G05 

-0.683 ± j7.99 8.5 1.272 G08, G10 

3 

A 

-0.149± j6.85 2.2 1.091 G03, G02 

-0.19± j3.89 4.9 0.619 G01, G05, G06, G04, 

G03 

-0.354± j6.22 

5.7 0.99 

G02, G06, G03, G05, 

G10 

-0.52± j7.821 6.6 1.245 G04, G06 

-0.625± j6.87 9.1 1.094 G06, G10, G08 

-0.717± j7.93 9 1.262 G08, G10 

B 

-0.145 ± j687 2.1 1.093 G03, G02 

-0.198 ± j3.89 5.1 0.619 G01, G05, G06, G04, 

G03 

-0.345 ± j6.22 5.5 0.99 G02, G06, G03, G05, 

G10 

-0.521 ± j7.82 6.6 1.245 G04 

-0.628 ± j6.87 9.1 1.094 G06, G10, G08 

-0.716 ± j7.93 9 1.262 G08, G10 

4 

A 

-0.445 ± j6.63 6.7 1.056 G03, G02, G06, G10 

-0.519 ± j7.82 6.6 1.244 G04 

-0.722 ± j7.98 9.0 1.271 G08, G10 

B 

-0.527 ± j7.81 6.7 1.244 G04 

-0.538 ± j6.60 8.1 1.051 G03, G02, G06, G10 

-0.611 ± j7.98 7.6 1.27 G08, G10 
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Small signal stability results indicate that replacing synchronous generators equipped with 

PSSs (case 2) by an equivalent DFIG based wind farms (case 3) can have a negative impact on 

the damping of power system oscillations as shown in Table 2. Although the two installed wind 

farms do not participate in electromechanical oscillations, the number of modes with a damping 

factor of less than 10% increased from 4 in case 2 to 6 in case 3. The small signal stability results 

show that the two scenarios in case 3 are very similar. It is interesting to note that in this case 

representing the whole wind farm as a single aggregated DFIG has a similar impact on power 

system small signal stability as that of representing the wind farm as three aggregated DFIGs 

operating at different modes. 

Although the installed wind farms are not synchronously coupled to the test system they can 

provide a damping effect if they are equipped with PSSs as shown in case 4. In this case, the 

stability of the test system is improved in comparison to previous cases and in which no damping 

factor less than 6.7% is observed. There are three modes in Scenario A which have a similar 

frequency and are dominated by the same machine to that in Scenario B. However, the damping 

factors of the two modes are slightly different.   

B. Transient stability simulation 

 To evaluate the effectiveness of the damping controller under variable wind speeds, the four 

cases and two scenarios are simulated by a nonlinear simulation and therefore and a grid fault 

has to be simulated. The location of the grid fault is chosen to be near critical bus 16. A 

permanent fault of 150ms three phase to ground is applied at t=0.1 s near critical bus 16 on 

transmission line 16–24. The fault was isolated by isolating the faulted line from both sides 

simultaneously.  

 The rotor angles of each synchronous machine relative to the largest SG (G1) rotor angle, 

which is used as a reference rotor angle, are monitored. Fig. 6 (a) shows the rotor angles of G2 to 

G10 with respect to that of G1 in the first case where all PSSs are disconnected. It is clear that 

the amplitude of the oscillation is growing up with time leading to system instability. As 

mentioned in the small signal stability analysis that G9 is dominating the first unstable 

oscillatory mode, G9 loses its synchronism after 11s in the nonlinear transient stability 

simulation. However, the system stability can be reached by installing PSSs in G5, G7 and G9 as 

shown in Fig. 6(b). This figure shows that the variations of SGs rotor angles in case 2 are better 
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that in case 1. The unstable modes in the previous case are damped by the installed PSSs leading 

to system stability. 

 

 

Fig. 6  Rotor angles of SGs for (a) Case 1 (all SGs without PSS) and (b) Case 2 (G5, G7, G9 are equipped with 

PSS). 

 

 The rotor angles of SGs after G7 and G9 are replaced by two equivalent wind farms (case 3) 

are shown in Fig. 7(a&b). The test system is affected adversely as a result of replacing SGs 

equipped with PSSs by an equivalent wind farms. The oscillations in this case last longer than 

those oscillations in case 2. Moreover, a number of SGs have larger rotor angle magnitude swing 

than that in the second case. Additionally, Fig. 7 (a&b) show that representing the wind farm as a 

single machine has a similar impact on the rotor angle of SGs to representing the wind farm as 

three machines operating at different modes. These results are similar to those obtained 

previously in the small signal stability analysis.   
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Fig. 7 Rotor angles of SGs for  

(a) Case 3 Scenario A(G7, G9 are each replaced by an equivalent single DFIG)  

(b) Case 3 Scenario B (G7, G9 are each replaced by equivalent three DFIG) 

(c) Case 4 Scenario A (G7, G9 are each replaced by equivalent single DFIG equipped with PSS) 

(d) Case 4 Scenario B (G7, G9 are each replaced by equivalent three DFIG equipped with PSS) 

 

 It is clear from Fig. 7(c&d) that the test system can reach steady state in the shortest time by 

equipping the two wind farms with the proposed PSS. The results of used nonlinear time domain 

simulation shows that SGs rotor angles oscillations damp quickly and the steady state value of all 

rotor angles is obtained in less than 5s. Again, the transient stability simulation confirmed that 

the two scenarios in case 4 are comparable. In both scenarios of this case, the rotor angle 

oscillations are damped faster than in the case 2. The results clearly demonstrate that DFIG based 

wind farms equipped with the proposed PSSs have the ability to damp power system oscillations 

better than SGs. 

 

 Fig. 8 shows the terminal voltages of G7 (bus 36) and G9 (bus 38) for cases 2, 3 and 4 

respectively. In case 1, the terminal voltages of G7 and G9 fall to about 0.6 pu and 0.77 pu 

respectively for the duration of the fault to improve quickly to their typical values after the 

disturbance as shown in Fig. 8 (a). On the other hand, in cases 3 and 4, the terminal voltage falls 

to about 0.2 pu throughout the entire period of the fault followed by improvement to  almost 0.6 
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pu following the fault clearance and before the disconnecting the crowbar protection system as 

shown in Fig. 8 (b) and (c) respectively. This is due to the lack of reactive power support from 

the wind farm throughout the fault and when the protection system retain active. The SGs are 

producing around 300 MVar over the entire fault period, which in turn enables high voltage 

levels as can be seen in Fig. 8(a). On the other hand, DFIG based wind farms consume a 

considerable reactive power amount during the operation of the crowbar time as shown in Fig. 8 

(b) and (c) respectively. It is for the reason that DFIGs crowbar is activated following the short 

circuit and therefore the DFIGs are acting as an induction generator. As soon as the crowbar is 

switched off, the wind farms reactive power supports their terminal voltages back quickly to 

their predefined values. However, in case 4, the terminal voltages of the two wind farms vary 

between 0.9 pu and 1.1 pu for about 4 s as shown in Fig. 8 (c). This is due to the reactive power 

variation caused by the attached PSS to the DFIG reactive power controller. As can be seen from 

cases 3 and case 4 (without and with PSS) results, wind farm reactive power variation is the only 

difference between the two cases. This difference take place the crowbar deactivated and when 

the PSSs are started to damp the system oscillations. 

 

 

Fig. 8  System transient responses (a) (terminal voltages and reactive power of G7 and G9 in Case 2), (b) (terminal 

voltages and reactive power of wind farms 1 &2 in Case 3), (C) (terminal voltages and reactive power of wind 

farms 1 &2 in Case 4) 
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 Based on the results of small signal and transient stability analysis, damping of power system 

oscillations is reduced to some extent if a wind farm with DFIG replaced an equivalent 

conventional SG. However, a satisfactory damping can be achieved by equipping DFIG with the 

proposed PSS which is connected to the reactive power controller of DFIG-RSC. Simulation 

results show the effectiveness of the proposed fixed parameters DFIG PSS to damp power 

system oscillations under a wide range of operating conditions within the wind farm and under 

various wind speeds. Therefore, a farm level PSS is possible by applying the same PSS signal to 

the voltage controller of all DFIG wind turbines. Additionally, results from small signal analysis 

and transient stability analysis demonstrate that the capability of the proposed DFIG PSSs to 

damp power system oscillations are more superior when compared to those in conventional SGs.  

6.  Conclusion 

 A comprehensive analysis is conducted in this paper to show the effect of replacing existing 

synchronous generators equipped with PSSs by equivalent large scale DFIG based wind farms 

on the damping of power system oscillations in a multi-machine power system. Moreover, a 

fixed parameters PSS was designed to assess the ability of DFIGs to damp power systems 

oscillations. Simulation results show that the power oscillation could be affected adversely as a 

result of replacing SG equipped with PSS by an equivalent wind farm. However, replacing SGs 

by wind farms fitted with the proposed PSSs can overcome the adverse results. This is illustrated 

from the simulation results of using the New England 10-machine 39-bus system with two DFIG 

based wind farms. The results confirm the robustness and stabilizing effect against various 

operating modes and under various wind speeds. Moreover, the results demonstrate clearly that 

DFIG equipped with PSS can damp power system oscillations more effectively than SGs PSS.  

Additionally, based on the obtained results, a farm level PSS is possible by applying the same 

PSS signal to the voltage controller of all DFIG wind turbines.  Such control scheme will be very 

beneficial as the wind power penetration levels have increased and to allow wind farms with 

DFIG to take over the responsibility of SGs to damp power system oscillations.  
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7.  Appendix 

A. Parameters of PSSs 

Table 3  PSS Parameters used for SGs and DFIGs 

SGs PSS DFIGs PSS 

 K T1=T3 T2=T4  K T1=T3 T2=T4 

G5 18 0.4757 0.1535 DFIG1 120 0.1599 0.1325 

G7 38 0.3814 0.1851 DFIG2 140 0.3179 0.2106 

G9 22 0.3533 0.0901     

B.    DFIG parameters 

Rated power 5 MW; rated voltage 3.3 KV; rated frequency 50 Hz; number of pole pairs 2; stator 

resistance 0.00299 pu; stator reactance 0.125 pu; magnetizing reactance 2.5 pu; rotor resistance 

0.004 pu; rotor reactance 0.05 pu; DC-link rated voltage 1200 V; turbine inertia 3.5 s; generator 

inertia 0.5 s. 
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