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Thermally Switching On/Off the Hardening of Soaked

Nanocomposite Materials

Maria M. Pérez-Madrigal and Rachel K. O'Reilly

Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.

Rowan and Maia use straightforward polymer
science to mimic complex natural phenomena
to create novel adaptive nanocomposite
materials.

he area of smart materials is a hot topic as it allows

access to adaptive/responsive materials with self-

healing, shape memory, or actuation behavior.
Indeed, scientists can make all manner of materials
on-scale with controllable and remarkable properties, but
designing materials with mechanical adaptability is much
more challenging. Although the sea cucumber might seem
like an unlikely source of scientific creativity, Rowan, Maia,
and co-workers have taken inspiration from this remarkable
creature in their recent ACS Central Science paper.' Building
on their 2008 Science paper,” with Weder on the fabrication
of artificial polymer nanocomposites that displayed mechan-
ical morphing characteristics, they have made an impressive
leap forward through the design and demonstration of a

biomimetic reversible heat-stiffening polymer nanocomposite.

In this manner, transitions at the
molecular level can be amplified
to result in a change in nanoscale
structure and/or materials
properties

Stimulus-responsive materials have benefited from sig-
nificant advances in polymer science in recent years.’
Many of the interesting properties of responsive materials
arise from a transition in solubility or conformation of the
polymer in the presence of an external stimulus. In this
manner, transitions at the molecular level can be amplified to
result in a change in nanoscale structure and/or material
properties. Perhaps the most commonly utilized stimulus is
that of temperature, with poly(N-isopropylacrylamide) being
the most widely studied responsive polymer. Harnessing
these transitions toward specific material applications is
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Figure 1. (a) Schematic showing the concept of a reversible, thermally
stiffening water swollen composite below the LCST and a stiff
reinforced composite above the LCST. (b) Tensile storage modulus
(E") of -CNC-g-POEG;A/PVAc composites dry as-processed (1D p,
black squares), soaked in water (25 °C) below the LCST for 3 days
(1Wy,, red circles), placed in water (60 °C) above the LCST for 1 h
(1Wy, blue triangles), and redried above 60 °C (1RD,;, green
triangles). Adapted with permission from ref 1. Copyright 2017
American Chemical Society.

challenging, but this is exactly what the Rowan and Maia
groups have achieved in this work.

In their previous work, Rowan and Weder fabricated
artificial polymer nanocomposites containing rigid cellu-
lose nanofibers,” and then built on this to create artificial

materials that displayed chemosoftening behavior when
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exposed to water and body temperature.” This was achieved
by embedding cellulose nanofibers in a rubbery polymer
matrix. The surface of the cellulose fibers contains hydroxyl
groups which can hydrogen bond where the fibers intersect
to form a reinforced network. This network makes the
material rigid. However, it can be disrupted by adding water,
to break up the intersecting and hydrogen bonding
nanofibers, and hence the composite material becomes
flexible. While this was a radically new approach for synthetic
material design, it was inspired by nature’s approach to
adaptive material design. For example, sea cucumbers
can rapidly alter the stiffness of their skin in response to
environmental cues. Indeed, their biological tissue is derived
from a nanocomposite structure containing rigid collagen
nanofibers embedded in a soft connective tissue. The stiff-
ness of the animal is controlled by enzyme secretion (which
switches “on” or “off” the interactions between the fibers)
from the nervous system. When connected, the nanofibers
form a reinforcing network that increases the overall stiffness
of the sea cucumber considerably and provides an “armored”
skin in response to a threat.

In this issue, Rowan, Maia and co-workers have designed a
novel heat-stiffening polymer nanocomposite by grafting
lower critical solution temperature (LCST) polymers to
cellulose nanocrystals (CNCs) embedded in a poly(vinyl
acetate) (PVAc) matrix. The role of the LCST polymers is
to mimic the enzymatically activated switch of the reinforc-
ing network observed in the sea cucumber, using CNCs as
reinforcing fillers, while PVAc acts as the soft connective tissue.
When swollen in water, an increase in temperature triggers
the fully reversible stiffening of the material (Figure la).
In contrast to commonly applied LCST polymers such
as poly(N-isopropylacrylamide) or poly(IN,N-dimethylami-
noethyl methacrylate), their strategy exploits poly(oligo-
(ethylene glycol)monomethyl ether (meth)acrylates). Inter-
estingly, this class of polymers allows for tailoring the LCST
transition (switching temperature in the range between
26 and 90 °C), and also shows high biocompatibility.” Both
of these factors undoubtedly contribute to the potential
widespread application of these new adaptive materials.

The role of the LCST polymers is
to mimic the enzymatically acti-
vated switch of the reinforcing
network observed in the sea
cucumber, using CNCs as rein-
forcing fillers, while PVAc acts as
the soft connective tissue.

In a wet, warm, and salty biomimetic environment, the
nanocomposites underwent an impressive increase in their
tensile storage modulus, ca. 2 orders of magnitude, from
~10 to 300 MPa (Figure 1b), which leads to a significant
stiffening of the materials. Moreover, by altering the filler
content, one can easily modulate the stiffening time from
2 to 4 min. When considering the potential application of
this technology, this offers plenty of time to adapt the soft
wet film to a specific shape before becoming stiff upon
exposure to the body’s environment. The authors demon-
strate this feature by preparing a mechanically stiff human
nose from a water-soaked film of the nanocomposite
material (Figure 2). Such unique platform is envisaged as a
promising new reinforcing medical implant for bone regen-
eration, especially in the craniofacial region where current
alternatives lack the ability to shape and conform to a bony
defect and also fail to allow for fitting to complex 3D
anatomic defects. Excitingly, these new materials appear to
offer significant advances toward tackling these challenges
although they have not yet been optimized as the perfect
bone scaffold: they would need to display mechanical
features closer to the target native tissue (human cortical
bone has an elastic modulus between 3 and 20 GPa).°
Alternatively, their stiffening response could also be applied
for tissues with lower elastic modulus, like cartilage or
tendon (on the order of 1—100 MPa).” Undoubtedly, a
future goal is to ensure their biocompatibility, bio-
activity, and mechanical endurance, as well as stiffness
yet flexibility and lightness yet strength.é Furthermore,
the scaffold microarchitecture should provide sufficient
porosity, interconnectivity, and transport properties for
vascularization and blood vessel invasion (pore size of
150 to 500 pm).*?
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Figure 2. Images of a wet 30 wt % t-CNC-g-POEG2MA/PVAc composite stiffened enough to retain the shape of a human nose upon exposure to a
warm hand. Reproduced with permission from ref 1 . Copyright 2017 American Chemical Society.
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Nonetheless, as the authors point out, numerous
opportunities exist to further develop this first generation
of heat-stiffening polymer nanocomposites. The straightfor-
ward strategy presented in this issue opens the door to
a new set of materials that could eventually meet all the
requirements of a bone scaffold. It is clear that further
interdisciplinary collaboration between chemists, biologists,
material scientists, and orthopedic surgeons will help to
realize the true potential of these new materials.
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