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Abstract: We investigate the accuracy of inference in a chaotic dynamical sys-
tem (Duffing oscillator) with the Unscented Kalman Filter, and quantify the
dependence on the sample size, the signal to noise ratio and the initialization.
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1 Introduction

We focus on the analysis of the deterministic Duffing process, defined as
dxys/dt = 2o, dos/dt = —(cxor + iy + Bad,), (1)

where x1; and xo; are the position and the velocity, respectively, of the
oscillation at time t, g(z) = ax1;+ B3, is a restoring force, « is the natural
frequency of the vibration, 8 the mode of the restoring force (hard or soft
spring), and ¢ is the damping term. The Duffing system (1) describes a
periodically forced oscillator with a nonlinear elasticity, and has been widely
used in physics, economics and engineering (Kovacic and Brennan, 2011).
A characteristic feature is its chaotic behaviour, which makes statistical
inference challenging. In the present paper we present an approach based
on the Unscented Kalman Filter (UKF).

2 Methodology

The UKF algorithm is a non-linear generalization of Kalman filter which
relies on the unscented transform (Julier and Uhlmann (2004)) in order to
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FIGURE 1. UKF estimates for the deterministic Duffing system with SNR=31
and n = 1000. (a) Signal estimate. (b) Estimate of parameter . (c) Estimate of
parameter 3. (d) Estimate of parameter c.

construct a Gaussian approximation to the filtering distribution. The UKF
performs a Bayesian estimation of a state-space model:

;= f(xi—1) + ¢, Yy = h(zy) +1 (2)

where z; € RM is the (hidden) state at time ¢, y, € RP is the measure-
ment, € ~ N(0,X,) is the Gaussian system noise and n ~ N(0,3,) is the
Gaussian observation noise. The non-linear differentiable functions f and h
are, respectively, the transition and observation models. UKF passes a de-
terministically chosen set of points (sigma points) through f to obtain the
predictive distribution p(@t|y;.,_; ). Then, the sigma points are transformed
using model h to compute the filtering distribution p(x;|y;.;). As suggested
in Sitz et al. (2002), we merge the signal with the parameter vector A =
[a B ]™ in a joint state vector j, = &, Ae]™ = [(f(®i—1, Xt—1)+€), Ar—1]",
and y; = h(j,) +n. In our case, the function f of model (2) is given by the
numerical solution of system (1), h is the identity function, and € = 0.
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FIGURE 2. UKF estimates for the deterministic Duffing system with SNR=10
and n = 1000. (a) Signal estimate. (b) Estimate of parameter . (c) Estimate of
parameter 8. (d) Estimate of parameter c.

3 Simulations

We simulate system (1) through the ode23 MATLAB function with a step-
size of integration §t = 0.01 and starting values for the numerical integra-
tion [1,0]. Measurements are obtained from the first component, 14, by
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FIGURE 3. UKF estimates for the deterministic Duffing system with SNR=1
and n = 1000. (a) Signal estimate. (b) Estimate of parameter «. (c) Estimate of
parameter 3. (d) Estimate of parameter c.
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FIGURE 4. UKF estimates for the deterministic Duffing system with SNR=10
and n = 100. (a) Signal estimate. (b) Estimate of parameter . (c) Estimate of
parameter 3. (d) Estimate of parameter c.
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FIGURE 5. UKF estimates for the deterministic Duffing system with SNR=10
and n = 50. (a) Signal estimate. (b) Estimate of parameter «. (c¢) Estimate of
parameter 3. (d) Estimate of parameter c.

adding observational noise n; ~ N(0, 0,2]) with known variance. The time
interval is t = 1,...,20, and the presented results are averaged over 10
simulations. The UKF algorithm is performed with the EKF/UKF toolbox
of Hartikainen et al. (2011). To investigate the behaviour of the Duffing
process and the UKF performance, we have simulated several scenarios,
varying the Signal to Noise Ratio, SNR € {30, 10,1}, and the sample size,
n € {1000, 100,50} (Figures 1-5). To evaluate the impact of initialization,
we considered different offsets as starting values for the parameters. The
offsets are sampled randomly from a Gaussian distribution in which the
mean is defined by a percentage deviation from the true parameter values
and the variance is 10% of the mean (Table 1).
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TABLE 1. Impact of the initialization for the deterministic Duffing system for
different offsets (as percentage of the true parameter values) in term of Euclidean
norm prior inference and post inference.

« I} c
Prior Post Prior Post Prior Post

100% 1.00 0.05 2.04 024 0.10 0.01
150% 152  0.12 3.02 050 0.15 0.01
200% 2.03 023 390 0.94 021 0.02
250% 248 065 4.61 212 0.25 0.04

4 Results and Discussion

Figures 1-5 show that the UKF successfully learns the parameters from the
noisy data, and that at the end of the filtering phase the true parameters
always lie within the predicted standard error around the estimate. This
suggests that Bayesian filtering offers a successful paradigm for inference
in chaotic dynamical systems. The prediction uncertainty depends on the
sample size n, and the level of noise, quantified by the SNR. As one would
expect, the uncertainty increases with decreasing n and decreasing SNR,
i.e. as information in the data is lost, and our study allows a quantification
of this trend. The increase in uncertainty particularly affects the parameter
B, which is associated with the nonlinear term and the source of the chaotic
behaviour. Table 1 shows the effect of the initialization, measured in terms
of the Eucliedean distance in parameter space. This distance is consistently
reduced in the filtering process, and the posterior distance (after filtering)
is always smaller than the prior distance (before filtering). However, the
posterior distance increases with the prior distance, suggesting that a good
initialisation will improve the inference results.
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