Statistical modelling of cell movement

Diana Giurghita!, Dirk Husmeier!

! University of Glasgow, United Kingdom
E-mail for correspondence: d.giurghita.l@research.gla.ac.uk

Abstract: In this paper we demonstrate an application of the unscented Kalman
filter in the context of cell movement, using a model defined in terms of stochastic
differential equations (SDEs).
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1 Introduction

Many important biological processes, such as wound healing, tissue devel-
opment and cancer cell invasion, are based on the collective movement of
cells. One of the main mechanisms for directed cell movement is chemo-
taxis, where cells follow chemical gradients (chemoattractants) present in
their environment. These gradients might arise from the presence of a local
source of chemoattractant or due to local depletion of the chemical in the
environment (Tweedy et al. 2016). An example of the former scenario is
the migration of breast tumour cells that respond to the epidermal growth
factor released by macrophages. In an attempt to acquire a deeper under-
standing of the mechanisms behind cell movement many population based
models have been formulated using partial differential equations, with very
few of them attempting to fit these models to actual data.

In this paper, we propose a model that describes the movement of any
individual cell being driven by an external resource gradient using SDEs of
the form:

X, = odBX, dv, = PPN =Dl Ly 1)

{1+ exp[-B(Y; — )]}

Equations (1) describe the evolution in time of the x and y coordinates of
a cell in 2D space. odB{ and odBj¥ are Brownian motion terms which in
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this model represent the intrinsic randomness in a cell’s movement. The
coordinate in the y direction has a drift term that is described by three
parameters: « - the amplitude of the resource gradient, [ - the steepness of
the gradient and v which indicates how fast the gradient changes over time.
The strength of the random component in the cell movement equations is
indicated by the diffusion coefficient o.

FIGURE 1. Three frames from the video recording Dictyostelium cells movement.

In this paper, we present our approach to fitting this model to cell move-
ment data using a non-linear Bayesian filter. We provide some insight into
the particularities of this model using simulated data and we discuss the
results of this analysis from a real data set, describing the movement of
Dictyostelium cells (see Figure 1).

2 Methods

Inference in non-linear dynamical systems poses numerous challenges due
to the stochastic nature of the data, intractable likelihoods and uniden-
tifiable parameters. Recent developments have tackled this problem using
likelihood-free methods (sequential Monte Carlo ABC) or computational
methods (particle Markov Chain Monte Carlo) (Golightly & Wilkinson,
2011), however these can become too computationally expensive as the
number of time points or parameters increases. The unscented Kalman fil-
ter (UKF) is an online Bayesian filtering method that can easily be scaled
up to higher dimensions (Julier & Uhlmann, 1997). Intuitively, the UKF
starts from the initial distribution of the state vector, drawn from a mul-
tivariate normal distribution, which is then iterated through a prediction
and updating step for each measurement available using the transition and
observation models.

We introduce the UKF by referring to a general state-space model:

x¢ =f(xi—1,€), yi=g(xe, 1) (2)

where x; represents the vector of the hidden states, y; are the measure-
ments, €; is the process noise at time ¢, v; is the observation noise at time
t and the functions f and g represent the transition and, respectively, the
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observation models. The model parameters @ can be included as dynamical
variables in the hidden states vector x;, which means they will be estimated
at every time point along with the observed system states (Sitz et al., 2002).
The advantage of the method comes from the fact that the probability dis-
tribution of the predictor step: p(x¢|y1..—1) and the probability distribution
of the updating step p(x¢|y:,¥1.t—1) can be obtained in closed form using
properties of the Gaussian distribution (Julier & Uhlmann, 1997):

p(Xe|y1e—1) = N (x| g, it) (3)
P(xe|ye, Yi:e—1) = N (xe |y, 24) (4)

where fi, and X; are the prediction mean and covariance at time ¢ and
p, and X; are the update mean and covariance at time ¢ (see Julier &
Uhlmann, 1997 for full derivations). Therefore, the algorithm essentially
updates the mean and covariance of the Gaussian distribution of the state
vector at each iteration. The approximation of the Gaussian distribution is
made using the unscented transform, which consists of a set of determinis-
tically chosen sigma-points that are passed through the non-linear function
and weighted to obtain the mean and covariance of the Gaussian. The un-
scented transformation is used twice for each iteration of the algorithm: in
the prediction and respectively in the update step.

3 Simulation results

We apply the Euler-Maruyama discretisation to bring the system in Equa-
tion (1) into the standard state-space model described in Section 2:

X; = Xi1+0ABY 5)
af exp[—B(Yi—1 — )]
-1 {1+ exp[—=B(Yi—1 — 71)]}

Y, = Y sdt + cAB) (6)

Here AB;X and AB} are just sums of random normal increments between
time t—1 and t. Equations (5) and (6) thus define the transition function f
from Equation 2. In this scenario, we assume the process is observed with
a small amount of Gaussian noise v; ~ N(0,0.12), so g from Equation 2 is
just the identity function.

We then fit the UKF to a synthetic data set using the following parameters:
a=5,8=2,97=0.5,0 =0.1. The results summarised in Figure 2 indicate
good agreement between the estimated UKF path and the true cell path.
The UKF also provides good estimates for the parameters: B = 1.88,9 =
0.51,6 = 0.04 with relatively small standard errors: 0.17,0.83,0.06, except
for & where the estimates indicate a more substantial deviation from the
true parameter (bias: 0.44 and standard error is 0.35).
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FIGURE 2. Simulation results: UKF tracking of cell coordinates: z and y, and
parameters: «, 3,7,0 for time interval [0,10]. Parameter estimates include +1
standard error bounds. On the right hand side, negative log profile likelihood
plot for «, obtained by fixing the other three parameters at their true values.

A potential source of bias as the one observed in Figure 2 can be investi-
gated by looking at the likelihood i.e.: marginal likelihood with respect to
the hidden states. In order to do that, we first derive the probability of the
observed system at time ¢ conditional on the state of the system at time
t — 1 by integrating out the latent variable x;:

p(yelye) = / p(yelx)p(xilye_1)dx, (7)

/N(yt\xt,Rt)N(thﬂt, 2, )dxy (8)

Using the Gaussian convolution integral results (Bishop, 2006) we simplify
(8) to p(yi¢lyi—1) = N(y¢lia;, ¢ + Ry), where j1, and X; are the predicted
mean and covariance at time ¢, and R; is the measurement noise covariance
matrix at time ¢. The log likelihood is then:

L = log[[p(yilyi-1) =D logN(yilf, =i+ Ry) (9)
t

o D {logdet(2n%,) +05(y, — 1) S (ye — )}, (10)
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Where 3; + R; = 3;. We evaluate the marginal log likelihood in (10) by
considering a grid of values for each parameter in the model and fitting
the UKF with each parameter combination. The results summarising the
profile likelihood for the a parameter in Figure 2 can be used to calculate
the Cramer-Rao lower bound, which provides an indication of the intrinsic
uncertainty specific to the problem. In this case, the minimum standard
deviation attainable by an estimator of « is 0.14. Considering the standard
error obtained from the UKF estimation for « is 0.35, this then indicates
that the estimated value of the parameter is reasonably close to the true
value.

UKF estimate of two cell paths
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FIGURE 3. UKF tracking of two cells with different movement patterns.

4 Real data application

Dictyostelium cells are widely used in experiments as proxies for under-
standing the mechanisms of human disease because of their similarities to
important human cells (leukocytes and cancer cells) in terms of biology
and response to chemotaxis (Tweedy et al., 2016). The data consists of two
cell paths corresponding to Dictyostelium cells locations extracted from a
time series of high resolution microscopy images (see Figure 1). We em-
phasise that the main interest for biological applications is the inference of
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the parameters. However, since the true parameters for the real data are
unknown, we use the tracking of the cell trajectories as a proxy for assess-
ing the accuracy of inference (see Figure 3). As can be seen from the left
panel of Figure 3, we have picked two cells with very different behaviour
(one dominated by drift, the other dominated by diffusion). In both cases,
the path reconstructed with the UKF is very accurate.

5 Conclusions and future work

In this paper, we demonstrate the application of the UKF, a Bayesian fil-
tering technique that adequately trades off accuracy versus computational
efficiency, to a real-world problem potentially relevant to cancer research:
the movement of Dictyostelium cells, which has not been tackled at individ-
ual cell level before. Our results indicate that the UKF can be successfully
used for parameter inference and tracking cells displaying various move-
ment patterns. Future work will extend this work by applying the UKF
to a population of cells. Additionally, we plan to fit models describing al-
ternative movement mechanisms, such as the self-induced gradient model
described by Tweedy et al. (2016) and employ model selection criteria to
choose the best model.
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