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Abstract: We propose a novel method for parameter inference that builds on
the current research in gradient matching surrogate likelihood spaces. Adopting
a three phase technique, we demonstrate that it is possible to obtain parameter
estimates of limited bias whilst still adopting the paradigm of the computationally
cheap surrogate approximation.
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1 Introduction

Statistical inference in nonlinear differential equations (DE) is challenging. The
log-likelihood landscape is typically multimodal and every parameter adaptation,
e.g. in an MCMC simulation, requires a computationally expensive numerical in-
tegration of the DEs. Using numerical methods to solve the equations results
in prohibitive computational cost; particularly when one adopts a Bayesian ap-
proach in sampling parameters from a posterior distribution. Alternatively, one
can try to reduce this computational complexity by obtaining an interpolant
to the data from which one can obtain a comparative objective function that
matches the gradients of the interpolant and the DEs. By sampling on this cheap
representative likelihood surface, bias is introduced to the modelling problem.
Current research focuses on reducing this bias by introducing a regularising feed-
back mechanism from the DEs back to the interpolation scheme (e.g. Niu et al.
2016). The idea is to make the interpolant maximally consistent with the DEs.
Although this paradigm has proved to improve performance over näıve gradient
matching, the feedback loop fails to fully eradicate bias in the final estimate.

This paper was published as a part of the proceedings of the 32nd Interna-
tional Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute,
Rijksuniversiteit Groningen, Netherlands, 3–7 July 2017. The copyright remains
with the author(s). Permission to reproduce or extract any parts of this abstract
should be requested from the author(s).
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For this reason, a natural progression would be to sample from the true likeli-
hood space whilst reducing computational complexity in the discarded burnin
steps. Assuming this hypothesis, we postulate the use of a surrogate likelihood in
the burnin phase alone. Through an example possessing multimodal likelihood,
we will show the ability of the algorithm to avoid any local entrapment whilst
obtaining accurate parameter estimates.

2 Method

Consider time-dependent observations y(t) = x(t) + ε—where x(t) denotes the
signal and ε independent additive zero mean Gaussian noise with variance pa-
rameter σ2—whose signals are governed by a system of differential equations:

dx(t)

dt
= f(x(t),θ) (1)

dependent on some (partially) unknown parameters θ. Assuming Gaussian noise,
we place a GP prior on the latent variable x

x(t) ∼ GP(0, k(t, t′)), (2)

leading us to a Gaussian distribution, p(xi|φi) = N (xi|0,Ki) for an arbitrary
set of time points T = {t1, ..., tn} with entries of Ki given by evaluating kernel
function k at each element of T ×T (Rasmussen and Williams, 2006). Under our
assumption of Gaussian noise, we consider the joint distribution, p(y,x|φ, σ).
Marginalising over latent variables x provides a zero mean distribution for the
observations:

y ∼ N (0,K + σ2I) (3)

(see Dondelinger et al. (2013) for details). Considering the joint distribution be-
tween our signal and observed values, we may implement an elementary trans-
formation of a Gaussian distribution to obtain the posterior distribution for our
signal with mean given by:

µ(τ) = k(τ, T )(K + σ2I)−1y, (4)

where k(τ, T ) denotes evaluation of the kernel function at τ over T . Subsequently,
firstly estimating the hyperparameters via ML, we adopt the mean of the posterior
as a representation of our signal x. This allows us to proceed under the supposition
that we have a fixed interpolant for the true signal. Given that the derivative of
eq. 4,

∂µ(τ)

∂τ
= k′(τ, T )(K + σ2I)−1y, (5)

is the mean of the Gaussian distributed DE derivative (see section 7.5 of Van-
hatalo et al., 2015), we may consider:

f(x̂(t),θ) ∼ N
(dx̂(t)

dt
, γ2I

)
, (6)
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where γ2 is a fictitious noise term (assumed equal for both gradients) and x̂ is
given by eq. 4. Contrary to the work done by Dondelinger et al. (2013), fixing
the GP hyperparmeters φ and the interpolant x̂ allows us to abandon the Gibbs
sampling routine at this stage of the algorithm, further reducing the overall com-
putational burden. The corresponding negative log-likelihood term provides a
gradient matching objective function:

π(θ) = n logγ2 +
1

2γ2

∣∣∣∣∣∣∣∣dx̂(t)

dt
− f(x̂(t),θ)

∣∣∣∣∣∣∣∣2 (7)

which gives a representative computationally tractable surface as a surrogate for
the log-likelihood. This involves the term γ2 representing the mismatch between
the gradient obtained from the differential equation and that from explicit differ-
entiation of the GP posterior mean. This parameter will be sampled throughout
the surrogate burnin phase of the algorithm. The proposed sampling scheme in-
volves three phases. In the initial burnin phase, samples are drawn from the
surrogate distribution in eq. 7 using a Delayed Rejection Adaptive Metropolis1

(DRAM) scheme (Haario et al. (2006)). Assuming a degree of similarity between
the surrogate and true likelihood surfaces, this drives the sampler towards the
global minimum of the true likelihood function until a PSRF2 value of 1.1 has
been achieved. From here, we initialise a corrective phase in the true likelihood
space, correcting for any bias introduced by the inconsistencies between the sur-
rogate and true likelihood spaces. Sampling with DRAM, this phase is concluded
upon obtainment of a PSRF equal to 1.1. The proceeding sampling phase repli-
cates this corrective phase with sampling steps recorded until we achieve a PSRF
value of 1.05. The stepwise decrease in target PSRF values allows time for the
adaptive component of AM to learn the topology and adjust the covariance ac-
cordingly. We adopt an uninformative Inv-Gamma(0.001,0.001) prior for σ2 and
γ2 and a Ga(4, 0.5) prior for the parameters of the DE. All parameters are sam-
pled on the log scale to account for the positivity constraint.

3 Results

We assess performance on the following DE model of circadian oscillation3:

dp1

dt
=

k1

36 + k2p2
− k3,

dp2

dt
= k4p1 − k5 (8)

This is a notoriously challenging problem due to the extreme multimodality of
the likelihood. Following Girolami et al. (2010), we focus on the inference of two
parameters (k3 and k4), setting the other parameters and initial conditions to

1Obtained using the adaptive Metropolis component of DRAM with modM-
CMC function in the FME package in R.

2Obtained at intervals of 20 steps using the gelman.diag function from the
coda package in R.

3We used the same differential equations as in Girolami et al 2010. The actual
Goodwin oscillator is of a slightly different form, where the terms k3 and k5 are
replaced by k3p1 and k5p2, respectively.
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the same fixed values as in Girolami et al. (2010). Five sets of initial parame-
ter values for k3 and k4 were obtained using a Sobol sequence over the domain
[0, 5]2. Figure ?? shows the chain moving through the k3-k4 parameter domain.
Comparing with the traditional method, we observe the ability of the proposed
method to evade the various local minima. PSRF values of 17.1, 10.4 and 12.3
were obtained for k3, k4 and σ2 simulations respectively after 10000 steps us-
ing the traditional DRAM method in true likelihood space. Comparatively, the
proposed method required 1690 steps in surrogate space, 1690 in the corrective
phase and 1010 in the sampling phase to achieve a PSRF of 1.05. The number
of numerical integration steps required are given in Table ?? for each of the ten
DRAM chains. In Figure ??, boxplots are given that provide the distribution of
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FIGURE 1: Ten chains generated with the proposed method shown in the
parameter domain of the negative surrogate log-likelihood space (topleft)
and negative log-likelihood space (topright). The bottom plot shows simu-
lations generated using the traditional method. The true parameter value
is given by a point at (2,1). The black crosses denote the final point of each
chain.

TABLE 1: Number of numerical integration steps (N) for the traditional
method. The number required in the proposed scheme is 2700.

Chain Index 1 2 3 4 5 6 7 8 9 10

N 25583 29778 29835 28452 29708 29672 29768 29530 29859 29847

bias in our sampled parameter estimates for each of the five chains. Figure ??
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provides RMS deviation in function space obtained using eq. 9,

RMSfunction =

√
1

n

∣∣∣∣x− x̂
∣∣∣∣2 (9)

where x denotes the true signal and x̂ denotes the numerical solution of the DE
for one parameter sample from the sample phase of the multiphase approach and
the post burnin period of the traditional method. This provides a measure of the
predictive accuracy of the MCMC samples.
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FIGURE 2: Boxplots showing the distribution of bias for both methods (left)
where red boxes give the bias of the standard DRAM samples (without
outliers) and the black boxes give the bias of the proposed method. The
plot on the right gives the bias in both parameters for the DRAM method
with outliers included.
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FIGURE 3: Functional RMS comparison between the proposed method
(black) and DRAM (red). On the left, we include outliers (from DRAM)
and, on the right, these are removed to enable better scalability of the
plots for comparison. The red dotted line denotes a functional RMS equal
to zero.

4 Conclusion

Our work considers the sampling in DE parameter inference as a computationally
efficient three-phase scheme that achieves low levels of bias in sampled parameter
estimates (Figure ??). Achieving a PSRF of 1.05, we observe the ability of the
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algorithm to converge in the parameter space of the circadian oscillator system
of equations; a model for which the standard DRAM procedure fails to replicate
this success (bottom of Figure ??). Considering the results in function space, we
observe the superior performance of the proposed method compared with the tra-
ditional DRAM method, showing that the performance improvement is witnessed
in both domains of study. These features, along with the vast improvement in
computational efficiency, demonstrate improved parameter inference compared
with the traditional method.
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