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We study the plane (not necessarily monochromatic) gravitational waves at nonlinear quadratic
order on a flat background in vacuum. We show that, in the harmonic gauge, the nonlinear waves are
unstable. We argue that, at this order, this instability can not be eliminated by means of a multiscale
approach, i.e. introducing suitable long variables, as it is often the case when secularities appear in a
perturbative scheme. However, this is a non-physical and gauge-dependent effect that disappears in
a suitable system of coordinates. In facts, we show that in a specific gauge such instability does not
occur, and that it is possible to solve exactly the second order nonlinear equations of gravitational
waves. Incidentally, we note that this gauge coincides with the one used by Belinski and Zakharov
to find exact solitonic solutions of Einstein’s equations, that is to an exactly integrable case, and this
fact makes our second order nonlinear solutions less interesting. However, the important warning
is that one must be aware of the existence of the instability reported in this paper, when studying
nonlinear gravitational waves in the harmonic gauge.

I. INTRODUCTION

The LIGO-VIRGO collaboration has recently detected two events, GW150914 [1] and GW151226 [2], relative to
the coalescence and merger of binary systems of black holes, and the formation of a final black hole. This exceptional
achievement has finally directly proven the existence of gravitational waves [17], which is one of the main predictions
of general relativity, as pointed out by Einstein in 1916 [3]. The modelling of the gravitational signal produced in the
merge of binary systems has played a crucial role in the direct detection of gravitational waves, since the comparison
between the data and the theoretically predicted signal allows to discriminate between different types of sources, and
to estimate the physical parameters involved, e.g. the black holes masses, spins and distances. This has been achieved
combining two (quite different) approaches, which are used together to construct a model of the gravitational signal
at different space scales (for instance in the ”near-zone” and ”far-zone” with respect to the source) and for different
parts of the waveform (inspiral phase, merger and ringdown). The first approach consists in the numerical solution
of the Einstein’s equations, see [7] and references therein for a review of numerical relativity results, which gives
an useful description of the merger of the black holes after the insipiral phase. The second approach makes use of
a perturbative expansion of the Einstein’s equations. The two most popular realizations of this approach are the
Post-Newtonian (PN) expansion [8], and the Effective One Body (EOB) formalism [9], which are successful to model
the inspiral phase, when the two black holes are well separated.

In this paper we are interested in the stability of the perturbative approach. We consider the Einstein’s equations
in vacuum for small perturbations h of the Minkowski metric at second order h2 in the perturbative expansion in
powers of h, and we show that plane waves are unstable in the harmonic gauge, which is commonly used to study
gravitational waves in both the PN and EOB formalisms. We discuss this instability, and show that it can not be
eliminated by means of a multi scale approach [18]. In spite of this fact, the nature of such instability is not physical,
instead it is a feature of the harmonic gauge, so it is simply a gauge effect. This conclusion is based on the observation
that, in an appropriate reference system explicitly defined, the solutions of the nonlinear quadratic perturbative
equations are stable. In facts, in this gauge the second order nonlinear equations are easily integrated, and their
explicit solution shows that the quadratic nonlinearities do not change in any significant respect the picture of the
gravitational waves obtained from the linearized Einstein’s equations. However, the relevance of these perturbative
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solutions is diminished by the fact that the reference system in which they have been found, is the same used in
the famous result of Zakharov and Belinski on gravitational solitons [10], so that this gauge choice corresponds to a
situation in which the full Einstein’s equations in vacuum (and in electro-vacuum) are integrable.

The relevant point here is the existence of such gauge-induced instability of plane waves in vacuum in the harmonic
reference system. This fact should be a warning for those who want to study nonlinear gravitational waves using the
harmonic gauge in various contexts. In facts, in some cases the choice of the harmonic gauge might not be convenient,
due to the secular instability of the perturbation h. For instance, in the PN and EOB formalisms which make use of
the harmonic gauge on a flat background, this instability might appear if one studies the evolution of gravitational
waves far from the source using the plane wave approximation. We mention that an analysis of this instability for
more general wavefronts and for different backgrounds is currently under study, and will be reported elsewhere.

A further interesting question is whether this kind of instability is still present in alternative gravitational models.
For instance, in [11] it has been reported an instability of gravitational waves in the bigravity model, which might be
due essentially to the same mechanism discussed in this paper. Furthermore, a study of this instability in the case
of modified gravity [12] and of nonlocal gravitational models [13] would be also interesting, but it goes beyond the
purposes of this paper and will be discussed separately.

In what follows, unless explicitly stated, we will use the following notations: Greeks indices run from zero to
three, i.e. α, β, γ . . . = 0, 1, 2, 3, Latin indices run from 2 to 3 i, j, k . . . = 2, 3, capital Latin indices run from 1 to 3
A,B,C . . . = 1, 2, 3, and underlined indices run from 0 to 1 a, b, c . . . = 0, 1. Moreover we rise and lower indices with
the Minkowski metric with signature 1,−1,−1,−1. The Ricci tensor is defined as in [16] as Rij = ∂kΓkij + . . ..

II. EINSTEIN’S EQUATIONS

In this section we will write the Einstein’s equations at second order of perturbations. It is well known [15, 16] that
the components G0

β of the Einstein’s tensor do not contain second time derivatives g̈αβ of the metric tensor, but they
contain only the first time derivative ġAB and no derivatives ġ0α, so that

G0
β = G0

β(gαβ , ġAB , ∂Cgαβ , ∂C∂Dgαβ). (1)

Moreover the derivatives g̈0α do not appear at all and one has

GAγ = GAγ(gαβ , ġ0α, ġAB , g̈AB , ∂Cgαβ , ∂C∂Dgαβ). (2)

Therefore the equations G0
β = 0 are involutive: if the equations GAB = 0 are verified at any time and if G0

α = 0

at the initial time t0, then G0
α = 0 at any time t. Thus, the equations G0

α = 0 can be viewed as a constraint for
initial data. As a consequence, instead of 10 evolutionary equations for the 10 independent components of the metric
tensor one has 6 evolutionary equations + 4 constraints on the initial data, which leaves 4 of the 10 components of the
metric arbitrary: this arbitrariness corresponds to the arbitrariness in the choice of the reference system [19]. These
considerations will be helpful in what follows, when we will discuss the perturbative equations.

Since we want to study the propagation of nonlinear gravitational waves in vacuum, we consider small perturbations
h of the flat spacetime metric, that is a metric tensor gµν = ηµν+hµν with ηµν the Minkowski tensor and |hµν | = O(ε),
with 0 < ε � 1. From this definition it is possible to expand the Ricci tensor and the Ricci scalar as well as the
Einstein’s tensor in powers of h, see Appendix B.

For the Ricci tensor one has

Rµν = R(1)
µν +R(2)

µν +O(h3) (3)

where R
(1)
µν and R

(2)
µν are respectively the linear and quadratic part of the Ricci tensor, and are given by

R
(1)
µν = 1

2

[
−�hµν + ∂µ∂αψ

α
ν + ∂ν∂αψ

α
µ

]
= 1

2

[
−h ,α

µν ,α − hαα,µν + hαν,αµ + hαµ,αν
]

(4)

and

R
(2)
µν = 1

2{−ψ
αρ
,α (hµρ,ν + hνρ,µ − hµν,ρ) + hαρ (hµν,αρ + hαρ,µν − hνρ,αµ − hµρ,αν) +

+ 1
2

[
hαρ,µhαρ,ν + (hµα,ρ − hµρ,α) (h α,ρ

ν − h ρ,α
ν )

]
},

(5)
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where we have defined

ψαβ ≡ hαβ −
1

2
hρρδ

α
β (6)

see for instance [15]. The Ricci scalar is given by

R = ηαβR
(1)
αβ + ηαβR

(2)
αβ − h

αβR
(1)
αβ +O(h3) (7)

and the Einstein’s tensor up to second order in h is given by

Gαβ ≡ Rαβ −
1

2
δαβR = G

(1)α
β +G

(2)α
β +O(h3) (8)

where G
(1)α

β and G
(2)α

β are respectively the linear and quadratic parts of the Einstein’s tensor, and are given by

G
(1)α

β ≡ R
(1)α

β −
1

2
δαβR

(1)γ
γ (9)

and

G
(2)α

β ≡ R
(2)α

β − h
ασR

(1)
σβ −

1

2
δαβ

(
R(2)γ

γ − hµνR(1)
µν

)
(10)

In this work we limit our analysis to plane waves and, without loss of generality, we consider waves travelling along
the x1 axis, so that

hαβ = hαβ(x0, x1). (11)

Moreover, we choose h as

h(x0, x1) =

 h00 h10 0 0
h10 h11 0 0
0 0 h22 h23
0 0 h23 h33

 (12)

We stress that the choice h0i = 0 corresponds to a gauge choice, and therefore it does not affect the generality of the
solution, while setting h1i = 0 is in facts a constraint on the form of the gravitational wave.

The waveform (12) is compatible with the Einstein’s equations, up to the order h2. In facts, the equations Ria =

R
(1)
ia + R

(2)
ia = 0 are identically satisfied for hia = 0, see (A5) and (A8). Therefore one has that G

a
i = gaαGαi =(

ηa b − ha b
) (
R bi − g biR/2

)
= δ

a
iR/2 = 0, where we have used ha i = 0 and

(
ηa b − ha b

)
g bi = δa i. Thus, the

equations G
a
i = 0 are identically satisfied for ha i = 0 and one is left with the four dynamical equations Gi j = 0 and

G1
1 = 0 plus the two constrains G0

0 = 0 and G0
1 = 0 for the six nonzero variables hij and ha b. Thus, the solution

(12) still contains two arbitrary functions, corresponding to the residual gauge freedom, that can be used to fix the
gauge. Henceforth we will always set to zero the components hia of the metric.

A. Einstein’s equations at first order

We start with the Einstein’s equations in vacuum, at first linear perturbative order, and we refer the reader to
the Appendix B for explicit calculations. Let us define the following variables which will be useful in the following
discussions

B ≡ h22 + h33 ; ψ ≡ h22 − h23 ; A ≡ h00,11 + h11,00 − 2h01,01 (13)
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Using these definitions, the linearized Einstein’s equations for the metric (12) read

G
(1)0

0 = 1
2B,11 = 0; G

(1)0
1 = 1

2B,01 = 0; G
(1)1

1 = − 1
2B,00 = 0; G

(1)2
3 = 1

2�h23 = 0

G
(1)2

2 = 1
2 (�h22 −A−�B) = 0; G

(1)3
3 = 1

2 (�h33 −A−�B) = 0.

(14)

It is convenient to write the Einstein’s equations by means of linear combinations of (14) as follows

G
(1)0

0 +G
(1)1

1 = − 1
2�B = 0, G

(1)2
2 +G

(1)3
3 − (G

(1)0
0 +G

(1)1
1) = −A = 0,

G
(1)2

3 = 1
2�h23 = 0, G

(1)2
2 −G

(1)3
3 = 1

2�ψ = 0,

(15)

together with the two constrains

G
(1)0

0 = 1
2B,11 = 0, G

(1)0
1 = 1

2B,01 = 0 (16)

From equations (15-16) one has B,00 = B,01 = B,11 = 0, so that B = c0x
0+c1x

1+c, where c0, c1, c are constants. Since
we limit our attention to bounded nonconstant solutions, we set c0 = c1 = c = 0, thus we have B = h22 + h33 = 0.
Moreover, since h23 and ψ satisfy the wave equation, the components hij are a linear wave, that is hij(x

0 ± x1).
Furthermore, one can always perform an infinitesimal gauge transformation

x′0 = x0 + ξ0(x0 ± x1), x′1 = x1 + ξ1(x0 ± x1), (17)

under which the components ha b transform as

h′00 = h00 − 2ξ0,0 +O(ε2); h′11 = h11 − 2ξ1,1 +O(ε2); h′01 = h01 − ξ0,1 − ξ1,0 +O(ε2), (18)

and choose ξ0 and ξ1 in such a way that in the new coordinates one has h′a b ∼ ε2, so that the gravitational wave
reduces to the two well know polarizations

h′+ =

 0 0 0 0
0 0 0 0
0 0 h′+ 0
0 0 0 −h′+

 , h′× =

 0 0 0 0
0 0 0 0
0 0 0 h′×
0 0 h′× 0

 (19)

up to quadratic ∼ ε2 corrections, where h′+ and h′× are solutions of the wave equation (see [15, 16] for review).

B. Einstein’s equations at second order

The Einstein’s equations in vacuum at second perturbative order are

Gαβ = G
(1)α

β +G
(2)α

β +O(h3) = 0. (20)

Using equations (7-10) and rearranging the Einstein’s equations in the same form as in (15-16), one obtains (see
Appendix B) the four dynamical equations for the metric perturbation (12)

G0
0 +G1

1 = 1
2{−�B +B,00h00 +B,11h11 − 2B,01h01 + 1

2B,0 (h00,0 + h11,0 − 2h01,1) +

+ 1
2B,1 (h00,1 + h11,1 − 2h01,0)− h22�h22 − h33�h33 − 2h23�h23

+ 1
2

[
(ψ,1)

2 − (ψ,0)
2
]

+ 2
[
(h23,1)

2 − (h23,0)
2
]
} = 0,

(21a)
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G2
2 +G3

3 −
(
G0

0 +G1
1

)
=

= 1
2{−2A+ (h00,1)2 − (h11,0)2 + (h23,0)2 − (h23,1)2 + 1

4

[
(B,1)2 − (B,0)2 + (ψ,0)2 − (ψ,1)2

]
+

+2 (h00 − h11)A+ h00,0 (h11,0 − 2h01,1)− h11,1 (h00,1 − 2h01,0)} = 0,

(21b)

G2
3 = 1

2{�h23 − h00h23,00 − h11h23,11 + 2h01h23,01 + h22(h23,00 − h23,11) + h23(h33,00 − h33,11)+

+ 1
2

[
−h23,0

[
(h00 + h11 −B),0 − 2h01,1

]
− h23,1

[
(h00 + h11 +B),1 − 2h01,0

]]
} = 0,

(21c)

G2
2 −G3

3 = 1
2{� (h22 − h33) + h00 (h33 − h22),00 + 2h01 (h22 − h33),01 + h11 (h33 − h22),11 +

− 1
2 (h22 − h33),0 (h00,0 + h11,0 −B,0 − 2h01,1)− 1

2 (h22 − h33),1 (h00,1 + h11,1 +B,1 − 2h01,0)

+h22�h22 − h33�h33} = 0,

(21d)

and the two constrains on initial data

G0
0 = 1

2{B,11 + h11B,11 − h01B,01 + 1
2B,0 (h11,0 − 2h01,1) + 1

2B,1h11,1+

+ 1
2

[
(h22,1)2 − (h22,0)2 + 3(h23,1)2 − (h23,0)2 + h22,0B,0 + h33,1(h33,1 − h22,1)

]
+

+h22h22,11 + h33h33,11 + 2h23h23,11} = 0,

(21e)

G0
1 = 1

2{B,01 + h01B,11 − h00B,01 + 1
2h11,0B,1 −

1
2h00,1B,0+

+ 1
2 [h22,0h22,1 + h33,0h33,1 + 2h23,0h23,1] + h22h22,01 + h33h33,01 + 2h23h23,01} = 0.

(21f)

Let us discuss the properties of the solutions of the system (21). First of all note that (21a, 21e,21f) imply that
B,00 ∼ B,01 ∼ B,11 ∼ h2, so that B = c+ c0x

0 + c1x
1 +O(h2). Again, since we are interested in bounded nonconstant

waves, we choose c = c1 = c2 = 0, and therefore B ∼ h2.
Also note that �h23 ∼ �ψ ∼ A ∼ h2. That implies that, since we are doing an analysis at second quadratic order

h2, we must neglect all the terms Bh ∼ h23 �h ∼ Ah . . . ∼ h3 in the system (21), so that the dynamical equations
reduce to the simplified form

�h23 = h00h23,00 + h11h23,11 − 2h01h23,01 + 1
2h23,0 (h00,0 + h11,0 − 2h01,1) +

+ 1
2h23,1 (h00,1 + h11,1 − 2h01,0) ,

(22a)

�ψ = h00ψ,00 + h11ψ,11 − 2h01ψ,01 + 1
2ψ,0 (h00,0 + h11,0 − 2h01,1) +

+ 1
2ψ,1 (h00,1 + h11,1 − 2h01,0) ,

(22b)

�B = 1
2

[
(ψ,1)

2 − (ψ,0)
2
]

+ 2
[
(h23,1)

2 − (h23,0)
2
]
, (22c)

A = 1
2

[
(h00,1)2 − (h11,0)2 + (h23,0)2 − (h23,1)2

]
+ 1

8

[
(ψ,0)2 − (ψ,1)2

]
+

+ 1
2h00,0 (h11,0 − 2h01,1)− 1

2h11,1 (h00,1 − 2h01,0) .
(22d)
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In the same way, the two constraints on the initial data reduce to

B,11 + 1
2

[
(h22,1)2 − (h22,0)2 + 3(h23,1)2 − (h23,0)2 + h33,1(h33,1 − h22,1)

]
+

+h22h22,11 + h33h33,11 + 2h23h23,11 = 0,
(22e)

B,01 + 1
2 [h22,0h22,1 + h33,0h33,1 + 2h23,0h23,1] + h22h22,01 + h33h33,01 + 2h23h23,01 = 0. (22f)

Note that the constraints (22e,22f) depend only on the components hij , which are the physical degrees of freedom of
the gravitational wave.

At this point we must fix the gauge, in order to discuss the properties of the solutions of the second order Einstein’s
equations in the corresponding reference system. In facts, as discussed in section II, due to the residual gauge
invariance, the waveform (12) still contains two arbitrary functions, that can be used to impose two constraints on
the components of the perturbations hαβ .

III. OCCURRENCE OF THE SECULARITY IN THE HARMONIC GAUGE

In this section we show that, in the harmonic gauge, the plane waves of the form (19) are unstable. The harmonic
gauge is defined by the four conditions Γαβγg

βγ ≡ Γα = 0, and it is commonly used to study the generation and

propagation of gravitational waves, e.g. in the PN and EOB formalisms [8, 9]. Expanding the equations Γλ = 0 at
second order in h one has

Γλ = ψλα,α − hλσψα σ,α − hαβ
(
hλα,β −

1

2
h ,λ
αβ

)
+O(h3) = 0, (23)

which gives

ψλα,α = hλσψα σ,α + hαβ
(
hλα,β −

1

2
h ,λ
αβ

)
∼ h2. (24)

Since the perturbation hαβ is in the form (12), equation (24) gives

∂αψ
α0 = ∂αψ

α
0 =

(
h00 + h11 + h22 + h33

2

)
,0

− h10,1 , (25a)

∂αψ
α1 = −∂αψα1 =

(
h00 + h11 − h22 − h33

2

)
,1

− h10,0 , (25b)

∂αψ
α
i = h

a
i,a = 0; i = 2, 3; a = 0, 1. (25c)

Note that equations (25c), corresponding to the conditions Γi = 0, are identically satisfied since hai = 0 for (12).
Moreover, equations (25a-25b), which correspond to the conditions Γa = 0, take the form

h01,1 −
(
h00 + h11

2

)
,0

=
1

2
B,0 − hc dh0c,d +

1

2
hc dhc d,0 +

1

2
hijhij,0 , (26)

and

h01,0 −
(
h00 + h11

2

)
,1

= −1

2
B,1 + hc dh1c,d −

1

2
hc dhc d,1 −

1

2
hijhij,1 , (27)
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Note that the right hand sides of (26-27) are of order h2 since, as discussed in the previous section, we have B ∼ h2.
For our purposes, it is more convenient to write the Einstein’s equations in terms of the Ricci tensor in the form

Rµν = 0, that, through equations (3-5), gives at the second perturbative order in h

�hµν = ∂µ∂αψ
α
ν + ∂ν∂αψ

α
µ + 2R(2)

µν . (28)

Assuming again that hia = 0 and using equations (A11) and (A13), equation (28) gives up to quadratic terms

�hij = ha bhij,a b (29a)

�ha b = −1

2
hij,a hij,b +M(h)a b (29b)

where

M(h)a b ≡ ∂a
[
hc d

(
hb c,d − 1

2hc d,b
)]

+ ∂b
[
hc d

(
ha c,d − 1

2hc d,a
)]

+

+hc d
(
ha b,c d + hc d,a b − ha c,b d − hb c,a d

)
+

+ 1
2

[
h
c d
,ahc d,b +

(
ha c,d − ha d,c

) (
h
c,d
b − h d,c

b

)] (30)

Equations (29) imply that, at the linear leading order ∼ ε, all the components hαβ are solutions of the d’Alembert
equation. Therefore can write a plane nonlinear wave travelling along the x1 axis in the form

hαβ = ε h
(1)
αβ(x0 − x1) + ε2 h

(2)
αβ(x0, x1) +O(ε3) , (31)

where for simplicity we choose waves travelling only in one direction, and where h
(1)
αβ , h

(2)
αβ ∼ 1. By means of (31), the

system (29) is identically satisfied at linear ε order, while at quadratic order one has

�h(2)ij = h(1)a bh
(1)
ij,a b =

(
h
(1)
00 + h

(1)
11 + 2h

(1)
01

)
h
(1)
ij,00, (32a)

�h(2)a b = −1

2
h(1)ij a h

(1)
ij,b +M(h(1))a b = (−1)a+b+1 κ+M(h(1))a b , (32b)

where we have defined

κ ≡ 1

2

[(
h
(1)
22,0

)2
+
(
h
(1)
33,0

)2
+ 2

(
h
(1)
23,0

)2]
. (33)

Note that, equations (26-27,31) imply that h
(1)
00 + h

(1)
11 + 2h

(1)
01 = c with c constant, and since we are not interested

in constant solutions, we set c = 0. Therefore, having h
(1)
00 + h

(1)
11 + 2h

(1)
01 = 0, equation (32a) reads �h(2)ij = 0, so that

also the second order components h
(2)
ij (x0 − x1) are plane waves, and therefore they are stable.

In order to study the behavior or the second order components h
(2)
a b , and without loss of generality, in what follows

we consider nonlinear gravitational waves of the form

h(x0, x1) = ε


0 0 0 0
0 0 0 0

0 0 h
(1)
22 h

(1)
23

0 0 h
(1)
23 −h

(1)
22

+ ε2h(2), (34)
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In facts, it is always possible to use the coordinate transformation (17) to cancel the contribution of the functions

h
(1)
a b in (31), so that ha b ∼ ε2 as long as h

(2)
a b ∼ 1 [20]. Therefore, assuming that the gravitational wave is in the form

(34), which implies that M(h(1)) = 0, the equation (32b) for the components h
(2)
a b becomes

�h(2)a b = (−1)a+b+1 κ . (35)

Note that, equation(33) implies that κ > 0 in presence of the gravitational wave (34). Moreover, from (35) one

immediately recognizes that κ is a resonant forcing for the components h
(2)
a b , since form equation (33) follows that κ

is a function of (x0 − x1), and therefore a solution of the equation �κ = 0. In conclusion, equation (35) contains

the resonant forcing κ and it is secular, so that the components h
(2)
a b grow with time, thus the perturbative expansion

in h loses its asymptotic character in the long time regime. That means that, in the harmonic gauge, the linearized
gravitational waves of the form (19) are unstable, when second order nonlinearities are considered.

Incidentally we also note that equation (35) implies that

�
(
h
(2)
00 + h

(2)
11 + 2h

(2)
01

)
= 0 , (36)

thus the quantity h00 + h11 + 2h01 is a solution of the d’Alembert equation and it remains always finite.
Sometimes in perturbation theory, the presence of secularities is due to a wrong perturbative approach, in problems

in which the solutions depend simultaneously on widely different scales. In such cases, the secularities can be eliminated
introducing suitable long variables; i.e., dealing with multiscale expansions. However, our example is not curable in
this way, and this seems to be related to the fact that the instability found here is a feature of the harmonic gauge,
and the right way to treat it, is to change the reference system.

Indeed, one can use a multiscale expansion

hij = εh
(1)
ij + ε2h

(2)
ij +O(εr), ha b = εh

(1)
a b + ε2h

(2)
a b +O(εr), (37)

with r > 2, introducing the slow variable τ as follows

h
(1)
ij = h

(1)
ij (ξ, τ), h

(1)
a b = h

(1)
a b (ξ, τ),

ξ = x0 − x1, τ = εNx0.

(38)

We do so, since we are interested in studying the solutions in the longtime regime ξ = O(1) and τ = O(1). With this
assumptions, equation (29a) reads

ε�h(1)ij + ε2�h(2)ij = ε2
(
h
(1)
00 + h

(1)
11 + 2h

(1)
01

)
∂2ξh

(1)
ij +O(ε3) + 2ε2+N

(
h
(1)
00 + h

(1)
01

)
∂ξ∂τh

(1)
ij . (39)

We have previously shown that the gauge conditions (26-27,31) imply h
(1)
00 + h

(1)
11 + 2h

(1)
01 = O(ε), thus the first term

in (39) is O(ε3). The second term in (39) is resonant, but we can avoid it imposing N > 0, so that (39) reduces to

(32a). Let us stress that, doing so, the τ dependence of the components h
(1)
ij (ξ, τ), and consequently the τ dependence

of κ(ξ, τ), is not determined at order ε2. We also emphasize that (32a) does not need a multiscale expansion, indeed
the components hij are not secular, even in the standard perturbative expansion. Instead, the appearance of the
second resonant term in (39) is related to the introduction of the slow variable τ , so that it can be avoided if τ is not
introduced at all. However, let us continue to use our multiscale approach, to show that it is not useful to cure the
secularities in the components hab.

Let us consider the equation (29b), which at O(ε2) reads

2εN+1∂ξ∂τh
(1)
ab (ξ, τ) + ε2�h(2)ab = ε2

[
(−1)a+b+1κ(ξ, τ) +Mab

(
h(1)(ξ, τ)

)]
. (40)

For the principle of maximum balance one has N = 1, and using the fact that Mab

(
h(1)(ξ, τ)

)
= 0 for the waveform

(34), one has

�h(2)ab = −2∂ξ∂τh
(1)
ab (ξ, τ) + (−1)a+b+1κ(ξ, τ). (41)
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Since the r.h.s. of this equation is a secular forcing for h
(2)
ab , we should set it to 0 in order to avoid the secularity, also

defining in that way the τ dependence of h
(1)
ab through the equation

2∂ξ∂τh
(1)
ab (ξ, τ) = (−1)a+b+1κ(ξ, τ) , (42)

valid in the longtime regime ξ = O(1) and τ = εx0 = O(1). However, since the τ dependence of κ(ξ, τ) is not defined

by (39), it is not possible to obtain the τ dependence of h
(1)
ab (ξ, τ) through the equation (42). Therefore, the multiscale

method does not fix the dependence of hµν on the slow variable τ at order ε2, and we conclude that, at this order,
the secularity in the components hab can not be eliminated by means of a multiscale perturbative expansion.

IV. STABILITY OF THE PERTURBATIVE SCHEME IN A DIFFERENT GAUGE

In order to prove that the instability discussed in the previous section is gauge dependent, in what follows we show
that, in an opportune gauge, the evolution of gravitational waves at second perturbative order is stable. Therefore, we
come back to the waveform (12), which contains two arbitrary functions, and we fix such functions imposing different
gauge conditions from (23), which characterize the harmonic gauge. Since we want to exploit the properties of the
d’Alembert equation, we impose the following gauge conditions

h00 = −h11; h01 = 0 (43)

which imply that

A = h00,11 + h11,00 − 2h01,01 = �h11 (44)

Using (43) and neglecting the terms O(h3), the equations (22a) and (22b) reduce to the homogeneous wave equations

�h23 = 0, �ψ = 0. (45)

Since h23 and ψ are plane waves solutions of the d’Alembert equation, it is immediate to recognize that the right
hand side of equation (22c) is null, so that also B is solution of the homogeneous wave equation

�B = 0. (46)

Therefore the functions h23, B and ψ are plane waves travelling along the x1 axis

h23 = h+23(x0 − x1) + h−23(x0 + x1) ∼ h

ψ = ψ+(x0 − x1) + ψ−(x0 + x1) ∼ h

B = B+(x0 − x1) +B−(x0 + x1) ∼ h2 ,

(47)

and are such that they satisfy the constraints (22e,22f) on their initial values. Moreover, evaluating equation(22d)
over the solutions (47) in the gauge (43) one has

�h11 = (h11,1)
2 − (h11,0)

2 (48)

whose general solution is given by

h11 = ln
(
1 + α(x0 − x1) + β(x0 + x1)

)
(49)

where α(x0 − x1) ∼ ε and β(x0 + x1) ∼ ε so that h11 ∼ ε (see Appendix C for the solution of the equation (48) ). We
conclude that equations (47,49) gives the general solution of the Einstein’s equations in vacuum, at second order of
perturbations h2, in the gauge (43).
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At this point it is worth to notice that our gauge choice (43) coincides with the one introduced by Zakharov and
Belinski in their studies on gravitational solitons [10], in which the metric tensor is in the form

ds2 = f(x0, x1)
(
(dx0)2 − (dx1)2

)
+ gijdx

idxj . (50)

Therefore, in the gauge (43), the Einstein’s equations can be resolved exactly with the inverse scattering technique,
so that our solution is just a perturbative result in an exactly integrable context. However, here we were interested in
showing that the secularity discussed in section III is gauge-dependent, and it is a feature of the harmonic reference
system.

To conclude this section, let us show that the solution (47,49) can be recast to coincide with (19) at linear order
∼ ε. Since α ∼ β ∼ ε, from (49) one has

h00 = α(x0 − x1) + β(x0 + x1) +O(ε2) (51)

Under an infinitesimal change of coordinates of the type x′0 = x0 + ξ0(x0, x1), x′1 = x1 + ξ1(x0, x1), the components
ha b transform as

h′00 = h00 − 2ξ0,0 +O(ε2); h′00 = h11 − 2ξ1,1 +O(ε2); h′01 = h01 − ξ0,1 − ξ1,0 +O(ε2). (52)

Choosing ξ0 and ξ1 as

ξ0 = ξ+(x0 − x1) + ξ−(x0 + x1), ξ1 = ξ+(x0 − x1)− ξ−(x0 + x1)

ξ+(r) ≡ 1
2

∫ r
α(r′) dr′, ξ−(s) ≡ 1

2

∫ s
β(s′) ds′,

(53)

from (52) one has h′00 = O(ε2), and h′11 = O(ε2). Moreover, using (53) and the fact that h01 = 0, one has h′01 =
−ξ0,1 − ξ1,0 + O(ε2) = O(ε2), therefore all the components h′a b are of order ∼ ε2, and they can be always neglected

at the dominant order ε. For the components hij , using (47) one has

h′ij = h+ij
(
x0 − x1 + ξ0 − ξ1

)
+ h−ij

(
x0 + x1 + ξ0 + ξ1

)
=

= h+ij
(
x0 − x1 + 2 ξ+(x0 − x1)

)
+ h−ij

(
x0 + x1 + 2 ξ−(x0 + x1)

)
∼ ε ,

(54)

which shows how the nonlinearity mildly changes the waveform of the plane wave. In conclusion, in the appropriate
gauge (43), the nonlinear gravitational waves will be of the usual form

h(x0, x1) =

 0 0 0 0
0 0 0 0
0 0 h22 h23
0 0 h23 −h22

+O(ε2) (55)

with h22 and h23 given by (54).

V. CONCLUSIONS

In this paper we have studied the properties of nonlinear plane (but non necessarily monochromatic) gravitational
waves. More specifically, we have analyzed the evolution of small perturbations h of the Minkowski metric of the
form (11-12), at quadratic h2 perturbative level, in vacuum. We have shown that, in the harmonic gauge, which is
usually used to study gravitational waves, the components (for a plane wave moving in the direction x1) h00, h11 and
h11 grow with time, thus gravitational waves of the form (19) are unstable. Therefore, in some cases, the harmonic
gauge might not be the best choice to study the evolution of gravitational waves perturbatively. We mention that
the instability reported in this paper resembles that appearing in [14], where the authors have studied the effect of
quadratic nonlinearities on monochromatic gravitational waves. However, in [14] the authors do not infer that the
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growth of the components hab represents a failure of the perturbative analysis, and they do not provide a solution or
interpretation of this fact.

Finally, we have argued that the instability found here, is characteristic of the harmonic gauge, thus it is a gauge-
dependent feature. In facts, we have shown that, in the gauge (43), the waveform (11-12) is stable, and the dynamic
and the properties of nonlinear gravitational waves are essentially the same of linear gravitational waves, given by the
two polarizations in (19).

APPENDIX A: RICCI TENSOR

In this appendix we calculate the Ricci tensor and the Ricci scalar at linear and quadratic orders as defined in
equations (3-7), assuming that hµν is a plane wave travelling along the x1 axis, of the form (11).

1. First order contribution to the Ricci tensor

For the linear contribution to the Ricci tensor (4) one has

R
(1)
00 =

1

2
{h00,11 + h11,00 + (h22 + h33),00 − 2h10,10} (A1)

R
(1)
01 =

1

2
(h22 + h33),01 (A2)

R
(1)
11 =

1

2
{− (h00,11 + h11,00) + (h22 + h33),11 + 2h10,10} (A3)

Together with

R
(1)
ij = −1

2
�hij (A4)

and

R
(1)
a i =

1

2
{−�ha i − hbi,b a} (A5)

Note that, if ha i vanishes, the components R
(1)
a i are identically zero. Therefore, setting ha i = 0 is allowed by the

linearized Einstein’s equations.
The Ricci scalar at first order is

R(1)α
α = h11,00 + h00,11 − 2h01,01 + (h22 + h33),00 − (h22 + h33),11 (A6)

2. Second order contribution to the Ricci tensor

Let us calculate the second order contribution to the Ricci tensor as given in (5)

a. Components ia

Let us calculate the components R
(2)
i a with i = 2, 3 and a = 0, 1. One has
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−ψαρ,α
(
hiρ,a + haρ,i − hia,ρ

)
= −ψc b ,c

(
hib,a − hia,b

)
− hb j,b hij,a

hαρ
(
hi a,αρ + hαρ,i a − ha ρ,αi − hiρ,α a

)
= hb c

(
hi a,b c − hi c,b a

)
− hb hhih,b a

hαρ,ihαρ,a = 0

1
2 (hiα,ρ − hiρ,α)

(
h α,ρ
a − h ρ,α

a

)
= 1

2

(
hic,b − hib,c

) (
h
c,b
a − h b,c

a

)
+ 2hih,b h

h,b
a

(A7)

which gives

R
(2)
ia = 1

2{−ψ
c b
,c

(
hib,a − hia,b

)
+ hb c

(
hi a,b c − hi c,b a

)
+

+ 1
2

(
hic,b − hib,c

) (
h
c,b
a − h b,c

a

)
+ 2hih,b h

h,b
a − hb j,b hij,a − hb hhih,b a}

(A8)

Note that if the components hia are null, the Einstein’s equations for the components ia, namely R
(1)
ia+R

(2)
ia = 0

are identically satisfied (in facts R
(1)
ia = 0 and R

(2)
ia = 0 separately), so that the choice hia = 0 is allowed by the

Einstein’s equations. Therefore, henceforth we will keep this assumption in our equations and we will always neglect
the components hia of the metric.

b. Components i, j

Let us calculate the components R
(2)
i,j with i, j = 2, 3. All the derivatives with respect to xi and xj will be zero, so

−ψαρ,α (hiρ,j + hjρ,i − hij,ρ) = ψ
a b
,a hij,b

hαρ (hij,αρ + hαρ,ij − hjρ,αi − hiρ,αj) = ha bhij,a b

hαρ,ihαρ,j = 0

1
2 (hiα,ρ − hiρ,α)

(
h α,ρ
j − h ρ,α

j

)
= 1

2

(
hia,b − hib,a

) (
h
a,b
j − h b,a

j

)
+ hih,ah

h,a
j

(A9)

Therefore

R
(2)
ij =

1

2
{ψa b,a hij,b + ha bhij,a b +

1

2

(
hia,b − hib,a

) (
h
a,b
j − h b,a

j

)
+ hih,ah

h,a
j } (A10)

Under the condition hia = 0 one has

R
(2)
ij =

1

2
{ψa b,a hij,b + ha bhij,a b + hih,ah

h,a
j } (A11)

c. Components ab

Let us calculate the components R
(2)
a b. One has

−ψαρ,α
(
hb ρ,a + ha ρ,b − hb a,ρ

)
= −ψd c,d

(
hb c,a + ha c,b − hb a,c

)
hαρ

(
hb a,αρ + hαρ,b a − ha ρ,α b − hb ρ,α a

)
= hijhij,a b + hc d

(
hb a,c d + hc d,b a − ha c,d b − hb c,d a

)
1
2h

αρ
,bhαρ,a = 1

2h
c d
,bhc d,a + 1

2h
ij
,bhij,a

1
2

(
hb α,ρ − hb ρ,α

) (
h α,ρ
a − h ρ,α

a

)
= 1

2

(
hb c,d − hb d,c

) (
h
c,d
a − h d,c

a

)
(A12)
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so that

R
(2)
b a = 1

2{−ψ
d c
,d

(
hb c,a + ha c,b − hb a,c

)
+ hc d

(
hb a,c d + hc d,b a − ha c,d b − hb c,d a

)
+

1
2

(
hb c,d − hb d,c

) (
h
c,d
a − h d,c

a

)
+ 1

2h
c d
,bhc d,a + 1

2h
ij
,bhij,a + hijhij,a b}

(A13)

3. Explicit expressions

R
(2)

00 = 1
2{
[
h01,1 −

(
h00+h11+h22+h33

2

)
,0

]
h00,0 +

[
h10,0 −

(
h00+h11−h22−h33

2

)
,1

]
(2h01,0 − h00,1) +

+h11 (h00,11 + h11,00 − 2h01,01)− (h01,0 − h00,1)
2

+ 1
2

[
(h00,0)2 + (h11,0)2 − 2(h01,0)2

]
+

+ 1
2

[
(h22,0)2 + (h33,0)2 + 2(h23,0)2

]
+ [h22h22,00 + h33h33,00 + 2h23h23,00]}

(A14)

R
(2)

11 = 1
2{
[
h01,1 −

(
h00+h11+h22+h33

2

)
,0

]
(2h01,1 − h11,0) +

[
h10,0 −

(
h00+h11−h22−h33

2

)
,1

]
h11,1+

+h00 (h00,11 + h11,00 − 2h01,01)− (h01,1 − h11,0)
2

+ 1
2

[
(h00,1)2 + (h11,1)2 − 2(h01,1)2

]
+

+ 1
2

[
(h22,1)2 + (h33,1)2 + 2(h23,1)2

]
+ [h22h22,11 + h33h33,11 + 2h23h23,11]}

(A15)

R
(2)

01 = 1
2{h01 (h00,11 + h11,00 − 2h01,01)−

(
h22+h33

2

)
,0
h001 +

(
h22+h33

2

)
,1
h110+

+ 1
2 [h22,0h22,1 + h33,0h33,1 + 2h23,0h23,1] + [h22h22,01 + h33h33,01 + 2h23h23,01]}

(A16)

R
(2)
ij = 1

2{
[(
h00+h11+h22+h33

2

)
,0
− h01,1

]
hij,0 +

[(
h00+h11−h22−h33

2

)
,1
− h10,0

]
hij,1+

−hi2,0hj2,0 − hi3,0hj3,0 + hi2,1hj2,1 + hi3,1hj3,1 + h00hij,00 + h11hij,11 − 2h01hij,01}
(A17)

APPENDIX B: EINSTEIN’S TENSOR

In this appendix we calculate the Einstein’s tensor at linear and second order of perturbations.
Using (A1-A5) and the definition (9), one easily obtains the formulas (14) for the Einstein’s tensor at first order.
In the same way one obtains the components of the Einstein’s tensor at second order, defined in (10) as

G
(2)0

0 = 1
2{h11B,11 − h01B,01 + 1

2B,0 (h11,0 − 2h01,1) + 1
2B,1h11,1+

+ 1
2

[
(h22,1)2 − (h22,0)2 + 3(h23,1)2 − (h23,0)2 + h22,0B,0 + h33,1(h33,1 − h22,1)

]
+

+h22h22,11 + h33h33,11 + 2h23h23,11}

(B1a)

G
(2)0

1 = 1
2{h01B,11 − h00B,01 + 1

2h11,0B,1 −
1
2h00,1B,0+

+ 1
2 [h22,0h22,1 + h33,0h33,1 + 2h23,0h23,1] + h22h22,01 + h33h33,01 + 2h23h23,01}

(B1b)

G
(2)1

1 = 1
2{h00B,00 − h01B,01 + 1

2B,0h00,0 + 1
2B,1 (h00,1 − 2h01,0) +

+ 1
2

[
(h33,1)2 − (h33,0)2 + (h23,1)2 − 3(h23,0)2 + h22,0(h33 − h22),0 − h33,1B,1

]
+

−h22h22,00 − h33h33,00 − 2h23h23,00}

(B1c)
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G
(2)2

2 = 1
2{h00 (A+ h33,0)− h11 (A− h33,11) + h01 (h23,11 − h23,00 − 2h33,01) +

+ 1
2h00,0 (h11,0 + h33,0 − 2h01,1) + 1

2h00,1 (h00,1 + h33,1 − h11,1) + h01,0 (h11,1 − h33,1)− h01,1h33,0+

+2h23 (h23,11 − h23,00) + h33 (h33,11 − h33,00) +

+ 1
2

[
(h23,1)2 − (h23,0)2 + (h33,1)2 − (h33,0)2 + (h11,1)2 − (h11,0)2 + h11,0h33,0 + h11,1(h33,1 − h11,1)

]
}

(B1d)

G
(2)2

3 = 1
2{−h00h23,00 − h11h23,11 + 2h01h23,01 + h22(h23,00 − h23,11) + h23(h33,00 − h33,11)+

+ 1
2

[
−h23,0

[
(h00 + h11 −B),0 − 2h01,1

]
− h23,1

[
(h00 + h11 +B),1 − 2h01,0

]]
}

(B1e)

G
(2)3

3 = 1
2{h00 (A+ h22,00)− 2h01h22,01 + h11 (h22,11 −A) + 1

2h00,1 (h00,1 + h22,1 − h11,1) +

+ 1
2h00,0 (h11,0 + h22,0 − 2h01,1) + 1

2h11,0 (h22,0 − h11,0−) + 1
2h11,1 (2h01,0 + h22,1) +

+h22 (h22,11 − h22,00) + h23 (h23,11 − h23,00) +

+ 1
2

[
−(h23,0)2 + (h23,1)2 + (h22,1)2 − (h22,0)2 − 2h220h01,1 − 2h01,0h22,1

]
}

(B1f)

where we have used the definitions (13).

1. Einstein’s equations at second order

The Einstein’s equations at second order are given by

G
(1)α

β +G
(2)α

β = 0 (B2)

One has

G0
0 = 1

2{B,11 + h11B,11 − h01B,01 + 1
2B,0 (h11,0 − 2h01,1) + 1

2B,1h11,1+

+ 1
2

[
(h22,1)2 − (h22,0)2 + 3(h23,1)2 − (h23,0)2 + h22,0B,0 + h33,1(h33,1 − h22,1)

]
+

+h22h22,11 + h33h33,11 + 2h23h23,11} = 0

(B3a)

G0
1 = 1

2{B,01 + h01B,11 − h00B,01 + 1
2h11,0B,1 −

1
2h00,1B,0+

+ 1
2 [h22,0h22,1 + h33,0h33,1 + 2h23,0h23,1] + h22h22,01 + h33h33,01 + 2h23h23,01} = 0

(B3b)

G1
1 = 1

2{−B,00 + h00B,00 − h01B,01 + 1
2B,0h00,0 + 1

2B,1 (h00,1 − h01,0) +

+ 1
2

[
(h33,1)2 − (h33,0)2 + (h23,1)2 − 3(h23,0)2 + h22,0(h33 − h22),0 − h33,1B,1

]
+

−h22h22,00 − h33h33,00 − 2h23h23,00} = 0

(B3c)

G2
2 = 1

2{�h22 −A−B00 +B11 + h00 (A+ h33,0)− h11 (A− h33,11) + h01 (h23,11 − h23,00 − 2h33,01) +

+ 1
2h00,0 (h11,0 + h33,0 − 2h01,1) + 1

2h00,1 (h00,1 + h33,1 − h11,1) + h01,0 (h11,1 − h33,1)− h01,1h33,0+

+2h23 (h23,11 − h23,00) + h33 (h33,11 − h33,00) +

+ 1
2

[
(h23,1)2 − (h23,0)2 + (h33,1)2 − (h33,0)2 + (h11,1)2 − (h11,0)2 + h11,0h33,0 + h11,1(h33,1 − h11,1)

]
} = 0

(B3d)
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G2
3 = 1

2{�h23 − h00h23,00 − h11h23,11 + 2h01h23,01 + h22(h23,00 − h23,11) + h23(h33,00 − h33,11)+

+ 1
2

[
−h23,0

[
(h00 + h11 −B),0 − 2h01,1

]
− h23,1

[
(h00 + h11 +B),1 − 2h01,0

]]
} = 0

(B3e)

G3
3 = 1

2{�h33 −A−B00 +B11 + h00 (A+ h22,00)− 2h01h22,01 + h11 (h22,11 −A) +

+ 1
2h00,1 (h00,1 + h22,1 − h11,1) + 1

2h00,0 (h11,0 + h22,0 − 2h01,1) + 1
2h11,0 (h22,0 − h11,0−) +

+ 1
2h11,1 (2h01,0 + h22,1) + h22 (h22,11 − h22,00) + h23 (h23,11 − h23,00) +

+ 1
2

[
−(h23,0)2 + (h23,1)2 + (h22,1)2 − (h22,0)2 − 2h220h01,1 − 2h01,0h22,1

]
} = 0

(B3f)

and the following relations

G2
2 −G3

3 = 1
2{� (h22 − h33) + h00 (h33 − h22),00 + 2h01 (h22 − h33),01 + h11 (h33 − h22),11 +

− 1
2 (h22 − h33),0 (h00,0 + h11,0 −B,0 − 2h01,1)− 1

2 (h22 − h33),1 (h00,1 + h11,1 +B,1 − 2h01,0)

+h22�h22 − h33�h33} = 0

(B3g)

G2
2 +G3

3 = 1
2{−2A−�B + h00,0 (h00,0 − 2h01,1)− h11,1 (h00,1 − 2h01,0) + h11,0 (h00,0 − h11,0) +

+ 1
2B,0 (h00,0 + h11,0 − 2h01,1) + 1

2B,1 (h00,1 + h11,1 − 2h01,0) + h00 (B,00 + 2A) + h11 (B,11 − 2A)

−2h01B,01 − h22�h22 − h33�h33 − 2h23�h23 + (h00,1)2 − (h00,0)2 + (h23,1)2 − (h23,0)2+

+ 1
2

[
(h22,1)2 − (h22,0)2 + (h33,1)2 − (h33,0)2

]
} =

= 1
2{−2A−�B + h00,0 (h00,0 − 2h01,1)− h11,1 (h00,1 − 2h01,0) + h11,0 (h00,0 − h11,0) +

+ 1
2B,0 (h00,0 + h11,0 − 2h01,1) + 1

2B,1 (h00,1 + h11,1 − 2h01,0) + h00 (B,00 + 2A) + h11 (B,11 − 2A)

−2h01B,01 − h22�h22 − h33�h33 − 2h23�h23 + (h00,1)2 − (h00,0)2 + (h23,1)2 − (h23,0)2+

+ 1
4

[
(B,1)2 − (B,0)2 + (ψ,1)2 − (ψ,0)2

]
} = 0

(B3h)

G0
0 +G1

1 = 1
2{−�B +B,00h00 +B,11h11 − 2B,01h01 + 1

2B,0 (h00,0 + h11,0 − 2h01,1) +

+ 1
2B,1 (h00,1 + h11,1 − 2h01,0)− h22�h22 − h33�h33 − 2h23�h23

+ 1
2

[
(ψ,1)

2 − (ψ,0)
2
]

+ 2
[
(h23,1)

2 − (h23,0)
2
]
} = 0

(B3i)

G2
2 +G3

3 −
(
G0

0 +G1
1

)
=

= 1
2{−2A+ (h00,1)2 − (h11,0)2 + (h23,0)2 − (h23,1)2 + 1

4

[
(B,1)2 − (B,0)2 + (ψ,0)2 − (ψ,1)2

]
+

+2 (h00 − h11)A+ h00,0 (h11,0 − 2h01,1)− h11,1 (h00,1 − 2h01,0)} = 0

(B3j)
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APPENDIX C: SOLUTION OF THE EQUATION (49)

The equation (49), which governs the evolution of h11, is of the type

�U = U2
x − U2

t (C1)

This equation is obtained by the following lagrangian

L =
(
U2
t − U2

x

)
exp(2U) (C2)

and the corresponding hamiltonian is

H =
(
U2
t + U2

x

)
exp(2U) (C3)

Equation (C1) is solved by plane waves of the type U = U(t− x) or U = U(t+ x), but a linear combination of these
two solutions is not a solution itself.

The general solution of (C1) is obtained by the simple observation that, defining

ψ ≡ exp (U) (C4)

the lagrangian (C2) becomes

L = (ψt)
2 − (ψx)2 (C5)

which gives the standard wave equation

�ψ = 0 (C6)

whose general solution is

ψ(x0, x1) = A(x0 + x1) +B(x0 − x1) (C7)

Therefore the solution of (C1) is

U(x0, x1) = ln
(
A(x0 + x1) +B(x0 − x1)

)
(C8)

Since, in the case of equation (48), one has h11 ∼ ε, one has

h11(x0, x1) = ln
(
1 + α(x0 + x1) + β(x0 − x1)

)
(C9)

with α(x0 + x1) ∼ β(x0 − x1) ∼ ε.
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