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ABSTRACT

Superclusters are the largest observed matter density structures in the Universe. Recently, we presented the first supercluster catalogue
constructed with a well-defined selection function based on the X-ray flux-limited cluster survey, REFLEX II. To construct the sample
we proposed a concept to find large objects with a minimum overdensity such that it can be expected that most of their mass will
collapse in the future. The main goal is to provide support for our concept here by using simulation that we can, on the basis of our
observational sample of X-ray clusters, construct a supercluster sample defined by a certain minimum overdensity. On this sample
we also test how superclusters trace the underlying dark matter distribution. Our results confirm that an overdensity in the number of
clusters is tightly correlated with an overdensity of the dark matter distribution. This enables us to define superclusters within which
most of the mass will collapse in the future. We also obtain first-order mass estimates of superclusters on the basis of the properties of
the member clusters. We also show that in this context the ratio of the cluster number density and dark matter mass density is consistent
with the theoretically expected cluster bias. Our previous work provided evidence that superclusters are a special environment in which
the density structures of the dark matter grow differently from those in the field, as characterised by the X-ray luminosity function.
Here we confirm for the first time that this originates from a top-heavy mass function at high statistical significance that is provided
by a Kolmogorov-Smirnov test. We also find in close agreement with observations that the superclusters only occupy a small volume
of a few per cent, but contain more than half of the clusters in the present-day Universe.

Key words. large-scale structure of Universe – X-rays: galaxies: clusters

1. Introduction

Superclusters are the largest prominent density enhancements
in our Universe. They are generally defined as groups of two
or more galaxy clusters above a given spatial density enhance-
ment (Bahcall 1988). Their sizes vary between several tens
of Mpc to about 150 h−1 Mpc. Because the time a cluster needs
to cross a supercluster is longer than the age of the Universe,
superclusters cannot be regarded as relaxed systems. Their ap-
pearance is irregular, often flattened, elongated, or filamentary,
and generally not spherically symmetric. This is a sign that they
still reflect, to a large extent, the initial conditions set for the
structure formation in the early Universe. They do not necessar-
ily have a central concentration, and are without sharply defined
boundaries.

The first evidence of superclusters as agglomerations of rich
clusters of galaxies was provided by Abell (1961). The existence
of superclusters was confirmed by Bogart & Wagoner (1973),
Hauser & Peebles (1973), and Peebles (1974). So far, numer-
ous supercluster catalogues have been published based essen-
tially on optically selected samples of galaxy clusters. Several
supercluster catalogues based on samples of Abell/ACO clusters
of galaxies followed, for example Rood (1976), Thuan (1980),
Bahcall & Soneira (1984), Batuski & Burns (1985), West (1989),
Zucca et al. (1993), Kalinkov & Kuneva (1995) and Einasto et al.
(1994, 1997, 2001). Einasto et al. (2001) was the first to use

X-ray selected clusters in addition to Abell clusters. X-ray se-
lected galaxy clusters are very good tracers of the large-scale
structure because their X-ray luminosity correlates well with
their mass better than optically selected samples of galaxy clus-
ters, Pratt et al. (2009). Such samples suffer from projection ef-
fects among other. However, none of these catalogues is based
on cluster catalogues with a well-understood selection criterion.
This means that they can neither be used as a representative sam-
ple to study the properties of superclusters, nor can they be easily
compared with simulations.

Chon et al. (2013) made a fresh approach in this respect
by presenting the first statistically well-defined supercluster
catalogue based on the extended ROSAT-ESO Flux LimitEd
X-ray (REFLEX II) cluster survey (Chon & Böhringer 2012;
Böhringer et al. 2013) by using a friends-of-friends algorithm
to construct the superclusters. The REFLEX II cluster cata-
logue comes with a well-understood selection function and it is
complete, homogeneous, and of very high purity. This allows a
relatively straightforward reconstruction of the survey with sim-
ulated data. Chon et al. (2013) hereafter C13 presented the con-
struction of superclusters and studied observed properties of the
X-ray superclusters. The strategy of the supercluster sample con-
struction in this previous paper was based on the assumption that
by choosing a certain linking length for the cluster association to
superclusters we obtain superclusters with a minimum dark mat-
ter overdensity. By choosing the correct linking length value in
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relation to the mean cluster density, we conjectured that we can
obtain a supercluster sample that includes the objects that will
marginally collapse in the future. This hypothesis relies on two
assumptions: (i) a certain linking length corresponds to a certain
number overdensity of clusters; and (ii) an overdensity in the
number of clusters above a certain mass limit corresponds to a
closely correlated value of the overdensity in the dark matter of
the supercluster volume.

The main aim of the present paper is to use simulations to
test these crucial assumptions, and to examine how superclus-
ters trace the underlying dark matter distribution. By using the
dark matter distribution of the Millennium Simulation (Springel
et al. 2005), we compare the cluster density with the dark matter
density in superclusters that are constructed with a friends-of-
friends algorithm so that they are expected to have a minimum
spherical overdensity. To determine how superclusters trace the
dark matter we consider two quantities. We first study the corre-
lation between the mass fraction of a supercluster represented in
its member clusters to the total mass of a supercluster probed by
all halos in the Millennium Simulation, and investigate how the
cluster number density is correlated with the matter overdensity
of a supercluster, analogously to the bias of the power spectrum
of clusters, and examine how simulated superclusters trace the
underlying matter distribution.

According to Birkhoff’s theorem, structure evolution in a su-
percluster region can be modelled in a way equivalent to a uni-
verse with a higher mean density than that of our Universe. The
main difference between these two environments is then a slower
growth of structure in the field compared with the denser regions
of superclusters in the recent past. Thus, we would expect a more
top-heavy X-ray luminosity function in superclusters. Among
the properties of the superclusters investigated in C13 two main
findings were (1) that the volume occupied by these superclus-
ters is very small, two per cent, while more than half of the
REFLEX II clusters are found in the superclusters; and (2) that
the cumulative X-ray luminosity function of the volume-limited-
sample (VLS) of the REFLEX II superclusters differs from that
in the field: this was supported by a Kolmogorov-Smirnov (KS)
test. Since the X-ray luminosity of clusters is tightly correlated
with their mass, we might expect that there are more massive
clusters in superclusters than in the field. In C13 we also dis-
cussed an alternative explanation for the top-heavy luminosity
function: that the luminosity of clusters is temporarily boosted in
a dense region because of an increased rate of merger events. In
this case we would not find correspondingly more massive clus-
ters in superclusters. Our study with the Millennium Simulation
allows us to distinguish between these hypotheses in this paper.
Previous studies investigated various quantities within the su-
percluster environment, for example, Einasto et al. (2003, 2005,
2012) and Luparello et al. (2013), with the galaxy survey data
or N-body simulations, and the future evolution of superclus-
ters were studied by Dünner et al. (2006), Araya-Melo et al.
(2009), and Luparello et al. (2011). They found that in the re-
gions of superclusters there are more richer and massive sys-
tems, enhanced velocity dispersions, and larger star formation
rates, which indicate that the superclusters provide a different
environment for structures to grow than does the field. Our ap-
proach is different from these previous works because we select
the clusters of galaxies as tracer objects to probe superclusters,
and because they are selected closely following the flux-limited
X-ray observation.

This paper is organised as follows. Section 2 describes the
construction of superclusters from the Millennium Simulation
and their basic properties. The connection of the linking length

to the cluster density ratio is explored in Sect. 3. We investigate
how superclusters trace the dark matter distribution by study-
ing the mass fraction of clusters and the bias introduced by the
cluster number overdensity in Sect. 4. We probe the supercluster
environment by comparing the cluster mass function and vol-
ume fraction of superclusters to those of the field in Sect. 5. We
conclude in Sect. 6 with some discussions.

2. Construction of superclusters in a simulation

We used the Millennium Simulation to study the properties
of superclusters constructed with the dark matter (DM) halos.
It contains a total of 21603 particles with a mass of 8.6 ×
108 h−1 M� in a box size of 500 h−1 Mpc. It adopts a flat-ΛCDM
cosmology with Ωm = 0.25, h = 0.73, σ8 = 0.9.

Our aim with the simulation is to explore whether superclus-
ters can be used to probe the statistics of the large-scale structure
in our Universe, and to test the concept of constructing super-
clusters with a certain minimum overdensity of clusters. To con-
struct the supercluster catalogue with the Millennium Simulation
data analogous to typical X-ray cluster observations we defined
clusters in the DM simulation as the halos above a given mass
limit. We adopted M200 as the halo mass, where M200 is defined
as the mass inside the radius where the mean halo density is
200 times the mean density of the universe. We are interested
in the mass range above 1013 h−1 M� which encompasses the
whole range of clusters and groups of galaxies. To enable a bet-
ter discussion, two reference catalogues were considered with
two lower mass limits of 1014 h−1 M� and 1013 h−1 M�. Since the
current lower mass limits of cluster surveys are typically about
1014 h−1 M� we defined the halos of mass above 1014 h−1 M�
as the clusters, of which our main cluster catalogue consists.
The second main catalogue consists of halos with a mass above
1013 h−1 M�. These halos correspond to clusters and groups of
galaxies that we take as a representative sample for future clus-
ter and group surveys. Throughout we refer to the supercluster
catalogue built with halos of mass above 1014 h−1 M� as CS and
that above 1013 h−1 M� as GCS for brevity. We restrict our study
here to a snapshot at z = 0.

With the definition of clusters given above we constructed
a catalogue of superclusters with a friends-of-friends (fof) algo-
rithm in the same way as C13. The key parameter in this algo-
rithm is the linking length within which friends are found, and
this parameter determines the types of superclusters that are con-
structed. We adopted the definition of a linking length in Zucca
et al. (1993), which depends on the overdensity, f , meaning that
the cluster density enhancement over the mean cluster density,
f = n/no. As the local density n ∝ l−3, the linking length is in-
versely proportional to the density of the sources in the volume,
no, and we define it as l = (no f )−1/3. Hence the choices of f af-
fect the definition of superclusters. We here fixed f to ten for rea-
sons detailed in C13, and we only summarise them here briefly.
We calculated this required overdensity value by assuming a
spherical top-hat collapse model for the superclusters and by in-
tegrating the Friedmann equations, which describe the evolution
of the superclusters given ΔCL,m = [(ΔDM,c + 1)/Ωm − 1]bCL.
ΔCL,m is the cluster overdensity against the mean density, ΔDM,c
the DM overdensity against the critical density in the superclus-
ters, and bCL is the bias in the density fluctuations of clusters
with the conditionΔDM,c � 1.4. For superclusters at low redshifts
that will collapse in the future we therefore find the condition
ΔCL,m ≥ 17−35 for a cluster bias of 2−4. As noted in C13, we
sample superstructures more comprehensively by taking f = 10,
which include those slightly beyond definitely bound structures.
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Therefore this linking parameter is rather conservative because
it includes slightly more material than is gravitationally bound
in a ΛCDM Universe. Most of the superclusters are still recov-
ered with f = 50 (C13), and most of the matter in the super-
clusters will collapse in the future, and in addition, a volume of
f = 10 selects superclusters that correspond well to the super-
clusters described in the literature. Our search for friends of a
supercluster starts from the brightest clusters in the halo cata-
logue, where we call the brightest cluster in a supercluster BSC.
We note that the definition of superclusters in our work also in-
cludes objects with two cluster members.

2.1. Physical properties

Two main supercluster catalogues were constructed with the
recipes described above. The CS contains 3569 clusters, from
which 607 superclusters were constructed, while there were
8893 superclusters out of 51 528 clusters in the GCS. In the fol-
lowing we consider two physical properties that result from the
choice of the overdensity parameter, f .

We note that Einasto et al. (2007a) compared the properties
of superclusters from the 2dF galaxy redshift survey (Einasto
et al. 2007b) with those constructed with the Millennium
Simulation. Their main conclusion was that most of the prop-
erties of the 2dF superclusters agree well with those of the
Millennium superclusters, except for the luminosity and mul-
tiplicity distributions. Unfortunately, a direct comparison with
their results is not possible because our supercluster catalogue is
directly constructed from clusters, while their catalogue is based
on galaxy overdensities.

2.1.1. Multiplicity function

The multiplicity function is defined as the number of member
clusters in a supercluster, equivalent to the richness parameter of
an optical cluster of galaxies. We define superclusters as systems
with two or more member clusters in our study, and systems with
two member clusters are referred to as pair superclusters.

The normalised multiplicity function of the superclusters is
shown in Fig. 1 for a range of overdensity parameters, f . Those
constructed with the CS are shown as a black solid line, and su-
perclusters constructed with the GCS as a grey dashed line. We
note that there are three very rich superclusters with >100 mem-
bers or more in the f = 2 case in both CS and GCS, which are
not shown. For a fixed no a higher value of f corresponds to a
smaller linking length, and in this case, there are fewer very rich
superclusters, and less rich systems dominate the distribution.
Conversely with lower values of f the number of very rich su-
perclusters increases because of a large linking length. In either
case, the multiplicity histograms for all f are dominated by pair
and less rich superclusters, and the multiplicity spread broadens
with a larger linking length. We see these trends in Fig. 1, and the
shapes of the multiplicity functions of supercluster samples that
are constructed with different mass limits agree well. The KS
test for each case of Fig. 1 yields a probability of unity, meaning
that it is highly likely that the multiplicity distributions formed
by both CS and GCS originate from the same parent distribution.

2.1.2. Extent

Superclusters are the largest objects that are seen in galaxy red-
shift surveys, for example, and we are interested in determining
how large these prominent features of the large-scale structure
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Fig. 1. Normalised multiplicity function of the superclusters for a range
of overdensity parameters, f , constructed with the halos in the CS (black
solid line), and with those in the GCS (grey dashed line). The value of
f is indicated in each panel. Richer systems are abundant with decreas-
ing f , which is equivalent to a longer linking length (upper left panel),
while less rich systems are more common with higher f values (lower
right panel).
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Fig. 2. Distribution of the normalised extent of the superclusters. The
superclusters in the CS are shown in black, those in the GCS in grey.
Superclusters with three or more member clusters are marked by a
dashed line, pair superclusters by a solid line.

are. We define the extent of a supercluster by the largest distance
between the centre of mass of a supercluster to its farthest mem-
ber clusters.

Figure 2 shows the distribution of the supercluster extent
for the two nominal mass limits. The extent is normalised by
the linking length of the corresponding catalogue, which is
15.2 Mpc h−1 for the CS and 6.2 Mpc h−1 for the GCS. The pair
superclusters are denoted by solid lines, and the other richer sys-
tems in dashed lines. Fewer than a per cent of superclusters in
the GCS are left out in the plot where the normalised extent is
larger than three. The two samples of the richer superclusters are
strikingly similar. The typical size of the richer superclusters is
around 80 per cent of the linking length. Richer systems show a
longer tail towards large extents. The distributions in the pair su-
perclusters are very similar as well, which is expected because in
both samples the typical size of pairs is half of the linking length.
This implies that most of the pairs have almost the largest pos-
sible size for systems of similar mass. The similarity between
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the size distributions of the two samples provides a signature of
the self-similarity of the large-scale structure at these mass and
length scales.

2.1.3. Percolation

Percolation occurs when structures begin to be linked and per-
meate through the volume. This means in our context that sys-
tems identified as separate systems with a larger overdensity pa-
rameter begin to merge and form a single superstructure with
decreasing overdensity parameter. These structures will not col-
lapse into a virialised object in the future. Therefore it is impor-
tant to understand where the percolation occurs in the sample
of superclusters, what the level of percolation is, and how one
needs to treat the percolated systems in the analysis.

Shandarin et al. (2004) studied the percolation to understand
the morphology of the supercluster-void network constructed
by smoothed density fields in the N-body simulations. They
found that the percolating objects make up a considerable frac-
tion of superclusters, and that they should be studied separately.
Liivamägi et al. (2012) also studied the percolation in the su-
percluster catalogue constructed with galaxy data depending on
the density threshold, which is in some way equivalent to our
overdensity parameter.

Our strategy here is to build a sample of superclusters that
will form collapsed objects in the future. This sample is selected
by applying a clear selection function that resembles the X-ray
selection. f = 10 was chosen as a physically motivated overden-
sity parameter based on solving the Friedmann equations, and
we explained in Sect. 2 that our nominal catalogues built with
f = 10 also include those structures that will also partially col-
lapse. Thus it is interesting to determine the number of perco-
lating superclusters in our sample, and their effect on the subse-
quent analysis.

Based on the distribution of the multiplicity function, we de-
termined the percolation scale, which isolates very large struc-
tures. For instance, the top-left panel of Fig. 1 shows isolated
objects beyond a multiplicity of 80, and we identify them as per-
colating objects. This means that we define the scale of perco-
lation by the largest system in the multiplicity distribution that
still belongs to the continuous distribution function before the
first gap. This is slightly more conservative than taking the scale
at which the isolation starts, but does not modify our conclusion.
This categorisation reveals that 11 superclusters in the nominal
GCS and 3 in the CS may be the results of percolation, which
is very small fraction of the sample. This is reassuring for our
choice of the overdensity parameter.

The most evident quantity affected by percolation is the
volume fraction of percolating structures to the total volume
of superclusters. We show the effect of percolation on the
cumulative volume fraction in Fig. 3 as a function of normalised
multiplicity. Four cases are considered here with the two over-
density parameters, f = 2 (grey) and f = 10 (black) for the cat-
alogues built with the two mass limits, 1013 h−1 M� (line), and
1014 h−1 M� (filled circles). The percolation scales are marked
by asterisks on each curve. For the same mass limit, percolating
objects identified in the f = 2 catalogue take up a much larger
volume than those in the f = 10 catalogue. In the 1014 h−1 M�
catalogues they occupy about 70% of the total volume for f = 2,
while the fraction reduces to about 15% in the nominal f = 10
catalogue. Moreover, the percolation starts at smaller normalised
multiplicities for a higher mass limit, as shown by the asterisks.

With the superclusters built with f = 10 the contribution
of potential percolation to the total volume fraction ranges from
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Fig. 3. Cumulative volume fraction of superclusters as a function of nor-
malised multiplicity. The CS is shown as filled circles, GCS as contin-
uous lines. For the same mass limit the catalogues built with f = 2 are
shown in grey, and f = 10 in black. Four asterisks mark the estimated
starting scale of the percolation.

three to at most 20% for the mass limits between 1013 h−1 M�
and 1014 h−1 M�. This means that the percolation effect is much
less pronounced in our supercluster catalogues than previous
findings, for example Shandarin et al. (2004). We attribute this to
the fact that clusters of galaxies do not trace long, thin dark mat-
ter filaments as closely as galaxies or the smoothed density field.
In our nominal catalogues built with f = 10, we find very few
percolating structures, therefore their contribution to the quanti-
ties that are probed in our paper is very limited. An extreme treat-
ment of these superclusters is to remove them from the analysis,
and as we will discuss in the relevant sections, no major differ-
ences are found, except for the total volume of superclusters in
our analysis.

3. Assessing supercluster density ratio

The nature of a supercluster catalogue critically depends on the
choice of the linking length in the fof algorithm since it deter-
mines the types of superclusters that are constructed. A too long
linking length merges structures that may not be bound gravita-
tionally, but a much lower value might only select the peaks of
larger underlying structures. In C13 we showed that the overden-
sity parameter, f , which is inversely proportional to the linking
length, can be formulated such that the corresponding linking
length selects the superclusters that will eventually collapse in
the future in our standard ΛCDM universe. As we discussed in
Sect. 2, we defined a physically motivated linking length, which
corresponds to f = 10 as our nominal overdensity parameter to
capture systems that are slightly beyond definitely bound struc-
tures based on integrating the Friedmann equations. Our aim in
this section is to understand how superclusters are represented
by their member clusters that are constructed with this overden-
sity parameter, based on a spherical top-hat collapse model, via
a friends-of-friends algorithm. In this approach we approximate
superclusters to have a spherical shape, and for consistency with
this theoretically motivated characterisation, we keep this geo-
metric approximation throughout this paper.

To answer this question, we checked the distribution of the
actual density ratios of superclusters constructed with a given f ,
in retrospect. We measured the density ratio of the superclusters,
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Fig. 4. Measured number density ratio of the clusters in the CS. The
cluster number density ratio is defined as the ratio between the cluster
density in a supercluster and the mean cluster density in the simulation.

defined as the ratio of the cluster number density in a superclus-
ter to the mean number density of clusters in the considered vol-
ume. This test also provides a sanity check on our assumption,
and a census of the typical departure of these large structures
from the mean density of the universe. To calculate the ratio, the
volume of a supercluster was assumed to be spherical, and its
extent is defined in Sect. 2.

Figure 4 shows the measured density ratio of the CS as a
function of the extent. The apparent line-like structures are due
to the discreteness of the multiplicity function, since the den-
sity ratio is proportional to the multiplicity and the volume of
a supercluster. The dashed line corresponds to the overdensity
parameter, f = 10, with which we constructed the superclus-
ters. We note that with a maximum linking length defined by
f = 10, a density ratio of ten is the expected lower limit with
some scatter, as the cluster distances in a particular supercluster
can always be smaller than this maximum. We see this in par-
ticular among the pairs in Fig. 5, where we find many systems
with linking lengths very much shorter than the largest allowed
value. In extreme cases, these are systems that are very close to
merging. Therefore it is expected to find systems with the density
ratio very much higher than the threshold in Fig. 4. In addition,
nine per cent of the superclusters in the CS fall below the dashed
line, allowing a scatter of 20 per cent, while 18 per cent of the
GCS superclusters fall below for the same scatter. Superclusters
below the overdensity threshold of ten are marked by open cir-
cles, while the remainders are marked by crosses in Fig. 5. The
former systems are dominantly large in each class of the multi-
plicity; the smallest system among them is R = 13.5 Mpc h−1 in
size. Figure 6 shows an example of such a system in two pro-
jections with one of the lowest measured density ratios. Both
panels show the member clusters as black filled circles, and all
other halos as grey dots in the spherical volume defined by the
extent of a supercluster. The upper panel shows a cut through
the X–Y plane, the lower panel a cut through the X–Z. In this
extreme case, the clusters are located along a long filament in
the X-axis, while in the other axes the distribution of clusters is
rather compact. In this case, the spherical volume overestimates
the volume that is represented by the member clusters.

Traditionally, superclusters have been found with a fof algo-
rithm, and this result reflects how well the fof reproduces struc-
tures in comparison with a spherical overdensity (SO). This is
analogous to compiling dark matter halos in N-body simulations
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Fig. 5. Multiplicity of superclusters shown as a function of their extent
for the CS as in Fig. 4. The open circles represent the superclusters with
a measured density ratio below ten in Fig. 4.

that are found by the fof and characterised by the SO method, ex-
cept that superclusters are more complex and are not virialised.
We find in our analysis that the fof method works similarly well
in compiling superclusters as for the study of dark matter halos.

A different concern in this context is that superclusters con-
structed with a fof algorithm might potentially have an over-
lapping volume with neighbouring superclusters if their extent
is defined as in Sect. 2.1.2 with the assumption of a spherical
shape. Therefore we explored whether this occurs in our sam-
ple, and show an example in Fig. 6. Clusters in the neighbouring
superclusters with an overlapping volume with this supercluster
are shown as open circles. For the CS the overlapping volume is
1.5 per cent of the total supercluster volume, and for the GCS it
is about six per cent. Since the overlapping volume fraction is so
small, we neglect it in the following analysis.

4. Superclusters as dark matter tracers

The fact that the REFLEX II supercluster sample has been
constructed by means of a statistically well defined sample of
closely mass-selected clusters motivated us to search for a more
precise physical characterisation of the simulated superclusters.
We are in particular interested in exploring the relation of the
cluster density in superclusters to the underlying dark matter dis-
tribution. This can be studied with DM simulations by applying
criteria equivalent to those used in our X-ray selection. To do
this we consider two quantities in this section the mass fraction
of the superclusters represented by their member clusters com-
pared with total supercluster mass, and the overdensity of clus-
ters in superclusters as a function of the DM mass overdensity.
A better knowledge of these relations would greatly assist inter-
preting the observations. Since we have almost no direct access
to determine the supercluster masses – neither dynamical mass
estimates nor gravitational lensing studies have yet been suc-
cessfully applied to entire superclusters – an indirect mass es-
timate would be very helpful. Since we have mass estimates of
the member clusters through mass-observable scaling relations
where the X-ray luminosity is the crucial observable in our case,
the total supercluster mass can be estimated if we can calibrate
the cluster mass fraction in superclusters. Similarly, we would
be able to determine the DM overdensity traced by a superclus-
ter if the mass fraction relation or the overdensity bias could be
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Fig. 6. Distribution of all halos in the largest supercluster cut through
two axes, in X–Y (upper), and in X–Z (lower). The offsets are in units of
Mpc h−1. The member clusters are shown as filled circles, and all other
halos less massive than the mass limit as grey dots, where the centre
of mass is located at the origin. This supercluster, taken as an exam-
ple from Fig. 4, represents superclusters with a measured density ratio
lower than ten. Typically, the member clusters of these superclusters
form a thin filament along one axis, which causes an over-estimation of
a supercluster volume, leading to an under-estimation of the measured
density ratio. The open circles mark the clusters belonging to the neigh-
bouring superclusters whose volumes overlap with the volume of the
main supercluster according to the definition of the extent.

calibrated. The following analysis constitutes a first exploration
of this territory.

In this section we consider a finer grid of mass limits to
form a smoother distribution of mass-related quantities between
1013 h−1 M� and 1014 h−1 M� where appropriate. We note that
there are approximately 5−10 per cent of superclusters, depend-
ing on the mass limit, that will not be included in the samples
purely because their extent in one or more dimensions extends
farther outside the simulation volume. Since this occurs for the
observations near the survey boundaries, we exclude these su-
perclusters. Another technical point is the assumption that we
make in terms of the DM particle mass distribution. We assume
that the least massive halos in our study are not biased against the
DM. This also applies to the particles that do not contribute to the
M200 of halos. This is reasonable because of the small mass res-
olution of particles and because unbound particles are spatially
equally distributed throughout the simulation. The assumption

that halos less massive than the smallest groups have a bias close
to unity is in the first place based on theory, for example Seljak
& Warren (2004). We also tested this by comparing the halo dis-
tribution for different halo masses with the dark matter density
field, and found that it is observed with an accuracy of about 5%
on a scale of 5 Mpc h−1 or larger.

4.1. Mass fraction probed by clusters

From the observations and simulations we have a good under-
standing of the relation between cluster observables and the total
mass of a cluster, for instance Böhringer et al. (2012), Sheldon
et al. (2009), and Johnston et al. (2007), which means that the
visible components of a cluster represent the underlying dark
matter component well. If DM had no preferential scale, this ar-
gument should apply in a similar way to superclusters, which
means that a supercluster mass probed by the total cluster mass
is probably also correlated with the true mass of the superclus-
ter. This motivated this subsection, where we investigate whether
superclusters can be used to trace the DM distribution by com-
paring the total cluster and total DM mass of a supercluster in
the simulation. This is interesting since it leads to the possibility
of mass calibrations for superclusters in just the same way as is
done for estimating the total mass of a cluster with its observ-
ables. Our aim here is not to provide an exact fitting formulae to
calibrate the masses, but to test experimentally how well super-
clusters are represented in clusters, and to diagnose whether this
is a viable way forward with future cluster survey missions. With
the definition of the mass fraction as the ratio between the total
cluster mass and the true supercluster mass, we study the typi-
cal mass fraction of a supercluster that is made up of clusters,
and explore whether there is any dependency on the mass limit
imposed by an observation. The estimated true mass of a cluster
relies on cosmology and a scaling relation in the real observa-
tion. However, using simulations where the true mass is known,
we can skip these two constraints to directly calculate the mass
fraction.

As explained above, the true mass of a supercluster is de-
fined to be the sum of all halos in the volume with the assump-
tion that the simulation mass resolution is sufficiently low. As
was mentioned at the beginning of Sect. 3, particles that do not
contribute to M200 are excluded in our work. However, we took
them into account when calculating the total halo mass of a su-
percluster as a correction factor, with the reasonable assumption
that these particles are spatially distributed in an unbiased way.
This correction factor, taken as the ratio between the total halo
mass and the total particle mass in the simulation, is 2.02 in our
particular case, and is accounted for in the following result. For
convenience we denote the total cluster mass in a supercluster as
CM, and the total mass traced by halos in the same supercluster
as HM so that the mass fraction is defined as CM/HM1.

Figure 7 shows the comparison of the total mass estimates
CM as a function of the HM for the two nominal mass limits,
1014 h−1 M� in the upper and 1013 h−1 M� in the lower panel.
Note that the lack of scatter at the upper limit in both panels
arises because in particular for close pairs, the cluster masses
make up most of the supercluster mass, and this limit cannot be
exceeded. This effect is pronounced because of the applied def-
inition of the cluster volume with an extent of the supercluster
which coincides with its outermost cluster member. A more gen-
erous volume definition will make this cut-off less sharp. This

1 Wherever HM is referred to numerically, the correction factor has
been already applied.
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Fig. 7. Total mass of a supercluster probed by the total mass of member
clusters. The sum of the member cluster masses (CM) is plotted as a
function of the true supercluster mass, i.e. the total halo masses (HM)
with the correction factor applied (see text for details). The superclus-
ters in the CS catalogue are shown in the upper panel, those in the GCS
in the lower one. We show a power-law fit as a solid line with 2σ scatter
of data points as dashed lines.

effect also appears in Fig. 8. A naive expectation is that the mass
fraction increases as the mass limit for the constituent clusters
decreases. This is only true if we were considering exactly the
same superclusters, where we can imagine lowering the mass
threshold to include more smaller halos. However, this does not
have to hold if the superclusters vary. The mean for this relation
for GCS is 0.39 with one sigma scatter of 0.077, and that for CS
is 0.34 with 0.092. As expected, the mass fraction decreases with
increasing mass limit of the cluster catalogue. We fit a power-
law in Fig. 7 just to guide the eye. The power-law model that we
used for the fit is defined by Y = B(X/Xo)A, where X is the HM,
Y the CM, Xo = 2 × 1015 h−1 M� the pivot point, and A and B
are the fitted slope and amplitude. We applied the same weight
over the entire mass range for the chi-square fit, and show two
sigma scatter of the data points as dashed lines. The fitted slope
is lower than unity over the all mass ranges and decreases to-
wards a larger mass limit. We note that removing percolating
superclusters does not change this result because they contribute
negligibly to the total number of systems. Given the uncertainty
in some of the assumptions made above, we refrain here from
using the results to determine supercluster masses until we have
explored the supercluster properties in even more detail. Our

finding is that the total cluster mass is closely correlated with
the total halo mass of a supercluster with a power-law relation,
and that the mean scatter of the relation is lower than 40 per cent
for all cluster mass limits. This result promises success for esti-
mating the masses of superclusters. More details need to be in-
vestigated, especially for alternative volume definitions, to truly
exploit the potential of this approach in the future work.

4.2. Cluster density bias against dark matter

The rare density enhancements in our Universe are traced by
clusters of galaxies. Clusters have an advantage over other
probes of large-scale structure, because fluctuations in their den-
sity distribution are more biased to the DM, which allows us to
trace the DM distribution very sensitively. Biasing means in this
case that the amplitude of the density fluctuations in the clus-
ter distribution is higher by a roughly constant factor compared
with the amplitude of DM fluctuations. We studied the bias for
the REFLEX II clusters in Balaguera-Antolínez et al. (2012) by
calculating the theoretically expected bias based on the formu-
lae given by Tinker et al. (2010), and tested the results against
N-body simulations with good agreement for the flux-limited
and the volume-limited-sample (VLS) of REFLEX II. For this
study the volume-limited results are relevant. For the lower lu-
minosity corresponding to a mass limit of 1014 h−1 M� we find
a bias factor of 3.3 and for a mass limit of 1013 h−1 M� a bias
factor of 2.1.

The power spectrum of clusters of galaxies measures the dis-
tribution of clusters as a function of a scale, where the ampli-
tude ratio of this power spectrum in comparison with the power
spectrum of the DM is interpreted as a bias that clusters have.
Analogous to the power spectrum of clusters of galaxies, we take
the number overdensity of clusters in superclusters as a measure
of bias against the DM overdensity, for which we take again the
halo mass overdensity as a tracer. This approach makes use of
the observable, the number overdensity of clusters, so it can be
calibrated against a quantity from the simulation, the DM mass
overdensity. The cluster number overdensity is defined as

ΔN =
(
ρN − ρN

o

)
/ρN

o , (1)

where ρN is the number density of clusters in a supercluster and
ρN

o is the mean number density of the clusters in the simulation.
Similarly, the halo mass overdensity is defined by

ΔM =
(
ρM − ρM

o

)
/ρM

o , (2)

where ρM is the mass density of halos in a supercluster and ρM
o

is the mean mass density of the halos in the simulation.
The cluster number overdensity is plotted as a function of

the halo mass overdensity in Fig. 8, where the upper plot is for
the CS and the lower for the GCS. We indicate the best fit of a
power-law model with solid lines, which is given by

ΔN = B

(
ΔM

ΔM
o

)A

, (3)

where A and B are the fitted slope and amplitude, ΔM
o is a pivot

point, which is the median of the halo mass overdensity.
The fitted slope (lowest curve) and amplitude (three upper

curves) as a function of limiting mass are shown in Fig. 9. The
errors were calculated by one thousand bootstrap simulations
where we randomly resampled the halo mass overdensity. The
mean of the slope remains nearly constant at around 1.1 with a
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Fig. 8. Cluster number overdensity, ΔN , as a function of the halo mass
overdensity, ΔM , for pair (grey dots) and richer superclusters (black
dots). The best-fit model (solid line) is shown for the CS (upper panel)
and the GCS (lower panel). The fitted slope and amplitude for different
mass limits for the cluster catalogues are shown in Fig. 9.

very small scatter for all mass limits. For purely linear bias we
would expect a slope of unity. That we find a slope of 1.1 shows
that any non-linear effects must be very moderate and the linear
bias picture works as a good approximation. Thus we proceed to
interpret the scale factor, B/(ΔM

o )A, that relates ΔN and ΔM as a
bias. We find that the bias is 1.83 for the 1013 h−1 M� limit, and
3.36 for the 1014 h−1 M�. This is in reasonable agreement with
the expected bias calculated from the cluster power spectrum for
the REFLEX II quoted at the beginning of this section. We note
that completely removing the percolating objects identified in
Sect. 2.1.3 modifies the best fit by 0.3−0.5% in all mass ranges,
hence this result is robust.

A closer look at the data shows that pair superclusters have a
higher effective bias than richer systems. Because pairs contain
a large fraction of extremely compact objects, we also calcu-
lated the median bias for the systems richer than pairs. To do
this we considered the pairs and richer systems separately by fit-
ting the amplitude for each population while fixing the slope of
the relation to that found above. The result of the fit is shown
in Fig. 9 . The fair agreement between the cluster biases calcu-
lated by the power spectrum and the mass fraction approaches is
encouraging because the cluster number overdensity clearly ex-
tends into the extreme non-linear regime with overdensities up
to 1000, whereas the calculated bias of the power spectrum is
mainly based on linear theory. This result motivates the study
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Fig. 9. Fitted slope and amplitude for the mass bias as a function of
the mass limit in the cluster catalogue. The mean of the slope is 1.1,
which remains nearly constant over the cluster mass limit range (lower
solid line), while the amplitude increases with the increasing mass limit
(solid). The errors are calculated with one thousand bootstrappings of
the sample. In comparison we show the fitted amplitude of the pair (dot-
ted) and richer (dashed) superclusters separately where the slope is fixed
to the fitted slope for the entire sample.

in Sect. 5 where we will quantitatively test how much this non-
linear environment differs from the field.

5. Supercluster environment

To answer the question how rare superclusters are in the
Universe, we study in this section the volume fraction that su-
perclusters occupy in the simulation volume. This fraction is
equivalent to the probability for a randomly chosen point to lie
in superclusters. The rareness and the cluster overdensity in su-
perclusters characterise superclusters as a special environment.
Thus we study whether we find different cluster properties in the
dense supercluster environment compared with the field in terms
of a mass distribution, which are then compared with the X-ray
luminosity functions obtained with the REFLEX II superclus-
ters.

5.1. Volume fraction

The first quantity we measured is the volume occupied by su-
perclusters, and calculated the volume fraction, which is defined
as a ratio of the total volume of superclusters to the simulation
volume.

Figure 10 shows the volume fraction of rich superclusters.
We also explored the contribution from percolated systems to
the volume of rich superclusters by removing it completely. For
the lowest mass limit the volume fraction of all superclusters
is roughly 12.5 per cent, while at the 1014 h−1 M� limit, the frac-
tion decreases to less than 5.4 per cent. In most of the mass range
there are typically about five superclusters that may be responsi-
ble for the percolation, and the range of volume fraction of those
superclusters is 3−20% of the total supercluster volume. This is
the largest effect of percolation seen in the properties that we
considered in this paper. It is not surprising that most of the to-
tal supercluster volume consists of the volume of richer systems.
The volume taken up by the pairs is negligible in comparison
and remains nearly constant over the entire mass range. This is
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Fig. 10. Volume fraction of superclusters in the simulation as a func-
tion of limiting mass. Richer (solid) and pair (dotted) superclusters are
shown. The pair fraction is multiplied by a factor of five for clarity.
For comparison we also show the volume fraction of rich superclus-
ters by removing the total volume of possibly percolating superclusters
(dashed). The total supercluster volume is completely dominated by the
volume of the richer systems, and the pairs occupy an almost constant
volume fraction over the mass range.

because the construction of pairs only depends on the linking
length, which depends on the number density of the clusters in
the volume and the distance between two cluster members. A
large fraction of pairs has distances much smaller than the link-
ing length. It is interesting to note that the number fraction of
clusters, defined as the number of clusters in superclusters to the
total number of clusters in the simulation, is 55 per cent for CS
and increases to 64 per cent for GCS. The number of pair super-
clusters is roughly half the total number of superclusters.

This finding is in line with the observational result reported
in C13 for the VLS of REFLEX II. The volume fraction of su-
perclusters in this sample was determined to be two per cent,
while slightly more than half of the clusters belong to superclus-
ters. The X-ray luminosity limit of the VLS is 5 × 1043 erg s−1,
approximately comparable to a mass limit of 2 × 1014 h−1 M�
below redshift z = 0.1 for the scaling relation in Böhringer
et al. (2014). Considering this limiting mass of the VLS, we
find that the corresponding volume fraction of the simulation is
3.4 per cent. Both the observation and simulation results show
how rare these superclusters are, and that they might be interest-
ing study objects probing the non-linear regime of the Universe.

5.2. Mass function

One of the important findings of C13 is that the luminosity func-
tion of superclusters in the VLS compared with that of the field
is top-heavy, meaning that there are more luminous clusters in
superclusters than in the field. This implies that superclusters
provide a special environment for the non-linear structures to
grow. One possible reason put forward by C13 is that X-ray lu-
minosity is tightly correlated with the mass of a cluster. This top-
heavy luminosity function implies the top-heaviness of a mass
function of clusters in superclusters. An alternative reason might
also be an increased frequency of the cluster merger rate due
to enhanced interactions of clusters, where the central region of
the cluster is temporarily compressed, giving rise to an increased
X-ray luminosity. To numerically quantify the difference in the
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Fig. 11. Cumulative mass fraction of clusters inside (solid) and outside
the superclusters (dashed) for the CS (grey) and GCS.

X-ray luminosity function, C13 subjected the cumulative X-ray
luminosity function to a KS test. Here we equivalently form the
cumulative mass function with the simulation.

Figure 11 shows the cumulative mass functions of the two
populations of clusters, those in superclusters and those in the
field for the CS and GCS. To compare these two unbinned cumu-
lative mass functions we used the KS test as in C13 to calculate
the significance of the difference in the two distributions. The KS
test shows that the probability that both distributions drawn from
the same function is 4.4 × 10−10 for the CS catalogue of Fig. 11,
and zero for the GCS. This confirms with very little doubt that
the mass function of clusters in superclusters is top-heavy in
comparison to that of clusters in the field. This conclusion is
in line with what was observed with the REFLEX II clusters in
superclusters. The same KS test showed a probability of 0.03 for
the REFLEX II superclusters in the VLS. The much lower KS
probabilities resulting from the simulation is due to very large
number statistics in comparison with the observations. We note
that Fig. 11 also spans about a decade larger in the ordinate than
Fig. 10 in C13. With this we confirm that both the X-ray lumi-
nosity function and the mass function of clusters in superclusters
are top-heavy. This is an important evidence that the boost seen
in the X-ray luminosity of clusters in an enhanced density region
is not just a temporary phenomenon in merging events, but that
the mass function of clusters is fundamentally modified so that
both mass and luminosity functions in a high-density environ-
ment evolve differently from those of the field.

6. Discussion and conclusions

We tested our concept to understand superclusters constructed
with a friends-of-friends method on a complete sample of mass-
selected or X-ray luminosity selected galaxy clusters by means
of dark matter halos from cosmological N-body simulations by
applying a set-up equivalent to that used in a typical cluster sur-
vey. A friends-of-friends algorithm was applied to DM halos
above a mass threshold to construct a supercluster catalogue.
One key parameter in this method is the linking length, which
is inversely proportional to the overdensity parameter, f . With
the simulation we were able to calculate in retrospect the dis-
tribution of the number density ratio of clusters in superclus-
ters compared with the mean density in the simulation volume.
As a first-order approach motivated by a theoretical spherical
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collapse model the geometry of a supercluster was assumed to
be spherical, and most of superclusters had a higher density ra-
tio than the initial input overdensity with some scatter due to
a particular spatial distribution of clusters within a supercluster.
This suggests that the fof algorithm provides a reasonable way to
construct superclusters, which approximately selects superclus-
ters with pre-defined cluster overdensity.

Our findings are encouraging for future studies that use su-
perclusters as potential tools to probe the properties of the large-
scale structure. We considered the fraction of mass that is repre-
sented in the cluster content of superclusters in comparison with
the total mass. There is a clear power-law correlation between
these two quantities, showing that the total member cluster mass
in a supercluster is a good first-order estimate of the total mass
of a supercluster with a mean scatter of less than 40 per cent.
One of our aims in this paper was to learn how the dark matter
is traced by superclusters. By comparing the cluster overdensity
with the underlying DM overdensity, we verified that the bias-
ing concept as implied in Chon et al. (2013) works. Thus we
can indeed select superclusters with prescribed DM overdensity
with moderate scatter. In a similar study we examined the cluster
number overdensity as a function of the supercluster matter over-
density. The ratio of these two quantities is the bias carried by
the clusters in superclusters. We expect that this closely follows
the expectation of the bias for the power spectrum of clusters.
We find that the relation between the cluster number overdensity
and the matter overdensity as a function of the matter overden-
sity is described well with a power-law model where the slope
is within 10% of unity and the amplitude increases as expected
from theory with increasing lower mass limit. We interpret the
scaling factor between the cluster number density and the halo
mass density resulting from the power-law model fit as a bias.
For superclusters constructed with the CS the bias is 3.36, while
the bias is 1.83 for the GCS supercluster catalogue, which indi-
cates agreement with theory. This implies that the similar bias
factors that describe global statistical function such as the power
spectrum or the correlation function also applies to local over-
densities. Consequently the cluster bias we found reflects once
more that superclusters are a special region in our Universe.

This led to the work in Sect. 5 where we tested how the
supercluster environment differs from the field by considering
the volume occupied by superclusters and the mass function of
clusters in superclusters. The volume fraction of superclusters
for the VLS-equivalent catalogue is 3.4 per cent, in good agree-
ment with the result of the REFLEX II observations in C13.
Superclusters occupy only a very small fraction. A high-density
region in our Universe is expected to evolve differently from
the background cosmology, and it can be understood as a local
universe that evolved from an originally higher mass density.
This can be tested by examining the mass function of clusters
in superclusters compared with that in the field. We find with a
probability close to zero that these two mass functions are drawn
from the same parent distribution, confirming that the mass func-
tion is top-heavy, analogously to the top-heavy X-ray luminosity
function in C13. In both observation and simulation there are
more luminous or more massive clusters in superclusters than
in the field. Thus we confirm with the volume fraction and the
mass function of clusters of galaxies from the simulation, also
supported by the REFLEX II observations, that the supercluster
environment is distinctly different from the rest of the Universe.

For the first time, this finding is based on the well-understood
selection functions of clusters in both simulations and large flux-
limited X-ray survey data. It also agrees with previous studies,
albeit using different tracer objects to probe superclusters and
different methods to construct them, such as Einasto et al. (2003,
2005, 2012). The NORAS II catalogue, complementary to the
REFLEX II survey in the Northern sky, is currently being com-
piled. With this addition the sample will effectively double the
current sample size, and will provide an improved ground for
further exploration of supercluster properties.
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