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The electrical resistivity curves for binary phase compounds of p-type lead chal-

cogenide (PbTe)(0.9−x)(PbSe)0.1(PbS)x, (x = 0.15, 0.2, 0.25), which contain PbS-rich

secondary phases, show different behaviour on heating and cooling between 500-700

K. This is contrast to single phase compounds which exhibit similar behaviour on

heating and cooling. We correlate these anomalies in the electrical resistivities of

multiphase compounds to the variation in phase composition at high temperatures.

The inhomogeneous distribution of dopants between the matrix and secondary

phase is found to be crucial in the electronic transport properties of the multiphase

compounds. These results can lead to further advances in designing composite

Pb-chalcogenides with high thermoelectric performance. C 2015 Author(s). All ar-

ticle content, except where otherwise noted, is licensed under a Creative Commons

Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4913992]

INTRODUCTION

The search for high efficiency bulk thermoelectric materials for waste heat recovery has

focussed on mid-range temperature (500-900 K) thermoelectric materials,1–5 specifically PbTe-

based alloys, which exhibit the highest thermoelectric conversion efficiencies amongst current

generation thermoelectric materials for both n-type6 and p-type1,7,8 compounds. Recently, particular

interest has focussed on the formation of secondary phases in thermoelectric materials to reduce

their lattice thermal conductivities and consequently enhance their thermoelectric efficiency.5,9,10

In our recent report,11 the transport properties of single phase p-type (Na-doped) bulk quaternary

(PbTe)(0.9−x)(PbSe)0.1(PbS)x (x < 0.1) are compared with binary phase compounds (x = 0.15, 0.2

and 0.25) which contain PbS-rich secondary phases. We reported that the resistivity curves for

composite samples show different behaviour on heating and cooling within a temperataure range of

approximately 500-700 K.11 This is in marked contrast to single phase p-type lead chalcogenides

which show the same resistivity values at a given indivual temperature during both heating and

cooling.1,4,7,8,12 Similar behaviour has been observed in multiphase p-type SrTe-alloyed PbTe9 and

(GeTe)0.87(PbTe)0.13 (Ref. 3) compounds previously. However, a detailed description of this anom-

aly is still lacking.

To explain the observed resistivity anomalies at high temperatures, we measured the resistivity

and Hall coefficient of samples and correlated the results to the dopant distribution obtained using

aCorresponding authors; email: sima@uow.edu.au; jsnyder@caltech.edu
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transmission electron microscopy (TEM). We found that the dopant solubility varies between different

phases in multiphase samples where the volume fraction of secondary phase is a function of tempera-

ture. This suggests that observed anomaly in the resistivity curves of multiphase materials is a strong

function of alloying elements diffusion. Solute concentrations are dependent on diffusion controlled

dissolution/precipitation reactions of secondary phases. This conclusion is supported with available

data for temperature-dependent diffusion coefficient data for solute elements in the matrix and precip-

itates. We provide insight into the fundamental issues regarding the electronic transport properties

of multiphase nanostructured compounds with dopant solubility and distribution as a function of

temperature.

EXPERIMENTAL

Sample fabrication: Polycrystalline samples of PbS, PbSe, and PbTe were prepared by mix-

ing high purity Pb (99.999%), Te (99.999%), Se (99.999%), and dried S (99.9%) in vacuum

sealed quartz ampoules at a residual pressure of ∼ 10−4 Torr. These were reacted at high temper-

ature to produce high purity PbSe and PbS starting materials. The final polycrystalline samples

of (PbTe)(0.9−x)(PbSe)0.1(PbS)x, (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) doped with 1 at% Na, which

correspond to an equivalent formula of Pb0.98Na0.02Se0.1SxTe(1−x) (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25)

samples were synthesized by mixing stoichiometric quantities of high purity PbS, PbSe, Pb, Te

and Na. A total mass of 10 g was sealed in carbon-coated quartz tubes under vacuum, and then

heated to 1373 K with a heating rate of 100 K per hour. After being held at 1373 K for 10 hours

to homogenise the liquid phase, the samples were quenched in cold water to minimize segreaga-

tion during solidification. This procedure was followed by annealing at 773 K (a typical operating

temperature of devices containing such materials) for 48 hours to equilibriate the compounds. The

resulting ingots from the synthesis procedure were hand-ground to powder with a mortar and pestle,

and sintered at 773 K for 1 hour in a 12 mm diameter graphite mould, at an axial pressure of 40

MPa, using induction hot pressing under an argon atmosphere.13

Resistivity and Hall measurements: Samples were loaded onto a heated BN substrate, and four

probes were attached to the edge of the sample. The sample was placed in vacuum with a magnetic

field (up to ±2 T) perpendicular to its surface. The resistivity (ρ) and Hall coefficient (RH) (along the

hot-pressing direction) were measured using the van de Pauw method.14

Electron Microscopy Analyses: Samples were characterized using a JEOL 2010 transmission

electron microscope (TEM) operating at 200 kV. TEM samples were prepared by cutting them into

3 mm diameter discs using a Leica TXP polisher, then grinding and polishing them to less than 100

µm in thickness. Discs were then dimpled followed by Ar-ion milling on a stage cooled with liquid

nitrogen. During ion milling low voltages and currents were used to reduce damage to the samples.

RESULTS AND DISCUSSION

The selected compositions are located at the PbTe-rich side of the PbTe-PbS pseudo-binary

system.15 Phase separation of NaCl-structured PbS-rich precipitates and PbTe-rich matrix occurs

through the nucleation and growth process. The purity, crystal structure and chemical composition

of the samples were studied by powder X-ray diffraction (XRD), scanning electron microscopy

(SEM) and transmission electron microscopy (TEM) and are reported in detail elsewhere.16 The

proportions of the precipitates are summarized in Table I.

TABLE I. The fraction of precipitates in the matrix of samples (PbTe)(0.9−x)(PbSe)0.1(PbS)x.

Sample x = 0 x = 0.05 x = 0.1 x = 0.15 x = 0.2 x = 0.25

wt% of precipitates - - - 4.7±0.2 11.1±0.3 16.8±0.4
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FIG. 1. Temperature-dependence of: (a) electrical resistivity (mΩ ·cm) of Na-doped (PbTe)0.7(PbSe)0.1(PbS)0.2 (x = 0.2)

sintered bulk sample over a measurement cycle of heating (red line) and cooling (blue line) at 60 K/h and 100 K/h heating

rates; (b) the Hall coefficient (cm−3/C) of Na-doped (PbTe)(0.9−x)(PbSe)0.1(PbS)x, (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) for

sintered bulk samples during heating cycle.

The resistivity values show a hysteresis for samples with x > 0.1.16 Figure 1(a) shows the

temperature-dependent electrical resistivity of Sample (PbTe)0.7(PbSe)0.1(PbS)0.2, (an example of a

binay phase compound containing PbS precipitates) during two cycle of heating and cooling at 60

K/h and 100 K/h heating/cooling rates. The electrical resistivity exhibits a peak at approximately

600 K during heating. The cycle was repeated several times, and various heating rates were em-

ployed to confirm the presence of hysteresis in resistivity for the multiphase compounds. Although

the peak temperature and the slope of the curve vary slightly with the heating rate, the cooling curve

slopes were independent of the cooling rate. The measured hysteresis was similar and repeatable for

all samples which contain sulphur-rich precipitates.

The Hall coefficient of (PbTe)(0.9−x)(PbSe)0.1(PbS)x, (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) com-

pounds are shown in Figure 1(b) as a function of temperature in the range of 300 to 850 K (heating

cycle only). The Hall coefficient values of (PbTe)(0.9−x)(PbSe)0.1(PbS)x compound demonstrate a

maximum at approximately 400 K and decline with temperature above this value. The band struc-

ture of lead chalcogenides can be described by a multiband model with a non-parabolic Kane band

at the L point of the Brillouin zone and a parabolic band along the Σ line of the Brillouin zone.17 The

temperature dependence of the Hall coefficient of heavily doped p-type PbTe remains almost con-

stant at temperatures below 100 K and then gradually increases to reach a maximum value at around

400 K.17 As the temperature rises, the light valence band gradually lowers its energy and reaches

the Σ-band edge. Therefore, the carriers can access chemical potential states of both light and heavy

valence bands.17–19 This proposed two-valence-band model in PbTe is believed to be correlated with

the observed peak in the Hall coefficient values (with respect to temperature) as a result of valence

band convergence.18 However, the Hall coefficient (RH) of p-type PbS is almost independent of the

temperature regardless of carrier concentrations.20 The different behaviour observed for PbTe and

PbS is also found by the electronic band structure calculations which show that the Σ–band exists

in both PbSe and PbS but it lies at a lower energy level than PbTe.21 Although the samples of the

current study are alloyed with 10 mol% PbSe and up to 25 mol% PbS, they still show typical two

valence band behaviour of PbTe.

The maximum Hall coefficient value of (PbTe)(0.9−x)(PbSe)0.1(PbS)x compounds increase signif-

icantly with x up to 0.1 and remains relatively constant for x > 0.1, as shown in Figure 1(b). We

have shown approximately 10 mol% (x = 0.1) solubility limit for PbS in the PbTe matrix in the pres-

ence of 10 mol% PbSe.12 Such additions (at constant carrier concentrations) change the electronic

structure, resulting in an increase in the maximum Hall coefficient values.12 Similar behaviour is

observed in the ternary (PbTe)(1−x)(PbSe)x system.1,7 The increase in the Hall coefficient values scale

with mole fraction of PbS (x) up to the solubility limit, indicates that for samples with x > 0.1, the

electronic structure of the equilibrated compounds is fixed at a given temperature.
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FIG. 2. Temperature-dependence of the electrical resistivity (mΩ ·cm) and Hall coefficient (cm−3/C) of Na-doped

(PbTe)(0.65)(PbSe)0.1(PbS)0.25 (x = 0.25) composite and single phase (PbTe)0.9(PbSe)0.1 (x = 0) sintered bulk sample in the

heating cycle.

Figure 2 compares the electrical resistivity and Hall coefficient of the single phase material,

(PbTe)0.9(PbSe)0.1 (x = 0) and precipitate-containing (PbTe)(0.65)(PbSe)0.1(PbS)0.25 (x = 0.25) dur-

ing heating in the temperature range of 300 to 850 K. A deviation from a smoothly declining curve

has been observed for Sample (PbTe)(0.65)(PbSe)0.1(PbS)0.25 (x = 0.25) at around 600 K, which

is correletaed with the peak in the electrical resistivity curve. The Hall coefficient value depends

on the carrier concentration, energy-band structure, carrier scattering mechanism, and degree of

degeneracy.17 The chemical compositions of the matrix and the secondary phase are fixed at any

given temperature for multiphase samples (x > 0.1) and the weight fraction of the secondary phase

increases with x. The Seebeck coefficients of compounds have increased by x up to 0.1 and remain

approximately constant for compounds with x > 0.1.11 It is reasonable to suppose a similar carrier

scattering mechanism and degree of degeneracy exist for both the multiphase and the single phase

compounds in the current study. Therefore, the observed deviation in the Hall coefficient of the

composite samples might originate from variations in carrier concentration and/or band structure

within the samples.

Although the concentration of sodium (dopant) is identical for all samples in the current study,

precipitation of a sulphur-rich secondary phase may result in partitioning of sodium to the precip-

itates as suggested by recent transmission electron microscopy22 and atom probe analysis23 on

sodium-doped lead chalcogenides. The solubility limit of sodium in PbS (∼ 2 at%) is much higher

than in PbTe,23 which shows a maximum solubility of ∼0.7 at%.24 The elemental analysis of precip-

itates was performed using energy dispersive x-ray spectroscopy (EDS), by scanning transmission

electron microscopy. The TEM micrograph and EDS spectra in Figure 3 show the morphology

and distribution of PbS-rich precipitates in the PbTe-rich matrix in the (PbTe)0.75(PbSe)0.1(PbS)0.15

(x = 0.15) sample. EDS spectra were obtained from a precipitate (Figure 3(b) lower) and the

matrix (Figure 3(b) upper) of the same sample. It is difficult to determine the sodium concentra-

tion of the precipitate and matrix quantitatively, due to its low atomic number and beam-induced

evaporation. A sodium peak was detected in the EDS spectrum obtained from the precipitate but not

in the spectrum obtained from the matrix. This confirms the higher concentration of sodium in the

secondary phase, similar to the binary phase of ternary PbTe-PbS system.23

The resistivity anomaly in multiphase compound of PbTe-SrTe9 has been reported to be asso-

ciated with segregation at room temperature of sodium atoms to the precipitate/matrix interfaces,

grain boundaries and defects. Diffusion of this sodium back into the matrix at elevated tempera-

tures, results in increasing the charge carrier density. It is to be expected that all highly degenerate
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FIG. 3. (a) Bright field TEM micrograph of PbS-rich precipitates in the PbTe-rich matrix in the (PbTe)0.75(PbSe)0.1(PbS)0.15

(x = 0.15) sample (b) comparison of EDS analysis from the matrix and precipitate in the (PbTe)0.75(PbSe)0.1(PbS)0.15

(x = 0.15) sample, the selected secondary phase was large enough to run through the full thickness of the TEM foil and

exclude the contribution of the matrix on EDS analysis.

Na-doped PbTe alloys will exhibit this phenomenon because the maximum solubility of Na in PbTe

is ∼0.7 mol% at ∼623 K and reduces to ∼0.24 mol% at ∼513K.24 However, the resistivity anomaly

is only observed in multiphase compunds. Therefore, the electrical resistivity anomaly cannot be

fully explained by sodium atom diffusion alone.

The solubility of the secondary phase in the matrix of the pseudo-binary PbTe-PbS system

increases at elevated temperature, as illustrated in the phase diagram15 and recently confirmed by

more precise experiments.25 The secondary phase of PbS is completely dissolved in a PbS0.3Te0.7

at ∼1000 K and rapid dissolusion of precipitates is detected at temperatures above 523 K in

PbS0.08Te0.92 multiphase compounds.25 During electronic transport properties measurements at

elevated temperatures, sulphur-rich precipitates in the binary phase compounds of current study

which contain higher concentration of dopant, are partially dissolved in the matrix and reprecipitate

upon cooling. The electronic band structure is a function of chemical composition. The dissolution

of precipitates in the solid state involves the movement of precipitate-matrix interface atoms with

dissipation of free energy. The diffusion coefficient of atoms in solids is thermally activated and in-

creases exponentially with temperature.26 There is no information available in the literature regard-

ing the diffusion of sulphur in PbTe. However, diffusion studies of sulphur and tellurium in undoped

single crystals of PbS27 and PbTe28 respectively above 773 K, and sodium in single crystal PbTe29

above 873 K, have revealed that the diffusion coefficients vary with the dopant concentration and the

bonding forces between components of the matrix. The experimental diffusion coefficient for Na in

PbTe,29 Te in PbTe28 and S in PbS28 are extrapolated to lower temperatures.30 The diffusion time for

10 nm distance is reduced from hours to a few minutes by increasing temperature from 550 K to

650 K. It is beyond the scope of the current study to comment on the diffusion mechanisms of the

multiphase compounds, suffice it to state that the diffusion of solute atoms is limited at temperatures

up to 600 K and increased significantly over a relatively small temperature interval during transport

properties measurements. The dissolution of sodium-containing sulphide precipitates results in a

release of dopants into the matrix and consequent carrier concentration enhancement. In addition,

rapid dissolution of sulphide precipitates could vary the band structure and/or introduce various

forms of disorder, including point defects and dislocations into the matrix and thus influence the

electrical resistivity. During cooling to room temperature, growth of sulphur-rich secondary phase

proceeds gradually due to fast diffusion of sodium and sulphur atoms at high temperatures, giving

rise to no detectable variation in the resistivity and Hall coefficient curves. It suggests that the

observed peak in the resistivity curve during the heating of multiphase compounds is associated

with the kinetics of dissolution for precipitates and sodium atoms rearrangements. Therefore, the

size and distribution of precipitates which determines the diffusion distance, heating rate that de-

fines the superheating effect, the dopant concentration and bonding forces between components of
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the various phases influence on the behaviour and repeatability of resistivity curves in multiphase

compounds.

CONCLUSION

In summary, we correlate the resistivity anomaly in the composite p-type thermoelectric lead-

chalcogenides to the partial dissolution of sulphide precipitates in the matrix at elevated temper-

atures. This is combined with various dopant concentrations in the secondary phase and matrix.

Our results are a step forward in realising the thermoelectric performance of multiphase com-

pounds which show variation in chemical composition as a function of temperature. Nevertheless,

additional study will be required to fully understand the role of dopants and secondary phases on

electronic transport properties of multiphase compounds.
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