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Abstract 25 

Ungulates are especially difficult to monitor and population estimates are challenging to 26 

obtain, nevertheless such information is fundamental for effective management. This is 27 

particularly important for expanding species such as roe deer (Capreolus capreolus), whose 28 

populations dramatically increased in number and geographic distribution over the last 29 

decades. In an attempt to follow population trends and assess species ecology, important 30 

methodological advances were recently achieved by combining line or point sampling with 31 

Geographic Information Systems (GIS). In this study, we combined density surface 32 

modelling (DSM) with line transect survey to predict roe deer density in northeastern 33 

Portugal. This was based on modelling pellet group counts as a function of environmental 34 

factors while taking into account the probability of detecting pellets and conversion factors 35 

to relate pellet density to animal density. We estimated a global density of 3.01 animals/100 36 

ha (95% CI: 0.37 - 3.51) with a 32.82% CV. Roe deer densities increased with increasing 37 

distance to roads as well as with higher percentage of cover areas and decreased with 38 

increasing distance to human populations. This recently developed spatial method can be 39 

advantageous to predict density over space through the identification of key factors 40 

influencing species abundance. Furthermore, surface maps for subset areas will enable to 41 

visually depict abundance distribution of wild populations. This will enable the assessment 42 

of areas where ungulate impacts should be minimized, allowing an adaptive management 43 

through time. 44 

 45 

Keywords: Capreolus capreolus, Iberian Peninsula, distance sampling, density surface 46 

models, GAM 47 



3 
 

Introduction 48 

Large herbivores are particularly difficult to monitor (Schroeder et al. 2014) and ecologists 49 

are continuously searching more robust and precise techniques. Successful strategies for the 50 

management of wide-ranging species require reliable information on density and population 51 

trends (Marques et al. 2001). To cope with the dramatic expansion of ungulates in Europe 52 

and North America over the last decades, effective monitoring programs are pivotal (Rooney 53 

2001; Apollonio et al. 2010). Throughout the last years, significant efforts have been made 54 

to improve the methods used for monitoring wild populations (Buckland et al. 2001; Hedley 55 

and Buckland 2004; Thomas et al. 2010). Distance sampling (Buckland et al. 2001) is 56 

recognised as one of the most robust methods for accounting for uncertain detection 57 

(Buckland et al. 2001; Marques et al. 2007) and it has been shown to be a reliable and robust 58 

method to estimate deer abundance (Marques et al. 2001; Acevedo et al. 2008; Valente et al. 59 

2014). Basically, distance sampling methodology relies on the search for animals or animal 60 

signs from lines or points; for each observation the perpendicular distance from the transect 61 

is recorded and a detection function is estimated, enabling abundance and density estimation 62 

of the population of interest by accounting for undetected animals (or animals signs). With 63 

the fast advance of the spatial analysis techniques, the combination of spatial modelling with 64 

Geographic Information Systems (GIS) on population density estimation has been recently 65 

developed. This was firstly reviewed by Buckland et al. (2000), Hedley et al. (2004) and 66 

Hedley and Buckland (2004) who developed methods for improving abundance estimation 67 

of wildlife taking into account the population’s spatial distribution. This has allowed to 68 

include heterogeneity in the population spatial distribution while accounting for the 69 

probability of detecting the animal or its signs. An important output of such approach is a 70 

map with the spatial abundance distribution of a population, which is extremely useful to 71 
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wildlife managers, particularly when communicating results to non-experts stakeholders 72 

(Katsanevakis 2007; Miller et al. 2013a). The recent development of density surface models 73 

(DSM) enabled the identification of meaningful ecological variables that can affect animal 74 

population’s densities (Katsanevakis 2007; Miller et al. 2013a). DSMs offer a robust 75 

estimation of abundance (Katsanevakis 2007) and are simple to integrate within the line 76 

transect framework of distance sampling. Furthermore such models are less dependent on a 77 

random survey design or a uniform habitat coverage and allow the estimation of abundance 78 

in sub-areas of interest, through numeric integration under the section of the fitted density 79 

surface (Katsanevakis 2007). This spatial methodology can also improve management plans, 80 

since it makes possible to identify subtle impacts on species, by estimating spatial 81 

redistribution of animals as a result of a particular hazard (Petersen et al. 2011). DSMs are a 82 

model-based approach corrected for uncertain detection via a distance sampling framework 83 

(Hedley and Buckland 2004; Miller et al. 2013a), being typically implemented via 84 

generalized additive models (GAMs) (Hastie and Tibshirani 1990). DSMs have been 85 

successfully implemented in a few species, e.g. aquatic molluscs (Katsanevakis 2007), 86 

marine mammals (Henrys 2005; Burt and Paxton 2006), seabirds (Buckland et al. 2012) and 87 

only recently in ungulate species (Schroeder et al. 2014; La Morgia et al. 2015). 88 

The European roe deer (Capreolus capreolus) is the most abundant and widespread 89 

cervid species in Europe, with an estimated population of 10 million individuals (Apollonio 90 

et al. 2010). In Portugal roe deer occurs at low densities (Valente et al. 2014) particularly 91 

when compared with central and northern Europe (Apollonio et al. 2010). Following the 92 

current European trend, roe deer density is expected to increase considerably in Portugal 93 

(Torres et al. 2015). It is therefore timely to implement management strategies that can 94 

prevent the potential negative impacts deer can have in the ecosystems, such as traffic car 95 
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collisions, diseases transmission, impacts on commercial forestry and crop production, 96 

conflicts among deer and human populations, amongst others (for a review see Putman et al. 97 

2011). 98 

 We combined line transect sampling with spatial analysis to predict the abundance 99 

of roe deer in northeastern Portugal. This was achievable taking into account a set of 100 

environmental variables relevant to the ecology of roe deer. The chosen variables were 101 

human disturbance (distance to the nearest road and distance to the nearest human 102 

settlement) which may be considered analogue to predation risk (Hewison et al. 2001; Torres 103 

et al. 2011) and availability of cover areas, which is particularly important since roe deer is 104 

one of the main prey for Iberian wolf (Canis lupus signatus). The abundance predictions 105 

were based on the relationship between pellet groups and environmental factors, taking into 106 

account the probability of detecting pellets while also using appropriate factors to convert 107 

pellet groups abundance into deer abundance. This was done through the collection of 108 

distance data regarding pellet groups along line transects covering the whole survey area. 109 

We expect that the use of such an approach will improve the accuracy of density and 110 

abundance estimates when compared with traditional distance sampling, since it models part 111 

of the spatial variability (Hedley et al. 2004).  112 

Indirect methods have already been described in the context of deer populations 113 

(Marques et al. 2001; Acevedo et al. 2008; Valente et al. 2014), however they have never 114 

been used in conjugation with DSM. Although this type of approach have the main drawback 115 

of requiring production and decay rates to convert pellets density in animal’s density (which 116 

are not typically easy to obtain – for more details see Discussion section), they also provide 117 

several advantages since the field work is easy to carry out - it can be performed by park 118 

rangers to ensure a continuity of data - and results are unbiased even in woodland areas - 119 
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such as our study area, where direct methods are often not feasible or potentially biased 120 

(Marques et al. 2001; Scott et al. 2002; Anderson et al. 2012). DSM can be applied to other 121 

animals for which pellet group count methods are used to estimate their abundance. 122 

Examples include mountain hares (Newey et al. 2003), elephants (Barnes et al. 1995; Olivier 123 

et al. 2009) and a number of other large vertebrates (Hill et al. 1997; Acevedo et al. 2008; 124 

Carvalho et al. 2013). The methodology is equally applicable to surveys of nests or other 125 

signs for which production and decay rates can be estimated, e.g. apes are most easily 126 

monitored by surveying their nests (Plumptre 2000). 127 

This study aims to (1) use an indirect methodology to model the density surface of 128 

roe deer in northeast Portugal; (2) estimate the density and abundance of this species, (3) to 129 

relate its density to environmental factors and (4) to compare the results of conventional 130 

distance sampling with density surface modelling.  131 

 132 

Methods 133 

Study area 134 

The study was carried out in northeast Portugal (Montesinho Natural Park – MNP – and 135 

Serra da Nogueira – SN) (6o30’-7o12’W, 41 o43’-41 o59’N and 6º50’-6º56’W, 41º38’-136 

41º48’N respectively), part of the European Union’s Natura 2000 Network, covering an area 137 

of 63,500 ha (Fig. 1). The terrain consists of rolling hills with elevation ranging from 438 to 138 

1,481m. The climate is mainly Mediterranean. The vegetation is diverse, characterized 139 

mainly by oak (Quercus pyrenaica, Q. rotundifolia, Q. suber), sweet chestnut (Castanea 140 

sativa) and maritime pine (Pinus pinaster). The shrub vegetation is dominated by heather 141 

(Erica spp.), gum rockrose (Cistus ladanifer) and furze (Ulex europaeus and Ulex minor). 142 

Other mammals present are the Iberian wolf (Canis lupus signatus), red fox (Vulpes vulpes), 143 
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wild cat (Felis silvestris), wild boar (Sus scrofa) and red deer (Cervus elaphus), among 144 

others. The study area is crossed by some rivers and includes small villages with a low 145 

human presence (9.5 people per km2). 146 

 147 

Line transects and field work 148 

The survey area was divided in 3 geographic strata: Serra de Montesinho (SM: 24,400 ha), 149 

Lombada National Hunting Area (LNHA: 20,800 ha) (both inside MNP) and Serra da 150 

Nogueira (SN: 18,300 ha) (Fig. 1). This was done to improve the precision of the final 151 

density estimate, taking into account a previous study (Valente et al. 2014), which includes 152 

a smaller sample of the same study area (without spatial modelling). This was also done for 153 

management purposes, since a large variation is expected in densities across strata. However, 154 

a common detection function was built pooling the data across the three regions. Transect 155 

location and orientation was randomly chosen, ensuring that they were representative of all 156 

habitat types in the study area. In total, 65 different transects were considered: 22 transects 157 

in SM, 16 in SN and 27 in LNHA. Each transect was 1,000m long: to maximize spatial 158 

coverage and to mitigate sampling dependence, sampling plots consisted of 4 100m on effort 159 

segments, each separated by 200m off effort segments, resulting in a total of  400m on-effort 160 

per transect. Later the transects were used to model the detection function and the segments 161 

to perform the density surface modelling. Given practical and logistic constraints precluding 162 

surveying the entire survey area in a single year, field work was conducted in 2012 and 2013 163 

(2012: January and November; 2013: January, February and October), randomly carried 164 

among the three study areas. For modelling the detection function, distance data was pooled 165 

across years and regions. The transects were conducted on foot. A handheld Global 166 

Positioning System (GPS) unit and a compass were used to follow a straight line. A rope 167 
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was used to facilitate the progress in a straight line, ensuring the scanning of 1 meter from 168 

each side of the line, and guaranteeing accurate distance measurements. The choice of 1 169 

meter width (on each side of the rope) transects was based on Marques et al. (2001), where 170 

the use of long (>50 meters) and narrow transects was suggested to ease the search for pellets 171 

groups in low deer density areas, as is the case for our study area (Valente et al. 2014). The 172 

perpendicular distance from the centre of the group to the transect line was recorded for each 173 

pellet group detected. Additionally, three observation level covariates thought to influence 174 

detectability of pellets (Marques et al. 2007) were recorded: i) the size of the pellet group 175 

(medium, 10 - 40 pellets vs. large, > 40 pellets); ii) dispersion of the group (aggregated vs. 176 

scattered); and iii) type of habitat around the pellet group (open vs. closed). To minimize 177 

bias we considered only pellet groups with ten or more individual pellets (produced at the 178 

same defecation event, identified for similar size, shape, texture and colour). This practice 179 

reduces the risk of counting one spread pellet group as two (Marques et al. 2001). 180 

 181 

A two-stage approach: 182 

Modelling the detection function 183 

Distance sampling allows uncertain detection of animals/objects (Buckland et al. 2001; 184 

2004). A detection function, g(x), is used to model the decrease in detectability with 185 

increasing distance, from the observer (Buckland et al. 2001; Miller et al. 2013a). The 186 

detection function represents the probability of detecting an object given it is at distance x 187 

from the transect line. The probability of detection for the covered area is then given by:  188 

 189 

 190 
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where w is a truncation distance and π(x) represents the distribution of available distances, 191 

assumed to be uniform by design. Formally, this corresponds to the expected value of the 192 

detection function with respect to the available distances. In the first stage we used the 193 

Distance package (Miller 2014) in R (R Development Core Team 2013) to estimate roe deer 194 

density and abundance. The global density (D) estimate is obtained as a weighted average of 195 

stratum specific estimates, with stratum’s areas as weights, i.e. 196 

𝐷̂ =
∑ 𝐷𝑖̂ 𝐴𝑖

3
𝑖=1

∑  𝐴𝑖
3
𝑖=1

 197 

Three key functions were tested: uniform, half-normal and hazard-rate with the three 198 

adjustment terms available (cosine, simple polynomial and hermite polynomial). The unit 199 

considered for analysis was 400m. The effect of observation level covariates in pellet group 200 

detectability was assessed through Multiple Covariate Distance Sampling (MCDS) analysis 201 

(Marques et al. 2007). Detection function choice was based on the Akaike information 202 

criterion (AIC, Akaike 1974), aided by visual inspection of the histogram of distance data 203 

and goodness-of-fit tests (Burnham et al. 2004). Distance data were right-truncated to 204 

remove 5% of the perpendicular distances as recommended by Marques et al. (2001), 205 

resulting in a maximum width of 95 cm of effective prospection. Density surface modelling 206 

results are based on the most parsimonious detection function obtained in this first stage.  207 

 208 

Density surface modelling (DSM) 209 

The second stage was also performed in R (R Development Core Team 2013) using the 210 

package dsm (Miller et al. 2013b). Modelling of density was implemented at the 100m 211 

segment level, totalling 260 segments. Four segment level spatial covariates were collected 212 

through ArcMAP (version 10.1) and used to model the density surface of roe deer in our 213 

study area: i) geographic coordinates (latitude and longitude); human disturbance variables 214 
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ii) distance to the nearest road – dist_road – and iii) distance to the nearest human settlement 215 

– dist_hum, and iv) percentage of cover areas (ca_perc: coniferous and deciduous forests). 216 

Geographic coordinates and human disturbance variables were collected in the center of the 217 

100m segments. The percentage of cover areas was extracted in a 1.26 km radius around the 218 

center of each segment. This represents a home range scale calculated based on home range 219 

values for Portugal (Carvalho et al. 2008). We used GIS to build the buffers from the center 220 

of the 100m segments. Land cover information was obtained through CORINE Land Cover 221 

2006 (CLC2006). 222 

The count method of Hedley and Buckland (2004) was applied, using the number of 223 

pellet groups in each segment as the response variable in the density surface model, 224 

according to: 225 

(Miller et al. 2013a), 226 

where  is the value of covariate k in segment j, represents the smooth function  of the 227 

spatial covariate k and  is an intercept term.  is the segment area and  the detection 228 

probability (if this parameter is constant throughout the segments it will simply be replaced 229 

by ). The number of pellets (response variable) for each segment was related to the 230 

predictor variables through Generalized Additive Models (GAMs) (Hastie and Tibshirani 231 

1990): a quasipoisson distribution and a logarithmic link function were used. The optimum 232 

degree of smoothing was defined through Generalized Cross Validation (GCV) score. By 233 

default dsm package applies a factor γ = 1.4 to model the effective degree of freedom in the 234 

GCV score to avoid overfitting (Miller et al. 2013b). The choice of the density surface model 235 

among the set of candidates was based on the lowest GCV value (Wood 2006), while 236 
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accounting for the deviance explained by each model as well as the p-value of each spatial 237 

variable.  238 

 239 

Abundance estimation 240 

A prediction grid with 635 square cells of 100ha each was built in ArcMAP (version 10.1). 241 

The abundance of roe deer in the study area was estimated as the sum of the estimated 242 

abundance in each one of the grid cells, , , relying on the spatial model 243 

chosen for inference. Based on the predictions inferred by the density surface model, and 244 

taking into account the value of each variable in each grid cell, an abundance map for the 245 

survey area was drawn in R (R Development Core Team 2013). To estimate the abundance 246 

two conversion factors were used: i) the decay rate (i.e. number of days a pellet group takes 247 

to decompose – a pellet group was only considered to have less than six individual pellets), 248 

estimated by Torres et al. (2013) for our study area and species of interest (176 ± 31 days), 249 

and ii) the production rate (i.e. the number of pellet groups produced by an individual per 250 

day), calculated in the UK, which was considered to be 20 pellet groups per day (Mitchell 251 

et al. 1985). These values were embedded in the model through the use of an offset, to 252 

convert pellet groups density to animal density, accounting for the variance of the former via 253 

a bootstrap procedure and ignoring the non-available variance for the latter (see discussion), 254 

allowing a straightforward interpretation of the results. Variance for the abundance estimates 255 

of DSM analysis was obtained through the variance propagation method described by 256 

Williams et al. (2011). This approach enables a prompt variance estimate for both the global 257 

and sub-areas density estimates.  258 

 259 
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Results 260 

The first stage: Modelling the detection function 261 

Over the 26,000m on effort (SM – 8,800m; LNHA – 10,800m; SN – 6,400m) a total of 365 262 

pellet groups were recorded. The detection function that better fitted the distance data among 263 

the set of candidates was the uniform key function with one cosine adjustment term (Fig. 2). 264 

As expected, the probability of detecting pellet groups decreased with increasing distance 265 

from the line, presenting however a broad shoulder (see discussion) with a surprisingly large 266 

number of observations very close to the transect line (Fig. 2). The three detection functions 267 

that included observation level covariates in the analysis had less support from the data, thus 268 

were discarded for the subsequent analysis (with the three covariates tested – habitat, size 269 

and shape with ΔAIC of 2.86, 2.65 and 2.81 respectively). The probability of detection for 270 

the chosen detection function was = 0.623±0.026 SE.  271 

 272 

The second stage: Density surface modelling 273 

          From all the candidate density surface models, two were selected based on their GCV 274 

score (dsm 1 and dsm 3) (Table 1). The implementation of two DSM’s was deemed 275 

necessary to fully exploit the data: a DSM for the analysis of environmental data (DSM 276 

without geographical variables – dsm 1 - with dist_hum, dist_road and ca_perc spatial 277 

covariates), and a DSM that enables a more robust estimate of abundance through the 278 

inclusion of geographical data (DSM with geographical variables – dsm 3 - with dist_hum, 279 

ca_perc, latitude and longitude spatial covariates). This division was merely practical, to 280 

ensure the identification of potential impacts of environmental variables, that could be 281 

hidden by the geographical data (taking into account the increase in explained deviance when 282 

these variables were included). Fig. 3 shows the smoothed spatial covariates used in the 283 
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model without geographical variables, being dist_hum the most important variable in the 284 

analysis as revealed by p-values (Table 1).  285 

 286 

Abundance estimation and uncertainty analysis 287 

The conventional design based distance sampling density estimate was 3.53 animals per 100 288 

ha (95% IC: 2.07 – 4.79), with = 2, 233 animals, and a CV of 24.30% (Table 2). 289 

According to the best density surface model (DSM with geographical variables) the 290 

abundance of roe deer in our study area was estimated to be =1,909 animals with a density 291 

of 3.01 animals per 100 ha (95% IC: 0.37 – 3.51) and a CV of 32.82%. In accordance with 292 

the DSM with geographical variables chosen for inference the distribution map of roe deer 293 

throughout the study area is shown in Fig. 4. 294 

The values of abundance, density, 95% confidence intervals and coefficient of 295 

variation (%) of traditional distance sampling and density surface models are shown in Table 296 

2. 297 

 298 

Discussion  299 

Wildlife managers and ecologists are continuously searching for accurate and unbiased 300 

methods to estimate species abundance, density and distribution. Such demand is particularly 301 

difficult for large herbivores (Schroeder et al. 2014) dwelling forested habitats (La Morgia 302 

et al. 2015). Density surface models, by combining animal density spatial variation with 303 

traditional line transect surveys open new possibilities for this (Schroeder et al. 2014). 304 

Estimating densities and relating them to meaningful ecological variables represents a step 305 

further on wildlife management. DSM allowed us to assess population ecological 306 
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requirements through the predicted species distribution. Our results show that roe deer have 307 

higher densities in areas further away from roads. Previous authors have described a similar 308 

pattern for this species (Hewison et al. 2001; Torres et al. 2012a). Roads are known sources 309 

of disturbance and ultimately can lead to direct mortality events. Roe deer tendency to avoid 310 

roads may be related to the risk of collision, which can jeopardize individual’s survival, as 311 

evidenced in red deer (Cervus elaphus) (Rowland et al. 2000). Our results evidenced that 312 

roe deer densities increase in areas near human settlements. This is contrary to previous 313 

studies elsewhere (Hewison et al. 2001; Coulon et al. 2008), but also for our study area 314 

(Torres et al. 2012b). Nevertheless, methodological differences might explain these on first 315 

sight puzzling differences. Torres et al. (2012b) used presence/absence of roe deer pellet 316 

groups as an index of habitat use while we estimate actual density for each grid cell, using 317 

additional information and hence potentially more accurate. The increasing density towards 318 

human settlements can be explained by rural depopulation in MNP throughout the last years 319 

(Afonso 2012), resulting in small villages with very low human density. Furthermore the 320 

rural depopulation experienced in MNP leads to land abandonment with consequent plant 321 

regeneration that represent new food resources to deer (Vingada et al. 2010). In our study 322 

area, higher roe deer densities correspond to areas with higher percentage cover. This hints 323 

towards the importance of these areas, particularly for a prey with a hiding strategy. Some 324 

studies (Mysterud and Østbye 1999) suggest that canopy cover functions as part of an anti-325 

predator strategy, providing hiding places and reduced scent spreading, hence reducing 326 

detection by Iberian wolf.  327 

        Effectively, as noticed by Katsanevakis (2007) (with Pinna nobillis) density surface 328 

modelling - contrarily to the non-spatial conventional distance sampling - provided insights 329 

into ecological patterns that may be the first step to further studies regarding the studied 330 
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species. In general, the underlying ecological assumptions of the density surface models, as 331 

well as the surface map predicted, fits the data observed during the field survey and previous 332 

studies (Torres et al. 2011; Valente et al. 2014). The survey was conducted over a two year 333 

period. Therefore, the estimated density, represents the average density over the 334 

corresponding time period. The detection function presented a broad shoulder and the 335 

expected decline with distance. With objects of interest like pellets, the main distance 336 

sampling assumptions naturally hold. Our only concern related to the surprisingly large 337 

number of very small distances, which could be due to some specific form of measurement 338 

error. Reassuringly, the estimated detection function appears to be fairly insensitive to these 339 

detections, largely due to the otherwise broad shoulder present. Regarding the CV of the 340 

chosen DSM, it showed an acceptable value, ensuring the predictive power of the survey 341 

method. The predictive power was boosted through the addition of geographical coordinates, 342 

which increased considerably the deviance explained by the spatial variables. The increased 343 

predictive power of the models allows the detections of trends in wild populations with less 344 

field data, which contributes to the feasibility of the methodology (La Morgia et al. 2015). 345 

Contrarily to what was a priori expected, due to accounting for part of the spatial variability, 346 

as suggested by Katsanevakis (2007), the inclusion of the spatial variables in the DSM did 347 

not decrease the variance of the estimate. Effectively, this has occurred in several studies 348 

considering DSMs (Cañadas and Hammond 2006; Katsanevakis 2007; Schroeder et al. 349 

2014), suggesting that other spatial variables might have been helpful to explain spatial 350 

variation in our study area. This deserves further consideration in future studies, since it 351 

could potentially lead to more precise estimates. We should note that bias in density 352 

estimates will arise if the conversion factors considered (decay rate and production rate) are 353 

not valid for our survey. It is expected minimal bias from the decay rate since it was available 354 
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from our survey region and species (Torres et al. 2013). Since decay can vary across habitats, 355 

the use of a site-specific value for each dominant habitat instead of a mean value could be 356 

assessed in future work. In fact, due to logistical constrains it was not possible to use the 357 

specific value in this work. Nevertheless, we do not believe that was a major limitation in 358 

our study. The key problem with our estimate is the use of a production rate obtained in the 359 

UK over 30 years ago (Mitchell et al. 1985). Furthermore, the value used does not have 360 

corresponding precision measures, which means that the reported density estimate variance 361 

ignores a potential source of variation. However, a clear advantage of the modular form of 362 

the estimator used is that, as soon as a production rate and corresponding standard error are 363 

obtained for our region, the density estimates could be easily updated. Obtaining such 364 

production rate should be a major goal for the effective management of these populations 365 

(Valente et al. 2014).  366 

Moreover DSM results need to be carefully interpreted since GAMs model selection 367 

is still a research area under development (Williams et al. 2011; Miller 2014). Effectively, 368 

other indicators should be investigated during distance data spatial modelling (e.g. p-values 369 

associated with covariate coefficients). In our analysis, the p-value of the variables revealed 370 

the inexistence of a significant ecological variable (p≤ 0.05) for DSM’s with geographical 371 

variables. Furthermore, the deviance explained in both models (dsm 1 with 7.17% and dsm 372 

3 with 17.3%) was not satisfactory. These values lie far beneath other studies applying DSM 373 

(Cañadas and Hammond 2006; Katsanevakis 2007; Schroeder et al. 2014 with 48.7, 33.5 374 

and 50.4 % respectively). This suggests future investigation of additional factors potentially 375 

influencing roe deer densities in our study area. Although slope is not heavily pronounced 376 

on our study area the influence of altitude/elevation on abundance distribution must be 377 

assessed in future works. Furthermore, as mentioned earlier, the interaction with the 378 
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sympatric red deer (Torres et al. 2014) or with its main predator, the Iberian wolf would 379 

grant these species density to be a suitable predictor variable for roe deer. Additionally, an 380 

analysis incorporating sex and season should be assessed in the future, since differences in 381 

male and female roe deer ecological requirements, and differences in resource availability 382 

throughout the year as shown for other deer species (Thirgood 1995) and as seen by 383 

Schroeder et al. (2014) with Lama guanicoe, whose abundance showed a peak in summer, 384 

might be expected. These goals must be achieved with direct methodologies, which should 385 

be linked to DSM in a near future for ungulate populations in Iberian Peninsula. 386 

We believe that the approach presented here could be easily applied in other studies, 387 

namely assessing interspecific sympatric relations using one species density as a spatial 388 

variable for the other. This paper presents a major advance due to the use of a promising 389 

methodology applied to an indirect approach widely used for ungulate populations. The use 390 

of these indirect methodologies enable the survey of large forested areas, enabling as well 391 

predictions for adjacent areas where there are no relevant differences. Actually, due to its 392 

simplicity, the field work can be carried out by park rangers ensuring the continuity of data 393 

collection. Furthermore, for an elusive species as roe deer, indirect methodologies 394 

potentially present more reliable results, since it is easier to fulfil all distance sampling 395 

assumptions. Data analysis is rather more complex, with results that however outweigh this 396 

drawback. Furthermore the graphic output of this methodology enables the non-experts to 397 

easily interpret the results through the abundance distribution maps. This will ease 398 

considerably the access to scientific information essential to management plans particularly 399 

useful for expanding species. This work is part of a continued long-term monitoring program 400 

and represents a step further in methodological optimization of recently developed distance 401 
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sampling techniques, which aims to become the future in population size estimation and 402 

ecological assessment.  403 
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Fig. 1 Location of the study area in the Iberian Peninsula with transects location and 570 

prediction grid in the survey area (SN – Serra da Nogueira; SM – Serra de Montesinho; 571 

LNHA – Lombada National Hunting Area). 572 

 573 

Fig. 2 Histogram of distance data of uniform detection function with cosine adjustment term. 574 

Observed distances were right-truncated to eliminate the largest 5% of the distances. The 575 

detection function was fitted to continuous data, not binned data, and hence the histogram 576 

bars cannot be interpreted as probabilities. 577 

 578 

Fig. 3 Shape of the functional forms of smoothed spatial covariates with the DSM without 579 

geographical variables – (a) dist_hum representing the distance to the nearest human 580 

settlement; (b) dist_road representing the distance to the nearest road and (c) ca_perc 581 

representing the percentage of cover areas (coniferous and deciduous forests). 582 

 583 

Fig. 4 Abundance distribution map of roe deer throughout our study area based on the DSM 584 

with geographical variables chosen for inference (dsm 3).585 
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Table 1. Comparison between GCV score, R-square (adjusted), deviance explained, coefficient of variation (CV) and abundance among DSM’s 

with and without geographical variables, with comparison of p-values and estimated degrees of freedom of each variable. 

            p-value Estimated 

d.f. 

GCV R-square 

(adjusted) 

Deviance 

explained (%) 

CV (%) Abundance 

Without geographical 

variables 

       

dsm 1 *   2.694 0.047 7.17 30.45 1878 

dist_hum 0.003            1.661      

dist_road 0.019          1.000      

ca_perc 0.022 1.000      

        

With geographical 

variables 

       

dsm 2   2.561 0.106 17.4 36.07 1926 

dist_hum 0.096 2.625      

dist_road 0.577 1.000      

ca_perc 0.084 1.000      

geographic 0.030 6.591      

dsm 3 *   2.535 0.108 17.3 32.82 1909 

dist_hum 0.105 2.348      

ca_perc 0.067 1.000      

geographic 0.008 6.643      

dsm 4   2.554              0.082                         13.9                32.22                  1836 

ca_perc 0.120 5.904      

geographic 0.003 6.571      

dsm 5   2.552 0.076 13.1 30.30 1846 

geographic 0.002 6.190      

*dsm chosen for inference. 
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Table 2. Comparison between Density Surface Model and traditional distance sampling through analysis of abundance, density, 95% Confidence 

Interval and Coefficient of Variation (%) for the total area and for the three sub-areas: SN, SM and LNHA. 

  Method 

 
DSM (with 

geographical 

variables) 

DS DSM (with 

geographical  

variables) 

DS DSM (with 

geographical  

variables) 

DS DSM (with 

geographical  

variables) 

DS 

 
Total area SN SM LNHA 

Abundance 1,909 2,233 662  693  913  1,262  331 278 

Density 3.01 3.53 3.62 3.79 3.74 5.17 1.59 1.34 

Density - 95% 

Confidence Interval 

0.37 – 3.51 2.07 – 4.79 0.50 – 4.04 2.10 – 6.52 1.67 – 4.40 3.56 – 6.74 0.47 – 3.31 0.82 – 2.51 

Coefficient of 

variation (%) 

32.82 24.3  27.90  28.50  27.40 22.54  58.47 32.33 










