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ABSTRACT
An exoplanet–exomoon system presents a superposition of phase curves to observers – the
dominant component varies according to the planetary period, and the lesser component varies
according to both the planetary and the lunar periods. If the spectra of the two bodies differ
significantly, then it is likely that there are wavelength regimes where the contrast between the
moon and planet is significantly larger. In principle, this effect could be used to isolate periodic
oscillations in the combined phase curve. Being able to detect the exomoon component would
allow a characterization of the exomoon radius, and potentially some crude atmospheric data.
We run a parameter survey of combined exoplanet–exomoon phase curves, which shows
that for most sets of planet–moon parameters, the lunar component of the phase curve is
undetectable to current state-of-the-art transit observations. Even with future transit survey
missions, measuring the exomoon signal will most likely require photometric precision of 10
parts per million or better. The only exception to this is if the moon is strongly tidally heated
or in some way self-luminous. In this case, measurements of the phase curve at wavelengths
greater than a few μm can be dominated by the lunar contribution. Instruments like the James
Webb Space Telescope and its successors are needed to make this method feasible.

Key words: planets and satellites: atmospheres – planets and satellites: detection – planets
and satellites: general.

1 IN T RO D U C T I O N

While the detection of extrasolar planets (exoplanets) continues
apace,1 (Schneider et al. 2011) their satellites, extrasolar moons or
exomoons remain undetected. This is not for want of trying – several
teams are attempting to achieve this first detection. The community
has been able to deliver strong upper limits on the sizes of exomoons
in their samples (see e.g. Kipping et al. 2015), and these constraints
are expected to grow tighter in the coming years as the exoplanet
transit missions CHEOPS (Simon et al. 2015) and PLATO (Hippke
2015) come online.

This lack of exomoon detections is also not for want of exo-
moon detection methods. The recent literature abounds with indi-
rect and direct techniques. Some examples include transit timing
and duration variations (TTVs/TDVs; Sartoretti & Schneider 1999;
Simon, Szatmáry & Szabó 2007; Kipping 2009a,b; Lewis 2013;
Heller et al. 2016a), direct transits of exomoons (e.g. Brown et al.

� E-mail: dhf3@st-andrews.ac.uk
1 http://exoplanets.eu

2001; Pont et al. 2007; Dobos et al. 2016), microlensing events
(Han & Han 2002; Bennett et al. 2014), mutual eclipses of di-
rectly imaged planet–moon systems (Cabrera & Schneider 2007)
or mutual eclipses during a stellar transit (Sato & Asada 2009).
Averaging of multiple transits may also yield an exomoon signal,
either through scatter peak analysis (Simon et al. 2012) or through
orbital sampling of light curves (Heller, Hippke & Jackson 2016b).
In the radio, the emission from giant planets may be modulated by
the presence of moons within or near the magnetosphere (Noyola,
Satyal & Musielak 2014), or indeed by moon-induced plasma torii
(Ben-Jaffel & Ballester 2014).

Many of these methods are relatively agnostic to the wavelength
of the observation. Some very recent proposals for detection meth-
ods rely on differences in the spectra of the planet and moon. For ex-
ample, the spectro-astrometric detection method proposed by Agol
et al. (2015) attends to directly imaged exoplanet–exomoon sys-
tems. Direct imaging lacks the spatial resolution to separately image
the moon; however, comparing observations at two wavelengths can
identify a shift in centroid, if one wavelength happens to coincide
with a regime where the planet is faint and the moon is bright. For
example, an icy moon is generally quite reflective across a vari-
ety of wavelengths, but a giant planet may contain significant (and
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relatively wide) absorption features (such as the methane feature at
around 1.4 μm).

We consider a new, but related spectral detection method. Photo-
metric observations of transiting exoplanets across a full orbital
period obtain primary and secondary transits (where the planet
eclipses the star and the star eclipses the planet, respectively), and
the phase curve, a smoothly varying component that increases as
the planet’s dayside comes in and out of view (see e.g. Winn 2011;
Madhusudhan & Burrows 2012). The phase curve’s period is that of
the planet’s orbit around the star. Any exomoons present will also
make contributions to the phase curve. These contributions will
have multiple components, whose periods are equal to the plane-
tary orbital period and the lunar orbital period (depending on the
radiation budgets of both bodies).

In principle, if there are regions of the spectrum where the contrast
between the moon and planet is high, the exomoon’s phase curve
may be isolated by subtracting the modelled exoplanet phase curve,
if it is measured at multiple wavelengths. In essence, we are search-
ing for a periodicity in the total phase curve that can be explained
only by the presence of an exomoon.

We investigate the efficacy of this detection method, which we
christen phase curve spectral contrast (PCSC). This concept builds
on the work of Robinson (2011),2 who considered the time depen-
dence of the Earth–Moon’s combined spectrum, and advocated a
phase differencing between, for example, full phase and quadrature.
The technique discussed here is similar, but we focus less on the
Earth–Moon system, and consider a more generalized approach,
with a consequently larger parameter space. We also attempt to use
the entire phase curve, rather than two instantaneous measurements.

Moskovitz, Gaidos & Williams (2009) also presented a detailed
study of the Moon’s effect on the Earth’s infrared phase curve using
both a 1D energy balance model and a 3D general circulation climate
model, but these results were focused on a single wavelength of
observation (see also Gómez-Leal, Pallé & Selsis’s 2012 use of real
atmospheric data in a similar study). Multifrequency observations
will be crucial for detections, especially in the absence of detailed
knowledge of the atmospheric properties of each body.

This paper is structured as follows: In Section 2, we mo-
tivate this detection method by considering how spectral con-
trast can assist in extracting the exomoon’s contribution to the
phase curve, and describe the code we have written to investi-
gate the phase curves produced by exoplanet–exomoon systems; in
Section 3, we give examples of the combined phase curves produced
in a series of limiting cases, and consider the exomoon parameter
space that could be probed by this detection method, given present
and future transit surveys; finally, in Section 4, we summarize the
work.

2 A NA LY TICAL DESCRIPTION

We can write the flux received from an exoplanet, Fp, as the sum of
reflected stellar radiation and the planet’s thermal radiation:

Fp = F∗αp

(
Rp

ap∗

)2

+ Fp,t, (1)

where F∗ is the stellar flux, αp is the planet’s albedo, Rp is the
planetary radius, ap∗ is the semimajor axis of the planet’s orbit and

2 In fact, the genesis of this idea may be traced as far back as Williams &
Knacke (2004) and Selsis (2004).

Fp, t is the planet’s thermal flux. We can write a similar equation for
the lunar flux, Fs:

Fs = F∗αs

(
Rs

as∗

)2

+ Fpαs

(
Rs

aps

)2

+ Fs,t. (2)

In the above equation, the first two terms represent contributions
from the star and the planet, respectively. In the limit that ap∗ �
aps, we can approximate as∗ = ap∗. Expanding Fp and rearranging
gives

Fs =F∗αs

(
Rs

ap∗

)2
(

1+αp

(
Rp

aps

)2
)

+Fp,tαs

(
Rs

aps

)2

+Fs,t, (3)

and thus we can write the contrast ratio as

Fs

Fp
=

F∗αs

(
Rs
ap∗

)2
(

1+αp

(
Rp

aps

)2
)

+αs

(
Rs
aps

)2
Fp,t+Fs,t

F∗αp

(
Rp

ap∗

)2
+Fp,t

. (4)

To clarify matters, let us consider some limiting cases. First, in the
limit that the thermal contribution of both bodies is negligible, we
obtain

Fs

Fp
= αm

αp

(
Rs

Rp

)2

+ αs

(
Rs

aps

)2

. (5)

The right-hand term is likely to be negligible, so we then derive the
following reflectivity contrast condition for the moon/planet flux
contrast to be significant:

αs

αp
�

(
Rp

Rs

)2

. (6)

This defines our detection limit for non-luminous planets and
moons. In the limit that thermal emission dominates, the flux con-
trast ratio becomes

Fs

Fp
= αs

(
Rs

aps

)2

+ Fs,t

Fp,t
. (7)

In this limit, we must rely on the moon being significantly more
luminous than the planet (perhaps due to tidal heating effects; cf.
Peters & Turner 2013; Dobos & Turner 2015).

So what exomoons might contrast methods be amenable to? It
is interesting to note that there is no direct relation to ap∗ in either
of our detection limits. For example, a transiting planet at large
semimajor axis with a young, hot moon may be amenable to these
methods, or an extremely low-albedo planet (although the planet’s
own phase curve, and subsequent spectral contrast, will, of course,
be affected by the distance to the star). We will investigate the
detailed parameter space in the following sections.

2.1 Computing combined exoplanet–exomoon phase curves

For simplicity, we will assume that both the exoplanet and the
exomoon orbit their host with zero eccentricity, and that both bodies
orbit within the x–y plane. Their orbital motions are given by

xp(t) = ap∗ cos νp(t),

yp(t) = ap∗ sin νp(t),

xs(t) = xp(t) + aps cos νs(t),

ys(t) = ym(t) + aps sin νs(t),

where we define the orbital longitudes ν as
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νp(t) = 2πt

Pplanet
,

νs(t) = 2πt

Pmoon
.

The star is fixed at the origin. An observer ‘O’ is placed along the
y-axis. The phase curve of each body depends on the angle δ between
the emitter ‘E’ and the observer, from the perspective of the emission
recipient ‘Q’. We have three emitter–recipient pairs in the system:
star–planet, star–moon and planet–moon, and at any given instant,
we must compute three angles δi, where

cos δi = (o − q)(e − q)

|o − q| |e − q| . (8)

Here, o, e and q are the position vectors of O, E and Q, respec-
tively. We assume that both the exoplanet and the exomoon possess
isotropically scattering Lambertian surfaces, ensuring that both bod-
ies have fully analytic phase curves (the reader can find detailed
numerical integrations of phase curves for other scattering laws in
Madhusudhan & Burrows 2012). The phase function �(δ) in this
case is

�(δ) = sin δ + (π − δ) cos δ

π
. (9)

We compute the total flux received at time t as follows: First, we
compute the stellar flux reflected by the planet:

Fp∗,r = αp

(
Rp

ap∗

)2

�(δp∗(t)), (10)

and the same for the moon:

Fs∗,r = αs

(
Rs

as∗

)2

�(δs∗(t)). (11)

We then compute the thermal flux from both bodies. We fix a flux
difference between the nightside and dayside of each body (relative
to the star) fnight, and assume that the flux from each side is isotropic.
Consequently, we can use a simple cosine function to describe the
fraction of dayside visible to the observer (Williams & Gaidos
2008):

ζ (δ) = 1

2
(1 + cos δ) . (12)

We can then immediately write the planet’s thermal flux as

Fp,t(t) = Fp,t,0

(
fnight,p + (1 − fnight,p)ζ (δp∗(t))

)
. (13)

To write the same equation for the satellite, we must know what
defines the dayside–nightside contrast on the moon, i.e. is the lu-
nar temperature governed by stellar or planetary flux? If the lunar
terminator is determined by stellar flux, the resulting phase curve
will possess a similar time variation to the reflective case. If the
lunar terminator is determined by planetary flux, then the lunar’s
thermal contribution to the phase curve will vary according to the
lunar period about the planet, presenting a wholly different signal.
The two cases are (respectively)

Fs,t(t) = Fs,t,0

(
fnight,s + (1 − fnight,s)ζ (δs∗(t))

)
, (14)

Fs,t(t) = Fs,t,0

(
fnight,s + (1 − fnight,s)ζ (δsp(t))

)
. (15)

Note that we have neglected the moon’s thermal flux variation due
to the planet’s orbit about the star. Finally, we compute the plane-
tary flux reflected by the moon, which will combine both reflected
starlight and thermal planetary radiation:

Fsp = αsαp

(
Rs

as∗

)2 (
Rp

ap∗

)2

+αs

(
Rs

asp

)2

Fp,t,0

(
fnight,p + 1

2
(1 − fnight,p)(1 − cos θ )

)
.

In the second term, we account for the moon receiving changing
levels of thermal radiation from the planet as it passes between the
dayside and the nightside. This is described by the angle between
the stellar and lunar position vectors, relative to the planet position
vector:

cos θ =
(

r∗−rp

) · (
rs − rp

)∣∣r∗−rp

∣∣ ∣∣rs − rp

∣∣ =cos νp cos νs − sin νp sin νs. (16)

2.2 Extracting lunar signals from the phase curve

Essentially, our task is to extract a short-period signal from a com-
bined signal containing a variety of periods. If the planet’s mass Mp

and semimajor axis ap∗ are well characterized, then we can focus
our search to regions of period space where an exomoon may stably
orbit.

The orbital stability limits for a moon around a planet are defined
by the Roche limit at low exomoon semimajor axis, and the Hill
stability criterion at large exomoon semimajor axis. The inner Roche
limit for an exomoon is

RRoche = Rs

(
Mp

Ms

)1/3

. (17)

By application of Kepler’s third law, the corresponding lunar orbital
period is

PRoche = 4π2R3
s

GMs
. (18)

The outer stability limit is proportional to the planet’s Hill radius
RH:

Rstable = χRH = χap∗

(
Mp

3M∗

)1/3

, (19)

where χ = 0.3–0.5 (Domingos, Winter & Yokoyama 2006). Again,
this can be converted into an orbital period:

Pstable =
(

χ2

3

)1/2

Pplanet. (20)

The minimum and maximum permissible orbital periods as a func-
tion of planet mass and semimajor axis can be found in Fig. 1.
Two approaches are possible: If the exomoon contribution in a single
band is very strong, we can bandpass filter the combined exoplanet–
exomoon phase curve (at a given wavelength) for signals inside the
period range [PRoche, Pstable], where we must assume Ms a priori to
obtain the lower limit. We should expect Ms to be significantly lower
than Mp.3 Computing the generalized Lomb–Scargle periodogram
(GLS; Zechmeister & Kürster 2009; Mortier et al. 2015) of this
filtered signal can then identify promising oscillations. The second
approach requires simultaneous measurements of the phase curve
in two wavelength bands (one where the planet dominates and the
other where the moon dominates). This can permit a successful sub-
traction of the exoplanet phase curve to return a periodic residual,
which can then be analysed via the GLS periodogram.

3 If the planet and moon masses are comparable, the produced transit signals
will be markedly different; see Lewis et al. (2015).
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Figure 1. The range of permissible orbital periods for a moon orbiting
the Earth, Neptune or Jupiter, with a host star of mass 1 M�. The dashed
lines indicate the Roche limit for the three planets (where we assume that
the exomoon has Ms = 0.01 M⊕, i.e. its mass is approximately that of
the Moon). The upper curve indicates the orbital stability limit given by
equation (20), with χ = 0.3. Shaded regions above the upper curve are
orbitally unstable.

3 TESTS AND DISCUSSION

3.1 The highly reflective regime

As an illustration, we first consider a system containing a 1- M� star
and a 1MJup planet orbiting at 0.3 au (orbital period Pplanet = 0.16 yr).
We place a Europa-like moon in a circular orbit around the
planet, with size Rs = 0.245 R⊕ and orbital semimajor axis
aps = 0.0045 au.

We consider measurements made in two bands, and hence
with two different albedos for each object. The planetary albedo
αp = [0.3, 10−4] and the satellite’s albedo αs = [10−4, 1.0].
These are extreme values, which we select for illustrative purposes
only.

The top row of Fig. 2 shows the contributions from the phase
curve due to the planet, and due to the moon, in both bands. In
Band 1, the exomoon contribution is virtually nil, and hence the
total phase curve is indistinguishable from that of the exoplanet
phase curve. In Band 2, the albedo ratio αs/αp = 104, which greatly
exceeds the size ratio Rp/Rs ∼ 45. The total phase curve is now
dominated by the exomoon, which we can see in the top right-hand
panel of Fig. 2.

To isolate the periodic signal of the exomoon, we normalize the
curve in each band i by its mean:

F̃i = Fi

F̄i

. (21)

We compute F̃1 − F̃2, and then pass this quantity through a band-
pass filter to remove trends much longer than the lunar period
(i.e. of the order of the planetary period), the results of which are
displayed in the bottom left-hand panel of Fig. 2. We can perform
this filtering with confidence, as we know the maximum permissi-
ble lunar orbital period from dynamical stability arguments (Fig. 1).
Note the amplitude modulation of the curve, which is characteristic
of a planet–moon system. If the moon had orbited the star, and not
the planet, we would have instead received the steady-amplitude
signal shown in the bottom right-hand panel of Fig. 2.

We provide this example to illustrate the reflective limit of our
calculations, but the effect strength is so small that it is unlikely
to ever be usable for detecting Galilean analogues, as we will see
in the following section. This technique may be more amenable
to Earth–Moon analogues, where the satellite–planet size ratio is
much higher, and the albedo ratio between the Moon and Earth is
relatively high, given a judicious choice of wavelength. This has
already been demonstrated by Robinson (2011) and Gómez-Leal
et al. (2012) in detail, and we will show more general constraints in
the following section.

3.2 Detection limits

So what can we expect to observe in the highly reflective limit? If
we specify a given moon–planet flux ratio Fs/Fp that we believe
observations can detect, then we can rearrange equation (5) to obtain
the detectable moon–planet size ratio:

Rs

Rp
≥

⎛
⎜⎝ Fs/Fp

αs
αp

+ αs

(
Rp

aps

)2

⎞
⎟⎠

1/2

. (22)

By considering detection limits in terms of Fs/Fp, we have im-
plicitly assumed that the exoplanet phase curve is itself detectable.
In effect, we now ask: To what level of precision is the exoplanet
phase curve known? Is this precision sufficient to yield a periodic
signal indicative of a highly reflective exomoon? Conversely, we
should also consider what levels of Fs/Fp are insufficient to detect
exomoons of a given radius or radius ratio. We address the absolute
detection limits considering current and future surveys, and sources
of intrinsic phase curve variability in Section 3.5.

Fig. 3 shows the detectable moon radius, as a function of αp and
αs [assuming that we can characterize the phase curve to precisions
of at least 10 per cent (left-hand column) or 1 per cent (right-hand
column)]. Note that these limits are independent of ap∗, but they are
ultimately not encouraging.

Being able to characterize an exoplanet phase curve with un-
certainties below 1 per cent is a formidable challenge. If we are
able to characterize the curve to only within 10 per cent, then
we are unlikely to detect moons below Rs = 1 R⊕ orbiting a
1RJup planet (unless we can identify wavelength regimes where
αs > 0.5 and αp < 0.05). If the planet is Neptune-sized, then the
limits on αp are much less constraining, and Titan-sized moons
come within grasp if αs is large. In the terrestrial regime, a wide
range of parameter space becomes available (although the measure-
ment of the exoplanet phase curve itself becomes significantly more
challenging).

We should therefore conclude that for the present time, moons
that are not self-luminous are unlikely to be detected around giant
planets using this method (at least for some time), although there
may be promising regions of parameter space for Neptunes and
super-Earths. It is also worth noting that the 1.27RJup planet TrES-
2b has an extremely low measured geometric albedo of <2 per cent
(Kipping & Spiegel 2011). A highly reflective sub-Earth radius
moon in this system would be detectable even with 10 per cent
precision in the phase curve.

3.3 The highly thermal regime

We now investigate the nature of the highly thermal regime by
reducing the albedo of both bodies in all bands to 10−4. We set the
thermal flux from the planet Fp, t to be constant across both bands,
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Figure 2. Isolating the exomoon contribution to the phase curve in the highly reflective regime. Top row: the individual contributions to the phase curve from
a Jupiter–Europa system placed at ap∗ = 0.3 au from a solar mass star. The curves are measured in two bands: In Band 1, the planet’s albedo is large and
the moon’s is small, and in Band 2, it is vice versa. The curves are normalized so that the exoplanet phase curve peaks at unity. Bottom left-hand panel: a
normalized subtraction of the total flux in Band 1 from the total flux in Band 2 (after filtering to remove long-period trends). Bottom right-hand panel: the same
operation for a system where the moon orbits the star instead of the planet, with the same orbital period.

and set the ratio of thermal fluxes from both bodies in each band to
be Fs, t/Fp, t = [0.0, 0.1]. For both objects, we set the ratio of thermal
flux from the dayside and nightside fnight, p = fnight, s = 0.5. Fig. 4
shows the individual contributions to the phase curve generated by
the planet and moon. The left-hand column indicates the curves
generated if the lunar thermal flux is determined by the star, and the
right-hand column shows the case where the lunar thermal flux is
determined by the planet. We also show the normalized subtraction
for both cases, and the equivalent subtraction if the moon was, in
fact, orbiting the star (Fig. 5).

If the star determines the lunar thermal flux, the exomoon curve’s
principal period is the planetary period, in much the same fashion
as the reflective case. The residuals derived from the normalized
subtraction (top plot in Fig. 5) are also extremely similar to those
found for the reflective case, despite the change from a reflective
Lambertian phase function to a dayside visibility function.

If the planet determines the lunar thermal flux, the exomoon
curve’s principal period is the lunar period, as we are most sensitive
to the surface variation of flux as the moon moves in and out of view.
The combined phase curve is a simple superposition of the exoplanet
and exomoon periods, and the normalized subtraction (middle plot
in Fig. 5) is a simple sinusoid, which is easily distinguished from the
case where both bodies orbit the star (right-hand panel). However,

this is extremely similar to the two-planet residual in the highly
reflective limit (Fig. 2). Determining αp would be required to break
degeneracy in this case.

3.4 Detection limits

As we did for the highly reflective regime, we can rearrange equa-
tion (7) to obtain the minimum detectable size ratio as a function of
the flux ratio and physical parameters, although we will also have
to specify the planetary and lunar thermal fluxes to do so. If we
assume that both the planet and moon are blackbody emitters, then

Fs,t

Fp,t
=

(
Rs

Rp

)2 (
Bλ(Ts)

Bλ(Tp)

)
, (23)

where Ts and Tp are the effective temperatures of the two bodies.
The critical size ratio for detection depends on the peak wavelength
of emission for the satellite:

Rs

Rp
≥

⎛
⎜⎝ Fs/Fp(

Bλ(Ts)
Bλ(Tp)

)
+ αs

(
Rp

aps

)2

⎞
⎟⎠

1/2

. (24)
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Figure 3. The detectable satellite radius ratio Rs in the highly reflective regime where the temperature of both bodies is determined by the stellar radiation
field, as a function of αp and αs, for two different observing precisions: Fs/Fp = 0.1 (left-hand column) and Fs/Fp = 0.01 (right-hand column), and three
planet’s radii: Jupiter (top row), Neptune (middle row) and Earth (bottom row). The lunar semimajor axis is fixed at aps = 0.0045 au.

If we assume that both bodies are in thermal equilibrium with the
stellar radiation field, then

T 4
p = T�

(
1 − Ap

) (
R�
2ap∗

)2

, (25)

T 4
s = T� (1 − As)

(
R�
2as∗

)2

, (26)

where Ap and As are the Bond albedo of planet and satellite, respec-
tively. As before, we approximate ap∗ ≈ as∗, and hence

T 4
s

T 4
p

= 1 − As

1 − Ap
. (27)

In other words, if the stellar radiation field dominates the lunar
energy budget, it is likely that Ts ≈ Tp, and hence the detectability
of such moons is difficult (except if the planetary Bond albedo is
unusually high and the lunar Bond albedo is unusually low).
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Figure 4. Isolating the exomoon contribution to the phase curve from a Jupiter–Europa system placed at ap∗ = 0.3 au from a solar-mass star, in the highly
thermal regime, where the lunar terminator is defined by the star (left-hand column) or the planet (right-hand column). The curves are measured in two bands,
and normalized so the peak exoplanet flux is unity. In Band 1, the moon exhibits no thermal flux; in Band 2, the moon exhibits flux that is 10 per cent of the
planetary thermal flux. The planet’s thermal flux is constant in both bands. Top panels: the individual contributions to the phase curve. Bottom panels: the total
flux in both bands.

Of course, the temperature of the moon may not be determined
by the stellar radiation field. If the exomoon is strongly tidally
heated, then it may well be that the moon surface temperature is
significantly higher than the planet’s, regardless of albedo.4 Fig. 6
shows the detectability of tidally heated exomoons around a Jupiter-
radius planet by PCSC as a function of moon temperature and
Rs. (Fig. 7 shows the same for a Neptune-sized planet.) In both
cases, the planets orbit an M star at ap∗ = 0.2 au, and the lunar
semimajor axis is fixed at aps = 0.0045 au (the resulting lunar
detection limits are insensitive to both parameters, but the planet’s
detection is more likely for reduced ap∗). We consider two different
planetary temperatures: 300 and 500 K.

We also consider measurements made at the wavelength corre-
sponding to either the Wien peak of the planet’s blackbody emission
or the Wien peak of the moon, given Ts. Measuring at the moon’s
peak clearly is best for the detection of lunar photons, but measuring
at the planet’s peak is best for characterizing the planetary phase

4 This depends heavily on the redistribution of heat from the lunar dayside
to the lunar nightside. Even with strong tidal heating, effective heat redis-
tribution will result in very low variations of thermal flux between dayside
and nightside.

curve in detail. As we have seen in previous sections, comparing
measurements of planet-dominated and lunar-dominated bands is
the key to this detection method.

For Jupiter-sized planets at 500 K (λpeak = 5.8 μm), even ex-
tremely hot moons have a low contrast of Fs/Fp < 0.1 at the plane-
tary peak. Shifting to shorter wavelengths allows these hot moons to
have a boosted contrast (top right-hand panel of Fig. 6). For exam-
ple, a 1 R⊕ moon at Ts = 850 K would constitute around 25 per cent
of the total phase curve signal.

If the planet has a temperature of 300 K, then the moon is more
detectable even at wavelengths tuned to the planet’s peak (λpeak =
9 μm). At lunar-tuned wavelengths, the emission from a 850 K
moon dominates the phase curve signal, even for satellites as small
as 0.2 R⊕!

Neptune-sized planets offer even better prospects, especially at
Tp = 300 K. A Titan-sized body needs to achieve a temperature of
only around 500 K to begin dominating the lunar-tuned band (while
still achieving Fs/Fp > 0.05 in the planet-tuned band).

What is less clear is the expected phase curve from tidally heated
bodies. The temperature difference between dayside and nightside
of a synchronously rotating, tidally heated moon is clearly a func-
tion of local rheology, and how tidal heat is redistributed from the
interior.
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Figure 5. Normalized subtraction of the total flux in Band 1 from the total
flux in Band 2 (after filtering to remove long-period trends), for the highly
thermal cases. Top panel: The lunar terminator is determined by the star.
Middle panel: The lunar terminator is determined by the planet. Bottom
panel: The same operation for a system where the moon orbits the star
instead of the planet, with the same orbital period.

Finally, we should note that we have assumed a blackbody spec-
trum for the planet in this section. A planet with strong absorption
bands longwards of a few μm would provide even better contrast to
moons experiencing extreme tidal heat.

3.5 Prospects for plausible Fs/Fp measurements with
current/future instruments

To determine what values of Fs/Fp we can expect to constrain in
the future, let us begin with current calculations of the detectability
of the phase curve of a single exoplanet in transit surveys.

Consider a transit survey with a duration given by baseline B, and
cadence C. If we are attempting to detect a signal with amplitude A
over one epoch of its period P, the signal-to-noise ratio is

S/N1 = 1√
2

A
√

P
C

σ
, (28)

where σ is the photometric precision. We introduce a factor of
√

2
to accommodate the fact that we are dealing with a sinusoidal signal
rather than a step function. If we are able to observe the maximum
number N epochs of the signal within B, then the combined signal-
to-noise ratio

S/N = S/N1

√
B

P
= 1√

2

A
√

B
C

σ
. (29)

If we are attempting to detect the phase curve induced by a single
exoplanet (in the highly reflective regime), then

A = αp

(
Rp

ap∗

)2

= 1.3 ppb αp

(
Rp

R⊕

)2 ( ap

1au

)−2
, (30)

And hence the signal-to-noise ratio is

S/N = 1.3 ppb√
2σ

√
B

C
αp

(
Rp

R⊕

)2 ( ap

1au

)−2
. (31)

We can immediately check the detectability with the
Kepler Space Telescope by substituting B = 1586.9 d (i.e.
the entire Q0–Q17 baseline), C = 30 min = 1/48 d and σ =
70 parts per million (ppm) per 6-h time bin, where we have assumed
that our putative sample is in the upper 10th percentile of Kepler
stars (V = 12 mag), to obtain this precision (Christiansen et al.
2012). This gives

S/N = 5.3 × 10−3αp

(
Rp

R⊕

)2 ( ap

1au

)−2
. (32)

As we can see, this limited sensitivity rules out Earth-sized planets
possessing detectable phase curves, let alone any potential moons.
If we consider instead a Jupiter-sized planet orbiting at ap = 0.2 au,
then

S/N = 16.8αp. (33)

As S/N is independent of P, we can obtain the S/N of an exomoon
phase curve by simply multiplying by Fs/Fp. To maintain S/N > 5,
say, we are only able to probe signals of

Fs

Fp
> 0.29/αp. (34)

If the exomoon’s phase curve was generated purely by reflection,
this would require Rs � R⊕. For extreme tidal heat, Earth-sized
satellites may be detectable around warm Jupiters and Neptunes,
but the satellite must have a surface temperature well in excess of
600 K (see the bottom right-hand plots in Figs 6 and 7).

This establishes the phase curve oscillation method as being of
very limited use for current state-of-the-art transit surveys. We can
now ask: What criteria must a transit survey satisfy in order for this
technique to become feasible?
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Figure 6. The detectability of tidally heated exomoons via PCSC. The expected flux ratio Fs/Fp is plotted (both in colour and in contours) as a function of
satellite radius Rs and satellite temperature Ts, given that Rp = 1 RJup. Plotted are the cases where Tp = 500 (top panels) and 300 K (bottom panels). Left-hand
and right-hand columns indicate at which wavelength the flux ratio is measured: either the peak of the planetary flux or the peak of the lunar flux, respectively.
Note the differing colour bar scales for each plot.

The cadence of future transit surveys (such as TESS, CHEOPS
and PLATO) is typically of the order of 1 min, although the photo-
metric precision for TESS is likely to be worse (see e.g. Rauer et al.
2014; Simon et al. 2015; Sullivan et al. 2015).

Let us now consider a putative survey where C = 1 min, with
a similar B to Kepler. We can rearrange to obtain the required
photometric precision for detection with S/N > 5:

σ < 128.8αp
Fs

Fp
ppm. (35)

For a relatively high amplitude exomoon signal of Fs/Fp = 0.1, then
we must still demand a photometric precision of around 10 ppm,
which is extremely difficult to achieve. Failing this, we must then
demand extremely long baselines B.

It is also worth pointing out that our analysis has assumed white
noise. Correlated noise, instrumental systematics and the stellar
activity inherent to the target will impose a floor on the possible
precision. This is significantly worse if the periodicity of the stellar
activity is close to either the planetary or lunar periods. We have
also assumed that the planet itself does not show intrinsic brightness
variations due to weather or other sources of atmospheric variability
(cf. Esteves, De Mooij & Jayawardhana 2013; Webber et al. 2015;
Armstrong et al. 2016).

On the other hand, binning of the data can help ameliorate sys-
tematics/activity, but this still requires long observing campaigns

(and inappropriate bin sizes will destroy any lunar signal). Binning
also introduces an implicit dependence on the planetary period, as
the effective improvement from binning a data train of fixed length
is diminished for longer periods.

If our moon is tidally heated, then it is possible that Fs/Fp �
0.1, but this is typically at wavelengths much longer than the typ-
ical visible/near-infrared bands used for exoplanet transit surveys,
and will probably require space-based observatories. The natural
candidate is the James Webb Space Telescope (Greene et al. 2016;
Batalha et al. 2017) and/or the future LUVOIR (Bolcar et al. 2016)
and HabEx missions (Gaudi & Habitable Exoplanet Imaging Mis-
sion Science and Technology Definition Team 2017).

4 C O N C L U S I O N S

We have investigated the feasibility of analysing exoplanet phase
curves to determine if there is an extra component produced by an
exomoon, a technique we christen exomoon PCSC. This technique
relies on multiple frequency measurements of the curve, and isolat-
ing frequencies where the moon is relatively bright compared to the
planet, which can be the case at specific infrared frequencies where
the planet’s atmosphere is in absorption.

We find that, in general, phase curve measurements will have
to be extremely precise to detect even modest satellite-to-planet
size ratios. We calculate that for this technique to detect exomoons,
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Figure 7. Sameas Fig. 6, but for a planet with radius equal to Neptune. Again note the differing colour bar scales for each plot.

a photometric precision of 10 ppm or smaller is required, while
maintaining cadences of the order of 1 min. If the moon is strongly
tidally heated, lower precisions may be sufficient, but will require
observations at wavelengths greater than 3–5μm.

This technique is similar to the spectro-astrometric method of
Agol et al. (2015) in that both require measurements in multiple
bands where different components of the system dominate, but is
complementary in that Agol et al.’s (2015) method works for high-
contrast direct imaging, not transits. It also bears a resemblance to
the mutual events detection method of Cabrera & Schneider (2007)
– their method also uses direct imaging, but relies on observing a
lunar transit or eclipse. These events are quite short in time (of the
order of a few hours), and hence very high cadence measurements
are required over much longer campaigns, compared to PCSC. Im-
portantly, in contrast to both Agol et al. (2015) and Cabrera &
Schneider (2007), PCSC does not require individual targeting of
sources, and can be directly applied to exoplanet transit survey
data, given appropriate precision.

Exomoon detection for transiting exoplanets is perhaps more
likely to proceed from, for example, TTVs/TDVs, which typically
rely on Bayesian inference to determine the moon’s properties (e.g.
Kipping 2011), and can probe satellite-to-planet mass ratios as
low as 10−3, depending on the object (Kipping et al. 2015). The
additional information obtained from measuring the phase curve
can assist in informing the priors that enter these calculations, and
could reduce the permitted solution space for exomoon orbital and

structural parameters, although not by much until photometric pre-
cisions improve.

As this technique is most suited to tidally heated exomoons,
studying exoplanet phase curves for exomoon contributions will
place stronger constraints on the existence of high-temperature
satellites of planets orbiting relatively cool stars.
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