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Abstra
t

We developed a statisti
al me
hani
s model to study the emergen
e of a 
onsensus in so
ieties of adapting,

intera
ting agents 
onstrained by a so
ial rule B. In the mean �eld approximation we �nd that if the agents'

intera
tion H0 is weak, all agents adapt to the so
ial rule B, with whi
h they form a 
onsensus; but if the

intera
tion is su�
iently strong a 
onsensus is built against the established status quo. We observed that,

after a transient time αt, agents asymptoti
ally approa
h 
omplete 
onsensus by following a path whereby

they negle
t their neighbors' opinions on so
ially neutral issues (i.e. issues for whi
h the so
iety as a whole

has no opinion). αt is found to be �nite for most values of the inter-agent intera
tion H0 and temperature

T , with ex
eption of the values H0 = 1, T → ∞ and the region determined by the inequalities β < 2 and

2βH0 < 1 + β −
√

1 + 2β − β2
, for whi
h 
onsensus, with respe
t to B, is never rea
hed.
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I. INTRODUCTION

In this arti
le we propose a statisti
al me
hani
s approa
h to study the emergen
e and 
onsoli-

dation of opinion 
onsensus in a so
iety of adaptive agents, in the presen
e of a so
ial �eld B. The

term 
onsensus is understood to be the level of agreement amongst the agents in favor or against the

predetermined so
ially a

epted position delivered by B [1℄. B represents the set of rules that deter-

mine what is so
ially a

eptable. Su
h rules are the result of previous 
onsensus-forming pro
esses,

typi
ally observed in any fun
tioning so
iety [2, 3℄.

We developed our model from the assumption that the agents form their opinions on so
ial issues

based on partial information re
eived at regular intervals during the pro
ess. The volume of infor-

mation in
reases over time and, the agents being adaptive, they update their opinions a

ordingly.

The model we work with has been inspired on the model presented [4℄ and possesses the following


hara
teristi
s:

1. There is a me
hanism for the agents to assimilate information and update their opinions.

2. The model 
onsiders the existen
e of a set of rules B that determines what is so
ially a

eptable.

3. The model 
onsiders the intera
tion of the agents with their neighbors [5, 6℄, with a strength

proportional to the 
redibility, number and proximity of neighbors to the agent.

The topology indu
ed by the proximity of neighbors and the adaptability of the agents are both

sour
es of disorder that have not been 
onsidered simultaneously in previous opinion-formation mod-

els. We are 
onvin
ed that this e�ort is worth pursuing and expe
t that the in
lusion of these


omponents will enhan
e the suitability of our model.

Opinions, 
onsidered to be the belief or attitude towards di�erent positions on a given subje
t,


an be 
onveniently modeled by 
ontinuous variables. Yet there is su�
ient eviden
e in support

of modeling opinions (on important issues) with binary variables [7℄. Thus both the opinion of an

agent a and the so
ial position delivered by B on an issue 
odi�ed into a binary string of length

N, ξ ∈ {±1}N are respe
tively σa(ξ), σB(ξ) ∈ {±1}. A

ording to [4℄, representing a and B with

per
eptrons ensures the analyti
al tra
tability of the model. In this manner, the so
ially a

epted

position on ξ is σB(ξ) = sgn(B · ξ) where B ∈ R
N
is the synapti
 ve
tor of B, sgn(x) = 1 if x > 0,

−1 if x < 0 and 0 otherwise and B · ξ =
∑N

j=1Bjξj. It is 
lear from this formalism that the presen
e

of B introdu
es a privileged dire
tion B in spa
e, whi
h gives an anisotropi
 
hara
ter to the opinion

formation pro
ess. We asso
iated to the agent a a per
eptron with a synapti
 ve
tor Ja ∈ R
N
, su
h

that σa(ξ) = sgn(Ja · ξ).
There is a body of eviden
e supporting the e�e
t of so
ial in�uen
e on opinion formation pro
esses

[8℄; in 
onsequen
e, to model the agents' intera
tions, we follow so
ial impa
t theory [5, 6℄. Following

item 3 above, and to give a topologi
al stru
ture to the system, we 
onsider a so
iety with M agents
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1 ≤ a ≤ M linked by a set of so
ial strengths S ≡ {ηa,c|0 ≤ ηa,c ∈ R}, where ηa,c represents

the in�uen
e agent c has on the opinion of agent a. Re
ipro
ity is not assumed and, therefore, the

relationship ηa,c = ηc,a is not expe
ted. We de�ne the neighborhood of a by Na = {c|c 6= a and ηa,c >

0} whi
h is the set of agents connected to a. The opinion formation pro
ess itself is modeled by an

on-line learning s
enario [9℄, where a set of so
ial issues LP ≡
{

(ξµ, σB(ξµ)), µ = 1, . . . , P
}

is used

to de�ne the energy of the so
iety:

E({Ja};LP ,S ) ≡
P
∑

µ=1

M
∑

a=1

Θ(−σa(ξµ)σB(ξµ))
[

1−
∑

c∈Na

ηa,cΘ(−σc(ξµ)σB(ξµ))
]

(1)

where Θ(x) = 1 if x > 0 and 0 otherwise. Observe that for independent agents (∀a, c ηa,c = 0) the

energy (1) is minimized to 0 when all agents develop the same opinion as B. If Na 6= ∅, then the

µ−th term in the RHS of (1) is 0 if σa = σB or 1− ηa,c1 −· · ·− ηa,cm , if a disagrees with B (σa 6= σB)

and agrees with some of its neighbors ci ∈ {c ∈ Na|σa = σc}. Observe that if a disagrees with

B and the so
ial strengths ηa,c are large enough, the added e�e
t of a's agreeing neighbors 
ould

make the energy grow negative. This model of the energy a

ounts for the e�e
t observed in so
ial

experiments, where people tend to agree with peers that share their same opinions [10℄.

II. THE FREE ENERGY IN THE MEAN FIELD APPROXIMATION

The energeti
 formulation of the problem allows us to apply the te
hniques from the statisti
al

me
hani
s of disordered systems to better understand the behavior of the so
iety. There are two

sour
es of disorder in the model des
ribed by (1), one introdu
ed through the set of issues LP , and

the se
ond through the topology imposed by S . As a valid �rst approa
h to the full treatment of

the present formalism we present in this arti
le a study on the emergen
e of 
onsensus in a mean

�eld approximation (i.e. for all index a, Na = {1, 2, . . . , a − 1, a + 1, . . . ,M} and ηa,c = η0 for all

pairs (a, c)).

We apply the repli
a tri
k [11℄ in order to 
ompute the expe
tation of the logarithm of the partition

fun
tion logZ = limn→0 n
−1
(

Zn − 1
)

. The average of the repli
ated partition fun
tion is

Zn(β, η0) ≡
〈

exp

{

−β
∑

γ,µ,a

Θ
(

−J
γ
a · ξµB · ξµ

)

[

1− η0
∑

c

Θ
(

−J
γ
c · ξµ B · ξµ

)

]}〉

{ξ
µ
},B,{Jγ

a}

(2)

where β (the inverse of the temperature) is a parameter that gauges the �u
tuations of energy and

the angular bra
kets represent the expe
tation over the set of issues {ξµ}, the distribution of synapti

ve
tors of the so
ial rule B and the set of repli
ated synapti
 ve
tors of the agents {Jγ

a} (the details

of the 
al
ulation are presented in Appendix A).

The 
al
ulation of the average over the disorder introdu
ed through the so
ial issues in LP , pro-

du
es an expression for the repli
ated partition fun
tion Zn
that depends on the following distributed
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variables:

Rγ
a ≡ J

γ
a ·B
N

, W γ
a,b ≡

J
γ
a · Jγ

b

N
,

qγ,ρa ≡ J
γ
a · Jρ

a

N
, tγ,ρa,b ≡ J

γ
a · Jρ

b

N
.

These overlaps are the 
osines of the angles between synapti
 ve
tors and they represent a level of

agreement between the agents and the so
iety (Rγ
a), between two di�erent agents (W γ

a,b and tγ,ρa,b )

or between versions of the same agent in di�erent repli
as (qγ,ρa ). We impose a repli
a and site

symmetri
 approximation, whi
h entails 
onsideration of the values of the overlaps as site and repli
a

independent Rγ
a = R, qγ,ρa = q, W γ

a,b = W and tγ,ρa,b = t. It is possible to justify that the di�eren
e

between W and t satis�es the s
aling τ ≡M(W − t) ∼ O(1) (see referen
e [12℄, equation (3)) whi
h

simpli�es the matrix representation of the intera
tion between repli
ated systems.

In this approximation, and assuming that the length of the issues N is su�
iently large and τ

su�
iently small, the repli
ated partition fun
tion 
an be expressed as:

Zn(α, β,H0) = extr
q,R,W

{

exp

(

N

2
GS(q, R) + αNGE(q, R,W ; β,H0)

)}

where α ≡ P/N is a parameter that measures the volume of information provided to the agents. Su
h

information is supplied at 
onstant rate, thus α 
an be interpreted as a measure of time. The quantity

H0 ≡ Mη0 ∼ O(1) is a measure of the total intera
tion between an agent and its neighborhood. It

must be an O(1) quantity to ensure the extensivity of the energy (1); and:

GS(q, R) ≡ nM

(

ln(1− q) +
q − R2

1− q

)

GE(q, R,W ; β,H0) ≡ −2nM

ˆ

dzN
(

z

∣

∣

∣

∣

0,
W

1− q

)

H
(

−
√

1− q

W (W −R2)
Rz

)

Φ(z; β,H0),

where N (x|µ, σ2) = exp[(x−µ)2/2σ2]/
√
2πσ2

is a Gaussian distribution in x, 
entered at µ and with

varian
e σ2
and H(x) ≡

´∞

x
dzN (z|0, 1) is the Gardner error fun
tion. The fun
tion Φ(z; β,H0)


arries the information of the averaged inter-agent intera
tion, weighted by the thermal 
oe�
ient:

Φ(z; β,H0) ≡ − lim
M→∞

1

M
log







ˆ

Dx
[

H(−z) + exp

(

√

2βH0

M
x− β

)

H(z)

]M






= min
u∈[0,1]

Φ̃(u, z; β,H0), (3)

with

Φ̃(u, z; β,H0) ≡
[u−H(z)]2

2H(z)H(−z) − u2βH0 + uβ.

This expression is obtained through the appli
ation of Lapla
e's method under the assumption that

the size of the population (M) is su�
iently large [28℄. There are three possible results to the

minimization problem (3), depending on the values of the variable z and the parameters β and H0.
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Figure 1: Distribution of the 
omponents (A9), with their 
orrespondent boundaries b0 (A7) and b1 (A8), in

the plane (β,H0) (
olor on-line).

Given the fun
tions b0(β,H0) and b1(β,H0) (equations (A7) and (A8) respe
tively), we observe that

if b0 < z, the minimum of (3) is at u = 0 and Φ(z) = Φ0(z) ≡ Φ̃(0, z); if b1 < z < b0, the minimum

is at u = u0, where 0 < u0 < 1 is given by the equation (A3) and Φ(z) = Φu0
(z) ≡ Φ̃(u0, z); and if

z < b1, the minimum is at u = 1 and Φ(z) = Φ1(z) ≡ Φ̃(1, z). The expli
it form of the 
omponents

Φ0, Φu0
and Φ1 is given in expression (A9). Observe that the fun
tion Φ so de�ned is 
ontinuous but

not di�erentiable at z = b0, b1. In �gure 1 we present the distribution of the 
omponents Φ0,Φu0
and

Φ1 in the plane (β,H0), whi
h provides insight on the phase diagram of the system.

By de�ning the new parameters w ≡W/(1− q) and r ≡ R/
√
1− q we have that:

βf(αβ,H0) ≡− lim
n→0

lim
M,N→∞

Zn(α, β,H0)− 1

nNM

=extr
q
ψ(q) + extr

r,w
φ(r, w;α, β,H0) (4)

where

ψ(q) ≡ −1

2

(

ln(1− q) +
q

1− q

)

(5)

φ(r, w;α, β,H0) ≡
r2

2
+ 2α

ˆ

dzN (z|0, w)H
(

− rz
√

w(w − r2)

)

Φ(z; β,H0). (6)

Observe that ψ(q) is 
on
ave in q and its minimum is rea
hed at q = 1. Given that ψ does not

depend on the parameters α, β or H0, we will 
onsider the problem of optimizing the shifted free
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energy:

βf0(α, β,H0) ≡ extr
r,w

φ(r, w;α, β,H0). (7)

III. THE ROLE OF THE SOCIALLY NEUTRAL ISSUES

To better understand how the pro
ess of opinion formation evolves, we need to study what happens

in the orthogonal hyper-spa
e to B. To this end we de�ne as so
ially neutral issues all the binary

strings S0 ∈ {±1}N satisfying B · S0 = 0.Thus, a so
ially neutral issue is an issue for whi
h there is

no so
ially a

epted position.

The optimization of the fun
tion φ with respe
t to the re-s
aled parameters produ
es the equations

∂rφ = ∂wφ = 0, that are satis�ed if:

r = −
√

2

π
α

ˆ

dzN (z|0, w − r2)
∂Φ(z; β,H0)

∂z
(8)

r2 = 2α

ˆ

dzN (z|0, w)
(

1− z2

w

)

H
(

− rz
√

w(w − r2)

)

Φ(z; β,H0), (9)

where 0 ≤ r2 ≤ w, whi
h implies that R2 ≤ W . If two agents a and c have the same overlap with

B, i.e. Ra = Rc = R, the relationship between R and W is W = R2 + (1 − R2) cosϕ, where ϕ is

the angle between the 
omponents of Ja and Jc perpendi
ular to B. In su
h a 
ase, if R2 = W , then

ϕ = π
2
and the probability of both agents agreeing on any S0 is

1
2
and no 
onsensus 
an be built on

so
ially neutral issues. If R = 0, then 0 < cosϕ = W , indi
ating that there is no 
onsensus in favor

or against B but a level of agreement 
an be built on so
ially neutral issues.

A. r2 = w solution. Independen
e of opinion on so
ially neutral issues

Observe that equations (8) and (9) 
an be satis�ed simultaneously with the 
ondition r2 = w

(implying R2 = W ) for a �nite value of α = αt at a parti
ular value of r = rt determined by the

equations:

αt = −
√

π

2

rt
Φ(1)(β,H0)

(10)

rt = −
√
2π

Φ(1)(β,H0)

ˆ

dzN (z|0, r2t )
(

1− z2

r2t

)

Θ(rtz) Φ(z; β,H0), (11)

where

Φ(n)(β,H0) ≡ Au0
(β,H0)

∂nΦu0
(z; β,H0)

∂zn

∣

∣

∣

∣

z=0

+A0(β,H0)
∂nΦ0(z; β,H0)

∂zn

∣

∣

∣

∣

z=0

+

+A1(β,H0)
∂nΦ1(z; β,H0)

∂zn

∣

∣

∣

∣

z=0

(12)

is the n-th derivative of Φ at z = 0 and A1(β,H0) ≡ Θ(H0 − 1)Θ(2βH0 − 2 − β), Au0
(β,H0) ≡

Θ(1 − H0)Θ(2 − β) + Θ(H0 − 1)Θ(2 + β − 2βH0) and A0(β,H0) ≡ Θ(1 − H0)Θ(β − 2) are signal
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fun
tions su
h that AΓ = 1 if z = 0 is in the domain of ΦΓ or 0 otherwise, with Γ = 0, u0, 1. [29℄ In

parti
ular, the �rst derivative of Φ at 0 is given by:

Φ(1)(β,H0) =

√

2

π
sgn(H0 − 1)

(

β|H0 − 1|
2− βH0

Au0
(β,H0) +A0(β,H0) +A1(β,H0)

)

. (13)

Observe that sgn(Φ(1)) = sgn(H0 − 1) and being αt > 0, through (10) the sign of rt must be

sgn(1−H0). Let us assume that |rt| is small enough, su
h that the error term:

ǫ(β,H0) ≡ max
z∈R,γ=0,1

{|Φ(z; β,H0)|}|bγ|N (bγ|0, r2t ) (14)

is negligible, and that we are working in a region of the plane (β,H0) su
h that the boundaries b0

and b1 are not zero. By using expressions (12) and (14) we 
an approximate (11) in the following

way:

rt ≈ −
√
2π

∞
∑

n=0

rnt
n!

Φ(n)(β,H0)

Φ(1)(β,H0)

ˆ ∞

0

Dz zn(1− z2) +O(ǫ) (15)

whi
h implies that, keeping terms up to O(r4t ) in (15), we obtain:

rt ≈
√

π3

2

−2βH0 + 2(1 + β)H0 − β

(1−H0)[(12− π)βH0 + 2π]
Au0

(β,H0) +

√
2π3

12− π
[A0(β,H0)−A1(β,H0)] , (16)

and

αt ≈
π5/2

23/2
(2− βH0)(−2βH0 + 2(1 + β)H0 − β)

β(1−H0)2[(12− π)βH0 + 2π]
Au0

(β,H0) + α0,1 [1−Au0
(β,H0)] , (17)

where

α0,1 ≡
21/2π5/2

24− 2π
≈ 1.396. (18)

α0,1 is introdu
ed as a measure of a typi
al time s
ale for most of the points of the (β,H0) plane.

Equation (16) is an approximation to the solution of (11) whi
h is qualitatively suitable if sgn(rt) =

sgn(1−H0). This is not the 
ase for order pairs (β,H0) satisfying:

B(β,H0) = Θ(2− β)Θ
(

1 + β −
√

1 + 2β − β2 − 2βH0

)

. (19)

In this region, the proposal r2t = wt does not satisfy the saddle point equations (8) and (9). We will

explore the behavior of the solution in this region in the next subse
tion. For almost all the region

of the plane (β,H0) determined by the equation B(β,H0) = 0, the solution r2 = w is stable (see

Appendix B).

Most of the opinion formation pro
ess o

urs for α > αt. The e�e
tive energy for α > αt 
an be

de�ned as

φeff(r;α, β,H0) ≡
r2

2
+ 2α

ˆ

dzN
(

z
∣

∣0, r2
)

Θ(rz)Φ(z; β,H0). (20)

The new saddle point equation is:

∂rφeff = r − 2α

|r|

ˆ

dzN (z|0, r2)
(

1− z2

r2

)

Θ(rz)Φ(z; β,H0)
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whi
h implies that for large values of α, |r| ≫ 1,thus

r3 ≈ sgn(1−H0)

2π
α, (21)

whi
h implies that |r| ∼ O(α1/3), and the se
ond derivative is then ∂2r,rφeff ≈ 1 + O(α−1/3), whi
h

indi
ates that the solution (21) is stable.

Finally, observe that r2 ∝ 1/(1−q), thus we expe
t for α su�
iently large to observe the asymptoti


behavior q ≈ 1− O(α−2/3).

B. r2 < w solution. Consensus on so
ially neutral issues

The behavior r2 < w is observed for values of β and H0 su
h that B(β,H0) = 1, indi
ating that

the 
omponent of Φ that appears in (8) and (9) for these values of β and H0 is Φu0
. Therefore, for

small enough values of α we have that w − r2 ≪ 1 and |r| ≪ 1, therefore:

r ≈ −
√

2

π
αΦ(1)

u0
(β,H0) (22)

r2 ≈ 2α

ˆ ∞

0

Dz (1− z2) Φu0
(
√
wz; β,H0) (23)

where (22) and (13) indi
ate that r > 0 and in (23) we have use the approximation based on (14).

By expanding Φu0
(z; β,H0) around z = 0, we obtain an expression for r up to order one in w:

r ≈ √
w − 2

π

βH2
0 − 2(β + 1)H0 + β

(1−H0)(2− βH0)
w (24)

where the fa
tor of w in the se
ond term of (24) is positive if B(β,H0) = 1.

For large values of α we suppose that w > w − r2 ≫ 1. Thus:

r = −
√

2

π

α

w − r2

ˆ ∞

−∞

Dz z Φu0

(√
w − r2z; β,H0

)

≈ αβ(1−H0)

π
√
w − r2

(25)

r2 ≈ α

ˆ ∞

−∞

Dz (1− z2) Φu0

(√
w − r2z; β,H0

)

≈ αβ(2− β)

4π
√
w

. (26)

From (25) and (26) we obtain that r ∼ 1
4
(2 − β)/(1 − H0) asymptoti
ally, whi
h does not depend

on α. In a similar manner, we obtain the asymptoti
 behavior of

√
w ∼ 4

π
αβ(1 − H0)

2/(2 − β)

whi
h indi
ates that 1 − q ∼ O(α−2). These results indi
ate that the overlap R approa
hes zero

asymptoti
ally R ∼ O(α−1).

C. Phase diagram

We solved numeri
ally the equations (10) and (11) and 
onstru
ted the plot of the log(αt) as a

fun
tion of β and H0 presented in �gure 2. αt represents the transient period prior to the �nal stage
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Figure 2: Logarithm of the transient time log(αt) as a fun
tion of β and H0. (Color on-line)

of the opinion formation pro
ess, 
hara
terized by agents developing independent attitudes towards

their peers' opinions on so
ially neutral issues. From �gure 2 we observe that there is a se
tor of

the (β,H0) plane for whi
h the system takes a relatively long time to rea
h the solution r2 = w.

This se
tor is formed by the order pairs (β,H0) that make Au0
(β,H0) = 1. In the triangular se
tor

formed by order pairs (β,H0) that make B(β,H0) = 1, no suitable numeri
al solution was found, as

was expe
ted.

In order to better understand the pi
ture the system presents immediately after αt and by 
onsid-

ering the de�nitions of A1, Au0
, A0 and B with addition of the 
al
ulation of the instable region and

the analysis of the signs of the solutions presented in (21) and (25), we 
onstru
ted the diagram of

�gure 3. The areas marked Au0

orrespond to se
tors of the (β,H0) plane 
hara
terized by relatively

long transient times αt ≫ α0,1, whereas the areas marked A0 and A1 develop the solution r2 = w in

relatively short transient times αt = α0,1.

With the asymptoti
 behavior of R inferred from the equations (21) and (25) we 
onstru
ted the

phase diagram of the system, presented in �gure 4. Observe that for H0 > 1 the asymptoti
 value

of R = −1. At H0 = 1 we have that R = 0 for all α, inside the se
tor with B(β,H0) = 1 R vanishes

asymptoti
ally and for order pairs (β,H0) su
h that H0 < 1 and B(β,H0) = 0 we have that R = 1.

The transitions between the phases with R = 0 and R = 1, and between the phases with R = 1 and

R = −1 are of the �rst order.

9
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A
0
 = 1,  R > 0
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I

2βH
0
 = (β+2)

H
0
 = 1

2βH
0
 = 1+β−(1+2β−β2)1/2

Figure 3: In this diagram we present a pi
ture of the system at . We labeled the regions where the proposed

solution r2t = wt is stable by Au0
(where αt ≫ α0,1), A0 and A1 (where, in both 
ases, αt = α0.1), by I where

the proposed solution is instable and by B the region where r2 < w for all α. We also indi
ated the sign of

R a

ording to (16) and (25) (
olor on-line).

IV. DISCUSSION

We presented a model for the opinion formation pro
ess in a so
iety of intera
ting agents, rep-

resented by binary per
eptrons, in the presen
e of a so
ial �eld B. The �eld is the result of many

opinion formation pro
esses prior to the 
urrent one; it provides the so
ially a

eptable position

on 
urrent issues and indi
ates a preferential dire
tion in the spa
e of issues given the anisotropi



hara
ter to the system. The model, represented by equation (1), in
orporates the intera
tion of two

di�erent sour
es of disorder, namely the topology of the intera
tion S and the training set LP and,

although our results have been obtained by 
onsidering a mean �eld approximation on the topology,

we expe
t to ta
kle the 
omplete model in a future work.

Our results are derived from the study of the shifted free energy (7), asso
iated with the fun
tion

φ (6) through an optimization pro
edure. The optimal solutions of the energy are obtained by

solving the equations (8) and (9) for the redu
ed parameters r ≡ R/
√
1− q and w ≡ W/(1 − q)

respe
tively. For most of the values of β and H0 (i.e. B(β,H0)=0), the solution r
2
t = wt is rea
hed

after a transient time αt. This transient is larger in the region determined by the values of β and H0

10
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Figure 4: Phase diagram of the system in the limit of α → ∞. Transitions between any two phases are

always of the �rst order (
olor on-line).

su
h that Au0
(β,H0) = 1. This region is 
hara
terized by a high temperature (β → 0) whi
h is the


ause of the long transients. The only region in the plane (β,H0) for whi
h the solutions found are

not stable is lo
ated in the neighborhood of the point β = 0 and H0 = 1, indi
ated in �gure 3 by a

label I.

We also 
onstru
ted a phase diagram of the system by inferring the behavior of R for large values

of α, presented in �gure 4. For values of H0 > 1 the 
onsensus is always formed against B, i.e.

R = −1. This is one of the e�e
ts studied within the 
ontext of moral foundation theory, whi
h


onsiders the 
ause of 
hange in the so
iety's status quo the frequent 
orroboration of opinion between

equally minded voters [14, 15℄. The 
onservative attitude of the agents (R = 1) intera
ting with low

values of H0 < 1 is 
onsistent with previous studies done on a dynami
al version of the model at zero

temperature [4℄. Inside the region B(β,H0) = 1 there is no 
onsensus with respe
t to B (R = 0).

The transitions between any two phases are of the �rst order in all the possible 
ases.

The fa
t that at αt the overlaps be
ome R2
t = Wt indi
ates that the agents approa
h 
onsensus

disregarding the opinion of their peers on so
ially neutral issues (issues for whi
h there is no de�nite

so
ially a

epted position). Given that the only anisotropy of energy (1) is due to the presen
e of

the synapti
 ve
tor B, it is reasonable to suppose that the agents evolve maximizing the diversity of

opinions in the only region of the version spa
e where there is no so
ial referen
e, i.e. the hyper-spa
e

perpendi
ular to B.

11



Consensus with respe
t to B is never formed for β = 0, H0 = 1 and the values of β and H0

satisfying B(β,H0) = 1. On the line β = 0, Φ(z) is zero, 
onsensus is never a
hieved due to large

energy �u
tuations in the system, and R = 0 for all α. At H0 = 1, Φ(z) is even and the solution

to (8) is R = 0. This o

urs be
ause 
ompeting attitudes towards following either B or neighboring

agents 
an
el ea
h other out and 
onsensus is never rea
hed. At B(β,H0) a 
onsensus is initially

built in favor of B (R > 0), but it vanishes asymptoti
ally when more information is provided to the

system (R → 0 when α→ ∞). The only 
onsensus observed in this region is with respe
t to so
ially

neutral issues whi
h is an e�e
t similar to the one observed when irrelevant events a�e
t the opinion

of voters on government performan
e [16℄.

A similar model, without the presen
e of B, has been studied in [17℄. In this model the authors

found the persisten
e of disagreement in a system 
ompossed by 
onsensus seekers. Apparently the

la
k of referen
e (B in our 
ase) made impossible the formation of a 
onsensus.

It is worth to mention that these results have been obtained assuming that the size of the popu-

lation (M) is large enough. Although large enough in this 
ontext is equivalent to in�nitely large, it

may be interesting to explore the suitability of the results found as approximations to the behavior

of �nite sized 
ommunities

α is a time-like parameter, thus the reported αt 
an be 
onsidered as 
hara
teristi
 times of the

model, whi
h, for a fully 
onne
ted system, is expe
ted to be shorter than the one obtained by other

means than a mean �eld approximation [18, 19℄. As is expe
ted from a mean �eld approximation

[20, 21℄, phenomena asso
iated to the 
orrelation length of the system (like the presen
e of 
lusters

reported in [4, 22℄), 
annot be addressed within this framework. To do so we will need to 
onsider more

realisti
 graph topologies, parti
ularly by introdu
ing non-symmetri
 intera
tion (dire
ted graphs)

[23℄ and 
onne
tivity dynami
s [24, 25℄ whi
h fa
ilitates the ex
hange of information between agents

[26, 27℄.
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Appendix A: Mean Field Approa
h

The average we need to 
ompute is:

Zn(β, η0) ≡
〈

exp

{

−β
∑

γ,µ,a

Θ
(

−J
γ
a · ξµB · ξµ

)

[

1− η0
∑

c

Θ
(

−J
γ
c · ξµB · ξµ

)

]}〉

{ξ
µ
},B,{Jγ

a}

.

We assumed that the 
omponents of the issues ξ are i.i.d variables drawn from P(ξi = ±1) = 1
2
(but

any distribution with zero mean and unit varian
e would do). Any non-zero ve
tor B ∈ R
N

ould
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be used as the so
ial rule's synapti
 ve
tor and so determine a privileged dire
tion in spa
e. For

simpli
ity's sake we 
hose the ve
tor with 
omponents Bk = 1, and thus P(B) =
∏

k δ(Bk − 1). The

agents' synapti
 ve
tors are uniformly distributed over the surfa
e of a sphere in R
N

entered at 0

and with radius

√
N , thus P(J) ≡∏N

k=1 δ
(

∑N
k=1 J

2
k −N

)

/
√
2πe.

In order to 
ompute the partition fun
tion equation (2) we de�ne the O(1) variables λγa,µ ≡
J
γ
a · ξµ/

√
N and uµ ≡ B · ξµ/

√
N and perform the average over the training set:

Zn(β) =

ˆ

∏

γ,µ,a

dλγa,µdλ̂
γ
a,µ

2π

ˆ

∏

µ

duµdûµ
2π

exp

(

−i
∑

γ,µ,a

λ̂γa,µλ
γ
a,µ − i

∑

µ

ûµuµ

)

〈

∏

µ,k

cos

(

∑

γ,a

λ̂γa,µJ
γ
a,k√
N

+
ûµBk√
N

)〉

B,{Jγ

a}

exp

{

−
∑

γ,µ,a

βΘ
(

−λγa,µuµ
)

[

1− η0
∑

c

Θ
(

−λγc,µuµ
)

]}

.

By applying a Gaussian approximation to the produ
t of 
osines, by introdu
ing the overlaps:

Rγ
a ≡ J

γ
a ·B
N

, W γ
a,b ≡

J
γ
a · Jγ

b

N
,

qγ,ρa ≡ J
γ
a · Jρ

a

N
, tγ,ρa,b ≡ J

γ
a · Jρ

b

N
,

by de�ning the matri
es:

[Q̂]γ,ρa,b ≡ i
{

δγ,ρ
(

δa,bℓ̂
γ
a + (1− δa,b)Ŵ

γ
a,b

)

+ (1− δγ,ρ)
(

δa,bq̂
γ,ρ
a + (1− δa,b)t̂

γ,ρ
a,b

)

}

[Q]γ,ρa,b ≡ δγ,ρ
(

δa,b + (1− δa,b)W
γ
a,b

)

+ (1− δγ,ρ)
(

δa,bq
γ,ρ
a + (1− δa,b)t

γ,ρ
a,b

)

and by integrating over the synapti
 ve
tors we have that:

Zn(α, β, η0) = C
−1

Ĉ
−1

ˆ

dQ dR dQ̂ dR̂ exp
(

NgS(Q,R, Q̂, R̂)
)

×
[

ˆ

dλ̂ dλ du

(2π)nM+1/2
exp

(

gE(Q,R, λ̂,λ, u; β, η0)
)

]αN

where C and Ĉ are suitable normalization 
onstants, P = αN and

gS(Q,R, Q̂, R̂) ≡ 1

2
trQQ̂− 1

2
ln |Q̂| − 1

2

∑

a,b

∑

γ,ρ

R̂γ
a

[

Q̂
−1
]γ,ρ

a,b
R̂ρ

b + i
∑

γ,a

R̂γ
aR

γ
a −

nM

2

gE(Q,R, λ̂,λ, u; β, η0) ≡ −1

2

∑

γ,a

(

1− (Rγ
a)

2
)

(

λ̂γa

)2

−
∑

γ,a

∑

γ<ρ

(qγ,ρa −Rγ
aR

ρ
a) λ̂

γ
aλ̂

ρ
a−

−
∑

γ,a

∑

a<b

(

W γ
a,b − Rγ

aR
γ
b

)

λ̂γaλ̂
γ
b −

∑

γ,a

∑

γ 6=ρ

∑

a<b

(

tγ,ρa,b − Rγ
aR

ρ
b

)

λ̂γaλ̂
ρ
b−

− u2

2
+ i
∑

γ,a

λ̂γaR
γ
au− i

∑

γ,a

λ̂γaλ
γ
a −

∑

γ,a

βΘ(−λγau)
(

1− η0
∑

c

Θ(−λγcu)
)

.
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In the largeN limit we 
an apply Lapla
e method to solve the integrals over Q̂ and R̂, thus obtaining:

R̂γ
a = i

∑

ρ,b

[Q̂]γ,ρa,bR
ρ
b

[

Q̂
−1
]γ,ρ

a,b
= [K]γ,ρa,b ≡ [Q]γ,ρa,b −Rγ

aR
ρ
b ,

whi
h produ
es that

exp[NGS(K)] ≡ extr
Q̂,R̂

{

exp
(

NgS(Q,R, Q̂, R̂)
)}

= |K|N/2

thus

Zn(α, β, η0) = extr
K

{

exp

(

N

2
ln |K|+ αNGE(K; β, η0)

)}

where:

exp[GE(K; β, η0)] ≡
ˆ

dλ̂ dλ du

(2π)nM+1/2
exp

(

gE(Q,R, λ̂,λ, u; β, η0)
)

.

By imposing the repli
a symmetri
 Ansatz and symmetry between agents, i.e. Rγ
a = R, qγ,ρa = q,

W γ
a,b = W, and tγ,ρa,b = t with the assumption that the overlaps W and t satisfy the s
aling τ ≡

M(W − t) ∼ O(1) (see referen
e [12℄, equation (3)), the logarithm of the determinant of K is:

ln |K| = nM

[

ln(1− q) +
q −W

1− q
+

W − R2

1− q + τ
+O(n)

]

. (A1)

By de�ning the fun
tion B(x; β, η0) ≡ exp
(√

2βη0x− β
)

and performing the integrals over the

variables λ̂γa and λγa, we have that

exp[GE(K; β, η0)] = 2

ˆ ∞

0

Du
ˆ

Dw
ˆ

∏

a

Dwa

{

ˆ

DxDs
∏

a

[B + (1− B)H(−ya)]
}n

≈ 2

ˆ ∞

0

Du
ˆ

Dw
ˆ

∏

a

Dwa

{
ˆ

DxDs [B + (1−B)H(−y)]M
}n

≈
√

2

π

1− q

W

ˆ

dz exp

(

−1 − q

W

z2

2

)

H
(

−
√

1− q

W (W −R2)
Rz

)

{
√

M(1− q)

2πτ

ˆ

Dx dσ exp

(

−M 1− q

τ

(σ − z)2

2

)

[B + (1−B)H(−σ)]M
}n

where the intermediate step has used the average variable:

y ≡ Ru+
√
t− R2w +

√
q − tM−1

∑

awa +
√
W − ts√

1− q + t−W
,

Dx ≡ (2π)−1/2dx e−x2/2
is the Gaussian measure and H(x) ≡

´∞

x
Dy is the Gardner error fun
tion.

In order to keep the extensivity of the energy (1) we will impose the s
aling H0 ≡Mη0 ∼ O(1). For

a large enough population size M we 
an use the Gaussian approximation for the Binomial fa
tor,
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solve the integrals in σ and x by the Lapla
e's method and expand for small n:

exp [GE(K; β, η0)] ≈ 1− 2nM

√

1− q

W

ˆ

dz√
2π

exp

(

−1− q

W

z2

2

)

H
(

−
√

1− q

W (W − R2)
Rz

)

×

× min
u∈(0,1),σ∈R

{

1− q

τ

(σ − z)2

2
+

(u−H(σ))2

2H(σ)H(−σ) − u2βH0 + uβ

}

+O(n2). (A2)

The fa
tor between 
urly bra
kets at the RHS of (A2) emerges from the intera
tion between agents

and is the responsible for the fragmentation of the phase spa
e observed in the following. For

su�
iently small values of τ the minimum of (A2) is a
hieved at σ = z. The remaining problem


orresponds to the minimization of a quadrati
 polynomial in u ∈ [0, 1], for whi
h the solution is

either the minimum of the parabola:

u0 =
[1− βH(−z)]H(z)

1− 2βH0H(z)H(−z) (A3)

if the fa
tor of the quadrati
 
omponent is positive, i.e. 1− 2βH0H(z)H(−z) > 0 and if 0 < u0 < 1,

or the border of the interval, i.e. u = 0, 1. Consider H−1(x) the inverse of the Gardner error fun
tion.

We found that, by de�ning the quantities:

a1 ≡ −H−1

(

Θ(2H0 − 1)max

{

0,
β(2H0 − 1)− 1

β(2H0 − 1)

})

(A4)

a2 ≡ −H−1

(

min

{

1,
1

β

})

(A5)

a3 ≡ −H−1

(

1

2
−
√

β2(1−H0)2 + 1− 1

2β(1−H0)

)

(A6)

b0 ≡ Θ(a2 − a1)a2 +Θ(a1 − a2)a3 (A7)

b1 ≡ Θ(a2 − a1)a1 +Θ(a1 − a2)a3 (A8)

we observe that if b1 < z < b0 the minimum is a
hieved at u = u0 (A3), if b0 < z the minimum is

a
hieved at u = 0 and if z < b1 the minimum is a
hieved at u = 1. The solution to the minimization

problem, in zeroth order in τ, is then:

Φ(z; β,H0) ≡ lim
τ→0

min
u∈(0,1),σ∈R

{

1− q

τ

(σ − z)2

2
+

(u−H(σ))2

2H(σ)H(−σ) − u2βH0 + uβ

}

=























Φ1 ≡ H(−z)
2H(z)

+ β(1−H0) z < b1

Φu0
≡ βH(z)[1−H0H(z)]

1−2βH0H(z)H(−z)
− β2H(z)H(−z)

2[1−2βH0H(z)H(−z)]
b1 < z < b0

Φ0 ≡ H(z)
2H(−z)

b0 < z.

(A9)

Φ(z; β,H0) is 
ontinuous in z but not di�erentiable at the boundaries de�ned in equations (A7) and

(A8). In the plane de�ned by the independent parameters β and H0 the 
omponents Φz0 , Φ0 and

Φ1 
over the areas illustrated in �gure 1. Observe that the 
omponent Φz0 appears in the se
tor
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Sz0 ≡ {(β,H0)|β ≤ 1 andH0 ≥ 0} ∪ {(β,H0)|β > 1 and 2H0 < β/(β − 1)}, the 
omponent Φ1

appears in the se
tor S1 ≡ {(β,H0)|β ≥ 0 and 2H0 > (1 + β)/β} and the 
omponent Φ0 appears in

the se
tor S0 ≡ {(β,H0)|β ≥ 1 andH0 ≥ 0}.

Appendix B: Stability of the solution r2 = w

To explore the stability of the solution (16) we analyze the sign of the eigenvalues of the matrix

of se
ond derivatives [∂2γ,δφ]. The se
ond derivatives of φ with respe
t to r and w are:

∂2r,rφ = 1−
√

2

π
αr

ˆ

dzN (z|0, w − r2)
∂3Φ(z; β,H0)

∂z3

∂2r,wφ =
α√
2π

ˆ

dzN (z|0, w − r2)
∂3Φ(z; β,H0)

∂z3

∂2w,wφ =
α

w2

ˆ

dzN (z|0, w)
(

3

2
− 3z2

w
+

z4

2w2

)

H(−κz)Φ(z; β,H0)+

+
α

2
√
2π

r(2w − r2)

w3

ˆ

dzN (z|0, w − r2)
∂

∂z

[(

1− z2

w

)

Φ(z; β,H0)

]

−

−
√

2

π
α
r(r2 − w)

w3

ˆ

dzN (z|0, w − r2)
∂Φ(z; β,H0)

∂z
+

+
α

2
√
2π

r(2w − r2)

w2

ˆ

dz
N (z|0, w − r2)

w − r2

(

1− z2

w − r2

)

∂Φ(z; β,H0)

∂z
.

The evaluation of these derivatives at the solution (16) produ
es the entries of the Hessian matrix

at the 
riti
al point:

hr,r ≈ 1 +
π

2

[Φ(2)(β,H0)]
2

Φ(1)(β,H0)Φ(3)(β,H0)
(B1)

hr,w = hw,r ≈
√

π

8

Φ(2)(β,H0)

Φ(1)(β,H0)
(B2)

hw,w ≈ π

10

Φ(2)(β,H0)Φ
(4)(β,H0)

Φ(1)(β,H0)Φ(3)(β,H0)
. (B3)

By numeri
al 
al
ulations we found that the Hessian matrix, with entries (B1), (B2) and (B3),

possess two positive eigenvalues for all values of β and H0 with the ex
eption of a small neighborhood

of the point β = 0, H0 = 1, and inside the region des
ribed by B(β,H0) (19), where the proposed

solution r2t = wt is not suitable.
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