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Abstrat

We developed a statistial mehanis model to study the emergene of a onsensus in soieties of adapting,

interating agents onstrained by a soial rule B. In the mean �eld approximation we �nd that if the agents'

interation H0 is weak, all agents adapt to the soial rule B, with whih they form a onsensus; but if the

interation is su�iently strong a onsensus is built against the established status quo. We observed that,

after a transient time αt, agents asymptotially approah omplete onsensus by following a path whereby

they neglet their neighbors' opinions on soially neutral issues (i.e. issues for whih the soiety as a whole

has no opinion). αt is found to be �nite for most values of the inter-agent interation H0 and temperature

T , with exeption of the values H0 = 1, T → ∞ and the region determined by the inequalities β < 2 and

2βH0 < 1 + β −
√

1 + 2β − β2
, for whih onsensus, with respet to B, is never reahed.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/84339459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I. INTRODUCTION

In this artile we propose a statistial mehanis approah to study the emergene and onsoli-

dation of opinion onsensus in a soiety of adaptive agents, in the presene of a soial �eld B. The

term onsensus is understood to be the level of agreement amongst the agents in favor or against the

predetermined soially aepted position delivered by B [1℄. B represents the set of rules that deter-

mine what is soially aeptable. Suh rules are the result of previous onsensus-forming proesses,

typially observed in any funtioning soiety [2, 3℄.

We developed our model from the assumption that the agents form their opinions on soial issues

based on partial information reeived at regular intervals during the proess. The volume of infor-

mation inreases over time and, the agents being adaptive, they update their opinions aordingly.

The model we work with has been inspired on the model presented [4℄ and possesses the following

harateristis:

1. There is a mehanism for the agents to assimilate information and update their opinions.

2. The model onsiders the existene of a set of rules B that determines what is soially aeptable.

3. The model onsiders the interation of the agents with their neighbors [5, 6℄, with a strength

proportional to the redibility, number and proximity of neighbors to the agent.

The topology indued by the proximity of neighbors and the adaptability of the agents are both

soures of disorder that have not been onsidered simultaneously in previous opinion-formation mod-

els. We are onvined that this e�ort is worth pursuing and expet that the inlusion of these

omponents will enhane the suitability of our model.

Opinions, onsidered to be the belief or attitude towards di�erent positions on a given subjet,

an be onveniently modeled by ontinuous variables. Yet there is su�ient evidene in support

of modeling opinions (on important issues) with binary variables [7℄. Thus both the opinion of an

agent a and the soial position delivered by B on an issue odi�ed into a binary string of length

N, ξ ∈ {±1}N are respetively σa(ξ), σB(ξ) ∈ {±1}. Aording to [4℄, representing a and B with

pereptrons ensures the analytial tratability of the model. In this manner, the soially aepted

position on ξ is σB(ξ) = sgn(B · ξ) where B ∈ R
N
is the synapti vetor of B, sgn(x) = 1 if x > 0,

−1 if x < 0 and 0 otherwise and B · ξ =
∑N

j=1Bjξj. It is lear from this formalism that the presene

of B introdues a privileged diretion B in spae, whih gives an anisotropi harater to the opinion

formation proess. We assoiated to the agent a a pereptron with a synapti vetor Ja ∈ R
N
, suh

that σa(ξ) = sgn(Ja · ξ).
There is a body of evidene supporting the e�et of soial in�uene on opinion formation proesses

[8℄; in onsequene, to model the agents' interations, we follow soial impat theory [5, 6℄. Following

item 3 above, and to give a topologial struture to the system, we onsider a soiety with M agents
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1 ≤ a ≤ M linked by a set of soial strengths S ≡ {ηa,c|0 ≤ ηa,c ∈ R}, where ηa,c represents

the in�uene agent c has on the opinion of agent a. Reiproity is not assumed and, therefore, the

relationship ηa,c = ηc,a is not expeted. We de�ne the neighborhood of a by Na = {c|c 6= a and ηa,c >

0} whih is the set of agents connected to a. The opinion formation proess itself is modeled by an

on-line learning senario [9℄, where a set of soial issues LP ≡
{

(ξµ, σB(ξµ)), µ = 1, . . . , P
}

is used

to de�ne the energy of the soiety:

E({Ja};LP ,S ) ≡
P
∑

µ=1

M
∑

a=1

Θ(−σa(ξµ)σB(ξµ))
[

1−
∑

c∈Na

ηa,cΘ(−σc(ξµ)σB(ξµ))
]

(1)

where Θ(x) = 1 if x > 0 and 0 otherwise. Observe that for independent agents (∀a, c ηa,c = 0) the

energy (1) is minimized to 0 when all agents develop the same opinion as B. If Na 6= ∅, then the

µ−th term in the RHS of (1) is 0 if σa = σB or 1− ηa,c1 −· · ·− ηa,cm , if a disagrees with B (σa 6= σB)

and agrees with some of its neighbors ci ∈ {c ∈ Na|σa = σc}. Observe that if a disagrees with

B and the soial strengths ηa,c are large enough, the added e�et of a's agreeing neighbors ould

make the energy grow negative. This model of the energy aounts for the e�et observed in soial

experiments, where people tend to agree with peers that share their same opinions [10℄.

II. THE FREE ENERGY IN THE MEAN FIELD APPROXIMATION

The energeti formulation of the problem allows us to apply the tehniques from the statistial

mehanis of disordered systems to better understand the behavior of the soiety. There are two

soures of disorder in the model desribed by (1), one introdued through the set of issues LP , and

the seond through the topology imposed by S . As a valid �rst approah to the full treatment of

the present formalism we present in this artile a study on the emergene of onsensus in a mean

�eld approximation (i.e. for all index a, Na = {1, 2, . . . , a − 1, a + 1, . . . ,M} and ηa,c = η0 for all

pairs (a, c)).

We apply the replia trik [11℄ in order to ompute the expetation of the logarithm of the partition

funtion logZ = limn→0 n
−1
(

Zn − 1
)

. The average of the repliated partition funtion is

Zn(β, η0) ≡
〈

exp

{

−β
∑

γ,µ,a

Θ
(

−J
γ
a · ξµB · ξµ

)

[

1− η0
∑

c

Θ
(

−J
γ
c · ξµ B · ξµ

)

]}〉

{ξ
µ
},B,{Jγ

a}

(2)

where β (the inverse of the temperature) is a parameter that gauges the �utuations of energy and

the angular brakets represent the expetation over the set of issues {ξµ}, the distribution of synapti
vetors of the soial rule B and the set of repliated synapti vetors of the agents {Jγ

a} (the details

of the alulation are presented in Appendix A).

The alulation of the average over the disorder introdued through the soial issues in LP , pro-

dues an expression for the repliated partition funtion Zn
that depends on the following distributed
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variables:

Rγ
a ≡ J

γ
a ·B
N

, W γ
a,b ≡

J
γ
a · Jγ

b

N
,

qγ,ρa ≡ J
γ
a · Jρ

a

N
, tγ,ρa,b ≡ J

γ
a · Jρ

b

N
.

These overlaps are the osines of the angles between synapti vetors and they represent a level of

agreement between the agents and the soiety (Rγ
a), between two di�erent agents (W γ

a,b and tγ,ρa,b )

or between versions of the same agent in di�erent replias (qγ,ρa ). We impose a replia and site

symmetri approximation, whih entails onsideration of the values of the overlaps as site and replia

independent Rγ
a = R, qγ,ρa = q, W γ

a,b = W and tγ,ρa,b = t. It is possible to justify that the di�erene

between W and t satis�es the saling τ ≡M(W − t) ∼ O(1) (see referene [12℄, equation (3)) whih

simpli�es the matrix representation of the interation between repliated systems.

In this approximation, and assuming that the length of the issues N is su�iently large and τ

su�iently small, the repliated partition funtion an be expressed as:

Zn(α, β,H0) = extr
q,R,W

{

exp

(

N

2
GS(q, R) + αNGE(q, R,W ; β,H0)

)}

where α ≡ P/N is a parameter that measures the volume of information provided to the agents. Suh

information is supplied at onstant rate, thus α an be interpreted as a measure of time. The quantity

H0 ≡ Mη0 ∼ O(1) is a measure of the total interation between an agent and its neighborhood. It

must be an O(1) quantity to ensure the extensivity of the energy (1); and:

GS(q, R) ≡ nM

(

ln(1− q) +
q − R2

1− q

)

GE(q, R,W ; β,H0) ≡ −2nM

ˆ

dzN
(

z

∣

∣

∣

∣

0,
W

1− q

)

H
(

−
√

1− q

W (W −R2)
Rz

)

Φ(z; β,H0),

where N (x|µ, σ2) = exp[(x−µ)2/2σ2]/
√
2πσ2

is a Gaussian distribution in x, entered at µ and with

variane σ2
and H(x) ≡

´∞

x
dzN (z|0, 1) is the Gardner error funtion. The funtion Φ(z; β,H0)

arries the information of the averaged inter-agent interation, weighted by the thermal oe�ient:

Φ(z; β,H0) ≡ − lim
M→∞

1

M
log







ˆ

Dx
[

H(−z) + exp

(

√

2βH0

M
x− β

)

H(z)

]M






= min
u∈[0,1]

Φ̃(u, z; β,H0), (3)

with

Φ̃(u, z; β,H0) ≡
[u−H(z)]2

2H(z)H(−z) − u2βH0 + uβ.

This expression is obtained through the appliation of Laplae's method under the assumption that

the size of the population (M) is su�iently large [28℄. There are three possible results to the

minimization problem (3), depending on the values of the variable z and the parameters β and H0.
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Figure 1: Distribution of the omponents (A9), with their orrespondent boundaries b0 (A7) and b1 (A8), in

the plane (β,H0) (olor on-line).

Given the funtions b0(β,H0) and b1(β,H0) (equations (A7) and (A8) respetively), we observe that

if b0 < z, the minimum of (3) is at u = 0 and Φ(z) = Φ0(z) ≡ Φ̃(0, z); if b1 < z < b0, the minimum

is at u = u0, where 0 < u0 < 1 is given by the equation (A3) and Φ(z) = Φu0
(z) ≡ Φ̃(u0, z); and if

z < b1, the minimum is at u = 1 and Φ(z) = Φ1(z) ≡ Φ̃(1, z). The expliit form of the omponents

Φ0, Φu0
and Φ1 is given in expression (A9). Observe that the funtion Φ so de�ned is ontinuous but

not di�erentiable at z = b0, b1. In �gure 1 we present the distribution of the omponents Φ0,Φu0
and

Φ1 in the plane (β,H0), whih provides insight on the phase diagram of the system.

By de�ning the new parameters w ≡W/(1− q) and r ≡ R/
√
1− q we have that:

βf(αβ,H0) ≡− lim
n→0

lim
M,N→∞

Zn(α, β,H0)− 1

nNM

=extr
q
ψ(q) + extr

r,w
φ(r, w;α, β,H0) (4)

where

ψ(q) ≡ −1

2

(

ln(1− q) +
q

1− q

)

(5)

φ(r, w;α, β,H0) ≡
r2

2
+ 2α

ˆ

dzN (z|0, w)H
(

− rz
√

w(w − r2)

)

Φ(z; β,H0). (6)

Observe that ψ(q) is onave in q and its minimum is reahed at q = 1. Given that ψ does not

depend on the parameters α, β or H0, we will onsider the problem of optimizing the shifted free
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energy:

βf0(α, β,H0) ≡ extr
r,w

φ(r, w;α, β,H0). (7)

III. THE ROLE OF THE SOCIALLY NEUTRAL ISSUES

To better understand how the proess of opinion formation evolves, we need to study what happens

in the orthogonal hyper-spae to B. To this end we de�ne as soially neutral issues all the binary

strings S0 ∈ {±1}N satisfying B · S0 = 0.Thus, a soially neutral issue is an issue for whih there is

no soially aepted position.

The optimization of the funtion φ with respet to the re-saled parameters produes the equations

∂rφ = ∂wφ = 0, that are satis�ed if:

r = −
√

2

π
α

ˆ

dzN (z|0, w − r2)
∂Φ(z; β,H0)

∂z
(8)

r2 = 2α

ˆ

dzN (z|0, w)
(

1− z2

w

)

H
(

− rz
√

w(w − r2)

)

Φ(z; β,H0), (9)

where 0 ≤ r2 ≤ w, whih implies that R2 ≤ W . If two agents a and c have the same overlap with

B, i.e. Ra = Rc = R, the relationship between R and W is W = R2 + (1 − R2) cosϕ, where ϕ is

the angle between the omponents of Ja and Jc perpendiular to B. In suh a ase, if R2 = W , then

ϕ = π
2
and the probability of both agents agreeing on any S0 is

1
2
and no onsensus an be built on

soially neutral issues. If R = 0, then 0 < cosϕ = W , indiating that there is no onsensus in favor

or against B but a level of agreement an be built on soially neutral issues.

A. r2 = w solution. Independene of opinion on soially neutral issues

Observe that equations (8) and (9) an be satis�ed simultaneously with the ondition r2 = w

(implying R2 = W ) for a �nite value of α = αt at a partiular value of r = rt determined by the

equations:

αt = −
√

π

2

rt
Φ(1)(β,H0)

(10)

rt = −
√
2π

Φ(1)(β,H0)

ˆ

dzN (z|0, r2t )
(

1− z2

r2t

)

Θ(rtz) Φ(z; β,H0), (11)

where

Φ(n)(β,H0) ≡ Au0
(β,H0)

∂nΦu0
(z; β,H0)

∂zn

∣

∣

∣

∣

z=0

+A0(β,H0)
∂nΦ0(z; β,H0)

∂zn

∣

∣

∣

∣

z=0

+

+A1(β,H0)
∂nΦ1(z; β,H0)

∂zn

∣

∣

∣

∣

z=0

(12)

is the n-th derivative of Φ at z = 0 and A1(β,H0) ≡ Θ(H0 − 1)Θ(2βH0 − 2 − β), Au0
(β,H0) ≡

Θ(1 − H0)Θ(2 − β) + Θ(H0 − 1)Θ(2 + β − 2βH0) and A0(β,H0) ≡ Θ(1 − H0)Θ(β − 2) are signal
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funtions suh that AΓ = 1 if z = 0 is in the domain of ΦΓ or 0 otherwise, with Γ = 0, u0, 1. [29℄ In

partiular, the �rst derivative of Φ at 0 is given by:

Φ(1)(β,H0) =

√

2

π
sgn(H0 − 1)

(

β|H0 − 1|
2− βH0

Au0
(β,H0) +A0(β,H0) +A1(β,H0)

)

. (13)

Observe that sgn(Φ(1)) = sgn(H0 − 1) and being αt > 0, through (10) the sign of rt must be

sgn(1−H0). Let us assume that |rt| is small enough, suh that the error term:

ǫ(β,H0) ≡ max
z∈R,γ=0,1

{|Φ(z; β,H0)|}|bγ|N (bγ|0, r2t ) (14)

is negligible, and that we are working in a region of the plane (β,H0) suh that the boundaries b0

and b1 are not zero. By using expressions (12) and (14) we an approximate (11) in the following

way:

rt ≈ −
√
2π

∞
∑

n=0

rnt
n!

Φ(n)(β,H0)

Φ(1)(β,H0)

ˆ ∞

0

Dz zn(1− z2) +O(ǫ) (15)

whih implies that, keeping terms up to O(r4t ) in (15), we obtain:

rt ≈
√

π3

2

−2βH0 + 2(1 + β)H0 − β

(1−H0)[(12− π)βH0 + 2π]
Au0

(β,H0) +

√
2π3

12− π
[A0(β,H0)−A1(β,H0)] , (16)

and

αt ≈
π5/2

23/2
(2− βH0)(−2βH0 + 2(1 + β)H0 − β)

β(1−H0)2[(12− π)βH0 + 2π]
Au0

(β,H0) + α0,1 [1−Au0
(β,H0)] , (17)

where

α0,1 ≡
21/2π5/2

24− 2π
≈ 1.396. (18)

α0,1 is introdued as a measure of a typial time sale for most of the points of the (β,H0) plane.

Equation (16) is an approximation to the solution of (11) whih is qualitatively suitable if sgn(rt) =

sgn(1−H0). This is not the ase for order pairs (β,H0) satisfying:

B(β,H0) = Θ(2− β)Θ
(

1 + β −
√

1 + 2β − β2 − 2βH0

)

. (19)

In this region, the proposal r2t = wt does not satisfy the saddle point equations (8) and (9). We will

explore the behavior of the solution in this region in the next subsetion. For almost all the region

of the plane (β,H0) determined by the equation B(β,H0) = 0, the solution r2 = w is stable (see

Appendix B).

Most of the opinion formation proess ours for α > αt. The e�etive energy for α > αt an be

de�ned as

φeff(r;α, β,H0) ≡
r2

2
+ 2α

ˆ

dzN
(

z
∣

∣0, r2
)

Θ(rz)Φ(z; β,H0). (20)

The new saddle point equation is:

∂rφeff = r − 2α

|r|

ˆ

dzN (z|0, r2)
(

1− z2

r2

)

Θ(rz)Φ(z; β,H0)
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whih implies that for large values of α, |r| ≫ 1,thus

r3 ≈ sgn(1−H0)

2π
α, (21)

whih implies that |r| ∼ O(α1/3), and the seond derivative is then ∂2r,rφeff ≈ 1 + O(α−1/3), whih

indiates that the solution (21) is stable.

Finally, observe that r2 ∝ 1/(1−q), thus we expet for α su�iently large to observe the asymptoti

behavior q ≈ 1− O(α−2/3).

B. r2 < w solution. Consensus on soially neutral issues

The behavior r2 < w is observed for values of β and H0 suh that B(β,H0) = 1, indiating that

the omponent of Φ that appears in (8) and (9) for these values of β and H0 is Φu0
. Therefore, for

small enough values of α we have that w − r2 ≪ 1 and |r| ≪ 1, therefore:

r ≈ −
√

2

π
αΦ(1)

u0
(β,H0) (22)

r2 ≈ 2α

ˆ ∞

0

Dz (1− z2) Φu0
(
√
wz; β,H0) (23)

where (22) and (13) indiate that r > 0 and in (23) we have use the approximation based on (14).

By expanding Φu0
(z; β,H0) around z = 0, we obtain an expression for r up to order one in w:

r ≈ √
w − 2

π

βH2
0 − 2(β + 1)H0 + β

(1−H0)(2− βH0)
w (24)

where the fator of w in the seond term of (24) is positive if B(β,H0) = 1.

For large values of α we suppose that w > w − r2 ≫ 1. Thus:

r = −
√

2

π

α

w − r2

ˆ ∞

−∞

Dz z Φu0

(√
w − r2z; β,H0

)

≈ αβ(1−H0)

π
√
w − r2

(25)

r2 ≈ α

ˆ ∞

−∞

Dz (1− z2) Φu0

(√
w − r2z; β,H0

)

≈ αβ(2− β)

4π
√
w

. (26)

From (25) and (26) we obtain that r ∼ 1
4
(2 − β)/(1 − H0) asymptotially, whih does not depend

on α. In a similar manner, we obtain the asymptoti behavior of

√
w ∼ 4

π
αβ(1 − H0)

2/(2 − β)

whih indiates that 1 − q ∼ O(α−2). These results indiate that the overlap R approahes zero

asymptotially R ∼ O(α−1).

C. Phase diagram

We solved numerially the equations (10) and (11) and onstruted the plot of the log(αt) as a

funtion of β and H0 presented in �gure 2. αt represents the transient period prior to the �nal stage
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Figure 2: Logarithm of the transient time log(αt) as a funtion of β and H0. (Color on-line)

of the opinion formation proess, haraterized by agents developing independent attitudes towards

their peers' opinions on soially neutral issues. From �gure 2 we observe that there is a setor of

the (β,H0) plane for whih the system takes a relatively long time to reah the solution r2 = w.

This setor is formed by the order pairs (β,H0) that make Au0
(β,H0) = 1. In the triangular setor

formed by order pairs (β,H0) that make B(β,H0) = 1, no suitable numerial solution was found, as

was expeted.

In order to better understand the piture the system presents immediately after αt and by onsid-

ering the de�nitions of A1, Au0
, A0 and B with addition of the alulation of the instable region and

the analysis of the signs of the solutions presented in (21) and (25), we onstruted the diagram of

�gure 3. The areas marked Au0
orrespond to setors of the (β,H0) plane haraterized by relatively

long transient times αt ≫ α0,1, whereas the areas marked A0 and A1 develop the solution r2 = w in

relatively short transient times αt = α0,1.

With the asymptoti behavior of R inferred from the equations (21) and (25) we onstruted the

phase diagram of the system, presented in �gure 4. Observe that for H0 > 1 the asymptoti value

of R = −1. At H0 = 1 we have that R = 0 for all α, inside the setor with B(β,H0) = 1 R vanishes

asymptotially and for order pairs (β,H0) suh that H0 < 1 and B(β,H0) = 0 we have that R = 1.

The transitions between the phases with R = 0 and R = 1, and between the phases with R = 1 and

R = −1 are of the �rst order.
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Figure 3: In this diagram we present a piture of the system at . We labeled the regions where the proposed

solution r2t = wt is stable by Au0
(where αt ≫ α0,1), A0 and A1 (where, in both ases, αt = α0.1), by I where

the proposed solution is instable and by B the region where r2 < w for all α. We also indiated the sign of

R aording to (16) and (25) (olor on-line).

IV. DISCUSSION

We presented a model for the opinion formation proess in a soiety of interating agents, rep-

resented by binary pereptrons, in the presene of a soial �eld B. The �eld is the result of many

opinion formation proesses prior to the urrent one; it provides the soially aeptable position

on urrent issues and indiates a preferential diretion in the spae of issues given the anisotropi

harater to the system. The model, represented by equation (1), inorporates the interation of two

di�erent soures of disorder, namely the topology of the interation S and the training set LP and,

although our results have been obtained by onsidering a mean �eld approximation on the topology,

we expet to takle the omplete model in a future work.

Our results are derived from the study of the shifted free energy (7), assoiated with the funtion

φ (6) through an optimization proedure. The optimal solutions of the energy are obtained by

solving the equations (8) and (9) for the redued parameters r ≡ R/
√
1− q and w ≡ W/(1 − q)

respetively. For most of the values of β and H0 (i.e. B(β,H0)=0), the solution r
2
t = wt is reahed

after a transient time αt. This transient is larger in the region determined by the values of β and H0

10
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Figure 4: Phase diagram of the system in the limit of α → ∞. Transitions between any two phases are

always of the �rst order (olor on-line).

suh that Au0
(β,H0) = 1. This region is haraterized by a high temperature (β → 0) whih is the

ause of the long transients. The only region in the plane (β,H0) for whih the solutions found are

not stable is loated in the neighborhood of the point β = 0 and H0 = 1, indiated in �gure 3 by a

label I.

We also onstruted a phase diagram of the system by inferring the behavior of R for large values

of α, presented in �gure 4. For values of H0 > 1 the onsensus is always formed against B, i.e.

R = −1. This is one of the e�ets studied within the ontext of moral foundation theory, whih

onsiders the ause of hange in the soiety's status quo the frequent orroboration of opinion between

equally minded voters [14, 15℄. The onservative attitude of the agents (R = 1) interating with low

values of H0 < 1 is onsistent with previous studies done on a dynamial version of the model at zero

temperature [4℄. Inside the region B(β,H0) = 1 there is no onsensus with respet to B (R = 0).

The transitions between any two phases are of the �rst order in all the possible ases.

The fat that at αt the overlaps beome R2
t = Wt indiates that the agents approah onsensus

disregarding the opinion of their peers on soially neutral issues (issues for whih there is no de�nite

soially aepted position). Given that the only anisotropy of energy (1) is due to the presene of

the synapti vetor B, it is reasonable to suppose that the agents evolve maximizing the diversity of

opinions in the only region of the version spae where there is no soial referene, i.e. the hyper-spae

perpendiular to B.
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Consensus with respet to B is never formed for β = 0, H0 = 1 and the values of β and H0

satisfying B(β,H0) = 1. On the line β = 0, Φ(z) is zero, onsensus is never ahieved due to large

energy �utuations in the system, and R = 0 for all α. At H0 = 1, Φ(z) is even and the solution

to (8) is R = 0. This ours beause ompeting attitudes towards following either B or neighboring

agents anel eah other out and onsensus is never reahed. At B(β,H0) a onsensus is initially

built in favor of B (R > 0), but it vanishes asymptotially when more information is provided to the

system (R → 0 when α→ ∞). The only onsensus observed in this region is with respet to soially

neutral issues whih is an e�et similar to the one observed when irrelevant events a�et the opinion

of voters on government performane [16℄.

A similar model, without the presene of B, has been studied in [17℄. In this model the authors

found the persistene of disagreement in a system ompossed by onsensus seekers. Apparently the

lak of referene (B in our ase) made impossible the formation of a onsensus.

It is worth to mention that these results have been obtained assuming that the size of the popu-

lation (M) is large enough. Although large enough in this ontext is equivalent to in�nitely large, it

may be interesting to explore the suitability of the results found as approximations to the behavior

of �nite sized ommunities

α is a time-like parameter, thus the reported αt an be onsidered as harateristi times of the

model, whih, for a fully onneted system, is expeted to be shorter than the one obtained by other

means than a mean �eld approximation [18, 19℄. As is expeted from a mean �eld approximation

[20, 21℄, phenomena assoiated to the orrelation length of the system (like the presene of lusters

reported in [4, 22℄), annot be addressed within this framework. To do so we will need to onsider more

realisti graph topologies, partiularly by introduing non-symmetri interation (direted graphs)

[23℄ and onnetivity dynamis [24, 25℄ whih failitates the exhange of information between agents

[26, 27℄.
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Appendix A: Mean Field Approah

The average we need to ompute is:

Zn(β, η0) ≡
〈

exp

{

−β
∑

γ,µ,a

Θ
(

−J
γ
a · ξµB · ξµ

)

[

1− η0
∑

c

Θ
(

−J
γ
c · ξµB · ξµ

)

]}〉

{ξ
µ
},B,{Jγ

a}

.

We assumed that the omponents of the issues ξ are i.i.d variables drawn from P(ξi = ±1) = 1
2
(but

any distribution with zero mean and unit variane would do). Any non-zero vetor B ∈ R
N
ould
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be used as the soial rule's synapti vetor and so determine a privileged diretion in spae. For

simpliity's sake we hose the vetor with omponents Bk = 1, and thus P(B) =
∏

k δ(Bk − 1). The

agents' synapti vetors are uniformly distributed over the surfae of a sphere in R
N
entered at 0

and with radius

√
N , thus P(J) ≡∏N

k=1 δ
(

∑N
k=1 J

2
k −N

)

/
√
2πe.

In order to ompute the partition funtion equation (2) we de�ne the O(1) variables λγa,µ ≡
J
γ
a · ξµ/

√
N and uµ ≡ B · ξµ/

√
N and perform the average over the training set:

Zn(β) =

ˆ

∏

γ,µ,a

dλγa,µdλ̂
γ
a,µ

2π

ˆ

∏

µ

duµdûµ
2π

exp

(

−i
∑

γ,µ,a

λ̂γa,µλ
γ
a,µ − i

∑

µ

ûµuµ

)

〈

∏

µ,k

cos

(

∑

γ,a

λ̂γa,µJ
γ
a,k√
N

+
ûµBk√
N

)〉

B,{Jγ

a}

exp

{

−
∑

γ,µ,a

βΘ
(

−λγa,µuµ
)

[

1− η0
∑

c

Θ
(

−λγc,µuµ
)

]}

.

By applying a Gaussian approximation to the produt of osines, by introduing the overlaps:

Rγ
a ≡ J

γ
a ·B
N

, W γ
a,b ≡

J
γ
a · Jγ

b

N
,

qγ,ρa ≡ J
γ
a · Jρ

a

N
, tγ,ρa,b ≡ J

γ
a · Jρ

b

N
,

by de�ning the matries:

[Q̂]γ,ρa,b ≡ i
{

δγ,ρ
(

δa,bℓ̂
γ
a + (1− δa,b)Ŵ

γ
a,b

)

+ (1− δγ,ρ)
(

δa,bq̂
γ,ρ
a + (1− δa,b)t̂

γ,ρ
a,b

)

}

[Q]γ,ρa,b ≡ δγ,ρ
(

δa,b + (1− δa,b)W
γ
a,b

)

+ (1− δγ,ρ)
(

δa,bq
γ,ρ
a + (1− δa,b)t

γ,ρ
a,b

)

and by integrating over the synapti vetors we have that:

Zn(α, β, η0) = C
−1

Ĉ
−1

ˆ

dQ dR dQ̂ dR̂ exp
(

NgS(Q,R, Q̂, R̂)
)

×
[

ˆ

dλ̂ dλ du

(2π)nM+1/2
exp

(

gE(Q,R, λ̂,λ, u; β, η0)
)

]αN

where C and Ĉ are suitable normalization onstants, P = αN and

gS(Q,R, Q̂, R̂) ≡ 1

2
trQQ̂− 1

2
ln |Q̂| − 1

2

∑

a,b

∑

γ,ρ

R̂γ
a

[

Q̂
−1
]γ,ρ

a,b
R̂ρ

b + i
∑

γ,a

R̂γ
aR

γ
a −

nM

2

gE(Q,R, λ̂,λ, u; β, η0) ≡ −1

2

∑

γ,a

(

1− (Rγ
a)

2
)

(

λ̂γa

)2

−
∑

γ,a

∑

γ<ρ

(qγ,ρa −Rγ
aR

ρ
a) λ̂

γ
aλ̂

ρ
a−

−
∑

γ,a

∑

a<b

(

W γ
a,b − Rγ

aR
γ
b

)

λ̂γaλ̂
γ
b −

∑

γ,a

∑

γ 6=ρ

∑

a<b

(

tγ,ρa,b − Rγ
aR

ρ
b

)

λ̂γaλ̂
ρ
b−

− u2

2
+ i
∑

γ,a

λ̂γaR
γ
au− i

∑

γ,a

λ̂γaλ
γ
a −

∑

γ,a

βΘ(−λγau)
(

1− η0
∑

c

Θ(−λγcu)
)

.
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In the largeN limit we an apply Laplae method to solve the integrals over Q̂ and R̂, thus obtaining:

R̂γ
a = i

∑

ρ,b

[Q̂]γ,ρa,bR
ρ
b

[

Q̂
−1
]γ,ρ

a,b
= [K]γ,ρa,b ≡ [Q]γ,ρa,b −Rγ

aR
ρ
b ,

whih produes that

exp[NGS(K)] ≡ extr
Q̂,R̂

{

exp
(

NgS(Q,R, Q̂, R̂)
)}

= |K|N/2

thus

Zn(α, β, η0) = extr
K

{

exp

(

N

2
ln |K|+ αNGE(K; β, η0)

)}

where:

exp[GE(K; β, η0)] ≡
ˆ

dλ̂ dλ du

(2π)nM+1/2
exp

(

gE(Q,R, λ̂,λ, u; β, η0)
)

.

By imposing the replia symmetri Ansatz and symmetry between agents, i.e. Rγ
a = R, qγ,ρa = q,

W γ
a,b = W, and tγ,ρa,b = t with the assumption that the overlaps W and t satisfy the saling τ ≡

M(W − t) ∼ O(1) (see referene [12℄, equation (3)), the logarithm of the determinant of K is:

ln |K| = nM

[

ln(1− q) +
q −W

1− q
+

W − R2

1− q + τ
+O(n)

]

. (A1)

By de�ning the funtion B(x; β, η0) ≡ exp
(√

2βη0x− β
)

and performing the integrals over the

variables λ̂γa and λγa, we have that

exp[GE(K; β, η0)] = 2

ˆ ∞

0

Du
ˆ

Dw
ˆ

∏

a

Dwa

{

ˆ

DxDs
∏

a

[B + (1− B)H(−ya)]
}n

≈ 2

ˆ ∞

0

Du
ˆ

Dw
ˆ

∏

a

Dwa

{
ˆ

DxDs [B + (1−B)H(−y)]M
}n

≈
√

2

π

1− q

W

ˆ

dz exp

(

−1 − q

W

z2

2

)

H
(

−
√

1− q

W (W −R2)
Rz

)

{
√

M(1− q)

2πτ

ˆ

Dx dσ exp

(

−M 1− q

τ

(σ − z)2

2

)

[B + (1−B)H(−σ)]M
}n

where the intermediate step has used the average variable:

y ≡ Ru+
√
t− R2w +

√
q − tM−1

∑

awa +
√
W − ts√

1− q + t−W
,

Dx ≡ (2π)−1/2dx e−x2/2
is the Gaussian measure and H(x) ≡

´∞

x
Dy is the Gardner error funtion.

In order to keep the extensivity of the energy (1) we will impose the saling H0 ≡Mη0 ∼ O(1). For

a large enough population size M we an use the Gaussian approximation for the Binomial fator,
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solve the integrals in σ and x by the Laplae's method and expand for small n:

exp [GE(K; β, η0)] ≈ 1− 2nM

√

1− q

W

ˆ

dz√
2π

exp

(

−1− q

W

z2

2

)

H
(

−
√

1− q

W (W − R2)
Rz

)

×

× min
u∈(0,1),σ∈R

{

1− q

τ

(σ − z)2

2
+

(u−H(σ))2

2H(σ)H(−σ) − u2βH0 + uβ

}

+O(n2). (A2)

The fator between urly brakets at the RHS of (A2) emerges from the interation between agents

and is the responsible for the fragmentation of the phase spae observed in the following. For

su�iently small values of τ the minimum of (A2) is ahieved at σ = z. The remaining problem

orresponds to the minimization of a quadrati polynomial in u ∈ [0, 1], for whih the solution is

either the minimum of the parabola:

u0 =
[1− βH(−z)]H(z)

1− 2βH0H(z)H(−z) (A3)

if the fator of the quadrati omponent is positive, i.e. 1− 2βH0H(z)H(−z) > 0 and if 0 < u0 < 1,

or the border of the interval, i.e. u = 0, 1. Consider H−1(x) the inverse of the Gardner error funtion.

We found that, by de�ning the quantities:

a1 ≡ −H−1

(

Θ(2H0 − 1)max

{

0,
β(2H0 − 1)− 1

β(2H0 − 1)

})

(A4)

a2 ≡ −H−1

(

min

{

1,
1

β

})

(A5)

a3 ≡ −H−1

(

1

2
−
√

β2(1−H0)2 + 1− 1

2β(1−H0)

)

(A6)

b0 ≡ Θ(a2 − a1)a2 +Θ(a1 − a2)a3 (A7)

b1 ≡ Θ(a2 − a1)a1 +Θ(a1 − a2)a3 (A8)

we observe that if b1 < z < b0 the minimum is ahieved at u = u0 (A3), if b0 < z the minimum is

ahieved at u = 0 and if z < b1 the minimum is ahieved at u = 1. The solution to the minimization

problem, in zeroth order in τ, is then:

Φ(z; β,H0) ≡ lim
τ→0

min
u∈(0,1),σ∈R

{

1− q

τ

(σ − z)2

2
+

(u−H(σ))2

2H(σ)H(−σ) − u2βH0 + uβ

}

=























Φ1 ≡ H(−z)
2H(z)

+ β(1−H0) z < b1

Φu0
≡ βH(z)[1−H0H(z)]

1−2βH0H(z)H(−z)
− β2H(z)H(−z)

2[1−2βH0H(z)H(−z)]
b1 < z < b0

Φ0 ≡ H(z)
2H(−z)

b0 < z.

(A9)

Φ(z; β,H0) is ontinuous in z but not di�erentiable at the boundaries de�ned in equations (A7) and

(A8). In the plane de�ned by the independent parameters β and H0 the omponents Φz0 , Φ0 and

Φ1 over the areas illustrated in �gure 1. Observe that the omponent Φz0 appears in the setor
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Sz0 ≡ {(β,H0)|β ≤ 1 andH0 ≥ 0} ∪ {(β,H0)|β > 1 and 2H0 < β/(β − 1)}, the omponent Φ1

appears in the setor S1 ≡ {(β,H0)|β ≥ 0 and 2H0 > (1 + β)/β} and the omponent Φ0 appears in

the setor S0 ≡ {(β,H0)|β ≥ 1 andH0 ≥ 0}.

Appendix B: Stability of the solution r2 = w

To explore the stability of the solution (16) we analyze the sign of the eigenvalues of the matrix

of seond derivatives [∂2γ,δφ]. The seond derivatives of φ with respet to r and w are:

∂2r,rφ = 1−
√

2

π
αr

ˆ

dzN (z|0, w − r2)
∂3Φ(z; β,H0)

∂z3

∂2r,wφ =
α√
2π

ˆ

dzN (z|0, w − r2)
∂3Φ(z; β,H0)

∂z3

∂2w,wφ =
α

w2

ˆ

dzN (z|0, w)
(

3

2
− 3z2

w
+

z4

2w2

)

H(−κz)Φ(z; β,H0)+

+
α

2
√
2π

r(2w − r2)

w3

ˆ

dzN (z|0, w − r2)
∂

∂z

[(

1− z2

w

)

Φ(z; β,H0)

]

−

−
√

2

π
α
r(r2 − w)

w3

ˆ

dzN (z|0, w − r2)
∂Φ(z; β,H0)

∂z
+

+
α

2
√
2π

r(2w − r2)

w2

ˆ

dz
N (z|0, w − r2)

w − r2

(

1− z2

w − r2

)

∂Φ(z; β,H0)

∂z
.

The evaluation of these derivatives at the solution (16) produes the entries of the Hessian matrix

at the ritial point:

hr,r ≈ 1 +
π

2

[Φ(2)(β,H0)]
2

Φ(1)(β,H0)Φ(3)(β,H0)
(B1)

hr,w = hw,r ≈
√

π

8

Φ(2)(β,H0)

Φ(1)(β,H0)
(B2)

hw,w ≈ π

10

Φ(2)(β,H0)Φ
(4)(β,H0)

Φ(1)(β,H0)Φ(3)(β,H0)
. (B3)

By numerial alulations we found that the Hessian matrix, with entries (B1), (B2) and (B3),

possess two positive eigenvalues for all values of β and H0 with the exeption of a small neighborhood

of the point β = 0, H0 = 1, and inside the region desribed by B(β,H0) (19), where the proposed

solution r2t = wt is not suitable.
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