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Abstract 

We study the association between the stock liquidity of SMEs in the US and their likelihood of 

bankruptcy, using a dataset that comprises information on 5,075 firms over the time period from 1984 

to 2013 using the hazard model of Campbell et al. (2008). We find that less liquid stocks are 

associated with higher probability of bankruptcy, although there is substantial heterogeneity across 
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industries regarding the predictive power of the liquidity measure on the likelihood of bankruptcy. 

Furthermore, the exchange where the SMEs are listed also affects the likelihood of bankruptcy. 

Classification performance tests conclude that adding a liquidity measure variable to the Campbell 

(2008) model improves its predictive power. 

 

 

 

 

 

JEL classification: G12, G14. 
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1. Introduction 

Stock liquidity is an important variable in financial markets. The main contribution of this paper is to 

investigate the extent to which stock liquidity affects the likelihood of bankruptcy of SMEs and thus 

whether liquidity measures can improve the effectiveness of the hazard model of Campbell et al. 

(2008). 

More liquid stocks are usually associated with lower transaction costs and liquidity risk premiums 

(see, e.g., Becker‐Blease and Paul (2006), and less liquid stocks are usually associated with lower 

credit ratings and a higher risk of default (see, e.g., Odders-White and Ready (2006). There are 

several stock liquidity measures available in the microstructure literature, such as the trading volume, 

share turnover, bid-ask spread, Amihud (2002) and Florackis et al. (2011) liquidity (or illiquidity) 

ratios. Each of these liquidity ratios captures different aspects of stocks (Chai et al., 2010).  

A very simple stock liquidity measure is, for instance, trading volume. Nevertheless, it does not take 

into account some important stock liquidity related characteristics, for instance, price and return, and 

the bid-ask spread and the speed at which stock trading occurs. Consequently, other more 

sophisticated liquidity measures were developed, for instance, the Gabrielsen et al. (2011) liquidity 

ratio, which considers the trading volume and the market capitalization, and the Amihud (2002) and 
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Florackis et al (2011) illiquidity ratios, which consider trade volume, stock return and the turnover 

ratio.1  

In this paper we use the following stock liquidity (or illiquidity) measures: Atkins and Dyl (1997) 

(i.e., the zero-return measure), and Lesmond et al. (1999) (i.e., the turnover ratio), and the Amihud 

(2002) and Florackis et al. (2011) illiquidity ratios. We examine the relationship between stock 

liquidity and firm value and the probability of bankruptcy of US SMEs, using a data sample that 

comprises information on 5,075 US SMEs firms, over the time period between 1984 and 2013.  

Extant literature suggests that higher stock liquidity is positively associated with firm value and 

performance and encourages the use of more efficient managerial compensation schemes (Holmström 

and Tirole, 1993). There are also studies suggesting that higher stock liquidity reduces managerial 

opportunism and direct issuing costs, and improves corporate governance (see, e.g., Maug, 1998; 

Edmans, 2009; Butler and Wan (2010) and Butler et al. (2005).  

Studies on SMEs cover a wide range of research areas, for instance, the determinants of the SMEs’ 

profitability and capital structure (e.g., Kolari and Shin, 2004: and Sogorb-Mira, 2005) and the SMEs’ 

loan structure (e.g., Berger and Udell, 2004). 

There are several bankruptcy prediction models available in the literature, for instance, the Altman 

(1968) model, based on accounting information, the Vassalou and Xing (2004) model, based on 

contingent claims analysis, and the Shumway (2001) and Campbell et al. (2008) models, based on a 

survival analysis that  considers both accounting and market information. In this paper we examine 

the relationship between stock liquidity, measured by the four liquidity measures described above and 

the probability of bankruptcy, using the Campbell et al. (2008) hazard model and a dataset that 

comprises information on 4,656 healthy SMEs and 419 bankrupt SMEs listed in the US market.  

Our results show that all the above liquidity measures are negatively associated with the probability of 

bankruptcy, i.e., the higher the stock liquidity the less likely is the bankruptcy probability. We check 

the robustness of our results by using the predictive ability test and examining the area under the 

receiver operating characteristics curve, and both confirm that the use of a stock liquidity measure 

variable in the baseline Campbell et al. (2008) model improves the predicting power of the discrete-

time duration-dependent hazard model. Additionally, the average stock liquidity of the bankruptcies 

sample (419 firms) is lower than the average stock liquidity of the non-bankruptcies sample (47,233 

firms). More specifically, the turnover and Amihud (2002) liquidity ratios of the bankruptcies sample 

                                                             
1 Chai, D., Faff, R. & Gharghori, P. (2010), "New evidence on the relation between stock liquidity and measures of trading 

activity." International Review of Financial Analysis, Vol. 19, No.3: pp. 181-192., classify the liquidity measures into four 
categories: trading cost, price impact/depth, resilience and trading speed/frequency. Goyenko, R. Y., Holden, C. W. & 
Trzcinka, C. A. (2009), "Do liquidity measures measure liquidity?" Journal of Financial Economics, Vol. 92, No.2: pp. 153-
181. classify the liquidity measures into two categories: low-frequency spread proxies and low-frequency price impact 

proxies. 
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are approximately 2.5 times higher than those of the non-bankruptcies sample. The Florackis (2011) 

liquidity ratio of the bankruptcies sample is roughly twice that of the non-bankruptcies sample, and 

the Zero-Return ratio of the bankruptcy sample is 1.5 times higher than that of the non-bankruptcy 

sample.  

The remainder of the paper is organised as follows. Section 2 discusses the methodology. Section 3 

describes the data sources and variables. Section 4 presents the results. Section 5 concludes.  

2. Methodology 

2.1.  Discrete-Time Duration-Dependent Hazard Model 

We use a discrete-time duration-dependent hazard method, used by Bauer and Agarwal (2014) and El 

Kalak and Hudson (2016), to examine the effect of stock liquidity on the probability of failure of 

SMEs by following the model developed by Campbell et al. (2008). Bauer and Agarwal (2014) 

compare the accuracy of several bankruptcy prediction models and conclude that the hazard models 

are more accurate than the z-score and contingent claims models, with their results still being valid 

when the economic value of each model is considered. Hwang (2012) shows that there are advantages 

in using a discrete-time duration-dependent hazard rate, since it allows, for instance, the coefficients 

of the firm-specific predictors to be dynamic over time. Nam et al. (2008) contend that the application 

of discrete-time duration-dependent hazard model can be comparable to the application of a panel 

logistic model incorporating a macro-dependent baseline hazard.  

The firm i’s conditional probability of default in the time interval t, given it survives up to this time is 

given by the discrete time hazard function (𝜆):  

  𝜆(𝑡\𝑋𝑖,𝑡) = 𝑃𝑟(𝑇 = 𝑡\𝑇 ≥ 𝑡, 𝑋𝑖,𝑡)               (1) 

where T is a discrete time failure, T = t means a failure within the time interval t, and 𝑋𝑖,𝑡 is the value 

of covariates of firm i up to the time interval t. 

The hazard model is defined as follows: 

   

    ℎ(𝑡\𝑋𝑖,𝑡) = ℎ(𝑡\0) . exp {𝑋𝑖,𝑡
` 𝛽}                     (2) 

where ℎ(𝑡\𝑋𝑖,𝑡) is the individual hazard rate of firm i at time t. 

The discrete hazard model suits fairly with the features of our empirical data because it is coherent 

with the binary nature of our model dependent variables and the time-series, and the cross-sectional 

nature of the dataset. In line with previous literature, we estimate our hazard models using a discrete-

time framework with random effects, controlling for unobserved heterogeneity and shared frailty, 

given by Equation (3).  
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  𝑃𝑖,𝑡 =  
𝑒

𝛼(𝑡)+ 𝛽𝑋𝑖,𝑡

1+ 𝑒
𝛼(𝑡)+ 𝛽𝑋𝑖,𝑡

      (3) 

where a(t) is the time-varying covariate which captures the baseline hazard rate, β is the coefficient 

value of the covariate x, and 𝑃𝑖,𝑡  represents the probability that the bankruptcy of firm i occurs at time 

t. 

2.2. Hazard Rate Specification 

If all the covariates are equal to zero, there are numerous techniques to proxy the baseline hazard 

function, a(t), for instance, using the log (t’), where t’ is the survival period, a polynomial in survival 

time, a fully non-parametric, or the piece-wise constant (Jenkins, 2005). In order to choose the most 

appropriate method, we have to estimate and analyse first the survival and the hazard curves.  

Figure 1A shows that the survival probability as a function of the firms’ age, estimated using the 

Kaplan-Meier estimator, and our sample average survival probability decreases to around 0.85 as 

firms’ age increases reaching twenty years, being henceforth more or less constant. We estimate the 

hazard model curve to decide about the appropriate method to be used to determine the baseline 

hazard.  

Figure 1B shows the hazard rate curve as a function of the firms’ age, where we can see that the 

hazard rates differ significantly according to the age groups. Therefore, we use a fully non-parametric 

baseline hazard model with age dummy variables to define the baseline hazard rate (Jenkins, 2005). 

The number of age-specific dummies is equal to the maximum survival time of the dataset (i.e., 29 

years), nevertheless, we generate 28 age-dummies to avoid perfect multicollinearity that can arise 

from the dummy variable trap.  

[Insert Figure 1 here] 

2.3. Robustness Tests 

2.3.1. Predictive Ability Test 

To test the models predictive ability, we carry out a bankruptcy out-of-sample prediction test, parallel 

to that used by Shumway (2001), on the period (2009-2013), and re-calculate our estimations made on 

data for the time period between 1984 and 2008. Subsequently, we rank firms into deciles, year by 

year, according to the bankruptcy probabilities, where firms that are more probable to default in the 

next year are in the first decile. Then we determine for each decile the percentage of firms that have 

defaulted. The model with the best performance is the one that has a higher percentage of defaults in 

the top deciles.  

2.3.2. Receiver Operating Characteristics Curve 
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The receiver operating characteristics curve (ROC) is a widely used measure for evaluating the 

accuracy of the predictive power of a model. ROC curves identify the true positive rate against the 

false positive rate as the threshold to discriminate changes between solvent and insolvent firms. The 

area under the ROC curve (AUROC) indicates the accuracy of the predictive power of the model, 

where “1” means a perfect model (Anderson, 2007). 

3. Data Sample and Regression Variables  

3.1.  Data Sample  

Our dataset comprises information on SMEs bankruptcies for the US market over the time period 

between 1984 and 2013. We define an SMEs firm as a firm with no more than 500 employees and an 

average yearly turnover below $7.5 million. 2 We use two main sources for the data collection: the 

Compustat security database, for stock prices, trading volumes and shares outstanding, and the 

Compustat-Fundamentals Annual database, for accounting information.  

In line with previous studies, we exclude the SMEs operating in the financial, insurance and utility 

sectors. The SMEs operating in the financial, insurance that were eliminated from our sample have 

industrial classification (SIC) codes that range between 6,000 and 6,999. The SMEs operating in 

regulated utility markets have industry codes are between 4,900 and 4,949. We also removed from our 

sample non-US firms and observations with missing data regarding the control variables or dependent 

variables. Our final data sample comprises information on 4,656 healthy firms and 419 bankrupt firms 

and our panel data has 47,652 observations.  

To eliminate the possibility of any wrong entries in our sample, we only consider observations with 

positive values for the common equity, total assets, stock price at the end of the fiscal year and 

number of shares outstanding. We control for the industry effect by categorising the SMEs into nine 

distinctive industry categories, and extreme outliers were eliminated. We winsorised our independent 

variables between the 5th and the 95th percentiles and lagged the covariates by one-time period to 

ensure that the information used was available at the beginning of the time periods.  

Table 2 shows the distribution of our data sample over time sample time period.  

[Insert Table 2 here] 

Among other information, the above results reveal that between 1989 and 1993 the percentage of 

bankruptcies was significantly higher than for the rest of the sample time period and that the 

percentage of bankruptcies has been decreasing gradually since 1991. 

[Insert Figure 2 here] 

                                                             
2 For further details see “Small Business Administration” (SBA).  https://www.sba.gov/. 
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Table 3 shows how the 419 identified bankruptcies are distributed across industries and reveals that 

the manufacturing industry is the industry where there is a higher percentage of bankruptcies, 40.8%, 

followed by the Public Administration, Services, and Mineral industries, with 17.2%, 14.8%, and 

11.2%, respectively.  

[Insert Table 3 here] 

Table 4 shows how the 419 bankruptcies are distributed across the Stock Exchanges where the SMEs 

are listed. We conclude that most of the bankruptcies are related to firms that are not listed on the 

NYSE, AMEX, and NASDAQ. 

[Insert Table 4 here] 

3.2. Regression Variables 

3.2.1. Dependent variable 

According to our methodology, an SME fails if it files for legal bankruptcy proceedings (i.e., chapters 

7 and 11). In the Compustat database firms are classified as bankrupt if they have a “TL” footnote on 

the status alert (i.e., Data item STALT), indicating that the firm is in a process of bankruptcy or 

liquidation. Therefore, our dependent variable takes the form of a binary variable which equals “1” if 

a firm is classified as bankrupt and “0” otherwise. 

3.2.2. Liquidity Measures 

The liquidity of a stock is characterized by its resiliency, tightness, and depth. The resiliency refers to 

the speed at which the stock prices bounce back to equilibrium after a large trade, the tightness refers 

to the transaction costs, i.e., the bid-ask spread, and the depth refers to the ability of the market to 

absorb a large quantity of trade without affecting significantly the market price.  

Following previous studies, for instance, those of Fang et al. (2009)) and Hasbrouck (2009), we select  

common stocks, stocks that have at least 200 active trading days in a year, and the exchange, ticker, 

symbol, or CUSIP does not change over the year. For the zero ratio of liquidity, we do not consider 

stocks where the number of missing daily returns or zero daily returns exceeds 80 per cent of the 

annual trading days.  

3.2.2.1. Turnover Ratio 

The stock turnover ratio is often used to represent the average holding period of stocks (Atkins and 

Dyl, 1997). It is defined as the ratio of the number of shares traded to the number of shares 

outstanding, and determined as follows: 

 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑖,𝑦 =  
1

𝐷𝑖,𝑦
 ∑ 𝑉𝑜𝑙𝑖,𝑑,𝑦/𝑆ℎ𝑎𝑟𝑒𝑖,𝑑,𝑦

𝐷𝑖,𝑦

𝑑=1
                 (4) 
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where 𝑉𝑜𝑙𝑖,𝑑,𝑦 is the trading volume for stock i in day d of year y,  𝑆ℎ𝑎𝑟𝑒𝑖,𝑑,𝑦 is the number of shares 

outstanding for stock i in day d of year y, and 𝐷𝑖,𝑦  is the number of daily observations for stock i in 

year y.  

The smaller the turnover ratio, the longer is the average holding periods, therefore, there is a positive 

relationship between the turnover ratio and the stock liquidity.  

3.2.2.2. Amihud (2002) illiquidity ratio 

The Amihud (2002) illiquidity ratio is defined as follows: 

𝑅𝑡𝑜𝑉𝑖𝑦 =
1

𝐷𝑖𝑦
∑ (

⃒𝑅𝑖𝑑𝑦⃒

𝑉𝑖𝑑𝑦
)

𝐷𝑖𝑦

𝑑=1

     (5) 

where 𝑅𝑖𝑑𝑦  and  𝑉𝑖𝑑𝑦  are, respectively, the return and the monetary trade volume of stock i on day d 

at year y, and 𝐷𝑖𝑦 is the number of observations days in year y for stock i.  

This ratio measures the absolute percentage price change per dollar of daily trading volume or the 

daily price impact of the order flow. It measures directly the impact of a monetary unit of trading 

volume on the stock return and, therefore, the greater the reaction of the stock’s return to a unit 

change in the trading volume, the more illiquid is the stock.  

3.2.2.3. Florackis et al. (2011) illiquidity ratio 

It has been noticed that the Amihud (2002) illiquidity ratio neglects the trading frequency dimension 

of stock liquidity. According to Grossman and Miller (1988), the illiquidity ratio is usually obtained 

based on averaged price changes and averaged trading volume from the past and, therefore, cannot 

answer the question of how the stock price is influenced by the sudden arrival of a large trade. In 

addition, Cochrane (2005) highlights the fact that the Amihud (2002) ratio is much higher for small 

capitalization stocks, which would mean that small capitalization stocks are automatically more 

illiquid than big capitalization stocks. Based on this criticisms, Florackis et al. (2011) suggest an 

alternative illiquidity ratio that considers the stock’s trading volume instead of the stock’s turnover 

ratio, determined as follows: 

𝑅𝑡𝑜𝑇𝑅𝑖,𝑑,𝑦 =
1

𝐷𝑖,𝑦
∑ (

⃒𝑅𝑖,𝑑,𝑦⃒

𝑇𝑅𝑖,𝑑,𝑦
)

𝐷𝑖𝑡

𝐷=1

     (6) 

where 𝑅𝑖,𝑑,𝑦 and 𝐷𝑖,𝑦  are defined as above.  

3.2.2.4. Zero-return illiquidity ratio 

The illiquidity ratio (Lesmond et al. (1999) is based on the number of days with zero return divided by 

the number of trading days, determined as follow: 



9 

 

    Zeroi,y =  
ZeroReturni,y

TradingDayi,y
        (7) 

where 𝑍𝑒𝑟𝑜𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑦 is the number of days with zero return for stock i over in year y, and 

𝑇𝑟𝑎𝑑𝑖𝑛𝑔𝐷𝑎𝑦𝑖,𝑦 is the number of trading days for stock i in year y. 

3.2.3. Control variables 

Bauer and Agarwal (2014) tested the Taffler (1983) z-score model, the hazard models of (Shumway, 

2001; Campbell et al., 2008), and the contingent claims model of Bharath and Shumway (2008), using 

a dataset comprising information on all non-financial firms listed on the London Stock Exchange over 

the  time period between 1979 and 2009. They used the ROC curve and the information content test to 

assess the accuracy of each of the above models and they conclude that the hazard models are 

superior.  

We use the hazard model of Campbell et al. (2008) as our baseline model for the estimation of the 

probability of bankruptcy. 

4. Results  

In this section we conduct a correlation test followed by an analysis of the descriptive statistics, 

perform a univariate analysis of each individual covariate in our list and provide our robustness tests 

results. We show our results for the multivariate models, for each liquidity measure and the Campbell 

model, and highlight the differences among models.  

4.1. Correlation Matrix and Descriptive Statistics 

Table 5 shows the correlation matrix for the variables in our regression model. It shows that all the 

correlation coefficients are statistically significant at the 5% level. Nonetheless, there is are low 

correlation coefficient between all pairs of variables except between the Amihud and the Florakis 

liquidity ratios (with a coefficient of 0.66).  

[Insert Table 5 here] 

In order to get a preliminary insight about any possible biases and variability that might arise among 

the variables in the multivariate models, we provide a summary of the descriptive statistics of the 

covariates used. Table 6 shows the mean and standard deviation for the bankruptcies and non-

bankruptcies sub-samples, as well as for the full sample. It shows that the liquidity measures for the 

bankruptcies sub-sample are higher than those for the non-bankruptcies sub-sample, which is in line 

with our expectation that firms with more illiquid stocks are more likely to go into bankruptcy. We 

find that the Amihud (2002) and the turnover ratios are roughly 2.5 times higher in the bankruptcies 

sub-sample than in the non-bankruptcies sub-sample, the Florackis et al. (2011) ratio for the 

bankruptcies sub-sample is twice as that for the non-bankruptcies sub-sample, and the Zero-return 

ratio of the bankruptcies sub-sample is 1.5 times that of the non-bankruptcies sample.  
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We conclude, therefore, that the stock liquidity is a good complementary variable to be taken into 

account when estimating the probability of SMEs bankruptcy.  

[Insert Table 6 here] 

4.2. Univariate Analysis 

Univariate analysis has been extensively advocated and employed in the literature to gain a 

preliminary insight of the discriminate power of the explanatory variables (Nam et al., 2008; Altman 

et al., 2010). In Table 7 we show our results for the univariate analysis estimated using the discrete 

hazard models for each covariate. We find that all the covariates are statistically significant in 

discriminating between bankrupt and nonbankrupt SMEs, and the all the covariate coefficients have 

the expected sign.  

[Insert Table 7 here] 

4.3.  Discrete-time Duration-dependent Hazard Models 

Table 8 shows our estimations for discrete-time duration-dependent hazard models, where the first 

model, includes the Amihud (2002) ratio, the second model, includes the Florakis et al. (2011) ratio, 

the third model, includes the Turnover ratio, and the fourth model includes the Zero-Return liquidity 

ratio. We use the Campbell et al. (2008) model as a baseline model where none of the above liquidity 

variables are included. We find that all liquidity measures have a positive relationship with the 

probability of failure, which indicates that less liquid stocks are associated with higher bankruptcy 

probability. Among all the liquidity ratios, the Amihud (2002) is the one with the highest statistical 

significance. In addition, the goodness of fit measures AIC and BIC, show that the Amihud (2002) 

model provides the best goodness of fit.3  

[Insert Table 8 here] 

4.4.  Robustness Tests  

Table 9 shows our results for the predictive ability test. We conclude that the Amihud (2002) model 

provides the highest classification performance, with roughly 60% discriminatory power for the top 

three deciles. The Florackis et al. (2011), Turnover, and Zero-return liquidity ratios provide a 

discriminatory power of roughly 57%, 54%, and 56%, respectively, and the discriminatory power of 

the Campbell (2008) model is about 54%. This means that adding a liquidity measure into the 

Campbell model increases its classification performance and helps to give better predictions for 

bankruptcy probability. 

[Insert Table 9 here] 

                                                             
3 Note that the lower the value of AIC, the better is the model’s fit. 
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The above findings are supported by the results provided in Figure 3, which show the area under the 

receiver operating characteristics curve (AUROC). The Amihud (2002) ratio has the highest within 

and out-of-sample AUROC, with values of 0.76 and 0.75, respectively, which show that it has a 

higher discriminatory performance than the other ratios. The Florakis (2011) ratio has the second best 

performance in terms of the robustness tests, with an AUROC value of 0.76 and 0.74 within and out 

of sample, respectively. The within and out of sample AUROC values for the Campbell model are the 

lowest among the models tested, which corroborates the view that the stocks’ liquidity variable when 

included in the bankruptcy models, enhances their predictive power.   

[Insert Figures 3-7] 

5. Conclusion  

Our results show that the liquidity of the stocks in the bankruptcies sample is lower than that of those 

in the non-bankruptcies sample. The relationship is robust across multiple liquidity measures. The 

Amihud’s and turnover ratios are approximately 2.5 times higher in the bankruptcies sample, the 

Florackis ratio of the bankruptcies sample is twice as high as that of the non-bankruptcies sample, and 

the Zero-Return ratio is 1.5 times higher. All the liquidity ratios support the hypothesis that firms with 

more illiquid stocks are more likely to enter into a bankruptcy process.  

Our classification performance test concluded that adding a liquidity measure variable to the model of 

Campbell (2008) helps to improve its predictive power. Estimation of the discrete-time duration-

dependent hazard models incorporating four different liquidity ratios confirm our expectations that 

each liquidity measure enjoys a positive relationship with the probability of failure indicating that less 

liquid stocks are associated with higher probability of bankruptcy.  
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Table 1: Definition of the regression model variables. 

Variable  Definition Expected Sign 

Dependent variable 

Fail Dummy variable that is equal to one if a company enters 

insolvency procedures and zero otherwise. 
  

Independent Variables   

1. Accounting variables 

NIMTA Net income to market-valued total assets  (Profitability)  (-) 

TLMTA Total liabilities relative to market-valued total assets 

(Leverage) 
(+) 

CASHMTA Cash over market-valued total assets (Liquidity) (-) 

MB The ratio of book value of total assets minus the book 

value of equity plus the market value of equity to book 

value of assets (Market to book value) 

(-) 

2. Market Variables 

RSIZE Logarithm of the firm's size over the aggregate market 

value of the S&P 500 index 
(-) 

EXRET Logarithm of the excess return over the s S&P 500 

"Return Index = RI"  
(-) 

SIGMA Standard deviation of daily return over the past 3 months (+) 

PRICE Log of Unadjusted or raw stock price and denominated in 

pence  
(-) 
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Table 2: The sample distribution over time. Columns (2) and (4) show for each year the number of firms which 

are bankrupt and the number of firms which are not bankrupt, respectively. Columns 3 and 5 show for each year 

the percentages of firms which are bankrupt and not bankrupt, respectively. Column 6 shows for each year the 

total observations of our sample. 

Year 

 

Bankruptcies  

(n)  

Bankruptcies  

(%) 

Non-bankruptcies 

 

Non-bankruptcies  

(%) 

Full Sample 

 

1984 11 0.96 1,135 99.04 1,146 

1985 10 0.84 1,176 99.16 1,186 

1986 11 0.90 1209 99.10 1,220 

1987 13 0.99 1290 99.00 1,303 

1988 15 0.99 1487 99.00 1,502 

1989 17 1.24 1354 98.76 1,371 

1990 31 2.17 1395 97.83 1,426 

1991 27 1.80 1473 98.20 1,500 

1992 20 1.36 1456 98.65 1,476 

1993 21 1.43 1451 98.57 1,472 

1994 17 1.08 1561 98.92 1,578 

1995 15 0.88 1698 99.12 1,713 

1996 22 1.23 1767 98.77 1,789 

1997 17 0.93 1815 99.07 1,832 

1998 19 0.99 1892 99.01 1,911 

1999 14 0.72 1935 99.28 1,949 

2000 9 0.40 2254 99.60 2,263 

2001 16 0.74 2135 99.26 2,151 

2002 13 0.64 2013 99.36 2,026 

2003 15 0.70 2135 99.30 2,150 

2004 17 0.81 2086 99.19 2,103 

2005 13 0.71 1813 99.29 1,826 

2006 11 0.62 1758 99.38 1,769 

2007 6 0.35 1692 99.65 1,698 

2008 7 0.46 1502 99.54 1,509 

2009 9 0.63 1423 99.37 1,432 

2010 7 0.56 1234 99.44 1,241 

2011 4 0.35 1145 99.65 1,149 

2012 6 0.59 1004 99.41 1,010 

2013 6 0.63 945 99.37 951 

Total 419 0.88 47,233 99.12 47,652 
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Table 3: The construction of industry-codes. The SIC codes are provided in column 1, the 

corresponding Industry is shown in column 2 and the respective industry names are given in column 

3. In columns 4 and 5 we provide the number and the percentage of bankruptcies for each industry 

over the sample time-period (1984 - 2013). 

IND  

Code 

SIC  

code 

Industry  

Name 

Bankruptcies (n) Bankruptcies (%) 

1 <1000 Agriculture, Forestry and Fisheries 2 0.48% 

2 1000 to less than 1500 Mineral Industries 47 11.22% 

3 1500 to less than 1800 Construction Industries 9 2.15% 

4 2000 to less than 4000 Manufacturing 171 40.81% 

5 4000 to less than 4899 
Transportation and 

Communications 
9 2.15% 

6 4950 to less than 5200 Wholesale Trade 15 3.58% 

7 5200 to less than 6000 Retail Trade 32 7.64% 

8 7000 to less than 8900 Service Industries 62 14.80% 

9 9100 to less than 10000 Public Administration 72 17.18% 

    Total Bankruptcies 419 100.00% 
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Table 4: The number and percentage of bankruptcies in our sample by the 

Stock Exchange where the firms are listed. 

Stock Exchange Bankruptcies (n) Bankruptcies (%) 

NYSE 21 5.01% 

AMEX 9 2.15% 

OTC Bulletin Board 140 33.41% 

NASDAQ 23 5.49% 

Other OTC 226 53.94% 

Total  Bankruptcies 419 100% 
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Table 5: The correlation coefficients between the variables used in our regression models, where ***, **, and * indicate that the 

correlation coefficient is significant at 1%, 5%, and 10% level respectively. 

 
  Amihud Florakis Turnover Zero-return NIMTA TLTMA EXRET RSIZE SIGMA CASHMTA MB 

Amihud 1 

          
Florakis 0.66** 1 

         
Turnover 0.03** 0.04** 1 

        
Zero-Return 0.21** 0.21** 0.05** 1 

       
NIMTA -0.03** -0.08** -0.02** -0.10** 1 

      
TLTMA 0.20** 0.18** 0.04** 0.27** 0.05** 1 

     
EXRET -0.03** -0.01** -0.02** -0.05** 0.42** 0.07** 1 

    
RSIZE -0.32** -0.39** -0.06** -0.37** 0.33** -0.40** 0.29** 1 

   
SIGMA 0.36** 0.42** 0.04** 0.14** -0.35** 0.20** -0.25** -0.56** 1 

  
CASHMTA -0.08** -0.13** -0.04** -0.10** -0.08** -0.19** 0.09** 0.08** -0.14** 1 

 
MB -0.19** -0.30** -0.02** -0.03** -0.12** -0.33** -0.13** -0.03** 0.23** -0.35** 1 
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Table 6: The descriptive statistics (mean and standard deviation) of the variables used 

in our regression model for the bankruptcies, the non-bankruptcies and the full samples 

and the liquidity measures. 

Variable 

Bankruptcies 

Sample 

Non-Bankruptcies 

Sample 

Full 

Sample 

  Mean SD Mean SD Mean SD 

Liquidity Measures 

Amihud. (2002) 0.02 0.07 0.01 0.04 0.01 0.04 

Florakis et al. (2011) 1.55 4.23 0.75 3.24 0.80 4.10 

Turnover 0.35 0.42 0.14 0.31 0.15 0.51 

Zero-return 0.49 0.29 0.32 0.26 0.32 0.26 

Control Variables 

      

NIMTA -0.19 0.24 -0.10 0.18 -0.10 0.18 

TLTMA 0.56 0.31 0.30 0.25 0.30 0.26 

EXRET -0.09 0.14 -0.03 0.08 -0.03 0.08 

RSIZE  -14.45 2.09 -12.74 1.77 -12.75 1.77 

SIGMA 1.91 1.52 1.13 0.89 1.13 0.90 

CASHMTA 0.09 0.16 0.12 0.15 0.12 0.15 

MB 3.58 3.81 3.38 3.36 3.38 3.36 

PRICE -1.29 1.88 0.54 1.71 0.53 1.72 
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Table 7: The coefficients obtained from Univariate Regression Analysis of respective 

covariates. The coefficients estimated using discrete-time duration-dependent hazard 

function. ***, **, * indicate that the regression coefficient is significant at 1%, 5%, and 10% 

level, respectively. 

Variable 
SMEs 

Coefficient SE Chi^2 

Liquidity measures 
   

Amihud 2.65*** 0.92 8.19 

Florakis 0.10*** 0.01 5.65 

Turnover 0.04** 0.13 3.69 

Zero-Return 1.50*** 0.35 17.62 

Control variables 
   

NIMTA -3.04*** 0.28 111.34 

TLTMA 4.04*** 0.26 229.45 

EXRET -7.29*** 0.70 108.34 

RSIZE  -0.72*** 0.04 273.87 

SIGMA 0.71*** 0.05 142.61 

CASHMTA -1.89*** 0.53 12.59 

MB -0.01*** 0.02 0.57 

PRICE -0.79*** 0.04 337.53 
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Table 8: This table reports the results of the estimations corresponding initially to the Campbell (2008) model and subsequently incorporating  Amihud 

(2002), Florakis et al. (2011), Turnover and Zero-Return liquidity ratios. For each of this models, we report our results from the multivariate hazard analysis 

and the goodness of fit measures, where ***, **, * indicate that the coefficients are significant at the 1%, 5%, and 10% level, respectively. 

     

Variable  
Campbell (2008) Amihud (2002) Florakis et al. (2011) Turnover Zero-return 

Coefficient SE Coefficient SE Coefficient SE Coefficient SE Coefficient SE 

Amihud (2002) 
  

1.83*** 1.50 
      

Florackis et al. (2011) 
    

0.78** 0.52 
    

Turnover 
      

0.33** 0.23 
  

Zero-Return                 0.09** 0.02 

NIMTA -0.96* 0.50 -0.95* 0.50 -0.87* 0.50 -0.96* 0.50 -0.85 0.51 

TLTMA 3.55*** 0.45 3.59*** 0.45 3.67 0.45 3.54*** 0.45 3.61*** 0.45 

EXRET -3.30*** 0.96 -2.96*** 1.00 -2.42** 1.00 -3.33*** 0.97 -3.06*** 0.98 

RSIZE  -0.28*** 0.12 -0.29*** 0.12 -0.26** 0.12 -0.28*** 0.12 -0.31** 0.12 

SIGMA 0.15** 0.09 0.16* 0.09 0.18** 0.09 0.15* 0.09 0.13 0.09 

CASHMTA 1.18 0.83 1.26 0.83 1.30 0.82 1.22 0.83 1.18 0.83 

MB 0.01 0.03 0.02 0.03 0.04 0.03 0.01 0.03 0.02 0.03 

PRICE -0.44*** 0.11 -0.45*** 0.11 -0.54*** 0.11 -0.44*** 0.11 -0.45*** 0.11 

Constant -16.49 3.12 -16.52*** 3.11 -15.51*** 3.09 -16.44***   -16.53   

Age dummies  Yes 
 

Yes 
 

Yes 
 

Yes 
 

Yes 
 

Industry control  Yes 
 

Yes 
 

Yes 
 

Yes 
 

Yes 
 

Exchange Control  Yes   Yes   Yes   Yes   Yes   

Wald chi2  265.26 
 

272.07 
 

269.05 
 

266.22 
 

267.12 
 

Log Likelihood  -937.61 
 

-931.18 
 

-936.52 
 

-937.11 
 

-936.77  
 

AIC 1962.23 
 

1948.36 
 

1958.05 
 

1960.23 
 

1959.54 
 

BIC 2339.64   2325.54   2335.23   2337.41   2336.72   

Number of obs. 47,652   47,652   47,652   47,652   47,652   
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Table 9: The classification performance of the measures provided by the Campbell (2008), 

Amihud (2002), Florakis et al. (2011), Turnover and Zero-Return models, over the period 

between 2009 and 2013. The models with better classification performance have higher 

percentage at the top deciles. 

 

  

  

 

Decile Campbell (2008) Amihud (2002)  Florakis et al. (2011) Turnover Zero-return 

1 22.18% 26.89% 24.83% 23.71% 24.12% 

2 16.52% 17.08% 17.75% 16.18% 16.97% 

3 15.12% 14.30% 14.55% 14.20% 14.65% 

4 12.78% 14.44% 11.83% 13.47% 12.99% 

5 9.25% 9.06% 8.82% 9.07% 8.57% 

6 , 10 24.15% 18.23% 22.22% 23.37% 22.70% 

Total 100.00% 100.00% 100.00% 100.00% 100.00% 
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Figure 1: The estimated curves based on the Kaplan-Meier estimator, where the left-hand side figure (1A) 

represents the survival curve and the right-hand side represents the hazard curve (1B), whereas the age of firms 

in years is represented by the “Age”.  
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Figure 2: The evolution of the percentage of bankruptcies over the time period between 

1984 and 2013. 

 

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%



25 

 

Figure 3: This figure shows the Area Under the Receiver Operating Characteristics Curve (AUROC) for the 

Amihud (2002) model. The left-hand side figure shows the out of sample AUROC from 2009 to 2013 and the 

right-hand side figure shows the within sample AUROC from 1984 to 2008. 

 

 

Figure 4: This figure shows the Area Under the Receiver Operating Characteristics Curve (AUROC) for the 

Florakis (2011) model. The left-hand side figure shows the out of sample AUROC from 2009 to 2013 and the 

right-hand side figure shows the within sample AUROC from 1984 to 2008. 
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Figure 5: This figure shows the Area Under the Receiver Operating Characteristics Curve (AUROC) for the 

zero return model. The left-hand side figure shows the out of sample AUROC from 2009 to 2013 and the right-

hand side figure shows the within sample AUROC from 1984 to 2008. 

 

 

 

Figure 6: This figure shows the Area Under the Receiver Operating Characteristics Curve (AUROC) for the 

Turnover model. The left-hand side figure shows the out of sample AUROC from 2009 to 2013 and the right-

hand side figure shows the within sample AUROC from 1984 to 2008. 
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Figure 7: This figure shows the Area Under the Receiver Operating Characteristics Curve (AUROC) for the 

Campbell et al. (2008) model. The left-hand side figure shows the out of sample AUROC from 2009 to 2013 and 

the right-hand side figure shows the within sample AUROC from 1984 to 2008. 
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