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Abstract—This paper reviews and extends a method for the 

semi-analytical solution of the coupled linear differential 

equations that describe the linear mode coupling arising in few-

mode fibers due to waveguide imperfections. The semi-analytical 

solutions obtained proved to be accurate when compared to 

numerical solution methods. These solutions were integrated 

into a multi-section model with split-steps for mode dispersion 

and mode coupling. Simulations using this model matched the 

analytical predictions for the statistics of group-delays in few-

mode fiber links, considering different coupling regimes with 

and without mode delay management. 

 
Index Terms—Mode-division multiplexing, multimode fiber, 

few-mode fiber, linear mode coupling. 

 

I. INTRODUCTION 

ODE-DIVISION MULTIPLEXING over few-mode 

fibers (FMFs) has been proposed as a next-generation 

solution to overcome the impeding installed capacity 

exhaustion of current single-mode fibers (SMFs) [1]-[2]. 

However, these systems require significantly higher equalizer 

complexity given the overall group-delay (GD) spread due to 

differential mode delay (DMD) and linear mode coupling [2]-

[4]. To correctly estimate the GD spread and the performance 

of a MDM equalizer, the mode coupling arising from the 

waveguide imperfections [5], need to be correctly modelled. 

Thereby, intense research has been accomplished to study the 

statistics of GDs analytically [6]-[10] and numerically [13]-

[17].  

A significant number of works assume systems operating 

in the strong mode coupling regime, e.g. [6] and [10], and 

consider a multi-section model where mode coupling is 

introduced through random unitary matrices each section, 

where the length of each section must be longer than the 

correlation length. However, few-mode fibers ([18]-[21]) 
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usually operate in the weak or intermediate coupling regime 

for transmission distances 100-1000km. Even tough strong 

mode coupling can be assumed within groups of degenerate 

modes [11], the mode coupling between groups of non-

degenerate modes cannot either be considered negligible or 

strong. Note that, nonlinear simulation requires a step-size 

much smaller than nonlinear effective length (~20 km) [22], 

thus the generation of coupling matrices with the appropriate 

level for 10-100m is required. Therefore, models considering 

random unitary matrices do not cover many of the cases of 

interest. 

To model systems operating in the weak and intermediate 

coupling regime, the introduction of coupling in the form of 

misaligned fiber splices in each section of a multi-section 

model was proposed [14]. In this case, the mode coupling 

matrices are obtained using an overlap integral approach. 

However, the matrix elements obtained this way present two 

limitations. First, even though the coefficients are effective in 

describing the mode power distribution, they fail to consider 

phase effects thereby appropriate only for incoherent sources 

[24]. Second, the coupling elements inevitably include mode 

dependent loss given the nature of the overlap integral. Even 

though splices do introduce mode dependent loss, splices are 

here being used as a discrete representation of continuous 

imperfections which may introduce or not introduce mode 

dependent loss. Therefore, a model able to separate mode 

coupling from mode dependent loss is preferable. 

Recently, the authors have presented a semi-analytical 

model capable of describing the linear mode coupling for 

fibers operating in the intermediate coupling regime [15]-

[16]. Using such method, the authors matched the analytical 

predictions for group-delay in few-mode fiber links [25]-[26].  

In this paper, we review and extend the derivation of a 

semi-analytical solution method for the linear mode coupling 

equations, and validate the group-delay spreading predictions 

for different coupling regimes and different link 

configurations. Section II presents the coupled differential 

equations that describe the linear mode coupling and the well-

known solutions for two modes propagation case. Section III 

presents the semi-analytical solution method proposed for the 

higher-order modes case including the explicit solutions for 

three modes and the symbolic computation code for higher-

order modes cases. Section IV provides the validation of the 

semi-analytical solutions obtained for one coupling segment. 

Section V described the proposed multi-section model using 
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the semi-analytical solutions including a validation of the 

accumulated mode coupling evolution with transmission 

length. Section VI presents a validation of the multi-section 

model for non-GD managed links by matching different 

analytical predictions for the statistics of the GDs, namely: 

standard deviation, probability density function, and 

cumulative distribution function. Section VII presents a 

validation of the multi-section model for GD managed links 

by matching the analytical predictions for standard deviation 

of the GDs. Conclusions are drawn in Section IV. 

II. COUPLED-MODE THEORY FOR FEW-MODE FIBERS 

The linear mode coupling in few-mode fibers is due to 

refractive-index inhomogeneities or small deviations of the 

core-cladding boundary caused by perturbations introduced 

during the fabrication process or by mechanical stresses 

imposed on the fiber in the field. Fig. 1 (a) shows a fiber 

dielectric waveguide with distorted core-cladding boundary. 

These imperfections cause the modes of the fiber to couple 

among each other. When exciting a pure mode at the fiber 

beginning, some of its power is transferred to other guided 

modes. This power transfer results in signal distortion because 

each guided mode travels at its own characteristic group 

velocity. Therefore, the equalization of the received signal must 

span over a time window that covers all the significant 

distortions undergone by a given information symbol. 

Mode coupling may even be a desirable effect. The mode 

delay spread can be reduced by introducing a significant 

amount of distributed coupling among all guided modes 

which introduces a sufficiently strong averaging effect of the 

different mode group velocities, see section V. However, in 

mode delay compensated fiber links, mode coupling may or 

may not be desirable, as discussed in section VI. 

A. Coupled-Mode Equations 

The perturbations that couple the ideal modes of the ideal 

waveguide can be described by variations of the dielectric 

tensor. This is, the perturbed dielectric tensor (εp) as a 

function of the space coordinates is written as: 
 

 εp(x,y,z) = εu(x,y) +Δε(x,y,z) (1) 
 

where εu(x,y) is the unperturbed part of the dielectric tensor, 

thereby invariant with the fiber longitudinal coordinate z, and 

Δε(x,y,z) represents the dielectric perturbation, which in the 

general case varies with all space coordinates. Eq. (1) can 

adequately describe the core-cladding perturbations in Fig. 1 (a). 

If an arbitrary field of frequency  is excited at z = 0, the 

propagation of this field in the unperturbed dielectric 

waveguide can be expressed as a linear combination of the 

ideal modes: 
 

 E(x,y,z,t) = ∑Am(z,t)Em(x,y)ej(wt-mz) (2) 
 

where m is the mode index, Am(z,t) is the slowly varying 

mode field envelope, m is the mode propagation constant at 

, and Em(x,y) is the electric field distribution.  

In the presence of a dielectric perturbation Δε(x,y,z), the 

coupling between the ideal modes are described by the 

following coupled-mode equations [5], [7], [23]: 
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where lm is the lth order coefficient of a Taylor series 

expansion of m() centered at the carrier frequency . Cm,n 

are the coupling coefficients given by the area integral of the 

dot product of the electrical fields of mode m and mode n, 

over the area where the permittivity perturbation Δε(x,y,z) ≠ 0. 

For the general case, where Δε is varying continuously 

with z, so is Cm,n, the solution of the coupling operator in (1) 

can only be achieved using numerical methods, e.g. Runge-

Kutta method. However, the usage of these methods is 

computationally inviable for simulation of long-haul 

transmission links. To overcome such limitation, we propose 

a model that discretizes the core-cladding fluctuations by 

dividing the fiber in multiple sections, each with a random 

displacement of the core center position constant along the 

section. In this case, the dielectric tensor is given by: 
 

 εp(x,y,z) = εr0(x+x(z),y+y(z),z) (5) 
 

where x and y are the random displacement of the abscissa 

and ordinate coordinates, respectively. Fig. 1 (b) shows a 

diagram of the discretization of the core-cladding fluctuations 

given the proposed method. In this case, each section has 

constant coupling coefficients. Therefore, in theory it should be 

possible to find (semi-)analytical solutions for the coupling 

operator present in (3).  

Assuming the fiber section length is much shorter than both 

the dispersion length LD = T0
2/|β2m| and the walk-off length 

LW = T0/|β1m-β1n|, where T0 is a measure of the pulse width, an 

approximate solution of (3) can be obtained by assuming the 

dispersive effects and linear coupling effects act 

independently. In the following, we will focus on finding a 

(semi-)analytical solution for the coupling operator, this is, 

we will be trying to solve: 
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Fig. 1. Fiber dielectric waveguide with distorted core-cladding boundary. 
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B. Coupled-Mode Equations Solution for Two-Mode Fibers 

The simple case of a two-mode fiber, where only the 

coupling between the LP01 mode (m = 1) and the LP11 mode 

(n = 2) is present, (6) can be solved analytically in each 

section [5]: 
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where  = 01 - 02, s2 = *+(/2)2, and  = C12 = C21*. 

From (7) and (8), it can be concluded that the coupling 

strength depends on the relation between ||2 and   

Fig. 2 a) and Fig. 2 b) show the mode powers |A1|2 and |A2|2 

as functions of the interaction distance z, for ∆β = 0 and for 

∆β = 4|κ|, respectively, with κ = π/2. Fig. 2 shows that the 

coupling efficiency is 100 % when the phase mismatch is 

zero, a full power swap happens for every |κ|z odd multiple of 

π/2. However, if the phase mismatch is different from zero 

the coupling is no longer the power coupling is incomplete, 

for ∆β = 2|κ| the maximum coupling is ½. 

 For higher number of modes, the dependence of the 

coupling strength on the phase mismatch and on the coupling 

coefficient should follow similar dependencies. Next section 

presents a solution method for higher number of modes.  

III. SEMI-ANALYTICAL SOLUTIONS FOR 

HIGHER-ORDER MODE FIBERS 

 For the simple case of a fiber with two modes, (6) can be 

easily solved by hand, however, this method becomes endless 

for higher number of modes. The use of a numerical method 

for the solution of (6), such as the Runge-Kutta-Fehlberg 

(RK45) method, is also not an option since it would be 

necessary to solve these equations for each fiber section with 

different fiber displacements, thus leading to computation 

times that are unaffordable in most applications. Therefore, 

an analytical approach is desirable.  

Our approach starts by taking the Fourier Transform of (6) 

on z to avoid the complex exponentials, obtaining:  
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where wz is the spatial frequency and ∆βm,n = 0m-0n. The 

system of equations (9) can be solved by substitution, thereby 

eliminating each Ap from all the equations for all p ≠ m, 

obtaining an equation for Am which can be written as: 
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where R is equal to 2(M - 1), with M equal to the number of 

modes, and am,r are functions of Δβmn and Cmn. The process 

described must be performed for m = 1, ..., M to obtain 

equations like (10) for each mode. Now, by applying the 

inverse Fourier transform to (10), a differential equation with 

constant coefficients is obtained which can be solved using 

the method of the characteristic polynomial, obtaining: 
 

   ,1 ,

,1 ,...m m Rs z s z

m m m RA z b e b e    (11) 
 

where sm,r are the characteristic polynomial roots and bm,r are 

constants that can be determined from the initial conditions at 

z = 0 obtained by differentiating (6), (dz
iAm)z=0, and equating 

the results. Finally, the coefficients bm,r are the solutions of 

the linear equations system:  
 

 
   

 

  

0

0,1 , ,1

2 1 2 1 2 1
,,1 ,

0

z m zm m N m

M M M
m Rm m N m m

z

d As s b

bs s d A



  



                          

 (12) 

 

The solution method described is easily applied using a 

software tool with symbolic computation capability. We have 

used the Symbolic Math Toolbox from Matlab® to generate 

equations for am,r and (dz
iAm)z=0 as function of ∆βmn and Cmn. 

Finally, the derived equations can be written into a 

conventional text file and compiled using any programming 

language (we used a C-compiler). Afterwards, those 

equations can be evaluated allowing to find the roots of the 

polynomials in (10) and to solve the system of linear 

equations in (12). 

In summary, instead of numerically solving a coupled-

system of M differential equations (6), the method proposed 

requires the finding the roots of a 2(M - 1) order polynomial, 

for which efficient and accurate algorithms are available, e.g. 

Bairstow’s method [28], and the solution of a system of linear 

equations (12). 

A. Analytical expressions for the three-modes case 

The analytical expression for am,r and (dz
rAm)z=0 as a 
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Fig. 2. Fiber dielectric waveguide with distorted core-cladding boundary. 
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function of ∆βm,n and Cm,n for M = 3 are given by equations 

(13) to (18), obtained executing the MATLAB code presented 

in Appendix. Replacing the ∆βm,n and Cm,n numeric values in 

the am,r analytical equations, the sm,r values can be calculated 

using algorithms for the calculation of polynomial roots. 

Moreover, (dz
rAm)z=0 values are obtained replacing the ∆βm,n 

and Cm,n numeric values in the analytical formulas. Finally, 

the system of linear equations (12) can be numerically solved.  

B. Analytical expressions for more than three-modes 

The analytical expression for am,r and (dz
rAm)z=0 as a 

function of ∆βm,n and Cm,n for M > 3 can be obtained 

executing Matlab code similar to that made available in the 

Appendix. However, the equations become too long to be 

printed here in full. The authors have made available the 

analytical equations for 6-modes and the respective 

MATLAB script for their derivation, at: 

http://doi.org/10.17036/researchdata.aston.ac.uk.00000206. 

 
 

1,0
12 13

2 2 2 21,1
12 12 12 13 13 23

1,2 2 2 2

12 13 12 12 12 13

1,3 2 2

13 12 12 23 12 13 23
1,4

2 2

12 12 13 13 12 12 13 23

1

2j  j 

 2

2  
j

 2 

( 2 )

a

a
C C C

a
C C

a
C C C C C

a
C C C C C

 

  

   

 

  

 
  

     
         
  

        
            

      











 (13) 

2,0
12 13

2 2 2 22,1
12 12 13 12 13 23

2,2 2 2 2 2

12 13 12 12 12 13 13 12

2,3 2 3

12 23 12 12 13 23
2,4

2 2 2

12 12 12 13 12 12 23 12 13 23

-1

3j +j

3 2

2 +  
j

2 2

( 2

a

a
C C C

a
C C C

a
C C C C

a
C C C C C C

 

  

    

 

   

 
   

        
  

        
          

 
       )

 
 
 
 
 
 
 
 
 
 

 (14) 

  

3,0
12 13

2 2 2 2
3,1

13 12 13 12 13 23

2 2 23,2
12 13 12 13 13 12

3,3 2 2 3

13 13 13 23 13 12 13 23

3,4
2

13 13 12 13 13 23 12 13 23

1

j 3j

3 2

j
2 2 2

2 2

a

a C C k

a
k C

a
C C C C C

a
C C C C C

 

  

   

  

   


     
        
  

       
            

 
      








 
 
 
 
 

 (15) 

1

12 2 13 3

12 12 1 23 3 13 13 1 23 2

12 12 2 13 13 3

12 12 2 13 3
0

1
12 23 13 1 23 21

1
12 12 1 23 23 32

1

13 12 23

1 0

13

j  j 

( ) ( )

( )

( )

(

j

z

z

z

z z

A

C A C A

C C A C A C C A C A

dB C A dB C A

C C A C A
d A

C C C A C A
d A

dB C A dB C A
d A

C C A
d A

C

 

    
 
  

  
   

     
       

   
  



13 3

23 12 1 23 3

13 13 1 23 23 2

12 12 12 1 23 3

13 13 13 1 23 2

2 2

12 12 2 13 13 3

)

( )

2 ( )

2 (   )

C A

C C A C A

dB C A dB C A

dB C C A C A

dB C C A C A

dB C A dB C A

 
 
 
 
 
 
 

  
  
  
  
  
   
       
       
   
     
     

 (16) 

2

12 1 23 3

12 12 2 13 3 23 13 1 23 2

12 12 1 23 23 3

12 12 1 23 3
0

2
12 13 13 1 23 21

2
12 12 2 13 13 32

2

13 12 23

2 0

23

j j

( ) ( )

( )

( )  

(

j

z

z

z

z z

A

C A C A

C C A C A C C A C A

C A C A

C C A C A
d A

C C C A C A
d A

C A C A
d A

C C A C
d A

C

 

 



 

    
 
   

  
   

     
        

   
  



13 3

23 12 1 23 3

13 13 1 23 23 2

12 12 12 2 13 3

23 23 13 1 23 2

2 2

12 12 1 23 23 3

)

( )

 2 ( )

2 ( )

 j

A

C C A C A

C A C A

C C A C A

C C A C A

C A C A

 





 

 
 
 
 
 
 
 

  
  
  
  
  
   
       
        
    
      
       

 (17) 

3

13 1 23 2

13 12 2 13 3 23 12 1 23 3

13 13 1 23 23 2

12 12 1 23 3
0

3
13 13 13 1 23 21

3
12 12 2 13 13 32

3

12 12 23

3 0

23

j j

( ) ( )

( )

( )  

(

j

z

z

z

z z

A

C A C A

C C A C A C C A C A

C A C A

C C A C A
d A

C C C A C A
d A

C A C A
d A

C C A C
d A

C

 

 



 

    
 
   

  
   

     
        

   
  



13 3

23 13 1 23 2

12 12 1 23 23 3

13 13 12 2 13 3

23 23 12 1 23 3

2 2

13 13 1 23 23 2

)

( )

2 ( )

2 ( )

j

A

C C A C A

C A C A

C C A C A

C C A C A

C A C A

 





 

 
 
 
 
 
 
 

  
  
  
  
  
   
       
        
    
      
      

 (18) 

C. Algorithm Complexity 

The RK45 method requires a step-size of a fraction of the 

beat-length between the two mode-groups most farther apart, 

which can easily be of the order of a millimeter or less [11]. 

In this way, to resolve a one millimeter beat-length, more 

than 104 and 106 steps are required for a transmission length 

of 1 and 100 meters, respectively. Each RK45 step requires 

six evaluations of a system of M equations (6), each equation 

with 2(M - 1) multiplications, thus totalizing 12M(M - 1) 

multiplication operations per step. 

The semi-analytical method proposed uses the Bairstow’s 

method to find the roots of M polynomials of order 2(M - 1). 

This method consists on the progressive division of the 

original polynomial by quadratic polynomials while adjusting 

the coefficients of the later. Thus, the method requires (M - 1) 

polynomial divisions of progressively lower complexity. 

Assuming the number of multiplications required to be the 

product of the number of terms of the polynomials involved, 

the ith-division requires [(2(M - 1) + 1) - 2(i - 1)](2+1), adding 

up to 3(M2 - 1) multiplication operations. Finally, this figure 

must be multiplied by the number of iterations for coefficients 

adjustment, which we cap to be lower than 100, and observed 

that in general only 20 repetitions were required. Thus, the 

total complexity is on the order of 60M(M2 - 1). 

Finally, the proposed semi-analytical method reduces the 

number of multiplications required by a factor from 280 to 

28000 when transmitting over 1 to 100 meters, for M = 6. 

These factors agree with the observed simulation times. 

http://doi.org/10.17036/researchdata.aston.ac.uk.00000206
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IV. SINGLE-SECTION MODELLING 

In this section, the semi-analytical solutions of section III 

are validated using the Runge-Kutta-Fehlberg (RK45) method 

[29]. The fiber considered for guides six linearly polarized 

(LP) modes: LP01, LP11a, LP11b, LP21a, LP21b, and LP02. It has a 

relative index gradient at the core–cladding interface 4.5×10-3 

and a core radius (w1) of 12.83 m, optimization details [27]. 

Table I shows the fiber characteristics at 1550nm (for the 

sake of clarity, the modes were numbered from one to six). 

Fig. 3 depicts the amplitude of Cm,n as a function of the fiber 

displacement vector for a radial displacement from 0 to 

0.3∙w1. Note that, the coupling coefficients were found to be 

real and symmetric has concluded in [23], therefore only Cm,n 

with n > m are shown. From Fig. 3, the pairs of modes with 

higher coupling strength can be identified, and it can be 

verified that the coupling between symmetric modes (LP01, 

for example) and anti-symmetric modes (LP11, for example) 

requires a non-symmetrical perturbation. The surfaces shown 

in Fig. 3 allow the rapid calculation of the coupling 

coefficients Cm,n using interpolation for a random 

displacement, as required for integration in a modified split-

step Fourier method (SSMF). 

In the following, the semi-analytical (SA) solutions are 

compared to the numerical solutions obtained using the RK45 

method. The variable-step width of the RK45 method is 

specified considering a relative error tolerance of 10−6 and an 

absolute error tolerance of 10−9. Fig. 4 shows the overlap of 

the modal powers given by the SA solutions and the modal 

powers given by the numerical method as a function of z, 

considering a fiber core displacement of ρd =0.08∙w1 and 

φd = π/3, for an even power distribution between the modes at 

the input. A very good agreement between the SA and 

numerical solutions can be noticed in Fig. 4 inset which 

zooms in the mode power evolution around 0.8 m. Similar 

agreement is obtained for different input conditions. 

To have a better measure of the error magnitude, the mean 

squared error (MSE) between the semi-analytical (SA) results 

and the numerical (NUM) results is calculated for each mode, 

MSEm, given by:  
 

   
2

1

1 N
SA NUM

m m n m n

n

MSE A z A z
N 

   (19) 

 

where ASA
m is the SA mode amplitude solution, ANUM

m is the 

numerical mode amplitude solution, and zn are the discrete 

points considered in a specific fiber length. MSEm has been 

calculated considering 105 discrete points equally spaced 

along a fiber with 1 m, considering ρd varying 0 and 0.08∙w1 

(1000 points equally spaced), and φd varying from –π to π 

(1000 points equally spaced). In all the cases tested the MSEm 

was always of the order of magnitude of the RK45 absolute 

tolerance, as verified by repeating the error calculation for 

different tolerance values. Therefore, it can be concluded that 

the semi-analytical method proposed provides an accurate 

estimative of the linear mode coupling taking place along a 

FMF. More importantly, using the semi-analytical method the 

computation time required to calculate the linear coupling 

along a fiber with a few meters is reduced by three orders of 

magnitude compared to the RK45 method which required 

tens of seconds executing on a standard personal computer 

operating at 2.8GHz.  

In conclusion, the semi-analytical solutions obtained enable 

a time efficient and accurate computation of the linear 

coupling occurring along the fiber length. They are therefore 

a valuable alternative to the numerical solution, which would 

not be practical due to computation time constraints. 

 
 

Fig. 4. Normalized mode power as a function of the fiber length, for uneven 

power distribution at the fiber input. The subscripts SA and RK45 were 
used for semi-analytical and numerical solutions, respectively. The inset 

shows the excellent agreement between SA and RK45 around 0.8 m. 

 

TABLE I 

FIBER PROPERTIES AT 1550 nm. 

 1-LP01 2-LP02 3-LP11a 4-LP11b 5-LP21a 6-LP21b 

Δβn
x 

0 7.4 3.7 3.7 7.4 7.4 

β(1)
1,n

(ps/km) 
0 -2.6 -0.4 -0.4 2.6 2.6 

Dn 
(ps/km/nm) 

22.2 21.5 22.2 22.2 21.8 21.8 

Sn 

(ps/km/nm2) 
66.4 61.5 66.2 66.2 63.7 63.7 

where  is the wave number. 
 

 
 

Fig. 3. Cm,n as a function of the fiber displacement vector, minimum and 

maximum values as (min, max). 
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V. MULTI-SECTION MODELLING 

We propose a multi-section model were the coupling 

strength is set using a given radial displacement and a 

uniformly distributed azimuthal displacement for each 

section. The radial displacement to be used depends not only 

on the target coupling strength but also on the fiber step 

length to be used. But first we quantitatively define the mode 

coupling strength and present its dependence on the radial 

displacement. 

A. Setting Mode Coupling Strength and Correlation Length  

The statistical nature of polarization mode dispersion 

(PMD) in SMFs is mainly determined by the correlation 

length, which is defined in terms of fiber mode coupling. In 

SMFs, the mode coupling is easily defined as there is only 

two polarizations, and the Lc is defined as the length for 

which the average power in the orthogonal polarization is 

within e-2 of the power in the launching polarization. In FMFs, 

the mode coupling strength can be quantified as the ratio 

between the average power in all the other orthogonal modes 

and average power remaining in the launching mode, after a 

certain distance. Thus, there are as many coupling strength 

values and Lc as the number of modes. Inevitable, the fiber 

mode m showing higher coupling strength will set an important 

reference for the study of the mode group-delay statistics. 

Finally, the mode coupling strength definition for FMFs is:  
 

XTm = ∑v≠m(Pv / Pm), (20) 
 

where Pv is the power of mode v, after a given fiber segment 

under test, when only the m mode was launched, where m is 

the mode that shows higher coupling strength. In the FMF 

case, we generalize Lc for mode m as the length for which 

(Pm - ∑v≠mPv) = e-2, this is XTm = [e2 - 1]/[e2 + 1] (-1.18 dB). 

In our multi-step model a given amount of coupling is set 

by selecting a fixed amount of radial displacement and 

selecting a random azimuth displacement given by a uniform 

distribution. In this way, the proposed model introduces a 

random amount of crosstalk per step that in average 

approximates the desired level. Fig. 5 shows the mode 

coupling strength averaged over the azimuth displacement, as 

a function of the normalized radial displacement, for a 6 LP 

mode fiber presented in section IV. Note that, coupling 

strengths are calculated considering degenerate modes such as 

LP11a and LP11b as one mode, e.g. XTLP11a,b equals to 

∑v≠LP11a,b{Pv / (PLP11a+PLP11b)}. In Fig. 5, the mode coupling 

strength only depends significantly on the mode being 

considered for displacements higher than 1 %. Such higher 

coupling for LP02 and LP21 can be explained noting they 

belong to the same LP mode group. Moreover, 

XTLP21 ≤ XTLP02 for any displacement in Fig. 5 because any 

power launched in LP21a couples preferentially with LP21b 

(and vice-versa) and in the second place to LP02. Given the 

higher values of XTLP02, we define Lc for this mode. Note that 

XTm values above 10 dB mean that almost all power launched 

in mode m has been transferred to other modes. 

In the literature, the mode coupling values of fabricated 

FMFs range from -50 dB/100m to -40 dB/100m for fibers 

with step-index or graded-index profiles [18], [19], going up 

to -28 dB/100m for coupled multi-core fibers [20] and 

-7 dB/100m for fibers with ring-index profiles [21].  

B. Mode Coupling Accumulation over Transmission Length 

In a multi-section model, the mode coupling accumulates 

section after section in such a way that in average should 

follow the same continuous growing function that was first 

derived to describe the accumulation of polarization coupling 

in polarization-maintaining fibers [30]: 
 

XT = tanh(hz) (21) 
 

where h is the mode coupling parameter (measured in m-1 

units) and z is the fiber length.  

To validate our multi-section model, we have run 10,000 

transmission simulations considering the 6-mode fiber 

presented in section IV. Fig. 6 shows the average XTLP02 as a 

function of the fiber length (L) from 10 m to 1000 km, 

considering a fiber section of 10 m and different values of 

coupling strength. Note that the dashed lines in Fig. 6 

represent the evolution predicted for (21) using the respective 

h coefficient. A very good agreement between the proposed 

multi-section model and (21) is noticeable. Furthermore, 

similar matches were obtained for other section sizes and 

respective radial displacements. 

The executable code to generate the coupling matrices for 

different strengths as presented in Fig. 6 are available at: 

http://doi.org/10.17036/researchdata.aston.ac.uk.00000206. 

C. Polarization Mode Coupling 

After a few meters, the two nearly degenerate polarization 

modes of each spatial mode strongly couple to each other and 

the FMF enters the polarization coupling state [7], [23]. Such 

propagation mode coupling can be described by a block 

diagonal matrix with a sequence of M/2 submatrices along the 

diagonal. Each of these 2 × 2 random unitary submatrices is a 

PMD transfer matrix [7]. 

The full coupling matrix for the ith-section is modelled as 

the product of two matrices: one block diagonal matrix 

 

Fig. 5. XTm averaged over the azimuth displacement as a function of the radial 

displacement. 
 

http://doi.org/10.17036/researchdata.aston.ac.uk.00000206
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describing the polarization mode coupling, and one matrix 

describing finite inter- and intra-mode group coupling (as 

described in Section III, IV, V-A and V-B). This approach 

follows a similar reasoning to that in [7] and [11] to deal with 

coupling processes having different correlation lengths. 

VI. GD STATISTICS IN NON-DELAY-MANAGED LINKS 

In previous work [31], it has been shown that the approach 

of considering principal states of polarization (PSPs) with 

well-defined GDs in SMFs, can be extended to FMFs. In 

FMFs, the coupled modes having well defined GDs are called 

principal modes (PMs). In both cases the statistics of the GDs 

are dependent on the linear coupling strength, thus the 

correlation length Lc. The coupling regimes may then be 

broadly defined as strong coupling when L >> Lc, weak 

coupling when L << Lc, and intermediate coupling otherwise. 

In the FMF case, the statistical properties of the GDs are well 

known for the two extreme regimes [6]-[10]. In the weak 

coupling regime, the GD spread grows linearly with distance 

and in the strong coupling regime grows with the square root 

of the distance. In the intermediate coupling regime, we have 

shown in [26] through simulation that the GDs statistics in 

SMFs can be extended to FMFs, at least for fibers guiding 3 

LP modes. At the same time, the complete analytical 

derivation of such extension was presented in [32]. 

The temporal spread of propagating pulse is determined by 

the modal dispersion (MD) vector τ, as defined for a 

generalized (M2 - 1)-dimensional Stokes space in [9] (M 

modes). Knowledge of the MD vector allows the extraction of 

the PMs and respective GDs as explained in [9]. Moreover, the 

square modulus of the MD vector is proportional to the sum 

of the GDs τi (with ∑τi = 0) [9]: 
 

2 2

1

M

i

i

M 


 τ  (22) 

 

In this way, it can be noted that ||τ||/M is the standard 

deviation of the GD vector [τ1, τ2, …τM], σgd. The MD vector 

has been used to explicitly determine the delay spread T in 

two limiting cases: one in which the PMs change rapidly 

across the signal bandwidth, and one in which the bandwidth 

of the PMs is much larger than the signal bandwidth. In the 

first case, T is a deterministic quantity and determined by σgd, 

T2 = E{||τ||2}/M2 = E{σgd
2} [10], where E{} denotes 

expectation. In the latter case, T is a random quantity given by 

maxi{τi} - mini{τi} [6], [9], determined by the GD PDF. 

In the following, we review the known MD statistics and 

use them to validate the multi-section model proposed in 

section V for a fiber guiding 6 LP modes despite the different 

coupling strengths between different pairs of modes 

belonging to different mode groups. The FMF presented in 

section IV is considered again, the modal and chromatic 

dispersion values are given in Table I. The fiber presents a 

DMD of 5.19 ps/km and we assumed zero DMD between 

degenerate LP modes and between orthogonal polarizations. 

As explained in section V-B, the polarization mode coupling 

is considered in each section using a block diagonal matrix. 

Regarding the coupling matrix describing finite inter- and 

intra-mode group coupling, the XTLP02 value was varied from 

-50 to 0 dB/100m by using a given radial displacement and a 

uniformly distributed azimuthal displacement for each section 

(see Fig. 5), assuming a section length of 10 m. This range 

fully covers the range of coupling values presented in the 

literature [18]-[21]. Finally, the GDs of the PMs are the 

eigenvalues of the semi-analytically simulated transmission 

matrix. Note that the simulated transmission matrix must be 

compensated for chromatic dispersion as introduced by (3). 

A. GD Standard Deviation and Intensity Impulse Response 

Knowledge of the modulus of the MD vector ||τ|| allows to 

determine the standard deviation of the GD vector 

[τ1, τ2, …τM] σgd, since σgd = ||τ||/M. E{||τ(z)||2} can be found 

by integration of two deterministic differential equations (z 

dependence is omitted) [12], [32]: 
 

∂zE{||τ||2} = E{2∂β τ} = 2∂β E{τ} 

∂zE{τ} = ∂β – 1/Lc E{τ} (23) 

 

where ∂β term represents the uncoupled GDs per unit length 

and Lc is the correlation length characteristic of the fiber, 

considering the same Lc for all groups of modes. 

For non-DMD-managed spans (this is, ∂β constant), 

E{||τ(z)||2} can be found through analytical integration of 

(23), and is given by [12], [32]:  
 

E{||τ||2} = 2||∂β||2Lc
2(e-z/Lc + z/Lc – 1) (24) 

 

Equation (24) was proposed and validated by simulation in 

[26] for fibers guiding 3 LP modes, and at the same time its 

analytical derivation being presented in [32]. 

 Fig. 7 shows the standard deviation of the GD vector 

([τ1, τ2, …τ12]) as a function of distance up to 1,000 km, 

obtained by averaging over 6,000 different realizations of 

lateral offsets giving rise to a given XTLP02 value. These 

results were obtained using the fiber presented in Table I, 

treating the polarization mode coupling as described in 

 

 

Fig. 6. Accumulated XT as a function of the fiber length, for different 

coupling strength, averaged over 10,000 runs. 
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section V-B. Fig. 7 shows a good agreement between 

simulation and (24), for any coupling value studied and for 

any distance up to 1,000 km (even 10,000km has further 

results shown). Similar agreement between (24) and 

simulation results has been presented in Fig. 3 of [12]. This 

provides mutual validation of (24) and the proposed multi-

section model proposed. In Fig. 7, for coupling values ranging 

from -50 to -40 dB/100m, σgd scales approximately linearly 

with distance. But, at -40 dB/100m the deviation from linear 

growth is already noticeable around 1,000 km, thus even with 

such a low coupling, the FMF is operating in intermediate 

coupling regime. Increasing XTLP02, σgd gradually converges to 

the strong coupling regime. However, even for a XTLP02 equal 

to -7.01 dB/100m (the highest value found in literature [21]), 

the fiber is still not well modelled by random unitary matrices 

every 100 m, it would underestimate σgd by a factor of 2.76. 

For FMFs where the PMs change rapidly across the signal 

bandwidth, MD can be conviniently characterized by exciting 

each spatial channel (one at a time) with a short optical pulse 

and measuring the received intensities in each of the output 

spatial channels. Such process leads to M × M intensity 

waveforms, whose sum I(t) has been used to assess the signal 

delay spread caused by MD [10], [12]. For strong mode-

coupling and typical MD values, it has been shown that 

I(t) = r(t)∗I0(t) [10], where ∗ represents convolution, I0(t) is 

the launching signal intensity waveform, and r(t) is FMF’s 

intensity impulse response (IIR). Also in [10], it was shown 

theoretically and experimentally that r(t) is a Gaussian function 

with variance equal to T2 = E{||τ||2}/M2 = E{σgd
2}, thus: 

 

 
2

22

1
exp

22

t
r t

TT

 
  

 
 (25) 

 

Equation (25) is valid as long as the correlation bandwidth 

(BMD = 1/2πT) of the fiber transfer matrix is much smaller  

than the channel bandwidth (B ~ tens of GHz). Fig. 8 shows 

the mode-averaged intensity waveform for M = 12 modes 

after transmission of a Nyquist signal 

I0(t) = √B sin(πBt)/(πBt), with B = 20 GHz, over a 1000km 

link with coupling values ranging from -30 to 0 dB/100m. 

Simulation results, r(t)∗I0(t) waveform, and r(t) IIR are 

plotted using colored full lines, black dashed lines, and red 

dashed lines, respectively. Fig. 8 displays simulation results 

for 100 different fiber realizations for each XTLP02 value. All 

the waveforms were normalized so that their peak value is one. 

Fig. 8 shows an excellent agreement between simulations and 

theory (experimentally validated) as obtained in [10]. Note 

that the deviations from theory reduce as the coupling strenght 

increases and the PMs bandwidth decreases. Finally, further 

results show that the deviation of T(z) from theory is in 

agreement with the theory in [10]. 

B. GD Probability Density Function and Maximum GD Spread 

The probability density function (PDF) of the GDs has 

been derived analytically for strong coupling [6] where the 

coupling matrix can be described as a Gaussian unitary 

ensemble. The ordered joint pdf of the eigenvalues (τi) of a 

M × M Gaussian unitary ensemble with zero trace (∑τi = 0) is: 
 

     2

1
2

1 1

0

, ,

M

ii

M M M i j

M i j

p e


     




  


  ...  (26) 

 

with order constrain τ1 ≤ τ2 ≤ … ≤ τM and where the constant 

M is defined by requiring (26) to integrate to unity. The 

unordered joint PDF is just 1/M! of (26) but without the order 

constraint. In this way, the marginal PDF of τ is can be 

obtained by integrating over τ2, …, τM-1: 
 

   2 1 2 1

1
... , ,..., ...

!
M M M Mp p d d

M
      

 

 

 

    (27) 

 

Analytical solutions of (27) can be find in [6]-[7] for any M. 

Fig. 9 shows the PDF of the ordered GDs (τm, 

τ1 ≤ τ2 ≤ … ≤ τ6) obtained for 6000 different fiber matrix 

realizations, normalized by the σgd, after 1000 km for two 

different coupling values, overlapped with the analytical joint 

PDF (thin black line) derived for the strong coupling regime 

(27). Note that the normalization factor (σgd) depends on the 

XTLP02 (Lc) value, see (24). Exceptionally, these results were 

obtained for single-polarization to facilitate the visualization 

r(t)

r(t)∗I0(t)

 
 

Fig. 8. Mode-averaged intensity waveform for different coupling values 

after transmission of a Nyquist signal. Simulation results, r(t)∗I0(t) and r(t) 

plotted using colored full lines, black dashed lines and red dashed lines, 

respectively.  
 

 
 

Fig. 7. Standard deviation of the GDs of the PMs as a function of 

transmission distance showing simulation results (markers) and analytical 

results (solid lines). 
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of the individual GDs evolution in Fig. 9, but similar 

matching between simulation and theory was obtained when 

considering dual-polarization. Fig. 9 (a) shows that for 

-30 dB/100m the GDs of the PMs vaguely resemble the GDs 

of the LP modes given the impulse-like PDF of τ2 (“LP11a”) 

and τ3 (“LP11b”). Further results for lower coupling values 

shown that all GDs present impulse-like PDFs. In Fig. 9 (b), 

for -20 dB/100m, the match between the simulated PDFs and 

the analytical PDF for strong coupling is good, even though 

the GDs have been normalized by different factors (24). 

Further increase of the coupling strength leads to improved 

matching between the simulated PDFs and the analytical 

PDF, as observed in additional results. 

In a MDM system for which the bandwidth of the PMs is 

much larger than the signal bandwidth, the digital equalizer 

must span a temporal memory at least as long as the the 

difference between the maximum and the minimum group 

delay (τM - τ1)total. As shown in [8], the probability of having a 

GD spread lower than x, P(τM - τ1 ≤ x) – the cumulative 

distribution function, can be computed as a function of the joint 

probability of having all eigenvalues falling within an arbitrary 

interval [x, y], P(τM ≤ x, τ1 ≥ y), this is: 
 

   1 1,M y MP x P y x y dy   




         (28) 

   1 1, ... ...

x x

M M M

y y

P x y p d d        τ   (29) 

 

According to [8], (27)-(29) can be evaluated using at least 

three methods: Fredholm determinant, Andréief identity or 

one approximation based on Tracy–Widom distribution. 

Finally, from (27), we can obtain the equalizer memory 

length x required to accommodate the GD spread with a given 

outage probability p, this is: 

P(τM - τ1 > x) = p = 1 - P(τM - τ1 ≤ x). 

Fig. 10 shows the complementary cumulative distribution 

function (CCDF) of the normalized GD spread, 

P[(τ6 - τ1)/σgd > p], obtained through simulation after 1000 km 

for different coupling values (averaging over 6000 different 

realizations). These results were obtained for single-

polarization to be consistent with the PDFs in Fig. 9. Fig. 10 

shows that for XTLP02 ≥ -30 dB/100m the CCDFs are very 

similar to the analytical approximation obtained for strong 

coupling (28) (dashed line). Conversely, for XTLP02 lower than 

-30 dB/100m the normalized GD spread is significantly 

smaller than the normalized GD spread for strong coupling. 

Finally, we can conclude that the required temporal equalizer 

memory length (in time units) to span a channel with an 

outage probability smaller than 10−4 is equal to 4.5σgd, for any 

coupling strength, where σgd depends on the mode coupling 

strength, see (24). 

VII. GD STATISTICS IN DELAY-MANAGED LINKS 

In differential mode delay (DMD) managed spans, GD 

spread is reduced by cascading fibers with opposite sign 

DMD. In the absence of mode coupling, the GD spread at the 

end of the span would be zero. However, in the presence of 

coupling, the DMD compensation is no longer fully effective. 

In order to minimize the impact of coupling, the length of the 

segments over which DMD sign is inverted has to be made 

much smaller than the correlation length set by the coupling, Lc. 

To compensate for linear mode coupling and group delay 

spread, MIMO-DSP can be used, but DSP complexity 

increases with the number of modes and the total GD spread. 

In order to minimise complexity, the total GD spread should 

typically be reduced to less than 10 ns [33].  

For DMD-managed spans, where uncoupled GDs (per unit 

length) ∂β are a piecewise constant function of z a general 

analytical solution of (23) for E{||τ(z)||2}, rapidly becomes too 

complex as the number of fiber segments increases. Therefore, 

numerical integration should be performed as in [32]. 

In order to verify the deterministic numerical integration of 

 

(28)

 
 

Fig. 10. Complementary cumulative distribution of the normalized GD 

spread, obtained through simulation after 1000 km, with different XTLP02. 
 

 (27)

 
 

Fig. 9. Probability density function of the ordered normalized GDs 

(τm/σgd), obtained through simulation after 1000 km, with different 

XTLP02 values. 
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(23) we made use of the multi-section model presented in 

section V. The simulations considered that each span of 

length L comprised S segments, where each segment was 

itself composed by two fibres of length L/S/2 with the same 

characteristics but opposite sign GD. The first fibre is the 

same presented in section V. The second fibre is not obtained 

through optimization but just by negating the GD vector, 

keeping the remaining characteristics of the first fibre. 

Fig. 11 shows the evolution of the standard deviation of the 

GD vector ([τ1, τ2, …τ12]) with propagation distance, assuming 

compensation length of 20 km (10 km with the positive GD 

vector followed by 10km with the negative GD vector), for 

different values of coupling strength. In Fig. 11, there are two 

sets of results, one obtained for transmission using the 

proposed multi-section model (dot markers) and one given by 

the deterministic numerical integration of (23) (full lines). A 

section length of 10 m was used as smaller section lengths 

generated similar results. In Fig. 11, we can observe a very 

good match between the deterministic numerical integration 

and the proposed multi-section model. It can be inferred from 

these results that the semi-analytical solutions in section IV 

multi-section model in section V are accurate under any 

coupling regime for DMD managed links. 

In order to study a broader range of DMD scenarios, the 

GD vector was normalized by the highest GD value in the 

vector. Fig. 12 shows the combinations of (DMD, XT) that 

allow for a GD spread lower than 800 ps after 100 km with a 

probability higher than 95 %. In Fig. 12, for a given span 

configuration, GD spread is lower than 800 ps for (DMD, XT) 

pairs below the respective curve. For non-DMD-managed 

spans, the maximum tolerable DMD increases with the 

coupling strength, being very low for weak coupling. For 

DMD-managed spans, as the number of segments increases, 

increasingly high DMD values are tolerable for weak 

coupling. For higher levels of coupling (above -20 dB/100m), 

the tolerable DMD converges to that of the non-DMD-

managed spans. Importantly, the tolerable DMD for the 

DMD-managed spans is always greater than or equal to the 

non-DMD-managed spans. 

VIII. CONCLUSION 

This paper proposes a semi-analytical solution method for 

the coupled linear differential equations that describe the 

linear modal coupling in FMFs. The analytical solutions 

obtained enable a time efficient computation of the mode 

coupling occurring after any fiber length in such a way that 

they can be integrated into a multi-section propagation model. 

This semi-analytical model is therefore a valuable alternative 

to the numerical methods which would not be practical due to 

computation time constraints. More importantly, the proposed 

model proved accurate against analytical predictions for the 

statistics of group-delays in few-mode fiber links, namely: 

standard deviation, probability density function, and 

cumulative distribution function. The proposed model proved 

accurate for different transmission lengths 10 m-to-

10,000 km, in any coupling regime -50 dB/100m to 

0 dB/100m, without and with GD management. Finally, the 

proposed semi-analytical solution method is an accurate and 

efficient tool for the modelling and development of future 

high-capacity multimode fiber systems.  

APPENDIX 

TABLE I 

MATLAB CODE FOR FINDING EQUATIONS FOR am,r WITH M = 3 

syms k12 k13 k23 B1 B2 B3 dB12 dB13 dB23 w 

  

A1 = sym('A1(w)'); A2 = sym('A2(w)');  

A3 = sym('A3(w)');  

%% Equations (9) 

aA1 = (-1*k12*subs(A2,w,w-(B1-B2))... 

    -1*k13*subs(A3,w,w-(B1-B3)))/w; 

aA2 = (-1*k12*subs(A1,w,w+(B1-B2))... 

    -1*k23*subs(A3,w,w-(B2-B3)))/w; 

aA3 = (-1*k13*subs(A1,w,w+(B1-B3))... 

    -1*k23*subs(A2,w,w+(B2-B3)))/w; 

 

(23)

 
 

Fig. 11. Standard deviation of the GDs as a function of the propagation 
distance, for fibers with a compensation length of 20 km and different values 

of coupling strength. 

 
 
 

 
 

Fig. 12. Contour plot of the pairs (DMD, XT) that allow for a GD spread 
lower than 800 ps after 100 km with a probability higher than 95 %. 
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%% Elimination of aA1 from aA2 and aA3 

xA2 = ... 

 (subs(aA2,'A1(w+(B1-B2))',subs(aA1,w,w+(B1-B2)))); 

xA3 = ... 

 (subs(aA3,'A1(w+(B1-B3))',subs(aA1,w,w+(B1-B3))));  

%% Find coefficient of A2,A3 on the RHS of xA2,xA3 

c_xA2 = subs((xA2-subs(xA2,'A2(w)',0)),'A2(w)',1); 

c_xA3 = subs((xA3-subs(xA3,'A3(w)',0)),'A3(w)',1); 

%% Passing the coefficients to the LHS 

xA2 = subs(xA2,'A2(w)',0) / (1-c_xA2); 

xA3 = subs(xA3,'A3(w)',0) / (1-c_xA3); 

%% Elimination of A2 from xA3 

zA3 = ... 

 subs(xA3,'A2(w+(B2-B3))',subs(xA2,w,w+(B2-B3))); 

%% Equations (10) after passing A3 to the LHS of zA3 

eq3 = (1-subs(zA3,'A3(w)',1)); 

%% Characteristic Polynomial Coefficients 

[N3,D3] = numden(eq3); 

[C3,T3] = coeffs(N3,w); 

%% Final rearrangements 

C3 = subs(C3,B1,dB12+B2); 

C3 = subs(C3,B2,-dB12+B1); 

C3 = subs(C3,B1,dB13+B3); 

C3 = subs(C3,B3,-dB13+B1); 

C3 = subs(C3,B2,dB23+B3); 

C3 = subs(C3,B3,-dB23+B2); 

C3 = simplify(C3); 

% similar for C1 and C2 % 

 
MATLAB CODE FOR FINDING EQUATIONS FOR (dz

rAm)z=0 WITH M = 3 

%% Boundary conditions 

syms z 

A1 = sym('A1(z)'); A2 = sym('A2(z)');  

A3 = sym('A3(z)'); 

%% Equations(6) 

dA1 = ... 

-1i*(k12*A2*exp(1i*dB12*z)+k13*A3*exp(1i*(dB13)*z)); 

dA2 = ... 

-1i*(k12*A1*exp(-1i*dB12*z+k23*A3*exp(1i*dB23*z)); 

dA3 = ... 

-1i*(k13*A1*exp(-1i*dB13*z+k23*A2*exp(-1i*dB23*z)); 

%% 2nd-order derivative 

d2A1 = diff(dA1,z); 

d2A2 = diff(dA2,z); 

d2A3 = diff(dA3,z); 

%% Replacing known 1st-order derivatives  

d2A1 = (subs(d2A1,diff(A1,z),dA1)); 

d2A1 = (subs(d2A1,diff(A2,z),dA2)); 

d2A1 = (subs(d2A1,diff(A3,z),dA3)); 

% similar for d2A2 and d2A2 % 

%% 3rd-order derivative 

d3A1 = diff(d2A1,z); 

d3A2 = diff(d2A2,z); 

d3A3 = diff(d2A3,z); 

%% Replacing known 1st-order derivatives  

d3A1 = (subs(d3A1,diff(A1,z),dA1)); 

d3A1 = (subs(d3A1,diff(A2,z),dA2)); 

d3A1 = (subs(d3A1,diff(A3,z),dA3)); 

% similar for d3A2 and d3A2 % 

%% Derivatives to be evaluated at z = 0 

BB1 = [subs(A1,'z',0) 

       subs(dA1,'z',0) 

       subs(d2A1,'z',0) 

       subs(d3A1,'z',0)]; 

% similar for BB2 and BB3 % 

RESEARCH DATA 

The Matlab scripts, source C-code, mex compiled C-code, 

and figure data points are available at 

http://doi.org/10.17036/researchdata.aston.ac.uk.00000206. 
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