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A long elastic cylinder, radius a and shear-modulus µ, becomes unstable given sufficient surface
tension γ. We show this instability can be simply understood by considering the energy, E(λ),
of such a cylinder subject to a homogenous longitudinal stretch λ. Although E(λ) has a unique
minimum, if surface tension is sufficient (Γ ≡ γ/(aµ) >

√
32) it looses convexity in a finite region.

We use a Maxwell construction to show that, if stretched into this region, the cylinder will phase
separate into two segments with different stretches λ1 and λ2. Our model thus explains why the
instability has infinite wavelength, and allows us to calculate the instability’s sub-critical hysteresis
loop (as a function of imposed stretch), showing that instability proceeds with constant amplitude
and at constant (positive) tension as the cylinder is stretched between λ1 and λ2. We use full
nonlinear finite-element calculations to verify these predictions, and to characterize the interface
between the two phases. Near Γ =

√
32 the length of such an interface diverges introducing a new

length-scale and allowing us to construct a 1-D effective theory. This treatment yields an analytic

expression for the interface itself, revealing its characteristic length grows as lwall ∼ a/
√

Γ−
√

32.

Molecules at a condensed phase’s surface have fewer
neighbors than those in the bulk, so all materials suffer an
energy proportional to their exposed area. The resulting
tendency to reduce area is familiar in fluids, explaining
why droplets are round, taps drip and pond-skaters don’t
drown. An isolated fluid body always form a sphere un-
der surface tension, but the corresponding problem for a
solid body is altogether more subtle, pitting surface ten-
sion against bulk elasticity. Here we give a full account
of this competition in long solid cylinders.

In general a surface energy, γ, can only compete with
a bulk elastic shear-modulus, µ, at scales below the elas-
tocapiliary length, lcap = γ/µ, which is sub-Angtrom in
crystalline materials but reaches up to microns or even
millimeters in soft solids such as gels and biological tis-
sues. Elastocapillary distortions [1] thus occur in the
realm of the small and soft, including microfluidics [2],
the processing of polymer strands [3, 4] and many as-
pects of biology [5–8]. In addition to the deformations
of soft cylinders considered here [9–15], recent work has
highlighted capillarity-driven bending of wet elastic rods
and sheets [16–19], elastic modifications to wetting [20–
22], and the inhibitory role of surface tension in elastic
creasing [23–25] and cavitation [26].

In fluid cylinders, surface tension famously causes dis-
integration into spherical droplets [27]. The driver for
this Plateau-Rayleigh instability is that an undulation
along a cylinder reduces its surface area if its wavelength
is longer than its circumference. How the instability pro-
ceeds depends in on the fluid [28, 29], but this simple ge-
ometric origin means, inescapably, that all fluid cylinders
ultimately disintegrate. A solid cylinder (radius a) is also
subject to the same geometric reality, but in this case,
the surface energy saved by undulation only outweighs
the elastic cost of deforming the cylinder if lcap & a [10],
so only thin soft cylinders are unstable. Solid cylinders
cannot break into spheres, so the instability produces sta-
ble undulating cylinders, fig. 1, with a beads-on-a-string
morphology emerging at high surface tension. Previous

FIG. 1. Equilibrium shapes of agar-gel [11] and finite-element
cylinders (radius a, shear-modulus µ) ordered by their elasto-
capiliary number Γ = γ/(µa) and showing Plateau-Rayleigh
instability for Γ & 6. The finite element instability adopts the
longest possible wavelength, and is colored by pressure.

groups have observed this instability [9, 11] and stud-
ied its onset via linear stability theory [10, 11], showing
the first unstable mode has infinite wavelength. More
recent work has focussed on stretched cylinders [12–14],
showing, with linear stability theory, that the instability
occurs in a particular stretch-interval, λ1 < λ < λ2, and,
via finite element numerics, that, between λ1 and λ2, the
bead amplitude is essentially constant while bead length
falls [14]. Here we demonstrate that this long-wavelength
constant-amplitude beading arises because the instabil-
ity is actually a longitudinal phase separation between a
less and a more stretched phase. We are able to simply
predict the instability’s full high-amplitude behavior, in-
cluding its hysteresis loop, verify our predictions with fi-
nite elements, and identify and analyze the domain walls
separating the two phases.

We consider a long elastic cylinder, radius a and length
L, that undergoes a displacement u and consequent de-
formation gradient F = I +∇u. We model the cylinder
as incompressible and neo-Hookean with shear-modulus
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FIG. 2. Energy (a) and tension (its derivative, b) of an elastic cylinder stretched by λ at various elastocapiliary numbers Γ. As
Γ increases the minimum-energy/zero-tension stretch moves below one and, for Γ >

√
32 = 5.67.., a region of negative curvature

appears in the energy between λ− and λ+, corresponding to an unstable region where tension falls with extension. In (a) the
dashed line indicates the energy’s common-tangent chord, which spans the concave region meeting the energy at λ1 < λ− and
λ2 > λ+. The cylinder can pay the lower common-tangent energy by phase-separating into λ1 and λ2 regions and (dashed line
in b) thus stretches from λ1 to λ2 at constant tension. Fig (c) plots the stretch ratios λ1, λ2 and λ± as a function of Γ.

µ and surface energy γ, so the cylinder’s total energy is

E = γA+

∫
1

2
µ
[

Tr
(
F · FT

)]
dV, (1)

where A is the cylinder’s external area, and incompress-
ibility requires Det(F ) = 1. Previous studies have shown
this energy first becomes linearly-unstable to an infinite
wavelength perturbation when γ = 6µa [10, 11]. We first
verify that long-wavelength behavior persists far beyond
threshold by conducting full finite element calculations
at γ = 8µa in long aspect ratio cylinders (L = 100a,
see appendix B) and observe that, although instability
arises with a finite wavelength, it coarsens (movie S1),
saving energy, until, as seen in fig. 1, the longest pos-
sible mode is reached. To understand this, we imagine
stretching the cylinder homogeneously to a length λL,
causing a contraction of its radius to a/

√
λ so that the

volume, V = πa2L, is preserved. The cylinder’s surface
area thus increases to 2πaL

√
λ, and its deformation gra-

dient is F = diag(1/
√
λ, 1/

√
λ, λ), so its total energy is

E(λ) = πµLa2
(

2Γ
√
λ+

1

2

(
λ2 +

2

λ

))
, (2)

where we have introduced Γ = γ/(µa) = lcap/a, the elas-
tocapillary number for the cylinder. We plot E(λ) for
several values of Γ in fig. 2a. The elastic part of the en-
ergy is a convex function minimized at λ = 1. The sur-
face energy never dominates at small or large λ, and the
the total energy always has a single minimum, though it
moves to λ < 1 as Γ increases [19]. However, the surface

tension term, proportional to
√
λ, is a concave function

and, when Γ is sufficient, it introduces a concave region

into the total energy. This concave region (d
2E
dλ2 < 0) is

mechanically unstable since therein the extensive force
required (or total tension),

T =
1

L

dE

dλ
= πµa2

(
Γ√
λ

+ λ− 1

λ2

)
, (3)

falls with increasing stretch, as seen in fig. 2b. The limits
of this mechanically unstable region are

λ± =

[
1

4

(
Γ±

√
Γ2 − 32

)]2/3
, (4)

where d2E
dλ2 = 0. The concave region arises when Γ >

√
32,

first appearing at λ± = 21/3 and spreading out reaching
λ− = 1 at Γ = 6, both in agreement with previous lin-
ear stability thresholds [11, 13]. In general, given a pair
of stretch ratios, λ1 and λ2, the cylinder can achieve on
average any intermediate stretch λ1 < λ < λ2 by phase
separating into a λ1 region and a λ2 region with appropi-
ate length fractions, at an energy cost that corresponds
to the chord connecting E(λ1) and E(λ2). In the concave
region such chords lie below the original energy, so phase-
separation saves energy. As understood by Maxwell [30],
the optimal phase-separation arises when the chord is
tangent to the energy at both λ1 and λ2:

E′(λ1) = E′(λ2) (5)

E(λ1) + E′(λ1)(λ2 − λ1) = E(λ2). (6)

The solutions for λ1 and λ2 as functions of Γ are shown
in fig. 2c. As the cylinder is stretched from λ1 to λ2, it
lowers its energy by phase separating onto the common
tangent line, shown as a dashed line in fig. 2a, stretch-
ing from λ1 to λ2 by adjusting the length-fraction of
the two phases. Since the resulting effective energy is
a straight line, the tension is constant during the transi-
tion as shown by the dotted line in fig. 2b. Furthermore,
an obvious conclusion of this phase separation approach
is that no amount of surface tension will destabilize a
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FIG. 3. Tension (a) and amplitude (b) of surface-tension driven phase-separation in an elastic cylinder as a function of
elastocapiliary number Γ. In (b) we compare theory (solid line), finite elements (red diamonds) and experimental data (blue
circles) from [11]. (c): Comparison of theoretical (solid lines) and finite element (points) hysteresis loops showing amplitude as
a function of imposed stretch at Γ = 10; the constant amplitude is the hallmark of phase separation.

solid cylinder unless it is also stretched to the transition
tension T = (1/L)E′(λ1), plotted in fig. 3a. Following
the common-tangent yields a convex effective energy, so
there is no additional instability.

When it is phase-separated, the difference in final ra-
dius between the λ1 segment (the “bead”) and the λ2
segment (the “string”) is simply

A =
a√
λ1
− a√

λ2
. (7)

This amplitude does not change as the cylinder is
stretched from λ1 to λ2. Such constant amplitude bead-
ing between two stretch ratios, (movie S2), has been
observed without explanation in rat sciatic nerve [31]
and elasto-capiliary finite elements [14]. We compare
experimental amplitudes with our finite-element and
phase-separation amplitudes in fig. 3b. The three agree
well, with finite elements exactly reproducing the phase-
separation amplitudes, verifying our approach.

If instability were produced by increasing Γ it would be
continuous (supercritical) but if it is controlled at fixed
Γ by stretching from λ1 to λ2 it will be observed as a dis-
continuous (subcritical) with constant amplitude A(Γ)
throughout. In a stretching cycle the cylinder will be
stretched from the energy minimizing contraction λmin
to λ1 homogeneously. Upon passing λ1 it would save en-
ergy by phase separating, but the cylinder nevertheless
remains mechanically stable until it reaches the end of
convexity, λ−, only then phase separating into λ1 and
λ2. As stretching continues further, the cylinder shifts
material from the λ1 phase to the λ2 phase, causing bead
width to fall at constant amplitude, until all the material
is at λ2, concluding the instability. Similarly in unload-
ing, the instability should occur at λ+, but then persist
down to λ1. We thus predict the sub-critical hysteresis
loop for a stretch cycle shown in fig. 3c. Hysteresis also
slightly complicates the tension-extension behavior: we
expect the tension to remain on the homogeneous curve
in loading until λ− then drop to the phase separation

value, and remain there until λ2.
Our hysteresis predictions are compared with a finite

element stretch-cycle in fig. 3c, showing good agreement
with one discrepancy: the finite-element loading cycle
amplitude drops off slightly early. The reason for this is
made evident by plotting (fig. 4a) the longitudinal stretch
ratio λ(z) (on the axis of the cylinder) as a function of
length along the cylinder, running from the middle of the
bead (z = 0) to the end of the cylinder (z = L/2), for
various values of the total imposed stretch < λ > that
traverse the instability. In these plots we see clearly that
the cylinder has separated into λ1 and λ2 regions, but
also that they are connected by a transition region—a
domain wall—with finite length. The energy cost and
length-fraction of a domain wall is negligible in an infi-
nite cylinder, but matters in a finite one: upon stretching
a finite cylinder towards λ2 the amplitude drops early
because the vanishing length of the λ1 segment becomes
comparable to the domain wall, so the domain-wall raises
the phase-separation energy above the homogeneous en-
ergy. As expected, in longer cylinders, the instability
persists closer to λ2. In contrast, at the onset of insta-
bility (λ−) the energy minimizing configuration already
requires an extensive length fraction of both phases, so
instability proceeds even in modest length cylinders.
Around the critical point, Γ =

√
32 and λ = 21/3, we

can solve the phase separation model analytically, and
model the domain wall. Expanding (5-6) in ε = Γ−

√
32,

we see the leading order behavior of λ1 and λ2 is

λ1 = 21/3 − 1√
3

27/12
√
ε, λ2 = 21/3 +

1√
3

27/12
√
ε, (8)

and hence the amplitude and tension are

A = a
1√
3

12
√

2
√
ε, T =

πµa2

22/3

(√
2ε+ 9

)
. (9)

To model the domain wall we require an energy that
penalizes stretch gradients along the cylinder. Such a
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FIG. 4. Domain walls between separated phases. (a) Finite element calculation of stretch ratio λ(z) along a Γ = 10 cylinder
during phase separation, showing a λ1 and λ2 regions separated by a domain wall that moves along the cylinder as the average
stretch, 〈λ〉, is increased. (b) Finite element domain walls (red dots) in cylinders at various elastocapiliary numbers Γ. The
domain walls spreads out and becomes more symmetric as Γ →

√
32, agreeing with the black theoretical curve (eqn. (14)) by

Γ = 5.7. (c) Comparison of theory (curve) and finite-elements (points) for the domain wall length, lwall, as a function of Γ.

term could arise from additional elastic shear or addi-
tional surface area. We capture both effects by allowing
the longitudinal stretch, λ(z), to vary slowly along the
cylinder’s length so a point initially at (r, z) is moved to

(r/
√
λ(z),

∫
λ(z)dz). This introduces a new shear term

into the deformation gradient, Frz = −rλ′/(2λ3/2), in-
creasing the elastic energy per unit-length to

Eel =
1

2
µ

(
2

λ2
+ λ2 +

a2λ′2

16λ3

)
πa2 (10)

and the surface energy per-unit length to

Es = γ
2πa√
λ

√
λ2 +

a2λ′2

4λ3
. (11)

Finally, we use T as a Lagrange multiplier constraining
the average stretch to 〈λ〉, leading us to the total energy

E =

∫
Es + Eel − T (λ− 〈λ〉)dz. (12)

Near the critical point we can take the above form for T
and write λ = 21/3 + 1√

3
27/12

√
εh(z), where h(z) varies

between ±1 through a domain wall. Expanding in ε and
keeping only the lowest order terms h′ and h terms yields

E =

∫
const +

17πa4µεh′2

24 25/6
+
πa2µε2

12 3
√

2
h2
(
h2 − 2

)
dz, (13)

where the ε2 term is minimized by h = ±1, while the ε
term penalizes gradients. Minimizing E w.r.t variations
in h requires 17a2h′′ − 4

√
2εh

(
h2 − 1

)
= 0, and hence

h(z) = tanh

(
23/4
√
ε√

17a
z

)
, (14)

an explicit form for the domain-wall. The walls are ex-
ponentially localized with a characteristic length lwall =

2×
√

17a/(23/4
√
ε) that diverges near the critical point.

In fig. 4b we plot λ(z) through finite-element domain
walls at various Γ, showing very good agreement with
eqn. (14) near Γ =

√
32. In fig. 4c we show the length of

the finite element domain walls (defined as the z interval
required for tanh(1) ≈ 0.76 of the λ variation) diverges
near the critical point, in accord with our prediction. We
emphasize that the instability is long-wavelength for all
values of Γ beyond instability, meaning the energy min-
imum is a pair of phases separated by a single domain
wall. In this calculation we have shown, in addition, that
near the critical point the width of the domain wall itself
diverges. Although this analysis captures the essential
physics, it assumes z displacements are independent of
r; relaxing this assumption leads to a small decrease in
lwall by a factor of

√
34/33 (see appendix A).

In summary, the solid Plateau-Rayleigh instability is
a phase separation between regions of different but ho-
mogeneous longitudinal stretches connected by exponen-
tially localized domain walls. This structure, reminiscent
of elastic necking [32, 33], balloon instabilities [34, 35]
and volume transitions in swelling gels [9, 36, 37], pro-
vides a picture of the instability that is both simple and
complete. In general, a real elastic cylinder stretched by
λ will be better described by a more sophisticated elas-
tic energy W (λ), where W (λ) may include a Mooney-
Rivlin [38, 39] term (2λ+ 1/λ2), and/or strain-stiffening
at large extension (Gent [40] and Arruda-Boyce [41] en-
ergies) to model the limit of extensibility of finite-length
polymer chains. However, like the neo-Hookean energy,
all of these elastomer/gel energies lead to a W (λ) that is
convex and minimized at λ = 1, reflecting the fact that
elastomeric fibers do not spontaneously phase-separate
(neck) in extension. In all these cases, adding a surface

energy, Γ
√
λ, which is concave will, if Γ is sufficient,

generate a concave region in the total energy, and hence
cause phase separation in extension in the same manner,
though with different critical stretches and threshold Γ.
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In particular, in the more realistic strain-stiffening mod-
els, the stretch ratio in the stretched phases, λ2, will be
reduced to lie beneath the limit of extensibility, reducing
the amplitude but not the nature of the instability, and
ensuring the pair of stretch-ratios in phase-separation
lie within the range attainable by the elastic cylinder
in question. Similarly, since phase-separation originates
solely in the non-convexity of surface energy, this pic-
ture will certainly generalize to Voigt viscoelasticity and
more elaborate extruded prismatic shapes, and, since it
naturally produces a high amplitude beads-on-a-string
morphology, may underpin the more famous bead/string
pattern formed during the breakup of viscoelastic threads
[28]. Mastering these instabilities is essential for the bet-
ter sculpting, spinning and processing of polymer fibers
[3, 4]; we note that a very similar mechanism drives bead-
ing of nerves under tension [31], and speculate that evo-
lution has already harnessed this instability to sculpt the
insulating myelin sheath around axons into beads sep-
arated by Ranvier nodes [42] during neuronal develop-
ment.
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Appendix A: Exact expression for the domain wall
close to the point of instability

To obtain an expression for the domain wall we un-
dertake a small-gradient expansion of the fields in a long
elastic cylinder subject to surface tension and close to
its point of instability. We first consider a long elas-
tic cylinder, of radius a and shear modulus µ, subject
to a surface tension γ = Γµa. The cylinder is aligned
along the z axis of a cylindrical coordinate system and
undergoes a uniaxial deformation that moves the mate-
rial at (R, θ, Z) to (r(R,Z), θ, z(R,Z)), leading to the
(cylindrical-coordinate) deformation gradient

F =

 ∂r
∂R 0 ∂r

∂Z
0 r/R 0
∂z
∂R 0 ∂z

∂Z

 . (A1)

As in the main text, if the cylinder is subject to a tension
T , its mechanical behavior is given by the minimum of
the effective energy

E =

∫
E dZ =

∫ (
Es + Eel − T

∂z

∂Z

∣∣∣∣
R=0

)
dZ, (A2)

where the surface energy per unit length is

Es = Γaµ2πr(a, Z)

√(
∂r(a, Z)

∂Z

)2

+

(
∂z(a, Z)

∂Z

)2

,

(A3)
but the elastic energy per unit length must now include a
pressure-field Lagrange multiplier to enforce volume con-
servation throughout the cylinder

Eel =

∫ a

0

1

2
µ
[

Tr
(
F · FT

)
+ P ( Det (F )− 1)

]
2πRdR.

(A4)
Introducing the PK1 stress σ = µF + Det (F )F−TP ,
we see that minimizing E with respect to variations in
r, z leads to the familiar equations of elastic equilibrium
inside the cylinder

∇·σ = 0 =⇒

{
σrR,R + σrZ,Z + (σrR − σθθ)/R = 0,

σzR,R + σzZ,Z + σzR/R = 0,

(A5)
and the boundary condition at the outer surface

σ · (2πar̂) =

−
∂Es

∂r + d
dZ

∂Es

∂r,Z

0
d
dZ

∂Es

∂z,Z

 , (A6)

where, for conciseness, we use comma-notation for par-
tial derivatives. Finally, minimizing E with respect to P
yields the expected condition of incompressibility,

Det (F ) = 1. (A7)

We know from the main text that instability first oc-
curs at Γ =

√
32 in a homogeneously strained cylinder

with z = 21/3Z and r = R/21/6. Furthermore, just be-

yond the threshold for instability, Γ =
√

32+ε, we expect
variation in the Z direction only over length scales a/

√
ε,

and strains no larger than O(
√
ε), so we can write the

pressure and position fields as expansions in
√
ε,

z = 21/3Z + az0

(
Z̃
)

+

∞∑
i=1

εi/2azi

(
R̃, Z̃

)
(A8)

r =
R

21/6
+

∞∑
i=1

εi/2ari

(
R̃, Z̃

)
(A9)

P = µP0 +

∞∑
i=1

εi/2µpi

(
R̃, Z̃

)
, (A10)

where Z̃ ≡
√
εz/a and R̃ ≡ R/a are dimensionless coor-

dinates of order unity, and pi, zi and ri are dimensionless
functions, also of order unity. An important subtlety is
the need to include a z0 term in the expansion as, pro-
vided it does not depend upon R, it only generates an
O(
√
ε) term in F . Indeed, comparing to the answer in

the main text, we will later choose to write

z0,Z̃ =
27/12√

3
h
(
Z̃
)
, (A11)
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where h is the function we are seeking, which varies be-
tween ±1 over the domain wall.

Our strategy is to substitute these series expansions
into the bulk equations (eqns A5 and A7) and boundary
conditions (eqn A6), and solve at each successive order
in ε to properly characterize the sympathetic strains that
accompany z0.

Both F and σ can also be expanded in ε,

F =

∞∑
i=0

εi/2Fi, σ =

∞∑
i=0

εi/2σi, (A12)

and the zeroth terms in F and σ are

F0 =

2−1/6 0 0
0 2−1/6 0
0 0 21/3

 (A13)

σ0
µ

=

2−
1
6 + 2

1
6P0 0 0

0 2−
1
6 + 2

1
6P0 0

0 0 2
1
3 + 2−

1
3P0

 ,

(A14)
which already solve eqns A5 and A7 (the bulk equations)
to zeroth order. Inspecting the expansions for z and r,
we see that Es = Γaµ2πrz,Z + O(ε2), so the boundary
conditions at R = a can be written in much simpler form,

σrR/µ = −Γz,Z +O(ε3/2) (A15)

σzR/µ = Γr,Z +O(ε5/2), (A16)

and, to satisfy these to zeroth order, we require

P0 = − 9

21/3
. (A17)

To solve at O(
√
ε) we first need the next term in F ,

F1 =

r1,R̃ 0 0

0 r1/R̃ 0
z1,R̃ 0 z0,Z̃

 . (A18)

To satisfy the volume-conservation equation (eqn A7) at
O(
√
ε) we require

2
1
6 r1,R̃ + 2

1
6
r1

R̃
+ 2−

1
3 z0,Z̃ = 0, (A19)

and hence

r1(R̃, Z̃) = − R̃

2
√

2
z0,Z̃ , (A20)

where we have set the complimentary function, c(Z̃)/R̃,
to zero as otherwise it diverges at the center of the cylin-
der. The next order in the stress is

σ1
µ

= p1F
−1
0 +

 −
5√
2
z0,Z̃ 0 9√

2
z1,R̃

0 − 5√
2
z0,Z̃ 0

z1,R̃ 0 11
2 z0,Z̃

 .

Substituting this into the mechanical equilibrium equa-

tions (eqn A5), remembering that ∂
∂Z =

√
ε
a

∂
∂Z̃

and
∂
∂R = 1

a
∂
∂R̃

, we see that at O(
√
ε), the first equation

simplifies to p1,R̃ = 0, requiring

p1(R̃, Z̃) = p1(Z̃), (A21)

while the second reduces to z1,R̃R̃+z1,R̃/R̃ = 0, requiring

z1(R̃, Z̃) = z1(Z̃), (A22)

where we have again set the complimentary function,
c(Z̃) log(R̃) to zero. Similarly, expanding the boundary
conditions to O(

√
ε), eqn A16 is already satisfied, but

eqn A15 is an algebraic equation for p1 requiring

p1(Z̃) = − 3

22/3
z0,Z̃ . (A23)

To solve at O(ε) we first need the next term in F ,

F2 =

r2,R̃ 0 r1,Z̃
0 r2/R̃ 0
z2,R̃ 0 z1,Z̃

 . (A24)

To satisfy the volume-conservation equation (eqn A7) at
O(ε) we require

2
1
6 r2,R̃ + 2

1
6
r2

R̃
+ 2−

1
3 z1,Z̃ −

3

4× 22/3
z2
0,Z̃

= 0, (A25)

which is solved by

r2(R̃, Z̃) =
3R̃

8× 25/6
z2
0,Z̃
− R̃

2
√

2
z1,Z̃ . (A26)

The next term in σ then simplifies to

σ2
µ

= p2F
−1
0 +

 −5z1,Z̃/
√

2 0 ...

0 −5z1Z̃/
√

2 0

z2,R̃ −
9
4 R̃z0,Z̃Z̃ 0 ...

 ,

where we have not displayed the rZ and zZ entries since
they do not enter the equations at O(ε). Expanding the
mechanical equilibrium equations (eqn A5) to O(ε), first
equation simplifies to p2,R̃ = 0, requiring

p2(R̃, Z̃) = p2(Z̃), (A27)

and the second simplifies to

z2,R̃R̃−
9

4
z0,Z̃Z̃ +

11

2
z0,Z̃Z̃ −

3

2
z0,Z̃Z̃ +

z2,R̃

R̃
− 9

4
z0,Z̃Z̃ = 0,

(A28)
which we can solve to find

z2(R̃, Z̃) = C(Z̃) +
1

8
R̃2z0,Z̃Z̃ . (A29)

Expanding out the boundary conditions to O(ε), eqn A15
is an algebraic equation for p2 that requires

p2(Z̃) = −21/6 − 3

22/3
z1,Z̃ , (A30)
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while eqn A16 is already satisfied.
Recalling from the main text that instability occurs

when the tension is,

T =
πµa2

22/3

(
9 +
√

2ε+O(ε2)
)
, (A31)

and writing

z0,Z̃ =
27/12√

3
h
(
Z̃
)
, (A32)

we can now expand out the total energy per unit length
(eqn A2) to O(ε2), to get

E
πµa2

=
9
3
√

2
+ 2

1
6πa2µε+

(
25h′′

16 12
√

2
√

3
+ c1

)
ε3/2+

1

12 3
√

2

(
h2
(
h2 − 2

)
− 2
√

2hh′′ +
17

4
√

2
h′2 + c2

)
ε2

+O(ε5/2), (A33)

where c1 and c2 are quite complicated expressions in-
volving higher order fields, but do not contain any h de-
pendence. The above expression is the exact version of
the approximate eqn 13 in the main text. We note that
one would naively expect cross terms between z0 ( which
generates O(

√
ε) stress/strains) and the z3, r3, p3 fields

(which generate O(ε3/2) stress/strains) at O(ε2) in E , but
upon actually doing the expansion, we find these terms
vanish identically; such cancelation is actually expected
since the coefficient of such cross-terms would be the cur-
vature (second derivative) of the energy at ε = 0, which is
zero since we are expanding about the point of instability.
Minimizing with respect to variations in h, the O(ε3/2)
term is an exact derivative, so it does not contribute, but
minimizing the O(ε2) term gives:

4h
(
h2 − 1

)
=

33

2
√

2
h′′, (A34)

which is solved by the domain wall taking the form

h(Z̃) = tanh

(
25/4Z̃√

33

)

=⇒ h(Z) = tanh

(
25/4
√
ε√

33a
Z

)
. (A35)

This is almost identical to the approximate result in the
main text, but with a characteristic width for the domain
wall smaller by a factor of

√
34/33.

Appendix B: Details of numerical simulations

Our simulations use an explicit finite-element method,
based on the same code used in [43, 44], with the addi-
tions of surface tension and cylindrical symmetry as first
implemented in [15]. More precisely, we construct the

elastic cylinder from constant-strain triangular elements
in the r−z plane, each of which represents a triangularly
cross-sectioned torus of the body. The triangles form a
rectangular mesh in the r−z plane, spanning from r = 0
(the center of the cylinder) to an outer radius of r = a,
and from z = 0 to z = L/2, and we enforce symmet-
ric boundary conditions at the two ends (z = 0, L/2),
so that our simulation domain need only contain a half-
wavelength of the instability, as show below in fig. 5.

FIG. 5. Top: The actual simulation mesh is a triangulated
rectangular mesh between 0 < r < a and 0 < z < L/2,
which covers only 1/4 of the total cylinder. For visualization
purposes, the mesh shown here has only 15 × 4 nodes, and
hence 84 triangles, which is many fewer than those used in the
paper. Bottom: The same mesh at equilibrium after a surface
tension Γ = 9 has been applied. Color indicates pressure.

The simulation images in the paper do not show the
entire fine mesh, but do have white lines indicating every
8th mesh line in the length direction. Each triangle in
the mesh is assigned a compressible neo-Hookean elas-
tic energy (within a quasi-incompressible nodal pressure
formulation) with shear modulus µ with a bulk modu-
lus K ≥ 103µ. The force on each node is calculated as
the gradient of the total energy with respect to nodal
position, including surface energy at the outer surface,
and the nodes are moved according to damped Newto-
nian dynamics. The calculations required us to either
change Γ (fig 1, 3b and 4b) at constant overall stretch
(λ), or change the overall stretch at constant Γ (fig 3c
and 4a), but in each calculation the changes were im-
posed slowly enough as to be quasi-static, so although
the simulation uses Newtonian dynamics, the states re-
ported in the paper are all converged energy minima.
The good agreement between the predicted and observed
thresholds and amplitude verify that the the bulk mod-
ulus was high enough, the mesh was fine enough and the
simulations were slow enough to mimic an incompress-
ible, equilibrated continuum cylinder.

We summarize the exact simulation parameters for
each figure in the table below.
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Figure Γ L/a λ K/µ Mesh

1 5,6,7,9 100 1 103 400× 8

3b 5.7 200 1.2 104 800× 8

and 5.7− 6 100 1.2 104 400× 8

4b-c > 6 100 2 104 400× 8

3c and 4a 10 200 0.214 - 5 103 800× 8

Movie S1 8 100 1 103 400× 8

Movie S2 8 50 0.25-4 103 200× 8

In the calculations at fixed λ (fig 1, 3b, 4b-c) the sur-
face tension was set to the desired value at the outset,
and in the first few simulation steps the boundaries were
moved to impose the desired λ. The cylinder was then
held fixed, and instability naturally set in at finite wave-
length, coarsening over time, but increasingly slowly as

the wavelength increased, as might be expected since the
domain walls are exponentially localized. To speed the
calculation up, in most calculations the coarsening was
accelerated by an early-time perturbation wherein the
surface tension changed along the cylinder from Γ + 1
at one end to Γ at the other. The results shown are
all states from long after this perturbation has been re-
moved, and the system has converged. We note that
movie S1 verifies that the coarsening does achieve the
longest possible wavelength unaided eventually, and that
a long wavelength would naturally be selected if Γ was
increased slowly from the stable to the unstable regime,
rather than simply being set to its desired final value.
In the calculations with varying λ (fig 3c, 4a and Movie
S2) the cylinder naturally and quickly selected the long-
wavelength mode at the point of instability, so no accel-
eration was necessary.

[1] B. Roman and J. Bico, Journal of Physics: Condensed
Matter 22, 493101 (2010).

[2] J. Van Honschoten, M. Escalante, N. Tas, and M. El-
wenspoek, Journal of colloid and interface science 329,
133 (2009).

[3] W. Zuo, M. Zhu, W. Yang, H. Yu, Y. Chen, and
Y. Zhang, Polymer Engineering & Science 45, 704 (2005).

[4] M. Naraghi, I. Chasiotis, H. Kahn, Y. Wen, and Y. Dze-
nis, Applied Physics Letters 91 (2007).

[5] A. L. Hazel and M. Heil, Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Science 461,
1847 (2005).

[6] E. Hannezo, J. Prost, and J.-F. Joanny, Physical Review
Letters 107, 078104 (2011).

[7] J. Dervaux, Y. Couder, M.-A. Guedeau-Boudeville, and
M. Ben Amar, Physical review letters 107, 018103
(2011).

[8] D. Gonzalez-Rodriguez, S. Sart, A. Babataheri,
D. Tareste, A. I. Barakat, C. Clanet, and J. Husson,
Phys. Rev. Lett. 115, 088102 (2015).

[9] E. S. Matsuo and T. Tanaka, Nature 358, 482 (1992).
[10] B. Barriere, K. Sekimoto, and L. Leibler, The Journal

of chemical physics 105, 1735 (1996).
[11] S. Mora, T. Phou, J.-M. Fromental, L. M. Pismen, and

Y. Pomeau, Phys. Rev. Lett. 105, 214301 (2010).
[12] P. Ciarletta and M. Ben Amar, Soft Matter 8, 1760

(2012).
[13] M. Taffetani and P. Ciarletta, Journal of the Mechanics

and Physics of Solids (2015).
[14] M. Taffetani and P. Ciarletta, Phys. Rev. E 91, 032413

(2015).
[15] C. Xuan and J. Biggins, Physical Review E 94, 023107

(2016).
[16] C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, and

C. N. Baroud, Phys. Rev. Lett. 98, 156103 (2007).
[17] J. Bico, B. Roman, L. Moulin, and A. Boudaoud, Nature

432, 690 (2004).
[18] H.-Y. Kim and L. Mahadevan, Journal of Fluid mechan-

ics 548, 141 (2006).
[19] S. Mora, C. Maurini, T. Phou, J.-M. Fromental, B. Au-

doly, and Y. Pomeau, Phys. Rev. Lett. 111, 114301

(2013).
[20] R. W. Style, R. Boltyanskiy, Y. Che, J. Wettlaufer, L. A.

Wilen, and E. R. Dufresne, Phys. Rev. Lett. 110, 066103
(2013).

[21] R. W. Style, C. Hyland, R. Boltyanskiy, J. S. Wettlaufer,
and E. R. Dufresne, Nature Com. 4 (2013).

[22] R. W. Style, Y. Che, S. J. Park, B. M. Weon, J. H. Je,
C. Hyland, G. K. German, M. P. Power, L. A. Wilen,
J. S. Wettlaufer, et al., Proc. of the Nat. Acad of Sci.
110, 12541 (2013).

[23] M. B. Amar and P. Ciarletta, Journal of the Mechanics
and Physics of Solids 58, 935 (2010).

[24] J. Yoon, J. Kim, and R. C. Hayward, Soft Matter 6,
5807 (2010).

[25] S. Mora, M. Abkarian, H. Tabuteau, and Y. Pomeau,
Soft Matter 7, 10612 (2011).

[26] A. Gent, Rubber Chemistry and Technology 63, 49
(1990).

[27] J. Strutt (Lord Rayleigh), “On the instability of jets,”
(1879).

[28] P. P. Bhat, S. Appathurai, M. T. Harris, M. Pasquali,
G. H. McKinley, and O. A. Basaran, Nature Physics 6,
625 (2010).

[29] J. Eggers, Rev. Mod. Phys. 69, 865 (1997).
[30] J. Clerk-Maxwell, Nature 11, 357 (1875).
[31] V. S. Markin, D. L. Tanelian, R. A. Jersild, and S. Ochs,

Biophysical journal 76, 2852 (1999).
[32] S. S. Antman, Journal of Mathematical Analysis and Ap-

plications 44, 333 (1973).
[33] J. Ericksen, Journal of elasticity 5, 191 (1975).
[34] A. Gent, Rubber chemistry and technology 72, 263

(1999).
[35] F. Meng, J. Z. Chen, Z. Ouyang, et al., AIChE Journal

60, 1393 (2014).
[36] T. Tanaka, Phys. Rev. Lett. 40, 820 (1978).
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