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Abstract 13	

Plants are shifting their ranges towards higher elevations in response to global warming, yet 14	

such shifts are occurring at a rate slower than is needed to keep pace with a rapidly changing 15	

climate. There is, however, an almost complete lack of knowledge on seed dispersal across 16	

altitude, a key process to understand what constrains climate-driven range shifts. Here, we 17	

report the first direct empirical evidence on altitudinal seed dispersal mediated by two 18	

common frugivorous mammals: the red fox Vulpes vulpes and the pine marten Martes 19	

martes. We conducted a 3-year (bait-marking) experiment in a mountainous region of Spain. 20	

We offered experimental fruits containing colour-coded seed mimics at feeding stations that 21	

simulated source trees. The colour codes allowed us to identify the exact origin of seed 22	

mimics found later in mammal scats. Nearly half (47%) of the dispersal events occurred 23	

towards higher elevations, despite only ca. 25% of the study area being above the average 24	

altitude of the feeding stations (1344 m). Seeds dispersed uphill gained an average of 106 m 25	

(median = 111 m) and a maximum of 288 m, greatly exceeding the estimated requirements to 26	

escape warming (35.4 m per decade). Yet, foxes mediated much more uphill seed dispersal 27	

than martens (57% and 26% of dispersal events, respectively), which can be explained by 28	

between-disperser differences in home range size and habitat specificity. Dispersers with 29	

larger home ranges move farther and potentially disperse more seeds to higher altitudes, 30	

while habitat generalism is necessary to transport seeds above vegetation belts delimiting 31	

contrasting habitat types. We discuss how both traits (home range size and habitat specificity) 32	

can be used to infer altitudinal seed dispersal across disperser species and mountainous 33	

landscapes. 34	

 35	

  36	
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Introduction 37	

As a result of global warming, many plant and animal species are shifting their ranges 38	

worldwide, generally moving towards the poles and higher altitudes (Parmesan 2006, Chen et 39	

al. 2011, Devictor et al. 2012, Lenoir and Svenning 2015). A critical question is whether 40	

species will be able to disperse fast enough to track their suitable climatic ranges (Pearson 41	

2006, Jump et al. 2009, Ozinga et al. 2009, Chen et al. 2011, Devictor et al. 2012, Schloss et 42	

al. 2012, Cunze et al. 2013). Answering this question is key for both predicting the impacts of 43	

global warming on ecosystems and understanding the role of dispersal limitation in 44	

determining novel communities (Ozinga et al. 2009, Schloss et al. 2012). 45	

Plants are sessile organisms and seeds (or spores in ferns) constitute the unique 46	

mobile stage during the life of individuals. Given the long seed dispersal distances required to 47	

track climate change in latitude (Hampe 2011, McConkey et al. 2012, Corlett and Westcott 48	

2013, Cunze et al. 2013), altitudinal migration in mountainous regions has been suggested to 49	

be the most feasible shortcut to keep pace with rapidly changing climate (Colwell et al. 2008, 50	

Jump et al. 2009): an altitudinal shift of 100 m corresponds, in climatic terms, to roughly a 51	

100-km shift in latitude (Colwell et al. 2008). A recent global meta-analysis of observed 52	

range shifts found a median altitudinal increase of 16.0 m per decade in plants, less than half 53	

the estimated 35.4 m per decade needed to track rising temperatures (Chen et al. 2011). 54	

Nonetheless, empirical evidence on altitudinal seed dispersal has been completely lacking 55	

until recently, when Naoe and colleagues (2016) inferred – through an indirect, isotope-based 56	

method – extensive uphill seed dispersal (hundreds of meters) in the cherry tree Prunus 57	

verecunda in Japan. Although other approaches, such as transplant experiments, can help us 58	

to infer the presence or absence of dispersal limitation (Lee-Yaw et al. 2016), knowledge of 59	

the seed dispersal process is essential to understand the observed range shifts and predict 60	

future changes (Neilson et al. 2005, Hampe 2011). 61	
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 Many plants across the world’s biomes depend on animals to disperse their seeds 62	

(Jordano 2013). Their ability to reach higher altitudes will ultimately depend on the 63	

movement patterns of the disperser species they interact with (Jordano et al. 2007, González-64	

Varo et al. 2013). During the last decade there have been significant advances in our 65	

understanding of seed dispersal distances in the horizontal plane mediated by different animal 66	

taxa (Jordano et al. 2007, Spiegel and Nathan 2007, González-Varo et al. 2013, Pérez-67	

Méndez et al. 2016). For example, we know that many bird and mammal species regularly 68	

disperse seeds at distances ranging from a few hundred meters to a few kilometers (Jordano 69	

et al. 2007, Spiegel and Nathan 2007, González-Varo et al. 2013). However, seed dispersal in 70	

the vertical axis, such as when dispersers occur in a mountainous region, remains an issue. 71	

We therefore asked the question: do seed dispersers help plants by providing the estimated 72	

elevational displacements they need to track their suitable climatic ranges? 73	

Here we provide the first direct (i.e. non-correlational) empirical evidence of 74	

altitudinal seed dispersal mediated by animals. We used an exceptional dataset resulting from 75	

a 3-year field experiment carried out in a mountainous landscape in NW Spain, which aimed 76	

at measuring seed dispersal events mediated by two common and widespread mammals: the 77	

red fox (Vulpes vulpes, Canidae) and the pine marten (Martes martes, Mustelidae). Foxes 78	

occur in North America, Eurasia, North Africa and Australia (non-native species), while 79	

martens occur in Europe and Western Asia (Wilson and Mittermeier 2009). Both mammals 80	

are important generalist frugivores and legitimate seed dispersers of many fleshy-fruited 81	

species across plant communities, i.e. they transport seeds in their guts and defecate them in 82	

conditions that are suitable for germination in different habitats and landscapes (Herrera 83	

1989, De Marinis and Masseti 1995, Rosalino and Santos-Reis 2009, López-Bao and 84	

González-Varo 2011, López-Bao et al. 2015). Our field (bait-marking) experiment consisted 85	

of offering fruits containing colour-coded seed mimics to these mammals, at feeding stations 86	
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simulating source trees. The exclusive colour code of each simulated source tree allowed us 87	

to locate the exact origin of seed mimics found later in fox and marten scats (González-Varo 88	

et al. 2013), thereby directly measuring altitudinal seed dispersal using geo-referenced 89	

information. Furthermore, we explore, for the first time, relationships between horizontal (x, 90	

y) and altitudinal (z) seed dispersal distances, and show the importance of habitat generalism 91	

for dispersing seeds from forest habitats to deforested mountaintops. 92	

 93	

Methods 94	

We measured altitudinal seed dispersal events of fleshy-fruited species mediated by foxes and 95	

martens by means of a 3-year bait-marking experiment carried out in the Devesa da Rogueira 96	

forest, located in Serra do Courel (42°37′N–7°05′W), a mountainous region (ca. 250 km2) in 97	

NW Iberian Peninsula. The study site had 22% of area below 1000 m a.s.l., 60% between 98	

1000 and 1400 m, and 18% above 1400 m a.s.l.. Percentages were calculated using QGIS v. 99	

2.14.0 (Quantum GIS Development Team 2015) within a circle of 4-km radius centred in the 100	

study area. Forest occupies approximately 50% of the territory in the study region and is 101	

usually restricted to altitudes below ~1400 m (Munilla et al. 2008). Detailed information on 102	

this experiment and the main characteristics of study area can be found in González-Varo et 103	

al. (2013). Briefly, we offered experimental fruits containing coloured seed mimics to the two 104	

mammal species in three different years (2008, 2009 and 2010). We used figs of the common 105	

fig tree (Ficus carica) as experimental fruits (~50 mm diameter; Fig. S1). Seeds mimics were 106	

coloured plastic beads of (mean) 2.6 mm diameter and 27.1 mg weight (Fig. S1), which is 107	

within the modal range of wild seeds dispersed by both species in the study area (whole 108	

range: from ~0.2 mm diameter in bilberry Vaccinium myrtillus to ~10 mm in blackthorn 109	

Prunus spinosa (López-Bao et al. 2015)). In other mammal species (Asiatic black bears 110	

Ursus thibetanus), gut passage time does not vary significantly between different seed 111	
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species and seed mimics (Koike et al. 2011). Therefore, we expect the dispersal events 112	

reported here to be representative of how foxes and martens disperse fleshy-fruited seeds 113	

naturally. 114	

We prepared the experimental figs, using tweezers to embed the seed mimics in their 115	

pulp (10 seeds per fig). The baiting was carried out between September and October of each 116	

year, coinciding with the peak of the fruiting season of fleshy-fruited species in the study area 117	

(López-Bao and González-Varo 2011). Every September, we set up ‘feeding stations’ where 118	

we offered the experimental figs on the ground below the canopy of ‘simulated fruiting trees’ 119	

(Fig. S2). Each feeding station consisted of an area of ~60 m2 with a total of six feeders (trays 120	

of 18 × 12 × 3 cm; Fig. S1). We geo-referenced each feeding station using the centroid of the 121	

polygon generated by the spatial position of the six feeders. An exclusive colour code was 122	

assigned to the seed mimics offered at each feeding station. In this manner, we were able to 123	

directly identify the source (feeding station) of any seed mimics dispersed by foxes and 124	

martens, and subsequently found in their scats. We set up a total of eight feeding stations (n = 125	

3, 6 and 6 feeding stations in 2008, 2009 and 2010, respectively), with distances between 126	

stations ranging between 280 m and 1760 m (Fig. S2; Table S1). 127	

We offered a total of 1322 experimental figs (13,220 seed mimics) during the 3 years 128	

of the experiment; on average, 165.3 figs per station. We monitored fruit removal from the 129	

feeding stations and searched for mammal scats twice a week from September to November 130	

in each of the three study years. We followed a sampling strategy that aimed to detect the 131	

longest dispersal events. This strategy consisted of (i) the intensive sampling within a 2-km 132	

radius around each feeding station, and (ii) additional sampling within a 1-km radius around 133	

the farthest seed dispersal event from each feeding station, until no more seed mimics were 134	

found in that extra buffer (see details in González-Varo et al. 2013). We searched for scats 135	

along a network of paths of ~70-km length over an area of ~40 km2 (altitudinal range 600–136	
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1643 m a.s.l.), and accounting for an accumulated walking distance of ~900 km during the 137	

study period (González-Varo et al. 2013). Previous studies have shown that the density of 138	

faeces of these mammals is much higher along paths than through the natural vegetation 139	

(Suárez-Esteban et al. 2013). We found and analyzed 2027 mammal scats during the whole 140	

study period (641 in 2008, 888 in 2009 and 498 in 2010). We found mammal scats containing 141	

seed mimics from all but one feeding station (7 out of 8), which was excluded owing to 142	

disturbance by wild boars (see Table S1). We recovered and geo-referenced 98 scats 143	

containing 665 seed mimics, 95 of which (containing 657 seed mimics) were identified to 144	

belong to red foxes or pine martens (Fig. S1). We also assigned a macrohabitat category to 145	

each scat, differentiating between forest and non-forest habitats. Remarkably, 9 of the 95 146	

scats had seed mimics belonging to two different feeding stations (i.e. different colours; see 147	

Fig. S1): seven from red foxes and two from pine martens. Therefore, the 95 scats actually 148	

accounted for 104 seed dispersal events (i.e. ‘source–scat’ combinations), 70 and 34 mediated 149	

by red foxes and pine martens, respectively, which effectively constitute the sample size of 150	

this study. It is noteworthy that overall recapture rates were ~5%, which is above those 151	

obtained from bird ringing and within the range of those obtained in butterfly tagging; a 152	

discussion on the method can be found in González-Varo et al. (2013).  153	

We tested for statistical differences between red foxes and pine martens in altitudinal 154	

seed dispersal using Mann-Whitney U tests, and in their relative contribution to seed 155	

dispersal towards higher elevations using a Chi-square test. We also used a Chi-square test to 156	

assess differences between foxes and martens in their frequency of seed deposition in forest 157	

versus non-forest habitats. We tested whether there was a relationship between Euclidean (x, 158	

y) and altitudinal (z) seed dispersal distance, and whether such a relationship differed between 159	

disperser species. For this analysis, we added a negative sign to the Euclidean distances 160	

belonging to dispersal events towards lower elevations, that is, to negative altitudinal 161	
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dispersal distances. We used two linear models with altitudinal dispersal distance as the 162	

response variable and Euclidean distance as the explanatory variable. In one model we 163	

additionally included disperser species as an explanatory variable (fixed factor). The 164	

interaction between Euclidean distance and disperser species allowed us to test for 165	

differences between disperser species in the slopes through which they dispersed seeds 166	

altitudinally. We evaluated model fit according to R2 values and the Akaike Information 167	

Criterion (AIC) (Burnham and Anderson 2002). All analyses were performed using R v. 3.2.3 168	

(R Development Core Team 2015). 169	

 170	

Results 171	

We offered the experimental fruits at elevations ranging between 1169 and 1395 m and 172	

subsequently found dispersed seeds between 831 and 1580 m, a range 3.3 times larger (Fig. 173	

1A). It is worth noting that the highest elevation point in the study area is at 1643 m a.s.l., just 174	

63 m higher than the maximum altitude reached by the seed mimics. Nearly half of scats with 175	

seed mimics (47.1%; 49 out of 104) were found at higher elevations than their respective 176	

source trees, gaining a median of 111 m (mean = 106 m) and a maximum of 288 m in 177	

altitude. 178	

Altitudinal patterns of seed deposition differed between disperser species (Fig. 1). We 179	

found significant differences between foxes and martens in both the altitude of seed 180	

deposition (Mann-Whitney U test: P < 0.001; Table 1, Fig. 1A) and the altitudinal seed 181	

dispersal distance (Mann-Whitney U test: P = 0.003; Table 1, Fig. 1B). Indeed, the 182	

percentage of dispersal events towards higher elevations was more than two-fold higher in 183	

the red fox (57.1%; 40 out of 70 events) than in the pine marten (26.5%; 9 out of 34 events) 184	

(Chi-square test: χ2 = 7.45, df = 1, P = 0.006) (Fig. 1B). Moreover, foxes deposited 57% of 185	



	 9	

scats (36 out of 63) in non-forest habitats (mainly heathlands), while martens only deposited 186	

6% (2 out of 32) in non-forest habitats, the vast majority (94%) being found in forest habitats 187	

(Chi-square test: χ2 = 20.83, df = 1, P < 0.001). 188	

Finally, we detected a general positive and significant relationship between the 189	

Euclidean and the altitudinal dispersal distances (Table 2), indicating that seeds dispersed 190	

farther are more likely to reach both higher and lower elevations (Fig. 2). Yet, the slope of 191	

such relationship differed between disperser species, being two times steeper in the pine 192	

marten than in the red fox (Fig. 2). Indeed, the linear model incorporating the disperser 193	

species showed a better fit than the model that only included the Euclidean distance, in terms 194	

of both R2 and AIC (Table 2). 195	

 196	

Discussion 197	

Our results provide the first direct empirical evidence that seed dispersers can altitudinally 198	

disperse seeds to elevations that greatly exceed the estimated median 35.4 m (range: 8.3–56.7 199	

m) per decade needed to track rising temperatures (Chen et al. 2011). We found that nearly 200	

half of the dispersal events observed were towards higher and colder places. This frequency 201	

of uphill seed dispersal is remarkable because area generally decreases with altitude and, in 202	

fact, only ca. 25% of the study landscape is above the average altitude of the feeding stations 203	

(1344 m). Considering the general decrease of temperature with elevation (5.2–6.5ºC per 204	

1000 m) (Colwell et al. 2008), the reported movements entail differences of up to 1.5–1.9ºC 205	

mean temperature decrease in a single dispersal event (max. altitudinal distance = 288 m). 206	

Importantly, seed dispersal upwards – as opposed to downwards – was constrained by the 207	

altitudinal limits of the study area (Fig. 1A, Fig. 2). Therefore, altitudinal dispersal distances 208	

above the maximum value reported here (288 m) would be expected without such constraint 209	
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(e.g. higher mountains or dispersal from lower elevations). Whether fleshy-fruited plants will 210	

be able to migrate altitudinally at a proper velocity will depend on (i) the possibilities of 211	

recruitment above the current climatic range, and (ii) the time they need to reach the 212	

reproductive age. First, seeds dispersed above the currently suitable climatic range will find 213	

an unsuitable environment that is forecasted to be suitable in two or three decades. Dispersal 214	

towards climate microrefugia (i.e. areas that support locally favourable climates; Dobrowski 215	

2011) may therefore be crucial. Second, many early successional species can reach the 216	

reproductive age in a few years, however, forest trees may require a few decades (1–4; 217	

Nathan et al. 2011). Our results provide basic information that could be used to understand 218	

the importance of both factors (i.e. habitat suitability and time lag until maturation age) on 219	

altitudinal range shifts at the community level, though this is beyond the scope of the present 220	

study. 221	

Our findings add to the indirect evidence recently provided by Naoe et al. (2016) on 222	

altitudinal dispersal distances generated by Asiatic black bears and Japanese martens (Martes 223	

melampus). In their study, Naoe et al. (2016) found a negative correlation between altitude 224	

and the oxygen isotope ratios (18O and 16O) of Prunus verecunda seeds sampled from mother 225	

plants, then used the regression lines to estimate altitudinal seed dispersal. In our study, the 226	

possibility of linking horizontal and altitudinal dispersal distances (Fig 2), along with the 227	

distribution of the vegetation in our study area (i.e. deforested mountain tops; Fig. S3; see 228	

also López-Bao and González-Varo 2011) allowed us to disentangle two key traits that 229	

enable animal species to promote altitudinal seed dispersal: home range size and habitat 230	

specificity. First, home range size determines the spatial scale of seed dispersal patterns in the 231	

horizontal plane (Spiegel and Nathan 2007, González-Varo et al. 2013, Naoe et al. 2016, 232	

Pérez-Méndez et al. 2016) and, therefore, also in the vertical axis when the disperser’s daily 233	

movements occur in mountainous regions (Fig. 2). Compared to animals with small home 234	
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ranges, animals that frequently perform long displacements are expected to disperse more 235	

seeds towards higher elevations. Home range sizes are positively associated with the 236	

frequency of long-distance seed dispersal and, in general, with the disperser’s body sizes 237	

(Harestad and Bunnel 1979, Spiegel and Nathan 2007, González-Varo et al. 2013, Naoe et al. 238	

2016, Pérez-Méndez et al. 2016). These patterns hold for our study species (González-Varo et 239	

al. 2013): body weights in red foxes and pine martens are of 3–14 kg and 0.8–1.8 kg, 240	

respectively, and their home ranges have 200–600 ha and 50–190 ha, respectively (Cavallini 241	

1996, Dekker et al. 2001, Zalewski et al. 2004, Wilson and Mittermeier 2009, Moreno-Opo et 242	

al. 2015). Hence, larger animals move farther and potentially disperse more seeds to higher 243	

altitudes. The topographic features of the study area, with very steep slopes, lead to major 244	

altitudinal movements even when the Euclidean dispersal distances were relatively short (<1 245	

km; especially by pine martens). Yet, long-distance dispersal events (farther than 1 km) were 246	

required to move up seeds above 200 m in altitude (Fig. 2). It is not difficult to envisage a 247	

much more important role of long-distance seed dispersal in mountainous regions with 248	

shallower slopes, where extensive horizontal movements are needed to gain a few meters in 249	

altitude. Our findings suggest that it is possible to infer altitudinal seed dispersal by 250	

combining topographical maps and available knowledge on horizontal seed dispersal 251	

distances. However, because such knowledge is very limited at the species level, within 252	

diverse disperser assemblages (Jordano et al. 2007), information on home-range size (more 253	

accesible at the species level; e.g. Dennis and Westcott 2007) can be used to infer maximum 254	

horizontal dispersal distances (see González-Varo et al. 2013) and, therefore, maximum 255	

altitudinal dispersal distances. 256	

Second, the differences in the observed seed dispersal patterns between foxes and 257	

martens appear related with the habitat specificity of both species. The red fox is a habitat-258	

generalist species that can be found up to 4500 m above sea level, above the mountain tree 259	
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line (Wilson and Mittermeier 2009), and that occupies forests, heathlands and farmlands 260	

across all the altitudinal levels of our study region (López-Bao and González-Varo 2011). In 261	

contrast, the pine marten is a forest-specialist species (Wilson and Mittermeier 2009, 262	

Balestrieri et al. 2016) and, indeed, its upper elevational limit throughout the western 263	

Palearctic is the limit of deciduous and conifer forests (e.g. up to 2300 m in the Pyrenees; 264	

Herrero et al. 2016). As previously mentioned, forest occupies approximately 50% of the 265	

territory in the study region and is usually limited to altitudes below ~1400 m (Fig. S3). 266	

Hence, the upper limit of the seeds mobilized by the martens basically reflects the upper limit 267	

of the forest (see Fig. 1A). This is demonstrated by our finding that the vast majority of 268	

marten scats (94%) were found in forest habitats and only a minor fraction was found in non-269	

forest habitats (6%). Forest dependence in pine martens can also explain why they dispersed 270	

seeds through steeper slopes because, in our study area, forests are mostly confined to the 271	

steepest hillsides below 1400 m (see Fig. S1; see also Fig. 1 in López-Bao and González-272	

Varo 2011). Conversely, habitat generalism could explain why the histogram for the red fox 273	

is slightly skewed towards higher elevations (Fig. 1A), with a peak between 1400 and 1500 274	

m, just around the forest limit, in areas where this generalist species can benefit from 275	

foraging in different habitat types. In fact, habitat diversity has been reported to be higher 276	

within the home range of red foxes than at the landscape scale (Cavallini and Lovari 1994). 277	

Accordingly, fox scats were more evenly distributed between forest (43%) and non-forest 278	

habitats (57%), as found in other systems (e.g. Rost et al. 2012). These results demonstrate 279	

that habitat generalism is necessary to transport seeds above vegetation belts that delimit 280	

contrasting habitat types, in the same way it is in fragmented landscapes for seed dispersal 281	

beyond the remnant vegetation (González-Varo et al. 2017). Therefore, our findings provide 282	

evidence that habitat specificity of seed dispersers is a critical trait in the context of 283	

altitudinal range expansions. 284	
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The widespread distribution of red foxes and pine martens (Wilson and Mittermeier 285	

2009), and their occurrence in natural and anthropogenic landscapes (López-Bao and 286	

González-Varo 2011, Balestrieri et al. 2016), suggest that the patterns reported here are likely 287	

to be common in other mountainous regions as well. Only in our study area, foxes and 288	

martens disperse the seeds of, at least, 14 fleshy-fruited plant species (López-Bao et al. 2015). 289	

Therefore, these mammals, and their close relatives, may be helping hundreds of plant 290	

species to escape global warming across continents and biomes (Willson 1993, Koike et al. 291	

2008, Rosalino and Santos-Reis 2009, González-Varo et al. 2015). More importantly, our 292	

study reveals two disperser traits that allow generalization beyond the studied animals: home 293	

range size and habitat specificity. We propose the use of both traits as a baseline to infer 294	

altitudinal seed dispersal mediated by other animal taxa, thereby as the starting hypotheses 295	

for future studies on this topic. Specifically, we hypothesize a more important role of long-296	

distance seed dispersal in regions where mountains have shallow slopes, and a more 297	

important role of habitat specificity in regions with steep mountains. Therefore, our study not 298	

only demonstrates that seed dispersers help plants to track their suitable climatic ranges in 299	

altitude, but also provides new insights into how information on dispersers’ traits and 300	

landscape attributes can be combined to forecast climate-driven altitudinal range shifts. 301	
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Table 1. Summary statistics of altitude of seed deposition and altitudinal seed dispersal 

distances mediated by red foxes and pine martens. 

 Altitude of seed deposition (m)  Altitudinal dispersal distance (m) 

Disperser species Mean Median Min. Max.  Mean Median Min. Max. 

Red fox 1382 1378 910 1580  26 31 –465 288 

Pine marten 1253 1260 831 1546  –67 –30 –438 255 
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Table 2. Results of the linear models relating altitudinal seed dispersal distance to Euclidean 

dispersal distance and disperser species (red fox or pine marten). Note that model 

incorporating the disperser species had a better predictive power (+15.6%) and was more 

informative (ΔAIC = 34). 

Model: Altitudinal distance ~ R2 AIC Variables F P 

Euclidean distance 0.465 1267.1 Euclidean 90.4 < 0.001 

Euclidean dist. × Disperser species 0.621 1233.1 Euclidean 127.6 < 0.001 

   Disperser 17.4 < 0.001 

   Euclidean × Disperser 26.6 < 0.001 
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Figure 1. Altitudinal seed dispersal patterns mediated by red foxes and pine martens. (A) 
Altitudinal distribution (%) of scats from red fox (left) and pine marten (right) containing 
colour-coded seed mimics (n = 63 and 32 scats containing 451 and 206 seed mimics, 
respectively). Dotted lines denote the altitudinal range of the feeding stations (i.e. the 
simulated ‘source trees’ of the seed mimics); solid lines denote the median altitude of the 
feeding stations belonging to the seeds dispersed by each species; red lines denote the 
maximum altitude in the study area. The forest limit in the study area is at ~1400 m altitude. 
(B) Distribution (%) of altitudinal dispersal distances, i.e. the altitudinal difference between 
the source and deposition sites of dispersed seed mimics (n = 70 and 34 dispersal events). 
The colour gradient is associated to 100-m altitudinal intervals in order to illustrate seed 
dispersal events towards colder and warmer ranges. 
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Figure 2. Relationships between horizontal (Euclidean) and altitudinal seed dispersal 
distances mediated by red foxes (circles, n = 70; solid line: y = 25.7 + 0.064 x) and pine 
martens (triangles, n = 34; dotted line: y = –24.6 + 0.140 x). As in Fig. 1B, the colour gradient 
is associated to 100-m altitudinal intervals in order to illustrate seed dispersal events towards 
colder and warmer ranges. 
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