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Abstract

We investigate local well-posedness of the initial value problem for Lovelock and Horndeski
theories of gravity. A necessary condition for local well-posedness is strong hyperbolicity of the
equations of motion. Even weak hyperbolicity can fail for strong fields so we restrict to weak
fields. The Einstein equation is known to be strongly hyperbolic in harmonic gauge so we study
Lovelock theories in harmonic gauge. We show that the equation of motion is always weakly
hyperbolic for weak fields but, in a generic weak-field background, it is not strongly hyperbolic.
For Horndeski theories, we prove that, for weak fields, the equation of motion is always weakly
hyperbolic in any generalized harmonic gauge. For some Horndeski theories there exists a
generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a weak-
field background. This includes “k-essence” like theories. However, for more general Horndeski
theories, there is no generalized harmonic gauge for which the equation of motion is strongly
hyperbolic in a generic weak-field background. Our results show that the standard method used
to establish local well-posedness of the Einstein equation does not extend to Lovelock or general
Horndeski theories. This raises the possibility that these theories may not admit a well-posed
initial value problem even for weak fields.

1 Introduction

Lovelock theories of gravity are the most general diffeomorphism-covariant theories involving a
metric tensor with second order equations of motion [1]. In four dimensions, the equation of motion
of such a theory reduces to the Einstein equation. But in higher dimensions extra terms are present
and these can change significantly the properties of the equation. For example, it is well-known
that in these theories, gravity does not travel at the speed of light, instead the speed depends on
the curvature of spacetime [2, 3].

Horndeski theories are the most general four-dimensional diffeomorphism-covariant theories in-
volving a metric tensor and a scalar field, with second order equations of motion [4]. Some of these
theories can be obtained from Lovelock theories by dimensional reduction.

Although Lovelock and Horndeski theories have been discussed extensively, the issue of their
mathematical consistency has not received much attention. A minimal consistency requirement of
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a classical theory is that the initial value problem should be locally well-posed. This means that,
given suitable initial data, there should exist a unique solution of the equation of motion arising
from the data, and this solution should depend continuously on the data. “Local” here means that
the solution is only required to exist for some non-zero time, no matter how small.

For analytic initial data, local existence and uniqueness of solutions can be established straight-
forwardly – this was done for Lovelock theories in Ref. [3]. However, this does not establish con-
tinuous dependence of the solution on the data. Furthermore, the restriction to analytic data is
unphysical because it implies that the solution is determined everywhere by its behaviour at a single
point. One cannot discuss causality if one restricts to such data.

Consider the problem of nonlinear perturbations of some “background” solution of a Lovelock or
Horndeski theory. For the nonlinear initial value problem to be well-posed, it is necessary that the
initial value problem for linearized perturbations should also be locally well-posed, not just around
the background solution but around any solution in a neighbourhood of this background solution.

For the linearized initial value problem to be well-posed, the equation of motion should be hyper-
bolic, i.e., have the character of a wave equation. Two notions of hyperbolicity can be distinguished
[5, 6]. Roughly speaking, an equation is weakly hyperbolic if it never admits solutions which grow
exponentially in time, with the exponent proportional to the magnitude of a spatial wavevector, i.e.,
growth which is arbitrarily fast at arbitrarily short distances. An equation is strongly hyperbolic
if an appropriate norm of the solution at time t can be bounded by the initial value of the same
norm multipled by a function of time which is independent of the initial data. Such a bound is an
example of an energy estimate. Obtaining such an estimate is the standard way of proving local
well-posedness. Note that strong hyperbolicity implies weak hyperbolicity.

For a diffeomorphism-covariant theory, the gauge freedom implies that the equation of motion
will not be hyperbolic unless one imposes an appropriate gauge condition. For the Einstein equation,
the simplest choice is harmonic gauge, which ensures that the equation is strongly hyperbolic, and
one can establish local well-posedness [7]. Other approaches to the Einstein equation, such as the
ADM formulation [8], give equations which are weakly but not strongly hyperbolic [9]. This implies
that they cannot be used to establish local well-posedness.1 It also means that they are unsuitable
for solving the Einstein equation numerically on a computer. For numerical applications, strong
hyperbolicity is regarded as essential. The first successful binary black hole simulations [11, 12, 13]
employed numerical codes based either on harmonic gauge [11] or the BSSN formalism [14, 15, 16].
The latter is a modification of the ADM formalism that can be shown to be strongly hyperbolic
[17].

We will start by discussing weak hyperbolicity of (linearized) Lovelock and Horndeski theories.
The results of previous work shows that weak hyperbolicity can fail if the background fields be-
come too large. It was shown in Ref. [18] that weak hyperbolicity fails (in any gauge) for linear
perturbations of “small” black hole solutions of Lovelock theories. Here “small” refers to the scale
set by the dimensionful coupling constants of such a theory. More generally, one expects that weak
hyperbolicity will fail in a large class of backgrounds with large curvature. In Horndeski theories,
it has been shown that cosmological solutions can suffer from “ghost and gradient instabilities”
when the fields become large [19, 20, 21]. As we will explain below, these “instabilities” are not
dynamical instabilities but instead indicate a failure of weak hyperbolicity in such backgrounds.
These examples show that, for both Lovelock and Horndeski theories, the equation of motion is not

1However there exist strongly hyperbolic modifications of these equations which can be used to establish local
well-posedness [10].
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always weakly hyperbolic. Hence for general initial data one cannot expect local well-posedness.
However, one might hope that if one restricts the initial data so that the equation of motion is
weakly hyperbolic then the initial value problem will be locally well-posed. In particular, one might
expect that a failure of weak hyperbolicity would occur only for large background fields so that if
we restrict to studying backgrounds involving only weak fields then there will be no problem. In
this paper we will investigate whether or not this is true.

For weak fields, the equation of motion of a Lovelock or Horndeski theory appears to be a small
perturbation of the Einstein equation and therefore one might guess that the equation of motion
will be hyperbolic. However, this is not obvious because the perturbation to the equation of motion
changes the two-derivative terms. We can illustrate this point with an example. In 2d Minkowski
spacetime consider the equations

∂2φ = kε∂0∂1ψ ∂2ψ = −kε∂0∂1φ. (1)

View this system as analogous to the equations governing linear perturbations around a weak field
background solution of Lovelock or Horndeski theory. Here k is to be regarded as analogous to a
coupling constant of the theory, with k = 0 analogous to the Einstein equation. The parameter ε
corresponds to the strength of the background fields, with the Lorentz symmetry breaking on the
RHS analogous to the Lorentz symmety breaking arising from the non-trivial backgrounds fields.
For k = 0 we have a hyperbolic system. However, when k 6= 0, for any ε 6= 0 it is easy to check that
the above system of equations is elliptic. This example demonstrates that a small perturbation to
the highest derivative terms in an equation of motion can completely change the character of the
equation.2

We will show that the above problem does not occur for Lovelock or Horndeski theories. We will
prove that these theories are weakly hyperbolic in any weak field background. More precisely, we
will prove that the linearized equation of motion is weakly hyperbolic in harmonic gauge (Lovelock)
or a generalized harmonic gauge (Horndeski) whenever the background fields are sufficiently weak.

Our most important results concern strong hyperbolicity of Lovelock and Horndeski theories.
As discussed above, strong hyperbolicity is needed in order to establish local well-posedness of
the initial value problem, and in numerical applications. However, we will prove that, for Lovelock
theories, in harmonic gauge, the linearized equation of motion is not strongly hyperbolic in a generic
weakly curved background. The word “generic” is important here: there certainly exist particular
backgrounds for which the linearized equation of motion is strongly hyperbolic (e.g. Minkowski
spacetime [22]) so the equation of motion for linear perturbations around such backgrounds is
locally well-posed. However, such backgrounds are non-generic e.g. they always have symmetries.
In order to have any hope of establishing local well-posedness for the nonlinear theory for weak
fields, one would need strong hyperbolicity for any weakly curved background. This is not the case,
at least not in harmonic gauge. Hence the most straightforward approach to establishing local well-
posedness for Lovelock theories does not work.3 In the final section of this paper we will discuss
whether any alternative method could work.

For a particular class of Horndeski theories, we will prove that there exists a generalized har-
monic gauge for which the linearized equation of motion is strongly hyperbolic for arbitrary weak

2 There is, however, an important difference between the system (1) and a Lovelock or Horndeski theory, which is
that (1) is not obtained from an action principle.

3Note that the recent discussion of local well-posedness in Ref. [23] simply assumes that the harmonic gauge
equation of motion is suitably hyperbolic. Our result shows that this assumption is incorrect.
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background fields. This class of theories involves no coupling between derivatives of the scalar field
and curvature tensors in the action. This class includes various models of interest e.g. “k-essence”
theories or scalar-tensor theories such as Brans-Dicke theory [24]. However, for more general Horn-
deski theories, we find that the situation is analogous to the Lovelock case: there exists no gener-
alized harmonic gauge for which the linearized theory is strongly hyperbolic in a generic weak field
background.

This result can be strengthened considerably as follows. Consider a Horndeski theory for which
there exists a generalized harmonic gauge such that the linearized equation of motion is strongly
hyperbolic in a generic weak field background. We can now ask: does this extend to the nonlinear
theory? In particular, does there exist a generalized harmonic gauge for the nonlinear theory such
that the nonlinear equation of motion is strongly hyperbolic in a generic weak-field background? For
this to be the case, the generalized harmonic gauge condition for the nonlinear theory must, upon
linearization, reduce to the generalized harmonic gauge condition for the linearized theory. However,
this implies that the source function appearing in the gauge condition of the linearized theory must
satisfy a certain integrability condition. This condition is not satisfied in general. Using this
condition we find that the class of Horndeski theories for which there exists a generalized harmonic
gauge for which the nonlinear theory is strongly hyperbolic in a generic weak-field background is
simply the class of “k-essence” type theories coupled to Einstein gravity. See the end of section 4
for a precise statement.

This paper is organized as follows: in Section 2 we define the notions of weak and strong hyper-
bolicity and discuss the relevant background material. In Section 3 we discuss Lovelock theories.
We present a proof of weak hyperbolicity of harmonic gauge Lovelock theories in weak curvature
backgrounds and show that, generically, strong hyperbolicity does not hold. We then present some
examples in which weak hyperbolicity is violated dynamically. These are “collapsing universe” so-
lutions which start off with small curvature, but develop large curvature over time. In Section 4
we discuss Horndeski theories. We show that, in a generalized harmonic gauge, Horndeski theories
are weakly hyperbolic in weak-field backgrounds. We then show that, while a subclass of Horndeski
theories is strongly hyperbolic in a particular generalized harmonic gauge, more general Horndeski
theories are not. Section 5 discusses the implications of our results.

We adopt the notation that Latin indices a, b, c, . . . are abstract indices denoting tensor equations
valid in any basis. Greek indices µ, ν, . . . refer to a particular basis e.g. a coordinate basis.

2 Hyperbolicity

In this section we will review briefly the notions of weak and strong hyperbolicity. Our discussion
is based on Refs. [5] and [6]. We will start with first order systems of linear equations and then
discuss second order systems.

2.1 First order equation

In d spacetime dimensions with coordinates (t, xi), consider a first order linear partial differential
equation for a N -dimensional vector u:

Aut + P i∂iu+ Cu = 0 (2)
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where A, P i and C are real constant N × N matrices. We assume that A is invertible. Taking a
spatial Fourier transform gives

ũt − iM(ξi)ũ = 0 (3)

where
M(ξi) = A−1

(
−P iξi + iC

)
. (4)

This has solution
ũ(t, ξi) = exp(iM(ξi)t)ũ(0, ξi) (5)

and hence we have the formal solution

u(t, x) =
1

(2π)d−1

∫
dd−1ξ exp(−iξixi) exp(iM(ξi)t)û(0, ξi). (6)

The problem with this expression is that it may not converge as |ξ| → ∞ without imposing unrea-
sonable conditions on the initial data. Here we have defined

|ξ| =
√
ξiξi. (7)

To ensure convergence we need the matrix M(ξi) to satisfy certain conditions. Convergence is
guaranteed ifM(ξi) satisfies, for all ξi, and all t > 0,

|| exp(iM(ξi)t)|| ≤ f(t) (8)

for some continuous function f(t) independent of ξi. This condition implies that the integral con-
verges and the resulting solution satisfies

||u||(t) ≤ f(t)||u||(0) (9)

where || . . . || denotes the spatial L2 norm. Using this one can prove that the initial value problem
is locally well-posed. So we need to determine whether or not the condition (8) is satisfied.

The convergence of (6) is a high frequency question so we let t = t′/|ξ| and take |ξ| → ∞ at
fixed t′. Equation (8) becomes

|| exp(iM(ξ̂i)t
′)|| ≤ k (10)

where k = f(0) and

ξ̂i =
ξi
|ξ|

(11)

and
M(ξi) = −A−1P iξi (12)

is the “principal part” ofM. Consider an eigenvector v of M(ξ̂i) with eigenvalue λ = λ1 + iλ2. We
have

exp(iM(ξ̂i)t
′)v = eiλ1t′e−λ2t′v. (13)

This is consistent with (10) only if λ2 ≥ 0 for all ξ̂. Now M(ξ̂i) is a real matrix hence if λ is an
eigenvalue then so is λ̄ so consistency with (10) requires ±λ2 ≥ 0 i.e. λ2 = 0. We deduce that (10)
implies that all eigenvalues of M(ξ̂i) are real. This motivates the definition of weak hyperbolicity:
equation (2) is weakly hyperbolic if, and only if, all eigenvalues of M(ξi) are real for any real ξi with
ξiξi = 1.
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A failure of weak hyperbolicity would be a disaster for the initial value problem because the
integrand in (6) would grow exponentially with |ξ| at large |ξ| so convergence would require highly
fine-tuned initial data.

The matrix M(ξ̂i) can be brought to Jordan normal form by a similarity transformation

M(ξ̂i) = S(ξ̂i)J(ξ̂i)S(ξ̂i)
−1 (14)

so
exp(iM(ξ̂i)t

′) = S(ξ̂i) exp(iJ(ξ̂i)t
′)S(ξ̂i)

−1. (15)

Assume that M is not diagonalizable, i.e., J contains a n×n Jordan block, n ≥ 2, associated to an
eigenvalue λ of M(ξ̂). Then the RHS exhibits polynomial growth with t′. For example consider the
case of a 2× 2 block J2 with eigenvalue λ:

J2 =

(
λ 1
0 λ

)
⇒ exp(iJ2t

′) = eiλt
′
(

1 it′

0 1

)
. (16)

If the equation is weakly hyperbolic then λ is real so there is no exponential growth it t′. But the
presence here of the term linear in t′ implies that equation (10) is not satisfied. More generally,
an n × n Jordan block would lead to terms involving t′p for p ≤ n. Using t′ = |ξ|t this gives
terms proportional to |ξ|p in the integral of (6). The presence of such terms implies that it is not
possible to obtain a bound of the form (9). The best one could hope for is that it is possible to
modify the RHS to include sufficiently many spatial derivatives of u. Whether or not this is possible
depends on the form of the zero derivative term Cu in the equation of motion [5].4 But even if
this is possible, the “loss of derivatives” in (9) would be worrying if we are considering an equation
obtained by linearizing some nonlinear equation. This is because the loss of derivatives would be a
serious obstruction to establishing local well-posedness for the nonlinear equation.

To avoid this problem, M(ξ̂) must be diagonalizable, i.e., there exists a matrix S(ξ̂i) such that
M = SDS−1 where D(ξ̂i) is diagonal. Defining a positive definite hermitian matrix K(ξ̂i) =
(S−1)†S−1 we then have

K(ξ̂i)M(ξ̂i)K(ξ̂i)
−1 = M(ξ̂i)

†. (17)

This motivates the definition of strong hyperbolicity. With constant coefficients, equation (2) is
strongly hyperbolic if, and only if, there exists a positive definite hermitian matrix K(ξ̂i) depending
smoothly on ξ̂i such that (17) holds.

Note that (17) states that M(ξ̂i) is Hermitian w.r.t. K(ξ̂i). This implies that M(ξ̂i) is diagonal-
izable with real eigenvalues. Using K one can define an inner product between solutions, and the
corresponding norm can be shown to satisfy an inequality of the form (9). This is called the energy
estimate. Using this one can prove that the initial value problem is locally well-posed independently
of the form of the zero derivative term Cu in (2) [5].

So far the discussion has considered a first order linear PDE with constant coefficients. We
can now discuss the case of non-constant coefficients. Let the matrices A, P i and C in (2) depend
smoothly on time and space, with A still invertible. At some point (t0, x

i
0) we define the frozen

coefficients equation by fixing A, P i and C to their values at (t0, x
i
0). It is believed that a necessary

condition for local well-posedness of the varying coefficients equation near (t0, x
i
0) is that the frozen

4 There are examples of weakly hyperbolic systems for which || exp(iM(ξi)t)|| grows as exp (c
√
|ξ|t) for some

constant c > 0 [5], in which case one could not even obtain a bound of this weaker type.
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coefficients equation should be locally well-posed. For this to be the case, the frozen coefficients
equation must satisfy the above definitions of weak and strong hyperbolicity. For the varying
coefficients equation to be locally well-posed, we need these definitions to be satisfied for all (t0, x

i
0).

This motivates extending the definitions of hyperbolicity to equations with non-constant coefficients
in the obvious way: we simply allow M(t, x, ξi) and K(t, x, ξi) to depend smoothly on (t, x) as well
as on ξ [5, 6]:

Definition. Equation (2) is weakly hyperbolic if, and only if, all eigenvalues of M(t, x, ξi) are real
for any real ξi with ξiξi = 1.

Equation (2) is strongly hyperbolic if, and only if, there exists a positive definite hermitian matrix
K(t, x, ξ̂i) depending smoothly on t, x, ξ̂i such that

K(t, x, ξ̂i)M(t, x, ξ̂i)K(t, x, ξ̂i)
−1 = M(t, x, ξ̂i)

† (18)

and a constant C > 0 such that C−1I ≤ K(t, x, ξ̂i) ≤ CI for all t, x, ξ̂i.

The latter technical condition is required to obtain an energy estimate – it ensures that K does
not behave badly for large t, x e.g. it does not become degenerate or blow up asymptotically.

2.2 Second order equations

Our treatment of second order equations is based on [6]. Consider a second order linear equation
for a N -dimensional vector u in d coordinates xµ = (t, xi):

Pµν∂µ∂νu+Qµ∂µu+Ru = 0 (19)

where Pµν = P νµ, Qµ and R are N ×N real matrices. For a covector ξ, the principal symbol is the
matrix

P (ξ) ≡ Pµνξµξν . (20)

As above, we start by considering the constant coefficients case. Take a spatial Fourier transform
to obtain

Aũtt + i
(
B(ξi) + iQ0

)
ũt −

(
C(ξi) + iQiξi +R

)
ũ = 0 (21)

where
A = P 00 B(ξi) = 2ξiP

0i C(ξi) = P ijξiξj (22)

and we assume that A is invertible, i.e., surfaces of constant t are non-characteristic. We write this
equation in first order form by defining a column vector w̃ by5

w̃T = (
√

1 + |ξ|2ũ,−iũt) (23)

where, as above,
|ξ| =

√
ξiξi, (24)

giving the equation
w̃t = iM(ξi)w̃ (25)

5Here we slightly modify the approach of [6] to avoid singularities at |ξ| = 0.
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where we define the 2N × 2N matrix

M(ξi) =

(
0 (1 + |ξ|2)1/2I

−(1 + |ξ|2)−1/2A−1
(
C(ξi) + iQiξi +R

)
−A−1

(
B(ξi) + iQ0

)) . (26)

Note that the L2 norm of ŵ is a measure of the energy of the field u: it is quadratic in u and its
first derivatives. To prove local well-posedness requires that this norm obeys an energy estimate of
the form

||w̃||(t) ≤ f(t)||w̃||(0) (27)

for some continuous function f(t) independent of ξi and w̃.
The solution of the first order equation is

w̃(t, ξi) = exp(iM(ξi)t)w̃(0, ξi) (28)

so for the energy estimate to hold for any initial data we need

|| exp(iM(ξi)t)|| ≤ f(t). (29)

If we define t = t′/|ξ| at take |ξ| → ∞ at fixed t′ then this implies

|| exp(iM(ξ̂i)t
′)|| ≤ k (30)

where k = f(0), ξ̂i = ξi/|ξ| and

M(ξi) =

(
0 I

−A−1C(ξi) −A−1B(ξi)

)
. (31)

We can now repeat the argument we used for a first order system: ifM(ξ̂i) had a complex eigenvalue
then we could violate (30). Hence we define weak hyperbolicity as the condition that all eigenvalues
of M(ξ̂i) are real.

Let ξ0 be an eigenvalue of M(ξi) with eigenvector (t, t′)T . Writing out the eigenvalue equation
gives t′ = ξ0t and (

Aξ2
0 +B(ξi)ξ0 + C(ξi)

)
t = 0. (32)

This is a quadratic eigenvalue problem with eigenvector t. In terms of the principal symbol it is
simply

P (ξ)t = 0 (33)

where ξµ = (ξ0, ξi). This equation states that the covector ξ is characteristic. Hence (19) is weakly
hyperbolic if, for any real ξi 6= 0, a characteristic covector (ξ0, ξi) has real ξ0.

As for first order systems, if the Jordan normal form of M involves non-trivial blocks then
equation (30) cannot hold. So we define strong hyperbolicity just we did above: equation (19) is
strongly hyperbolic if, and only if, there exists a positive definite Hermitian matrix K(ξ̂i) depending
smoothly on ξ̂i such thatM(ξ̂i) is Hermitian w.r.t. K, i.e., satisfies (17). This implies thatM(ξi) =
|ξ|2M(ξ̂i) is diagonalizable with real eigenvalues.

Finally we consider the equation (19) with coefficients Pµν , Qµ and R now depending on (t, xi).
We define M(t, x, ξi) using (31). As for first order systems, it is believed that local well-posedness
implies local well-posedness for the equation with frozen coefficients. Hence we define weak and
strong hyperbolicity just as for first order systems:
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Definition. Equation (19) is weakly hyperbolic if, and only if, all eigenvalues of M(t, x, ξi) are
real for any real ξi with ξiξi = 1. Equivalently, if (ξ0, ξi) is characteristic and ξi 6= 0 is real then ξ0

is real.

Equation (19) is strongly hyperbolic if, and only if, there exists a positive definite Hermitian matrix
K(t, x, ξ̂i) depending smoothly on t, x, ξ̂i such that

K(t, x, ξ̂i)M(t, x, ξ̂i)K(t, x, ξ̂i)
−1 = M(t, x, ξ̂i)

† (34)

and a constant C > 0 such that C−1I ≤ K(t, x, ξ̂i) ≤ CI for all t, x, ξ̂i.

In this paper we will mainly be interested in showing that certain equations are not strongly
hyperbolic. We will do this by demonstrating that M(t, x, ξ̂i) is not diagonalizable. Note that M is
determined by Pµν , i.e., by the principal symbol. So hyperbolicity depends only on the nature of the
second derivative terms in the equation. Furthermore, to demonstrate that M is not diagonalizable
it is sufficient to work at a single point in spacetime.

3 Lovelock theories

3.1 Equation of motion in harmonic gauge

In d > 4 spacetime dimensions, the equation of motion of a Lovelock theory of gravity is

Aab = 8πTab (35)

where Tab is the energy momentum tensor of matter and

Aab = Gab + Λδab +
∑
p≥2

kpδ
ac1...c2p
bd1...d2p

Rc1c2
d1d2 . . . Rc2p−1c2p

d2p−1d2p . (36)

We have assumed that the coefficient of the Einstein term is non-zero and normalized it in the
standard way. kp are constants and the antisymmetry ensures that the sum is finite (2p+ 1 ≤ d in
d dimensions). We will be considering the case of vacuum solutions of this theory so we set Tab = 0
henceforth.

To investigate hyperbolicity we linearize around a background solution gab, i.e. the metric is
gab + hab and we linearize in hab, writing

Aab[g + h] = Aab[g] +A
(1)
ab [h] + . . . (37)

so that the linearized equation of motion is

A
(1)
ab [h] = 0. (38)

For the Einstein equation (i.e. kp = 0), the resulting equation is strongly hyperbolic only if we
impose a suitable gauge condition. For the nonlinear equation, one can choose harmonic coordinates:

0 = gνρ∇ν∇ρxµ =
1√
−g

∂ν
(√
−ggµν

)
. (39)
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Upon linearization this reduces to the Lorenz gauge condition for the linearized metric perturbation:

Hb ≡ ∇ahab −
1

2
∇bhaa = 0. (40)

Actually, linearizing the harmonic gauge condition around a non-trivial background gives a general-
ized Lorenz gauge condition with a non-vanishing RHS. But this RHS does not depend on derivatives
of hab which implies that it does not affect the hyperbolicity analysis. Therefore we will just use
the standard Lorenz gauge.

Although most properly referred to as Lorenz gauge, henceforth we will refer to (40) as harmonic
gauge because it is inconvenient to use different words for the linear and nonlinear gauge conditions.
Of course it is well-known that the gauge condition (40) can always be achieved by a suitable gauge
transformation in the linearized theory.

In harmonic gauge, the Einstein equation is strongly hyperbolic. We will investigate whether
the same is true for Lovelock theory. We will do this by investigating hyperbolicity of the linearized
theory. The harmonic gauge linearized equation of motion is

Ã
(1)
ab [h] = 0. (41)

where
Ã

(1)
ab [h] ≡ A(1)

ab [h]−∇(aHb) +
1

2
gab∇cHc (42)

This is the equation of motion whose hyperbolicity we will study.
A standard argument shows that the harmonic gauge condition is propagated by the harmonic

gauge equation of motion [3]. The argument is based on the fact that the tensor Aab arises from
a diffeomorphism covariant action and therefore satisfies a contracted Bianchi identity ∇bAab = 0.
Linearizing around a background solution gives, for any hab,

∇bA(1)
ab [h] = 0 (43)

so, when (41) is satisfied, the divergence of (42) gives

∇b∇bHa +RabH
b = 0. (44)

This is a standard linear wave equation so provided the initial data is chosen such that Ha and
its first time derivative vanish then the solution will have Ha ≡ 0. (As for the Einstein equation,
vanishing of the first time derivative of Ha is equivalent, via the equation of motion, to the condition
that the initial data satisfies the constraint equations [3].) This proves that the gauge condition (40)
is propagated by the equation of motion (41). Hence the resulting solution will satisfy the original
equation of motion (38).

The harmonic gauge equation of motion (41) takes the form

P abcdef∇e∇fhcd + . . . = 0 (45)

where the ellipsis denotes terms involving fewer than two derivatives of hab. The coefficient here
defines the principal symbol

P (ξ)abcd ≡ P abcdefξeξf (46)
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for an arbitrary covector ξa. The coefficient is symmetric in ab and in cd. It can be split into the
terms coming from the (harmonic gauge) Einstein tensor, and those coming from the extra Lovelock
terms:

P (ξ)abcd = PEinstein(ξ)abcd + δP abcd(ξ) (47)

where, for a symmetric tensor tab,

PEinstein(ξ)abcdtcd = −1

2
ξ2Gabcdtcd (48)

with ξ2 = gabξaξb and

Gabcd =
1

2

(
gacgbd + gadgbc − gabgcd

)
. (49)

Viewed as a quadratic form on symmetric tensors, Gabcd has signature (d, d(d−1)/2), i.e., d negative
eigenvalues and d(d− 1)/2 positive eigenvalues.

The Lovelock contribution to the principal symbol is given by [25]

δP ab
cd(ξ)tcd ≡ δP abcdefξeξf tcd = −2

∑
p≥2

pkpδ
aceg3g4...g2p−1g2p

bdfh3h4...h2p−1h2p
tc
dξeξ

fRg3g4
h3h4 . . . Rg2p−1g2p

h2p−1h2p .

(50)
Note that

δP abcdef = δP cdabef (51)

and
δP (a|bcd|ef) = δP a(bc|de|f) = 0. (52)

These identities are a consequence of the the gauge symmetry of the theory and the fact that the
gauge fixing terms do not affect δP . We will discuss this in more detail in section 4.2. It follows
that

ξaδP
abcd(ξ) = ξbξcξfδP

abcdef = 0. (53)

3.2 Setting up the problem

We will investigate whether the harmonic gauge linearized Lovelock equation of motion is hyperbolic
when the curvature of the background spacetime is small. Here, “small” means small compared to
any of the scales defined by the dimensionful coupling constants kp, so one expects the Lovelock
terms in the equation of motion to be small compared to the Einstein term.

To relate to the discussion of (2.2) we need to introduce coordinates xµ = (t, xi). We assume
that these are chosen so that surfaces of constant t are spacelike, i.e. g00 < 0, which ensures that
the initial value problem for the harmonic gauge linearized Einstein equation is well-posed. We
want to ask whether the same is true for the harmonic gauge linearized Lovelock equation when
the background curvature is small. Here, by small, we mean that there exists an orthonormal basis
{eaµ} with e0 orthogonal to surfaces of constant t, for which the magnitude of the largest component
of the Riemann tensor is L−2 where |kp|L−2p � 1 for all p ≥ 2. This ensures that the Lovelock
terms in the equation of motion are small compared to the Einstein term.

The principal symbol P (ξ) maps symmetric tensors to symmetric tensors so we regard it as a
N ×N matrix where N = d(d+ 1)/2. We define N ×N matrices A(x), B(x, ξi) and C(x, ξi) using
equation (22), i.e.,

A = P 00 B(ξi) = 2ξiP
0i C(ξi) = ξiξjP

ij . (54)
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Here ξi is real with ξiξi = 1 (since this is what we need in the definitions of strong and weak
hyperbolicity). Throughout this section we will not write explicitly the dependence on the spacetime
coordinates xµ. Note that these matrices are real and symmetric: the latter property arises because
the equation of motion can be obtained from a Lagrangian (see section 4.2).

Our assumption that the surfaces of constant t are spacelike ensures that A is invertible when
the Lovelock terms are absent. Hence, by continuity, A is also invertible when the background
curvature is small. We can therefore define M(ξi) as above, i.e.,

M(ξi) =

(
0 I

−A−1C(ξi) −A−1B(ξi)

)
. (55)

Recall that weak hyperbolicity is the requirement that the eigenvalues of this matrix are real. For
strong hyperbolicity it is necessary that the eigenvalues are real and the matrix is diagonalizable.

From the discussion of section (2.2) we know that ξ0 is an eigenvalue of M(ξi) if, and only if,
the corresponding eigenvector v has the form

v =

(
t
ξ0t

)
(56)

for some non-zero symmetric tµν such that

P (ξ)t = 0 (57)

where ξµ ≡ (ξ0, ξi) in the argument of P .
Consider first the case of the linearized Einstein equation. Since Gabcd is non-degenerate, equa-

tion (48) implies that ξµ is characteristic if, and only if, it is null:

PEinstein(ξ)t = 0, t 6= 0 ⇔ gµνξµξν = 0. (58)

Let ξ±0 denote the two solutions of gµνξµξν = 0 for the given ξi. Of course these solutions are real,
so the (harmonic gauge) Einstein equation is weakly hyperbolic. We define the null covectors

ξ±µ = (ξ±0 , ξi). (59)

These covectors will play an important role throughout this paper. By solving explicitly one finds
that

ξ+
0 + ξ−0 = −2

g0iξi
g00

⇒ ξ0+ + ξ0− = 0. (60)

Hence we can adopt the convention ξ0+ < 0, ξ0− > 0.6

We have PEinstein(ξ±)t = 0 for any tab. Hence for the Einstein equation, the matrix M has two
real eigenvalues ξ±0 and the associated eigenvectors are (t, ξ±0 t)

T . Each eigenvalue has N eigenvectors
associated to it. It follows that M has 2N linearly independent eigenvectors and hence M is
diagonalizable, as required by strong hyperbolicity.

We now return to the general case of Lovelock theory. Define a 2N × 2N real symmetric (and
hence hermitian) matrix H(ξi) by

H(ξi) =

(
B(ξi) A
A 0

)
. (61)

6 We can’t have ξ0± = 0 because that would violate the facts that ξ±µ is null and e0 is timelike.
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We then have
H(ξi)M(ξi)H(ξi)

−1 = M(ξi)
T (62)

so M is real symmetric (and hence hermitian) w.r.t. H. It is easy to see that H is non-degenerate:
if v = (t, t′)T then Hv = 0 implies t = t′ = 0 using the fact that A is invertible.7 H is hermitian
and non-degenerate so its eigenvalues are real and non-zero. We can determine the signature of H
by writing the Lovelock couplings as

kp = εk̃p p ≥ 2. (63)

Since the eigenvalues of H are real, non-vanishing, and depend continuously on ε (with k̃p and the
background curvature fixed), the signature of H cannot depend on ε. Hence it can be evaluated at
ε = 0, i.e. for the linearized Einstein equation. The result is that H has N positive eigenvalues and
N negative eigenvalues, even for strong background fields. Thus, although H and M satisfy the
condition (34), this does not imply strong hyperbolicity because H is not positive definite.8

3.3 Proof of weak hyperbolicity in a low curvature background

To proceed, we will use a continuity argument involving the parameter ε defined in (63). Note that
taking ε small at fixed k̃p and fixed background curvature is equivalent to assuming the background
curvature to be small at fixed kp. We will establish weak hyperbolicity for small ε, which is equivalent
to establishing it for small background curvature. In what follows we will suppress the dependence
of M and H on ξi and write simply M(ε) and H(ε).

For ε = 0 we showed above that ξ±0 are the only eigenvalues of M(ε), each with degeneracy
N . The eigenvalues of M(ε) depend continuously on ε [27]. Hence, for small ε, they can be split
unambiguously into two sets according to whether they approach ξ+

0 or ξ−0 as ε→ 0. We will follow
[27] and refer to these sets as the ξ+

0 -group and the ξ−0 -group. Each group contains N eigenvalues.
Since we do not know whether or not the eigenvalues and eigenvectors of M(ε) are real, we will

regard M(ε) and H(ε) as acting on a complex vector space V of dimension 2N .
For ε = 0, the eigenvalues ξ±0 are degenerate but “semi-simple”, i.e., M(0) is diagonalizable.

However, there is no reason for this to remain true when ε 6= 0: the Jordan canonical form of M(ε)
may involve non-trivial Jordan blocks. For any eigenvalue ξ0, one can define a generalized eigenspace
as

{v : ∃r such that (M − ξ0I)rv = 0} . (64)

This is the sum of the vector spaces associated with the Jordan blocks corresponding to that
eigenvalue. We define the “total generalized eigenspace for the ξ±0 -group” V ±(ε) as the sum over
generalized eigenspaces of the eigenvalues in the ξ±0 -group. Since any eigenvalue belongs to one of
these groups we have

V = V +(ε)⊕ V −(ε). (65)

We denote the projection onto V ±(ε) as Π±(ε), i.e.,

V ±(ε) = Π±(ε)V. (66)
7The matrix H is closely related to the symplectic current density ωµ defined in [26]. Roughly speaking, H is the

high spatial frequency part of the Fourier space analogue of −iω0.
8This is the case even for the Einstein equation (ε = 0). However, for the Einstein equation we have shown that

we can diagonalize M so we can construct a positive definite matrix K as explained above equation (17).
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These projection matrices are holomorphic in ε for small ε, in fact there is an explicit formula [27]

Π±(ε) = − 1

2πi

∫
Γ±

(M(ε)− z)−1dz (67)

where Γ± is a simple closed curve in the complex plane such that ξ±0 lies inside Γ± but ξ∓0 lies
outside Γ±. Note that Γ± does not depend on ε. For small non-zero ε, the integrand has poles at
the eigenvalues of M(ε) but only the eigenvalues that belong to the ξ±0 -group lie inside Γ±.

It can be shown that M(ε) and H(ε) satisfying (62) can be brought simultaneously to a block-
diagonal canonical form, whereM(ε) is in Jordan canonical form andM(ε) and H(ε) have the same
block structure [28]. Since V +(ε) and V −(ε) contain different Jordan blocks of M(ε) it follows that
these subspaces are orthogonal w.r.t. H(ε). Consider the restriction of H(ε) to these subspaces.
Define the projection of H(ε) onto V ±(ε):

H±(ε) = Π±(ε)†H(ε)Π±(ε). (68)

This is a hermitian matrix which depends holomorphically on ε. We will need to determine its
signature. Any vector in V ∓(ε) is an eigenvector with eigenvalue 0 hence H±(ε) has at least N
vanishing eigenvalues. The remaining eigenvalues are associated to eigenvectors living in V ±(ε).
Since the restriction of H±(ε) to V ± is the same as the restriction of H(ε) to V ±, it follows that
this restriction is non-degenerate, i.e., these remaining eigenvalues are all non-zero. Therefore we
can determine the signs of these eigenvalues by looking at the signs of the eigenvalues when ε = 0,
and using continuity. For ε = 0, we know that V ±(0) consists of vectors of the form v = (t, ξ±0 t)

T .
Taking the inner product of two such vectors w.r.t. H±(0) gives

v†1H
±(0)v2 = t†1B(0)t2 + 2ξ±0 t

†
1A(0)t2 = 2ξ±µ t

†
1P

0µ
Einsteint2 = −ξ0±t†1Gt2 (69)

where G is defined in (49). Hence the signature of H±(0) restricted to V ±(0) is the same as the
signature of −ξ0±G. Recall that ξ0+ < 0, ξ0− > 0. It follows that within V ±(0), H±(0) has the
same signature as ±G, i.e., d negative eigenvalues and d(d − 1)/2 positive eigenvalues for H+(0)
and vice-versa for H−(0). Hence, by continuity, it follows that H+(ε) has d negative eigenvalues
and d(d−1)/2 positive eigenvalues, with eigenvectors in V +(ε), as well as N = d(d+1)/2 vanishing
eigenvalues with eigenvectors in V −(ε). Similarly forH−(ε) with positive and negative interchanged.

We can identify an important subset of eigenvectors of M(ε) explicitly, for any ε. They are
associated to a residual gauge freedom. These “pure gauge” eigenvectors have v of the form (56)
with

ξ0 = ξ±0 tµν = ξ±(µXν) (70)

for arbitrary complex Xµ. Of course a pure gauge eigenvector with eigenvalue ξ±0 belongs to V ±(ε).
It is interesting to calculate the inner product of two pure gauge eigenvectors so let t′µν = ξ±(µX

′
ν)

and consider the associated vector v′ defined by (56). Since v, v′ are elements of V ±(ε), their inner
product w.r.t. H±(ε) is the same as their inner product w.r.t. H(ε):

v
′†H(ε)v = t

′†B(ε)t+ 2ξ±0 t
′†A(ε)t = 2ξ±µ t

′†P 0µ(ε)t = 2ξ±µ ξ
±
ν ξ
±
ρ X̄

′
σXτP

νσρτ0µ(ε) = 0 (71)

where in the final step we used the second equation in (53), and the fact that two such “pure gauge”
vectors t, t′ are orthogonal w.r.t. Gµνρσ. This result shows that the pure gauge eigenvectors with
eigenvalue ξ±0 form a d-dimensional subspace N± of V ±(ε) that is null w.r.t. H±(ε).
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We can now prove that the harmonic gauge linearized equation of motion of Lovelock theory
is weakly hyperbolic in a small curvature background. Consider the possibility of an eigenvalue ξ0

that is complex, with eigenvector v. For concreteness, assume that ξ0 belongs to the ξ+
0 -group, so

v ∈ V +(ε). Equation (62) implies that a pair of eigenvectors whose eigenvalues are not complex
conjugates of each other must be orthogonal w.r.t. H(ε). This implies that v is orthogonal, w.r.t.
H+(ε), to the “pure gauge” eigenvectors in V +(ε). Furthermore, since ξ0 is complex, the H(ε)-
norm of v must vanish, which implies that v is null w.r.t. H+(ε). The linear span of v and
N+ now gives a (d + 1)-dimensional subspace of V +(ε) that is null w.r.t. H+(ε). However, this
is impossible because we showed above that for small ε, H+(ε) has d negative eigenvalues and
d(d− 1)/2 positive eigenvalues which implies the maximal dimension of a null subspace of V +(ε) is
given by min(d, d(d− 1)/2) = d [28]. This proves that complex ξ0 is not possible for small ε.

The final step is to note that the above argument assumed fixed ξi, i.e., for given ξi then complex
ξ0 is not possible for small enough ε. But we need our final result to be uniform in ξi, i.e., we need
to show that the upper bound on ε does not depend on ξi. To do this we recall that our definition of
weak hyperbolicity refers only to ξi satisfying the condition ξiξi = 1, i.e., ξi belonging to a compact
set. The spectrum of a matrix M has uniformly continuous dependence on M when M is restricted
to a bounded set [27]. It follows that the spectrum of M(ε) and H(ε) has uniformly continuous
dependence on ε and ξi when ε is restricted to a bounded set and ξiξi = 1. Using this it can be
shown that our results above are indeed uniform in ξi. The same argument establishes that our
result is uniform in the spacetime point xµ provided we restrict to a compact region of spacetime.

The above argument is restricted to a weakly curved background spacetime. If the curvature is
not weak then the argument can fail. Imagine increasing ε to arbitrarily large values. There are two
things that could go wrong. First, our assumption that A is invertible may fail, i.e., we might reach
a value of ε for which a surface of constant t becomes characteristic somewhere. Second, it might
not be possible to separate the eigenvalues into the ξ+

0 group and the ξ−0 group as we did above.
For example, as we increase ε, an eigenvalue from one group might coincide with an eigenvalue
from the other group. At larger ε, this eigenvalue could then split into a pair of complex conjugate
eigenvalues, violating weak hyperbolicity.

3.4 Failure of strong hyperbolicity in a generic low curvature background

For strong hyperbolicity, M must be diagonalizable. We will now demonstrate that this is not the
case for a generic weakly curved background spacetime.9 We showed above that eigenvalues ξ0 are
all real in a weakly curved background. Therefore in this section we will assume that all vector
spaces V ±, N± etc are real. Note that the assumption that the background is weakly curved is
required to define these spaces.

As discussed above, M and H satisfying (62) can be brought simultaneously via a change of
basis to a certain canonical form [28]. We need to discuss this canonical form in more detail. In the
canonical basis, M has Jordan normal form and H is block diagonal, with the same block structure
as M . By this we mean that a n× n Jordan block in M corresponds to a n× n block in H. Such
a block of H consists of zeros everywhere except on the diagonal running from top right to bottom
left. Along this diagonal, the elements are all equal to 1 or all equal to −1. For example, if M has

9In this section, we will not write explicitly the dependence on the parameter ε e.g. we write M instead of M(ε).
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a 3× 3 Jordan block then the corresponding 3× 3 block in H has the form 0 0 ±1
0 ±1 0
±1 0 0

 . (72)

Each n× n block in H is non-degenerate and has signature either +1 or −1 (if n is odd) or 0 (if n
is even).

Recall the definition (64) of a generalized eigenspace. Note that a generalized eigenspace corre-
sponds to a sum of all Jordan blocks associated to the given eigenvalue. Hence V ± is a direct sum
of the basis vectors associated to Jordan blocks of eigenvalues in the ξ±0 -group. Hence any Jordan
block is associated either to V + or to V −. The canonical form then implies that V + and V − are
orthogonal w.r.t. H, as stated above.

Let E± ⊂ V ± denote the generalized eigenspace of the eigenvalue ξ±0 . We have shown that
N± ⊂ E±. Hence, when restricted to E±, H± must admit a d-dimensional null subspace. Consider
H+. From the canonical form we know that H+ is non-degenerate when restricted to E+. If this
restriction has signature (r, s) then the dimension of a maximal null subspace of E+ is min(r, s) [28]
hence we have r, s ≥ d. However we already know that H+ has signature (d, d(d−1)/2) within V +.
The canonical form for H shows that the signature is equal to the union of the signatures of each
block. Therefore H+ can have at most d negative eigenvalues within E+, i.e., we must have r ≤ d.
Combining these inequalities we see that r = d and s ≥ d. Hence E+ has dimension r + s ≥ 2d.
Similarly E− has dimension at least 2d.

A necessary condition for strong hyperbolicity is that M is diagonalizable, i.e. there should
be no non-trivial Jordan blocks. In other words, strong hyperbolicity requires that all generalized
eigenspaces are simply eigenspaces. Hence if the theory is strongly hyperbolic then E± must be an
eigenspace. Hence strong hyperbolicity requires that M admits at least 2d eigenvectors with eigen-
value ξ±0 . We already know that there are d such eigenvectors in N±. But for strong hyperbolicity
there must exist at least an extra d eigenvectors beyond these “pure gauge” ones. In terms of the
principal symbol, this condition is that there exist at least 2d solutions tab of P (ξ±)t = 0 or equiv-
alently (since PEinstein(ξ±) = 0) δP (ξ±)t = 0. In other words ker δP (ξ±) should have dimension at
least 2d. Furthermore, for strong hyperbolicity, this must be true for any ξi and hence for any null
ξ±. In other words:

A necessary condition for strong hyperbolicity is that, for any null ξ, ker δP (ξ) has dimension at
least 2d.

There are certainly examples of background spacetimes for which this condition is satisfied. An
extreme example is a flat background, for which δP = 0. In this case M is diagonalizable and the
equation of motion is strongly hyperbolic. A less trivial example is supplied by the class of Ricci
flat spacetimes with Weyl tensor of type N, which are solutions of Lovelock theory with Λ = 0.
In this case, the results of Ref. [18] imply that M is diagonalizable so the equation of motion is
strongly hyperbolic in such a background (even for large curvature). For this class of spacetimes,
in addition to the pure gauge eigenvectors, generically there exist d additional eigenvectors in E±.
This implies that ker δP (ξ±) generically has dimension 2d for these spacetimes, in agreement with
the above argument.

These background spacetimes are clearly very special because they have symmetries. In a generic
weakly curved background, with null ξ, there is no reason to expect that ker δP (ξ) contains any
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non-gauge elements. To explain this, first note that if we are interested in non-gauge elements
of ker δP (ξ±) then we can regard δP (ξ±) as a map from the quotient space V ±/N±, which has
dimension d(d− 1)/2, to the space of symmetric tensors which have vanishing contraction with ξ±

(because of (53)). The latter space also has dimension d(d− 1)/2. There is no reason to expect this
map to have non-trivial kernel.

Perhaps we are overlooking some hidden symmetry of δP that would guarantee that its kernel
is larger than we expect. To exclude this possibility, we have calculated ker δP (ξ) for null ξ in a
generic background using computer algebra as follows. We fix a point in spacetime and work at
that point. Note that δP is determined by the Riemann tensor of the background. For given null ξ
we can introduce a null basis for which ξ is one of the basis vectors. In this basis, we can generate
a random Riemann tensor satisfying the background equation of motion. To do this, we generate
a random (small) Weyl tensor then use the background equation of motion to determine the Ricci
tensor and hence the Riemann tensor. Since the equation of motion is nonlinear in curvature, there
can be multiple solutions for the Ricci tensor but typically only one of these has small components,
so this is the one we use. We then calculate ker δP (ξ) for this background Riemann tensor. The
result is that, generically, this kernel has dimension d, i.e., it consists only of the “pure gauge”
elements.

In summary, we have shown: M is not diagonalizable for a generic weak field background.
Therefore the harmonic gauge linearized Lovelock equation of motion is not strongly hyperbolic in a
generic weak field background.

It is interesting to consider the canonical form of M in more detail. Let’s examine the condition
for M to have a n × n Jordan block with n ≥ 2. From the canonical form, it is clear that the
eigenvector associated to such a block must be null.10 Assume that this eigenvector lives in V +. If
the eigenvalue is not ξ+

0 then this eigenvector must be H+-orthogonal to N+, which implies that
we could add this eigenvector to N+ to construct a null subspace of dimension d+ 1, contradicting
the fact that N+ is a maximal null subspace. Hence the eigenvalue must be ξ+

0 . Similarly if the
eigenvector lives in V − then the eigenvalue is ξ−0 . We conclude that a non-trivial Jordan block must
have eigenvalue ξ±0 , so the basis vectors associated to the block must lie in E±.

Any such Jordan block admits a vector v ∈ E± such that (M − ξ±0 )2v = 0 but (M − ξ±0 )v 6= 0
(v is simply the second basis vector associated to the block) hence (M − ξ±0 )v is an eigenvector of
M with eigenvalue ξ±0 . So we must have

(
M − ξ±0

)
v =

(
s
ξ±0 s

)
(73)

for some non-zero sµν such that (using PEinstein(ξ±) = 0)

δP (ξ±)s = 0 . (74)

To examine whether such a block is possible, we need to determine whether (73) admits a solution
v for some sµν 6= 0. If such a solution exists then M is not diagonalizable.

Writing v = (t, t′)T we find that (73) reduces to

t′ = ξ±0 t+ s (75)
10For example, for a 3× 3 block, in the canonical basis, the eigenvector is (1, 0, 0)T and evaluating the norm of this

using (72) gives 0.
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and
δP (ξ±)t = −(2ξ±0 A+B)s. (76)

The necessary and sufficient condition for this equation to admit a solution t is for the RHS to have
vanishing contraction with any element of ker δP (ξ±). We know this kernel always contains the
“pure gauge” eigenvectors, i.e., it contains N±. So contract with a “pure gauge” vector of the form
rµν = ξ±(µYν). The LHS vanishes and we can rewrite the RHS in terms of H to obtain

0 = (r, ξ±0 r)H

(
s
ξ±0 s

)
. (77)

Hence (s, ξ±0 s)
T must be orthogonal (w.r.t. H) to all pure gauge eigenvectors in E±, i.e., orthogonal

to N±. Furthermore, equation (74) shows that s belongs to the kernel of δP (ξ±) so we also need
the contraction of s with the RHS of (76) to vanish. This implies that (s, ξ±0 s)

T is null w.r.t. H.
Therefore if this vector is not pure gauge, we could add it to N± to enlarge our null subspace,
contradicting maximality of this null subspace. This proves that s must be pure gauge, i.e.,

sµν = ξ±(µXν) (78)

for some Xν 6= 0. Hence, non-trivial Jordan blocks can arise only from pure gauge eigenvectors. For
sµν of this form, the RHS of (76) has vanishing contraction with any element of N±.

We argued above that, in a generic weakly curved background, all elements of ker δP (ξ±) are
“pure gauge”, i.e., ker δP (ξ±) = N±. It follows that in such a background, (76) can be solved for
any pure gauge sµν , i.e., all pure gauge eigenvectors belong to non-trivial Jordan blocks of M . So
generically there are d non-trivial Jordan blocks in each of E± and M has 2d non-trivial blocks in
total. In non-generic backgrounds, ker δP (ξ±) may contain non-gauge elements in which case M
may have fewer than 2d non-trivial blocks.

We have shown that, in a generic weak field background, every pure gauge eigenvector is asso-
ciated to a n × n Jordan block of M with n ≥ 2. It is interesting to ask whether we could have
n ≥ 3. If n ≥ 3 then there is a vector v ∈ E± such that (M − ξ±0 )3v = 0 with (M − ξ±0 )2v 6= 0.
Let (M − ξ±0 )v ≡ (t, t′)T , then (t, t′) must obey the equations (75), (76). Writing v = (u, u′)T then
gives

u′ = ξ±0 u+ t (79)

δP (ξ±)u = −(2ξ±0 A+B)t−As. (80)

As with (76), the necessary and sufficient condition for this equation to admit a solution is that the
RHS has vanishing contraction with any element of ker δP (ξ±). Generically we have ker δP (ξ±) =
N± so we need the RHS to have vanishing contraction with any pure gauge vector rµν = ξ±(µYν). This
contraction is just the H-inner product of (t, t′) with (r, ξ±0 r), so these vectors must be H-orthogonal
for any pure gauge vector r. But there is no reason why this should be true. So generically we do
not expect the above equations to admit a solution, i.e., the generic situation is n = 2.

To summarize: we have shown that, in a generic weak field background, every pure gauge
eigenvector of M belongs to a Jordan block of size 2 × 2.11 Since non-trivial Jordan blocks can
arise only from pure gauge eigenvectors, it follows that, generically, V ± consists of d 2 × 2 Jordan

11 More precisely, this is true for a generic point and for generic ξi, in a generic weakly curved background.
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blocks, one for each pure gauge eigenvector, and d(d−3)/2 additional non-gauge eigenvectors. For a
generic Ricci flat type N spacetime, it has been shown that these d(d− 3)/2 additional eigenvectors
have eigenvalues distinct from ξ±0 [18] so they do not belong to E± hence we expect this to be the
behaviour in a generic spacetime. Therefore, generically, E± will have dimension 2d.

Note that the d(d − 3)/2 eigenvectors in V ± that do not belong to E± can be regarded as the
“physical graviton polarizations” [18]. To understand why, note that these eigenvectors have the
form (56) where tµν satisfies the harmonic gauge condition. To prove the latter statement, simply
contract the equation

P (ξ)µνρσtρσ = 0 (81)

with ξν and use (53) to obtain

ξ2

(
ξνtµν −

1

2
ξµt

ρ
ρ

)
= 0 ⇒ ξνtµν −

1

2
ξµt

ρ
ρ = 0 (82)

where we used the fact that ξ2 6= 0 because the eigenvector is not in E±. Here the LHS is the
“high frequency part” of the harmonic gauge condition. It is easy to check that the “pure gauge”
eigenvectors in N± also satisfy this condition. However, there is no reason to expect that the vectors
tµν obtained by solving (76) will satisfy this condition. Hence, generically, the d “non-gauge” vectors
in E± are associated to tµν which violate the harmonic gauge condition. So generically E± consists
only of “pure gauge” and “gauge violating” vectors, which is why the d(d−3)/2 elements of V ± that
do not belong to E± can be regarded as the “physical polarizations”.

3.5 Dynamical violation of weak hyperbolicity

We have shown that the linearized harmonic gauge equation of motion of Lovelock theory is not
strongly hyperbolic in a generic weak curvature background. However, as mentioned above, it can
be strongly hyperbolic in a non-generic weak curvature background. In this section, we will discuss
a class of such backgrounds, namely homogeneous, isotropic, cosmological solutions of Lovelock
theory. The aim is to demonstrate that weak (and hence also strong) hyperbolicity can be violated
dynamically: there are “collapsing universe” solutions that start with small curvature but develop
large curvature over time, in such a way that weak hyperbolicity is violated. Once this happens,
local well-posedness of the equation of motion is lost, which implies that generic linear perturbations
of the solution can no longer be evolved.

Lovelock theories admit FLRW-type solutions [29, 30]

g = −dt2 + a(t)2γ (83)

where γ is the metric of a (d − 1)-dimensional submanifold of constant curvature K. We denote
by D the Levi-Civita connection associated to γ. The non-vanishing components of the Riemann
tensor associated to g are

Rij
kl = α(t)δklij R0i

0j = β(t)δji (84)

where, in terms of the Hubble parameter H = ȧ/a,

α =
K

2a2
+H2 β = H2 + Ḣ. (85)
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The non-vanishing components of the Lovelock tensor (36) are

A0
0 =

∑
p

k′pα
p (86)

Aij =δij
∑
p

k′p
(d− 1)

αp−1(2pβ + (d− 2p− 1)α) (87)

where, for convenience, we have rescaled the coupling constants

k′p = 2p
(d− 1)!

(d− 2p− 1)!
kp k0 = Λ, k1 = −1/4 . (88)

Taking our matter source to be a perfect fluid with equation of state P = ωρ, the equations of
motion read ∑

p

k′pα
p = −ρ (89)

β = −
∑

p k
′
pα

p [(d− 1)(ω + 1)− 2p]∑
p 2pk′pα

p−1
. (90)

To observe how weak hyperbolicity can be violated dynamically in this setting, it is sufficient to
look at the linearized equations for transverse-traceless tensor perturbations g → g + δg:

δg0µ = 0 δgij = 2a2hij hij = hji γijhij = 0 Dihij = 0. (91)

These are governed by the equation

−F1(t)ḧij + F2(t)a−2(t)DkD
khij + . . . = 0 (92)

where the ellipsis denotes terms with fewer than 2 derivatives and we have defined

F1(t) =
∑
p

(d− 3)pk′pα
p−1 (93)

F2(t) =
∑
p

pk′p[2(p− 1)αp−2β + (d− 2p− 1)αp−1]. (94)

From this we can read off the principal symbol (restricted to tensor perturbations) and construct
the matrices A,B and C described in Section 2.2

Aijkl = −γi(kγl)jF1(t) (95)

Bijkl = 0 (96)

Cijkl = γi(kγl)ja−2(t)γmnξmξnF2(t). (97)

We can then compute the eigenvalues of M , or equivalently find the ξ0 that solves (ξ2
0A+C)t = 0.

For F1(t) 6= 0 we find

ξ0 = ξ̃±0 ≡ ±
1

a(t)

√
γijξiξj

F2(t)

F1(t)
. (98)
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Since γ is a Riemannian metric (hence it is positive definite), the hyperbolicity of the theory is
determined by the sign of F2(t)/F1(t). If the background is weakly curved then the Einstein term
dominates F1 and F2 and both of these quantities are negative so ξ̃±0 are real and the theory is
weakly hyperbolic. However, if the curvature becomes large, e.g. in a collapsing universe solution,
then one of these quantities might become positive, which makes F2/F1 negative so the theory is
no longer weakly hyperbolic.

In agreement with the comments at the end of Section 3.3, we see that weak hyperbolicity can
fail either when F1 vanishes, i.e., the matrix A becomes singular, or when F2 vanishes, in which
case an eigenvalue from the ξ+

0 group becomes equal to an eigenvalue from the ξ−0 group, i.e., it is
no longer possible to distinguish these two groups.

If F1 or F2 becomes positive then ξ0 is imaginary and there exist linearized solutions which grow
exponentially with time. For this reason, in the cosmology literature, a change is sign of F1 or F2 is
usually referred to as an “instability” of the background solution. More specifically, if F1 becomes
negative then the background is said to suffer a “ghost instability” and if F2 becomes negative it is
said to suffer a “gradient instability”.12 However, this nomenclature is misleading. For the concept
of stability to make sense, one needs the initial value problem for perturbations to be locally well-
posed so that one can ask what happens when a generic initial perturbation is evolved in time. But
when F1/F2 becomes negative then the equation for linear perturbations is not weakly hyperbolic
which implies that the initial value problem is not well-posed: a generic linear perturbation cannot
be evolved in time so dynamics no longer makes sense.

Further examples of dynamical violation of weak hyperbolicity can be obtained by considering
the interior of a static, spherically symmetric black hole solution of a Lovelock theory [22, 29]. For
a large black hole, the equations for linear perturbations are weakly hyperbolic outside the event
horizon [18].13 However, one can show that in the interior of such a black hole, the equations of
motion fail to be weakly hyperbolic in a region 0 < r < r∗. Here r is the area-radius of the (d− 2)-
spheres, orbits of the symmetry group. Inside the black hole, surfaces of constant r are spacelike
and −∂/∂r provides a time orientation. One can impose initial data for linear perturbations on a
surface r = r0 > r∗ inside the black hole. For large enough r0, the curvature will be small on such a
surface. Evolving this data then leads to a violation of weak hyperbolicity at time r = r∗. Generic
linear perturbations cannot be evolved beyond this time.

4 Horndeski theories

4.1 Equations of motion

Horndeski theories are the most general diffeomorphism covariant four-dimensional theories of grav-
ity coupled to a scalar field, with second order equations of motion [4]. The fields in such theories
are the metric g and a scalar field Φ and the equations of motion are obtained from an action of
the form

S =
1

16πG

∫
d4x
√
−g(L1 + L2 + L3 + L4 + L5) (99)

12This behaviour was first discussed in the context of cosmological solutions of Horndeski theories [19, 20, 21].
13We expect that they are also strongly hyperbolic although we have not checked this.
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where

L1 = R+X − V (Φ) (100)
L2 = G2(Φ, X) (101)
L3 = G3(Φ, X)�Φ (102)

L4 = G4(Φ, X)R+ ∂XG4(Φ, X)δacbd ∇a∇bΦ∇c∇dΦ (103)

L5 = G5(Φ, X)Gab∇a∇bΦ−
1

6
∂XG5(Φ, X)δacebdf ∇a∇bΦ∇c∇dΦ∇e∇fΦ (104)

and we have defined X = −1
2(∇Φ)2.

The term L1 corresponds to Einstein gravity minimally coupled to a scalar field with potential
V (Φ). We will refer to this theory as the Einstein-scalar-field theory. We assume that the functions
G depend smoothly on Φ and X. To eliminate degeneracies between the various terms (allowing for
field redefinitions Φ→ Φ′(Φ)) we will impose the following restrictions on these functions:

G2(Φ, 0) = (∂XG2)(Φ, 0) = G3(Φ, 0) = G4(0, 0) = G5(0, 0) = 0. (105)

The equations of motion for Horndeski theory are given by

Eab[g,Φ] ≡ − 1√
−g

δS

δgab
= 0 (106)

EΦ[g,Φ] ≡ − 1√
−g

δS

δΦ
= 0. (107)

To study the hyperbolicity of these equations, we linearize around a background solution (g,Φ), i.e.
we consider (g + h,Φ + ψ) and linearize in h and ψ

Eab[g + h,Φ + ψ] = Eab[g,Φ] + E
(1)
ab [h, ψ] + . . . (108)

EΦ[g + h,Φ + ψ] = EΦ[g,Φ] + E
(1)
Φ [h, ψ] + . . . (109)

so the linearized equations of motion are

E
(1)
ab [h, ψ] = E

(1)
Φ [h, ψ] = 0. (110)

Recall that the equations of motion resulting from the Einstein-scalar-field theory are strongly
hyperbolic if we impose the usual harmonic gauge condition which is14

Gabcd∇bhcd ≡ ∇bhab −
1

2
∇ahbb = 0 (111)

where Gabcd is defined by (49). Motivated by this, we will attempt to obtain hyperbolic equations
of motion for Horndeski theory by imposing a generalized harmonic gauge condition

Ha ≡ (1 + f)Ga
bcd∇bhcd −Hab∇bψ = 0 (112)

14 More properly we should call this a Lorenz gauge condition, but we will refer to it as a harmonic gauge condition
for the reasons discussed below equation (40).
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where the scalar f and the tensor Hab depend only on background quantities. The idea is that when
we deform the theory away from the Einstein-scalar-field theory we may need to deform the gauge
condition in order to preserve hyperbolicity. The quantities f and H describe such a deformation.15

This gauge condition could be generalized further by including terms that don’t involve derivatives
of hab or ψ. However such terms do not affect the principal symbol and therefore do not influence
hyperbolicity.

To see that we can impose such a gauge condition, let Y a be a vector field and consider the
infinitesimal diffeomorphism generated by Y a:

hab → hab +∇(aYb) ψ → ψ + Y · ∇Φ. (113)

Under such transformation Ha will change as

Ha → Ha +
1

2
(1 + f)(∇b∇bYa +RabY

b)−Hab∇b(Y · ∇Φ) (114)

Ha can then be set to zero by choosing Ya to solve

∇b∇bYa −
2

1 + f
Hab∇b(Y · ∇Φ) +RabY

b = − 2

1 + f
Ha . (115)

This is a linear wave equation of a standard type, which guarantees the existence of such Ya. Note
that if we changed the way that the first derivatives of hab appear in (112) then this argument would
no longer work.

To obtain the equations of motion in the generalized harmonic gauge, consider expanding the
action to quadratic order in (h, ψ) to obtain an action governing the linearized perturbation. Now
to this action we add the gauge-fixing term16

Sgauge = −1

2

∫ √
−g HaH

a. (116)

This will contribute to the equations of motion for the metric and the scalar field via terms

1√
−g

δSgauge

δhab
= Gabcd∇c((1 + f)Hd) (117)

1√
−g

δSgauge

δψ
= −∇b(HaHab) (118)

respectively. We can now write the generalized harmonic gauge linearized equations as

Ẽ
(1)
ab = 0 Ẽ

(1)
Φ = 0. (119)

where

Ẽ
(1)
ab = E

(1)
ab −Gab

cd∇c((1 + f)Hd) (120)

Ẽ
(1)
Φ = E

(1)
Φ +∇b(HaHab). (121)

15Of course we could divide through by (1 + f) to absorb f into H. The reason for including f here is that it
leads to a more general class of gauge-fixed equations of motion when we peform the gauge-fixing procedure described
below.

16The reason for implementing the gauge-fixing this way is because obtaining the equation of motion from an action
guarantees symmetry of the principal symbol, see section 4.2.
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It remains to show that the generalized harmonic gauge condition is propagated by the equations
of motion. To see this, recall that the action for Horndeski is diffeomorphism invariant, thus for the
nonlinear theory we have

0 =

∫
d4x

(
δS

δgab
∇aYb +

δS

δΦ
Y b∇bΦ

)
=

∫
d4x
√
−g (∇aEab − EΦ∇bΦ)Y b. (122)

This holds for arbitrary Y a hence, independent of any equation of motion,

∇aEab − EΦ∇bΦ = 0 (123)

and so linearizing around a background solution gives

∇aE(1)
ab − E

(1)
Φ ∇bΦ = 0. (124)

Taking the divergence of (120) when (119) holds and using the above we obtain

0 = ∇aE(1)
ab +Gab

cd∇b∇c((1 + f)Hd)

= E
(1)
Φ ∇bΦ−

1

2
(1 + f)(∇c∇cHb +RbcH

c)−∇bf∇bHa −
1

2
Ha∇b∇bf (125)

that is

(1 + f)∇b∇bHa + 2∇bf∇bHa + 2∇c(HcdHd)∇aΦ + (1 + f)RabH
b +Ha∇b∇bf = 0. (126)

This is a linear wave equation of a standard type for Ha, thus, provided that Ha and its time
derivative both vanish initially, they will continue to vanish throughout the evolution, i.e. the gauge
condition (112) is propagated by the equations of motion (119). It then follows that a solution of the
generalized harmonic gauge equations (119) is also a solution of the original linearized Horndeski
equations of motion (110).

The linearized generalized harmonic gauge equations of motion (119) take the following form

P abcdefgg ∇e∇fhcd + P abefgΦ ∇e∇fψ + . . . =0 (127)

P cdefΦg ∇e∇fhcd + P efΦΦ∇e∇fψ + . . . =0 (128)

where the ellipses denotes terms with fewer than 2 derivatives. We can then define the principal
symbol for this system

P (ξ) =

(
P abcdefgg ξeξf P abefgΦ ξeξf

P cdefΦg ξeξf P efΦΦξeξf

)
(129)

and we think of it as acting on vectors of the form (tcd, α)T , where tcd is a symmetric 2-tensor and
α is a number.

It is convenient to split the principal symbol in its Einstein-scalar-field and Horndeski parts

P (ξ) = PEinstein(ξ) + δP (ξ) (130)

where

PEinstein(ξ) =

(
−1

2ξ
2Gabcd 0
0 −ξ2

)
(131)
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is the principal symbol for the harmonic gauge Einstein-scalar-field equations of motion. We write

δP (ξ) = δP̃ (ξ) + δQ(ξ) (132)

where δP̃ denotes the terms arising from the Horndeski terms L2,L3,L4,L5 in the action, and δQ
denotes the f and H-dependent parts of the gauge-fixing terms. Explicitly we have

δQ(ξ) =

(
−f(f + 2)GabehGh

fcdξeξf (1 + f)ξeGfhabξhHef
(1 + f)ξeGfhcdξhHef −HheHhfξeξf

)
. (133)

From the form of PEinstein it is clear that all characteristics of the harmonic gauge Einstein-scalar-
field system are null.

We conclude this section by making precise the notion of “weak background fields” in the Horn-
deski setting. We follow a similar approach to the one used for Lovelock theories (cf. Section 3.2).
Consider an orthonormal basis {eµ} (such that e0 is orthogonal to constant t surfaces) and denote
by L−2

R , L−1
1 and L−2

2 the magnitude of the largest components in such a basis of the Riemann
tensor, ∇Φ and ∇∇Φ respectively and define L−2 = max{L−2

R , L−2
1 , L−2

2 }. We want our definition
of “weak fields” to ensure that the Horndeski terms in the principal symbol are small compared to
the Einstein-scalar-field terms, i.e., δP is small compared to PEinstein. This is achieved by requiring
the background fields to satisfy

|∂kXG2|L−2k+2 � 1 k =1, 2 (134)

|∂kX∂lΦG3|L−2k � 1 k =0, 1, 2 l =0, 1 1 ≤ k + l ≤2 (135)

|∂kX∂lΦG4|L−2k � 1 k =0, 1, 2, 3 l =0, 1, 2 k + l ≤3 (136)

|∂kX∂lΦG5|L−2k−2 � 1 k =0, 1, 2, 3 l =0, 1, 2 1 ≤ k + l ≤3. (137)

We will also require smallness of the functions appearing in the gauge condition:

|f | � 1 |Hµν | � 1. (138)

In practice, we will see that strong hyperbolicity will force us to take f and Hab to be particular
functions of the background fields, and (138) then follows from weakness of the background fields.

4.2 Symmetries of the principal symbol

For Lovelock theories, our argument for weak hyperbolicity exploited equations (53) following from
the identities (52). Therefore we will need to determine the analogous identities for Horndeski
theories. This could be done by explicit computation. Instead we will derive the identities as a
consequence of the gauge symmetry of the theory. We will appeal to results of Lee and Wald [26]
to do this.

Consider some diffeomorphism covariant theory of gravity, possibly coupled to additional fields,
and expand the action to second order around a background solution:

S =

∫
ddx
√
−g
(
−1

2
KIJab∇auI∇buJ + . . .

)
(139)

where uI denotes the perturbation to the fields (including the metric perturbation), the ellipsis
denotes terms with fewer than two derivatives, and

KIJab(x) = KJIba(x). (140)
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Varying the action gives the (linearized) equation of motion

KIJab∇a∇buJ + . . . = 0 (141)

where the ellipsis denotes terms with fewer than two derivatives of uI . From this we read off the
principal symbol

P IJab = KIJ(ab) (142)

so from (140) we have
P IJab = P JIab (143)

hence symmetry of the principal symbol is a consequence of the variational principle. Varying the
action also gives a total derivative term ∇aθa, where

θa = −KIJabδuI∇buJ + . . . (144)

where the ellipsis denotes terms without derivatives. We then define the symplectic current for two
independent variations δ1uI and δ2uI [26]

ωa = δ1θ
a
2 − δ2θ

a
1 = KIJabδ1uI∇bδ2uJ − (1↔ 2) + . . . (145)

Given coordinates (t, xi) where t is a time function, we define the symplectic form as an integral
over a surface Σ of constant t with unit normal na

ω(δ1u, δ2u) =

∫
Σ
ωµnµ =

∫
Σ
dd−1x

√
−g ω0. (146)

For a theory with a gauge symmetry, Ref. [26] proves that this vanishes if δ2u is taken to be
an infinitesimal gauge transformation and δ1u satisfies the (linearized) equation of motion. In
particular, it will vanish if δ1u and δ2u are both infinitesimal gauge transformations. Taking them
to be compactly supported gauge transformations we can integrate w.r.t. t to obtain

0 =

∫
ddx
√
−g
[
KIJ0νδ1uI∇νδ2uJ − (1↔ 2) + . . .

]
. (147)

As before, the ellipsis denotes terms without derivatives of δ1u or δ2u.
Consider first the case of Lovelock theory (without any gauge-fixing), for which uI = hab and

we have the symmetries
Kabcdef = Kbacdef = Kabdcef . (148)

The gauge transformations are infinitesimal diffeomorphisms:

δhab = ∇(aXb) (149)

where Xa is an arbitrary vector field, assumed compactly supported. Gauge invariance of the action
implies, via integration by parts,

0 =

∫
ddx
√
−gXb

(
−Kabcdef∇a∇e∇fhcd + . . .

)
(150)

where the ellipsis denotes terms with fewer than 3 derivatives of hµν . Since Xa is arbitrary, this
implies

0 = Kabcdef∇a∇e∇fhcd + . . . (151)
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and since hab is arbitrary, terms with different numbers of derivatives must vanish independently.
From the 3-derivative term we obtain

0 = K(a|bcd|ef) (152)

which implies
P (a|bcd|ef) = 0. (153)

Now we consider the implications of (147). Take the two gauge transformations to be

δ1hµν = ∇(µXν) δ2hµν = ∇(µYν) (154)

for arbitrary compactly supported vector fields Xµ, Y µ. Compact support lets us integrate by parts
in (147):

0 =

∫
ddx
√
−g
[
∇µXνK

µνρσ0α∇α∇ρYσ − (1↔ 2) + . . .
]

=

∫
ddx
√
−gXν

[
−Kµνρσ0α∇µ∇α∇ρYσ −Kµσρν0α∇α∇ρ∇µYσ + . . .

]
(155)

where the ellipsis denotes terms with fewer than 3 derivatives of Y µ. Since Xν is arbitrary we must
have

0 = Kµνρσ0α∇µ∇α∇ρYσ +Kµσρν0α∇α∇ρ∇µYσ + . . .

=
(
Kµνρσ0α +Kµσρν0α

)
∂µ∂ρ∂αYσ + . . .

=
(
Kµνρσ0α +Kρνµσα0

)
∂µ∂ρ∂αYσ + . . . (156)

Since Yµ is arbitrary, the terms with different numbers of derivatives of Yµ must vanish indepen-
dently. Vanishing of the 3-derivative term requires

0 = Kν(µρ|σ0|α) +Kν(ρµ|σ|α)0 = 2P ν(µρ|σ0|α). (157)

Since the 0 index refers to an arbitrary time function t, this equation implies

P a(bc|de|f) = 0. (158)

The above argument applies to the theory before fixing the gauge. Of course we can do the same
for the Einstein equation. Subtracting the Einstein results from the Lovelock results gives

δP (a|bcd|ef) = δP a(bc|de|f) = 0. (159)

We can now apply this to the harmonic gauge Lovelock equation of motion because the harmonic
gauge condition does not affect δP . In particular we have

δP abcdefξaξeξf = δP abcdefξbξcξf = 0. (160)

Hence we see that the identities (53) are a consequence of the gauge symmetry.
For a Horndeski theory (before any gauge fixing) we have uI = (hab, ψ). A gauge transformation

is
δhab = ∇(aXb) δψ = Xa∇aΦ. (161)
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Repeating the above argument for gauge invariance of the action gives

P (a|bcd|ef)
gg = P

(a|b|cd)
gΦ = 0. (162)

The symmetry of the principal symbol (143) then implies that

P
(a|b|cd)
Φg = P

(a|b|cd)
gΦ = 0. (163)

Repeating the argument based on (147), the highest derivatives of the gauge transformation param-
eters Xµ and Yµ arise only from the transformation of hµν so the result is essentially the same as
for Lovelock theory:

P a(bc|de|f)
gg = 0. (164)

These results apply also to the Einstein-scalar-field theory (before gauge fixing). So subtracting the
principal symbols for these two cases gives

0 = δP̃ (a|bcd|ef)
gg = δP̃

(a|b|cd)
gΦ = δP̃

(a|b|cd)
Φg = δP̃ a(bc|de|f)

gg . (165)

Finally, we note that the gauge fixing terms do not affect δP̃ so these results apply also to the
generalized harmonic gauge equation of motion.

4.3 Weak hyperbolicity for weak field background

We will now begin our study of the hyperbolicity of the linearized Horndeski equations in a gener-
alized harmonic gauge. In this section we will establish weak hyperbolicity of these equations in a
weak field background for any generalized harmonic gauge. Much of the analysis is similar to the
analysis of the weak hyperbolicity of harmonic gauge Lovelock theories performed above so we will
be more brief here.

As in Section 3.2 we introduce coordinates xµ = (t, xi) such that dt is timelike so surfaces of
constant t are non-characteristic for the Einstein-scalar-field theory. Again we will denote by ξ±0
the two solutions of gµνξµξν = 0 for fixed real ξi, and we define the null covectors ξ±µ = (ξ±0 , ξi).

The principal symbol can be regarded as a quadratic form acting on vectors of the form (tµν , χ)T ,
with tµν symmetric. Such vectors form a 11-dimensional space. Hence A, B(ξi) and C(ξi) (defined
in Sec. 3.2) are 11× 11 matrices. Explicitly we have

A =

(
Pµνρσ00
gg Pµν00

gΦ

P ρσ00
Φg P 00

ΦΦ

)
B(ξi) =

(
2P

µνρσ(0i)
gg ξi 2P

µν(0i)
gΦ ξi

2P
ρσ(0i)
Φg ξi 2P

(0i)
ΦΦ ξi

)
C(ξi) =

(
Pµνρσijgg ξiξj PµνijgΦ ξiξj

P ρσijΦg ξiξj P ijΦΦξiξj

)
(166)

where, again, ξi is real and ξiξi = 1. These matrices are all real and symmetric: the latter property
follows from the fact that the gauge-fixed equations of motion can be derived from an action so
(143) holds.

For the harmonic gauge Einstein-scalar-field equations, since surfaces of constant t are spacelike,
the matrix A is invertible. By continuity, this will continue to hold for sufficiently weak background
fields, once we include the Horndeski terms. Hence we can define real M(ξi) as in (55) and real
symmetric H(ξi) as in (61). These are 22 × 22 matrices. As for Lovelock, the matrix H is non-
degenerate so its signature can be determined by continuity, i.e., by its signature for the Einstein-
scalar-field equations. The result is that it has signature (11, 11), i.e., 11 positive eigenvalues and
11 negative eigenvalues. As for Lovelock, M is symmetric w.r.t. H, i.e., equation (62) holds here.
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We consider these matrices as acting on a complex vector space V of dimension 22. For the
Einstein-scalar-field theory we know that M is diagonalizable with eigenvalues ξ±0 , each with de-
generacy 11. So, for linearized Horndeski theory in a weak field background we can proceed as in
Sec. 3.3 and define the 11-dimensional subspaces V ± as the sum over the generalized eigenspaces
of the eigenvectors (of M) belonging to the ξ±0 -group, respectively. The restriction of H to V ± is
denoted by H±.

Let’s summarize the proof of weak hyperbolicity that we used for Lovelock theories. First we
showed that there exist “pure gauge” eigenvectors of M , with eigenvalue ξ±0 . We then showed that
such eigenvectors are null and orthogonal w.r.t. H so they form null subspaces N± of V ±, and
that these null subspaces have the maximum dimension consistent with the signature of H±. This
then excludes the possibility of M possessing a complex eigenvalue ξ0 in, say, the ξ+

0 -group, for the
corresponding eigenvector would have to be null and orthogonal to N+ so we could add it to N+ to
produce a larger null subspace of V +, thereby violating maximality of N+. Hence M cannot have
a complex eigenvalue, which establishes weak hyperbolicity.

All of this extends straightforwardly to Horndeski theories. First note that, as in section 2.2, an
eigenvector v of M with eigenvalue ξ0 must have the form

v =

(
T
ξ0T

)
(167)

where the 11-vector T must satisfy
P (ξ)T = 0 (168)

with ξµ = (ξ0, ξi). We can identify a set of “pure gauge” eigenvectors, with eigenvalue ξ±0 , given
by17

T =

(
ξ±(µXν)

0

)
(169)

for some Xµ. That this satisfies (168) (with ξ = ξ±) can be seen as follows. First PEinstein(ξ±) = 0
because ξ±µ is null. Second, the results in (165) imply

δP̃ (ξ±)T = 0. (170)

Finally, it can be checked explicitly that δQ(ξ±)T = 0.
We define N± to be the 4-dimensional subspace of V ± defined by these pure gauge eigenvectors.

We now want to prove that N± is null wr.t. H±. Consider two pure gauge eigenvectors v, v′ ∈ N±
with corresponding T = (ξ±(µXν), 0)T and T ′ = (ξ±(µX

′
ν), 0)T . Their inner product w.r.t. H± is the

same as their inner product w.r.t. H, i.e., as in (71), we have

v
′†Hv = 2ξ±µ T

′†P 0µT = 2ξ±µ ξ
±
ν ξ
±
ρ X̄

′
σXτP

νσρτ0µ
gg = 0 (171)

where the final equality follows from PEinstein(ξ±) = 0, the final symmetry in (165), and the fact
that

ξ±µ ξ
±
ν ξ
±
ρ δQ

νσρτλµ
gg = 0. (172)

It follows that any two elements of N± are orthogonal w.r.t. H± hence N± defines a 4-dimensional
H±-null subspace of V ±.

17The vanishing of the final component of this vector is related to the fact that under the gauge transformation
(113), the transformation of ψ does not involve a derivative of Ya.

29



Since H± is the restriction of H to V ±, it follows that H± is non-degenerate when restricted to
V ±. Hence its signature can be determined by continuity, as we did for Lovelock. In other words,
its signature can be determined using the Einstein-scalar-field theory. For this theory, consider two
vectors v1 and v2 in V ±, and hence of the form (167) with ξ0 = ξ±0 . Let the corresponding 11-vectors
be T1 = (t1ab, χ1)T and T2 = (t2ab, χ2)T . The inner product of v1 and v2 w.r.t. H± is the same as
the inner product w.r.t. H:

v†1Hv2 = T †1BT2 + 2ξ±0 T
†
1AT2 = 2ξµT

†
1P

0µT2 = −ξ0±
(
t†1Gt2 + χ̄1χ2

)
. (173)

The argument following (69) now shows that, when restricted to V +, H+ has 4 negative eigenvalues
and 6 + 1 = 7 positive eigenvalues (the +1 coming from χ̄1χ2). Similarly for H− when restricted
to V −, with positive and negative interchanged. Hence the dimension of a maximal null subspace
of V ± is 4 so N± are maximal null subspaces of V ±. The proof of weak hyperbolicity follows as
explained above.

4.4 Strong hyperbolicity of Horndeski theories

We have shown that, in any generalized harmonic gauge, linearized Horndeski theory is weakly
hyperbolic in a weak field background. We will now investigate whether it is also strongly hyperbolic.
In particular, strong hyperbolicity requires thatM is diagonalizable, i.e., it has no non-trivial Jordan
blocks. We can investigate whether or not this is true using the method of Section 3.4.

As in section 3.4 we define E± to be the generalized eigenspace of the eigenvalue ξ±0 . Since
N± ⊂ E± it follows as in section 3.4 that E± must have dimension at least 8. IfM is diagonalizable,
then E± are genuine eigenspaces and hence there must exist at least 8 eigenvectors with eigenvalue
ξ±0 . So using (168) and PEinstein(ξ±) = 0 we must have 8 vectors T satisfying δP (ξ±)T = 0. So

A necessary condition for strong hyperbolicity is that, for any null ξ, ker δP (ξ) has dimension at
least 8.

Hence strong hyperbolicity implies that, for any null ξ, ker δP (ξ) must contain at least 4 linearly
independent “non-gauge” elements.

Let’s now look at the condition for a non-trivial Jordan block. As in section 3.4, one can show
that the corresponding eigenvalue must be ξ±0 so the block must lie in E±. For any such block,
there exists a vector v ∈ E± such that (M − ξ±0 )v is an eigenvector of M with eigenvalue ξ±0 so we
must have (

M − ξ±0
)
v =

(
S
ξ±0 S

)
(174)

for some non-zero S = (sµν , ω)T such that (using PEinstein(ξ±) = 0)

δP (ξ±)S = 0. (175)

Writing v = (T, T ′)T we find that (174) reduces to equations analogous to (75) and (76):

T ′ = ξ±0 T + S (176)

and
δP (ξ±)T = −(2ξ±0 A+B)S. (177)
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As in section 3.4 we contract this with an arbitrary “pure gauge” vector R = (ξ±(µXν), 0)T . The
LHS vanishes and the RHS gives the H±-inner product of (R, ξ±0 R)T with (S, ξ±0 S)T . It follows
that (S, ξ±0 S)T must be H± orthogonal to any pure gauge eigenvector. Similarly, contracting this
equation with S and using (175) shows that (S, ξ±0 S)T is null w.r.t. H±. Hence if this vector
were not pure gauge then we could add it to N± and violate maximality of this null subspace.
Therefore this vector must be pure gauge, i.e., we have S = (ξ±(µYν), 0)T for some Yµ 6= 0. So,
writing T = (tµν , χ)T , (177) takes the form

δP (ξ±) ·
(
tρσ
χ

)
= −(2ξ±0 A+B) ·

(
ξ±(ρYσ)

0

)
. (178)

If this equation admits a solution for some Yµ 6= 0 thenM has a non-trivial Jordan block. So strong
hyperbolicity requires that this equation admits no solution (tµν , χ)T for any Yµ 6= 0.

Strong hyperbolicity when G4 = G5 = 0

Let us begin by considering the theory with Lagrangian

L = L1 + L2 + L3. (179)

The nonlinear equations of motion for this theory are

Eab ≡Gab + ∂XG3

[
−1

2
�Φ∇aΦ∇bΦ +Gab

ed∇c∇eΦ∇cΦ∇dΦ
]

+ . . . = 0 (180)

EΦ ≡ −�Φ− ∂XG2�Φ + ∂2
XG2∇aΦ∇bΦ∇a∇bΦ− 2∂ΦG3�Φ

− (∂XG3 +X∂2
XG3)δc1c2d1d2

∇c1∇d1Φ∇c2∇d2Φ− 1

2
∂2
XG3δ

c1c2c3
d1d2d3

∇c1∇d1Φ∇c2∇d2Φ∇c3Φ∇d3Φ

− 2∂2
XΦG3(δc1c2d1d2

∇c1∇d1Φ∇c2Φ∇d2Φ +X�Φ) + ∂XG3Rab∇aΦ∇bΦ + . . . = 0 (181)

where again the ellipsis denotes terms not involving second derivatives. After determining the
linearized equations in generalized harmonic gauge (119), we compute the principal symbol and we
find that

δPgg(ξ)
abcd = δQgg(ξ)

abcd (182)

δPgΦ(ξ)ab = δPΦg(ξ)
ab = − 1

2
∂XG3∇aΦ∇bΦ ξ2 + ξcGdeabξeKcd (183)

δPΦΦ(ξ) = (−∂XG2 − 2∂ΦG3 + 2X∂2
XΦG3 − 2∂XG3�Φ− 2X∂2

XG3�Φ) ξ2

+ 2
(
∂XG3 +X∂2

XG3

)
ξcξd∇c∇dΦ + (2∂2

XΦG3 + ∂2
XG2)(ξ · ∇Φ)2

− ∂2
XG3δ

c1c2c3
d1d2d3

ξc1ξ
d1∇c2∇d2Φ∇c3Φ∇d3Φ + δQΦΦ(ξ) (184)

where
Kab ≡ (1 + f)Hab + ∂XG3∇aΦ∇bΦ. (185)

For strong hyperbolicity to hold, equation (178) must admit no solution (tµν , χ)T when Yµ 6= 0.
Writing out this equation givesGµνρσ[−f(f + 2)Gρ

λαβξ±σ ξ
±
λ tαβ + ξ±λKλρξ±σ χ]

ξ±µGνλρσξ±λ tρσKµν + δPΦΦ(ξ±)χ

 =

 ξ0±Gµνρσξ±ρ Yσ

(∂XG3)ξ0±(ξ± · ∇Φ)(Y · ∇Φ)−Kλσξ±λGµνσ0ξ±µ Yν

 .

(186)
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Looking at the first row of this equation, the non-degeneracy of Gµνρσ implies that if f 6= 0 then
we can solve for the “non-transverse” part of tµν :18

Gµ
νρσξ±ν tρσ =

1

f(f + 2)
(ξ±ρKρµχ− ξ0±Yµ). (187)

This can then be substituted into the second row to obtain an equation that determines χ. Hence
if f 6= 0 then a solution of (178) exists for any Yµ 6= 0. Therefore strong hyperbolicity requires that
f = 0. With f = 0, the first row of (186) implies

ξ0±Yµ = ξ±ρKρµχ. (188)

Plugging this into the second row of (186) now gives a linear homogeneous scalar equation for χ
and tµν . Since this is only one equation for 11 unknowns, there exist non-trivial solutions. We see
that we can solve (178) for Yµ of the form (188). Hence if this Yµ is non-vanishing then the equation
is not strongly hyperbolic. Therefore strong hyperbolicity, requires (188) to vanish for any (null)
ξ±µ which implies (since generically χ 6= 0) Kµν = 0. Hence strong hyperbolicity selects a unique
generalized harmonic gauge:

f = 0 Hab = −∂XG3∇aΦ∇bΦ. (189)

Note that this guarantees that the smallness condition (138) is satisfied. If our gauge functions f
and Hab satisfy this equation then M is diagonalizable, as required by strong hyperbolicity. As
explained above (17), diagonalizability ensures that there exists a positive definite symmetrizer K
satisfying (34). To complete the proof of strong hyperbolicity we need to check that K depends
smoothly on ξi. We will do this in a more general setting below (see the discussion below Eq. (227)).

Failure of strong hyperbolicity when ∂XG4 6= 0, G5 = 0

The situation is different if we include L4 i.e. we work with the theory

L = L1 + L2 + L3 + L4 (190)

We will show that if ∂XG4 6= 0 then there is no generalized hyperbolic gauge for which this theory
is strongly hyperbolic.

18Note that our smallness assumption (138) implies that f 6= −2.
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The terms in the equations of motion Eab and EΦ arising from L4 are [21, 31]

Ea
(4)
b = (G4 − 2X∂XG4)Gab +

1

4
∂XG4δ

ac1c2c3
bd1d2d3

Rc1c2
d1d2∇c3Φ∇d3Φ

+
1

2
(∂XG4 + 2X∂2

XG4)δac1c2bd1d2
∇c1∇d1Φ∇c2∇d2Φ

+
1

2
∂2
XG4δ

ac1c2c3
bd1d2d3

∇c1∇d1Φ∇c2∇d2Φ∇c3Φ∇d3Φ

+ 2∂2
XΦG4δ

ac1c2
bd1d2
∇c1∇d1Φ∇c2Φ∇d2Φ + (∂ΦG4 + 2X∂2

XΦG4)δac1bd1
∇c1∇d1Φ (191)

E
(4)
Φ = − 1

2
(∂XG4 + 2X∂2

XG4)δc1c2c3d1d2d3
∇c1∇d1ΦRc2c3

d2d3 − (∂ΦG4 + 2X∂2
XΦG4)R

− 1

2
∂2
XG4δ

c1c2c3c4
d1d2d3d4

∇c1∇d1Φ∇c2Φ∇d2ΦRc3c4
d3d4

− ∂2
XΦG4δ

c1c2c3
d1d2d3

∇c1Φ∇d1ΦRc2c3
d2d3

−
(
∂2
XG4 +

2

3
X∂3

XG4

)
δc1c2c3d1d2d3

∇c1∇d1Φ∇c2∇d2Φ∇c3∇d3Φ

− (∂3
XΦΦG4 − 2X∂3

XXΦG4 + 3∂2
XΦG4)δc1c2d1d2

∇c1∇d1Φ∇c2∇d2Φ

− 1

3
∂3
XG4δ

c1c2c3c4
d1d2d3d4

∇c1∇d1Φ∇c2∇d2Φ∇c3∇d3Φ∇c4Φ∇d4Φ

+ 2∂3
XXΦG4δ

c1c2c3
d1d2d3

∇c1∇d1Φ∇c2∇d2Φ∇c3Φ∇d3Φ. (192)

Linearizing these equations, and including the gauge-fixing terms, one can then compute δP̃ (4), the
contribution to δP̃ arising from L4. It takes the following form

δP̃ (4)
gg (ξ)ab

cdtcd =− 1

2
(G4 − 2X∂XG4)δac1c2bd1d2

ξc1ξ
d1tc2

d2

− 1

2
∂XG4δ

ac1c2c3
bd1d2d3

ξc1ξ
d1tc2

d2∇c3Φ∇d3Φ (193)

δP̃
(4)
gΦ (ξ)ab = δP̃

(4)
Φg (ξ)ab =(∂XG4 + 2X∂2

XG4)δac1c2bd1d2
ξc1ξ

d1∇c2∇d2Φ

+ ∂2
XG4δ

ac1c2c3
bd1d2d3

ξc1ξ
d1∇c2∇d2Φ∇c3Φ∇d3Φ

+ 2∂2
XΦG4δ

ac1c2
bd1d2

ξc1ξ
d1∇c2Φ∇d2Φ

+ (∂ΦG4 + 2X∂2
XΦG4)δac1bd1

ξc1ξ
d1 (194)

δP̃
(4)
ΦΦ(ξ) =− 1

2
(∂XG4 + 2X∂2

XG4)δc1c2c3d1d2d3
ξc1ξ

d1Rc2c3
d2d3

− 1

2
∂2
XG4δ

c1c2c3c4
d1d2d3d4

ξc1ξ
d1∇c2Φ∇d2ΦRc3c4

d3d4

− (3∂2
XG4 + 2X∂3

XG4)δc1c2c3d1d2d3
ξc1ξ

d1∇c2∇d2Φ∇c3∇d3Φ

− ∂3
XG4δ

c1c2c3c4
d1d2d3d4

ξc1ξ
d1∇c2∇d2Φ∇c3∇d3Φ∇c4Φ∇d4Φ

+ 4∂3
XXΦG4δ

c1c2c3
d1d2d3

ξc1ξ
d1∇c2∇d2Φ∇c3Φ∇d3Φ

− 2(∂3
XΦΦG4 − 2X∂3

XXΦG4 + 3∂2
XΦG4)δc1c2d1d2

ξc1ξ
d1∇c2∇d2Φ. (195)

As discussd above, for the equations to be strongly hyperbolic it is necessary that the kernel of
δP (ξ±) has dimension 8 or greater. We will now study whether this condition is satisfied. A vector
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(tab, χ)T is in ker δP (ξ±) if, and only if,(
δPgg(ξ

±)abcdtcd + δPgΦ(ξ±)abχ
δPΦg(ξ

±)cdtcd + δPΦΦ(ξ±)χ

)
= 0. (196)

We now assume that ∂XG4 6= 0. In this case we can separate out a term proportional to tab in the
first row of (196) and write this equation as

(ξ± · ∇Φ)2tab =− ξ±a ξ±b (∇cΦ∇dΦtcd + G4t
c
c)

+ 2ξ±(atb)c

(
G4

∂XG4
ξ±c +∇cΦ(ξ± · ∇Φ)

)
− 2ξ±(a∇b)Φ(tcc(ξ

± · ∇Φ)− ξ±c∇dΦtcd)

− gab
(

2ξ±c∇dΦtcd(ξ± · ∇Φ) +
G4

∂XG4
ξ±cξ±dtcd − tcc(ξ± · ∇Φ)2

)
−∇(aΦ∇b)Φξ±cξ±dtcd −∇(aΦtb)cξ

±c(ξ± · ∇Φ)

+
2

∂XG4
(δQgg(ξ

±)ab
cdtcd + δPgΦ(ξ±)abχ). (197)

Note that for a generic weak-field background, and generic ξ±, we have ξ± · ∇Φ 6= 0. From the
tensor structure of this equation, we deduce that tab must take the form

tab = ξ±(aYb) + λgab + Z(a∇b)Φ + µ∇a∇bΦ (198)

for some Ya, λ, Za and µ. The last term in this expression comes from the fact that δPgΦ(ξ±)ab
contains terms proportional to ∇a∇bΦ as well as terms of the other three types. There is some
degeneracy in this expression e.g. degeneracy between the first and third terms implies that Za is
defined only up to addition of a multiple of ξ±a , i.e., the part of Za parallel to ξ±a is “pure gauge”.
For strong hyperbolicity we need there to exist at least 4 linearly independent “non-gauge” elements
of ker δP (ξ±). The first term in (198) is pure gauge. The “non-gauge part” is determined by χ, λ, µ
and the non-gauge part of Za.

Plugging (198) back into the first row of (196) we get

0 = δPgg(ξ
±)ab

cdtcd + δPgΦ(ξ±)abχ = δac1c2c3bd1d2d3
ξ±c1ξ

±d1∇c2∇d2Φ∇c3Φ∇d3Φ

(
−1

2
∂XG4µ+ ∂2

XG4χ

)
+ δac1c2bd1d2

ξ±c1ξ
±d1

[
∇c2Φ∇d2Φ

(
−1

2
∂XG4λ+ 2∂2

XΦG4χ

)
− 1

4
(G4 − 2X∂XG4 − f(f + 2))(Zc2∇d2Φ +∇c2ΦZd2)

]
+ δac1c2bd1d2

ξ±c1ξ
±d1∇c2∇d2Φ

[
(∂XG4 + 2X∂2

XG4)χ

− 1

2
µ(G4 − 2X∂XG4 − f(f + 2))

]
−
[
(∂ΦG4 + 2X∂2

XΦG4)χ− λ(G4 − 2X∂XG4 − f(f + 2))

]
ξ±aξ±b

+ ξ±cGdeabξ
±
e Kcdχ (199)
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where Kab is defined in (185). We will now show that the requirement of strong hyperbolicity fixes
our choice of gauge. Consider first the case

G4 − 2X∂XG4 − f(f + 2) 6= 0. (200)

In this case, (199) contains Za-dependent terms proportional to

δac1c2bd1d2
ξ±c1ξ

±d1(Zc2∇d2Φ +∇c2ΦZd2) = 4Gab
ceξ±dξ±e Gcd

fhZf∇hΦ. (201)

View the RHS as an operator O acting on Za. Let’s determine the kernel of this operator. Since
Gabcd is non-degenerate, vectors in the kernel must satisfy

ξ±dξ±(eGc)d
fhZf∇hΦ = 0 ⇒ ξ±dGcd

fhZf∇hΦ = 0. (202)

However, for generic ∇aΦ, it is easy to show that all solutions of this equation have Za proportional
to ξ±a . Hence the kernel of O generically contains only vectors proportional to ξ±a . This implies
that, generically, if equation (199) admits a solution then Za is determined up to a multiple of ξ±a ,
in terms of χ, λ, µ. In other words, the non-gauge part of Za is fixed uniquely by the 3 quantities
χ, λ, µ. Therefore, there exist at most 3 linearly independent non-gauge elements of ker δP (ξ±),
whereas strong hyperbolicity requires at least 4 such elements. So if our gauge condition satisfies
(200) then the equation is not strongly hyperbolic.

We have shown that strong hyperbolicity requires that our gauge function f obeys

G4 − 2X∂XG4 − f(f + 2) = 0. (203)

We can solve this quadratic equation and choose the root that satisfies the smallness condition (138)
when the conditions (136) are satisfied:

f = −1 +
√

1 + G4 − 2X∂XG4. (204)

The contraction of (199) with ∇bΦ gives

0 = ξ±cξ±e ∇bΦGdeabK̃cdχ (205)

where
K̃cd ≡ Kcd − (αgcd + β∇c∇dΦ) (206)

with

α = ∂ΦG4 + 2X∂2
XΦG4 +∇a∇aΦ(∂XG4 + 2X∂2

XG4) β = −2(∂XG4 + 2X∂2
XG4). (207)

Consider first the case in which our gauge condition is such that, generically,

ξ±cξ±e ∇bΦGdeabK̃cd 6= 0. (208)

Then, in a generic background, for generic null ξ±a , (205) implies that we must have χ = 0 and
equation (199) then reduces to

0 = −1

2
∂XG4µ δ

ac1c2c3
bd1d2d3

ξ±c1ξ
±d1∇c2∇d2Φ∇c3Φ∇d3Φ− ∂XG4λG

a
b
ecξ±dξ±e Gcd

fh∇fΦ∇hΦ. (209)
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In a generic background this implies λ = µ = 0 (using ∂XG4 6= 0). But with χ = λ = µ = 0, the
“non-gauge” part of the vector (tab, χ)T is determined entirely by Za which has at most 3 independent
non-gauge components. So in this case we do not have enough non-gauge elements of ker δP (ξ±)
for strong hyperbolicity.

We have shown that strong hyperbolicity requires that, generically,

ξ±cξ±e ∇bΦGdeabK̃cd = 0. (210)

For this to be satisfied for generic null ξ± we must have

Gabde∇bΦK̃cd = ρaδec (211)

for some vector ρa. Contracting with ∇aΦ we see that

(∇Φ)2K̃ab = 2K̃ac∇cΦ∇bΦ− 2(ρ · ∇Φ)δba (212)

from which we deduce that the most general form K̃ can take is

K̃ab = κgab +Wa∇bΦ. (213)

for some scalar κ and vector Wa. Note that we can determine ρa in terms of these quantities by
taking the trace over the e and c indices in (211)

ρa =
1

4

(
−κ∇aΦ +GabcdWc∇dΦ∇bΦ

)
. (214)

Plugging these back into (211) we find that the only solution is given by κ = 0 and Wa = 0, that is

K̃ab = 0. (215)

Hence strong hyperbolicity for a generic weak-field background forces us to make the gauge choice

f = −1 +
√

1 + G4 − 2X∂XG4

(1 + f)Hab = αgab + β∇a∇bΦ− ∂XG3∇aΦ∇bΦ. (216)

With this choice of gauge, (199) reduces to

0 = δac1c2c3bd1d2d3
ξ±c1ξ

±d1∇c2∇d2Φ∇c3Φ∇d3Φ

(
−1

2
∂XG4µ+ ∂2

XG4χ

)
+ 2Gab

ecξ±dξ±e Gcd
fh∇fΦ∇hΦ

(
−1

2
∂XG4λ+ 2∂2

XΦG4χ

)
. (217)

For a generic background, this fixes λ and µ in terms of χ:

λ = 4
∂2
XΦG4

∂XG4
χ µ = 2

∂2
XG4

∂XG4
χ. (218)

We now consider the second row of (196), which takes the form

Aχ = 0 (219)
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where

A =− 1

2
[∂XG4 + 2X∂2

XG4]δc1c2c3d1d2d3
ξ±c1ξ

±d1Rc2c3
d2d3

− 1

2
∂2
XG4δ

c1c2c3c4
d1d2d3d4

ξ±c1ξ
±d1∇c2Φ∇d2ΦRc3c4

d3d4

−
[
3∂2

XG4 + 2X∂3
XG4 +

2(∂XG4 + 2X∂2
XG4)2

1 + G4 − 2X∂XG4

]
δc1c2c3d1d2d3

ξ±c1ξ
±d1∇c2∇d2Φ∇c3∇d3Φ

+ [2(∂XG4)−1(∂2
XG4)2 − ∂3

XG4]δc1c2c3c4d1d2d3d4
ξ±c1ξ

±d1∇c2∇d2Φ∇c3∇d3Φ∇c4Φ∇d4Φ

+ 4

[
∂3
XXΦG4 + 2

∂2
XG4∂

2
XΦG4

∂XG4
−
∂XG3(∂XG4 + 2X∂2

XG4)

2(1 + G4 − 2X∂XG4)
− ∂2

XG3

]
δc1c2c3d1d2d3

ξ±c1ξ
±d1∇c2∇d2Φ∇c3Φ∇d3Φ

+ 2

[
∂3
XΦΦG4 − 2X∂3

XXΦG4 + 3∂2
XΦG4 − 8

(∂2
XΦG4)2

∂XG4

+
∂XG3(∂ΦG4 + 2X∂2

XΦG4 +X∂XG3)

(1 + G4 − 2X∂XG4)
+

(
∂2
XΦG3 +

1

2
∂2
XG2

)]
(ξ± · ∇Φ)2

+ 2

[
2

(∂XG4 + 2X∂2
XG4)(∂ΦG4 + 2X∂2

XΦG4 −X∂XG3)

1 + G4 − 2X∂XG4
+ (∂XG3 +X∂2

XG3)

]
ξ±a ξ

±
b ∇

a∇bΦ

(220)

If A 6= 0 then we must have χ = 0, and hence λ = µ = 0 and Za is arbitrary. Hence, in a generic
weak-field background, ker δP (ξ±) consists of vectors of the form (tab, 0)T where tab is given by
(198) with λ = µ = 0. Given that one component of Za is “pure gauge” (i.e. degenerate with the
first term in (198)), it follows that ker δP (ξ±) generically has dimension 7 and hence the equation
of motion is not strongly hyperbolic.

The only way to escape this conclusion is if the theory is one for which A = 0 for any background.
For this to happen, terms with different dependence on the Riemann tensor, ∇Φ and ∇∇Φ have
to cancel independently in A. However this cannot happen in the case we are considering. To see
this, note that vanishing of the terms of the (schematic) form R∇Φ∇Φ in any background requires
∂2
XG4 = 0. But then vanishing of the terms proportional to R requires ∂XG4 = 0, contradicting our

assumption ∂XG4 6= 0. Hence in a generic background we have A 6= 0 and therefore a vector in the
kernel must have χ = 0.

In summary, we have shown that when ∂XG4 6= 0, there does not exist a generalized harmonic
gauge for which the equations of motion are strongly hyperbolic in a generic weak-field background.
The best one can do is to choose the gauge (216), for which ker δP (ξ±) has dimension 7 in a generic
weak-field background (i.e. 4 pure gauge elements, and 3 non-gauge elements). This implies that,
in such a background, the matrix M will have two non-trivial Jordan blocks: one in V + and one in
V −. Generically each of these will be 2× 2.

Proof of strong hyperbolicity for G4 = G4(Φ), G5 = 0

We continue working with the theory defined by (190), but now consider the case ∂XG4 = 0, i.e.,
G4 = G4(Φ).19 We will show that such theories are strongly hyperbolic in a suitable generalized

19An example of such a theory is Brans-Dicke theory [24] with positive coupling constant ω. After a redefinition
of the scalar field, this has G2 = G3 = 0 and G4 = Φ/

√
2ω + Φ2/(8ω).
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harmonic gauge. The proof is analogous to that for the theory with G4 = G5 = 0 so we will be brief.
For ∂XG4 = 0, (178) reduces to

LHS =

Gµνρσ[(G4 − f(f + 2))ξ±σ Gρ
λαβξ±λ tαβ + ξ±λξ±σ (Kλρ − ∂ΦG4gλρ)]χ

Gµνρσtµνξ
±
ρ ξ
±λ(Kλσ − ∂ΦG4gλσ) + δPΦΦ(ξ±)χ

 (221)

RHS =

 ξ0±(1 + G4)Gµνρσξ±ρ Yσ

ξ0±[(∂XG3)(ξ± · ∇Φ)(Y · ∇Φ) + ∂ΦG4(ξ± · Y )]−Kλσξ±λGµνσ0ξ±µ Yν

 . (222)

Recall that for strong hyperbolicity to hold, this equation must have no solution (tµν , χ)T when
Yµ 6= 0. By the non-degeneracy of Gµνρσ we see that if

G4 − f(f + 2) 6= 0 (223)

then we can use the first row of this equation to solve uniquely for Gµνρσξ±ν tρσ (the non-transverse
part of t). This can then be substituted into the second row of the equation to give an equation
which determines χ. Hence, if G4−f(f +2) 6= 0 then, for any non-zero Yµ, Eq. (178) has a solution.
Therefore for strong hyperbolicity to hold, we need

G4 − f(f + 2) = 0 ⇒ f = −1 +
√

1 + G4 (224)

where we have chosen the root that satisfies the smallness condition (138). With this choice of f ,
the first row of (178) implies

ξ0±Yµ =
1

1 + G4
ξ±ρK̃ρµχ. (225)

where
K̃ab = Kab − ∂ΦG4gab. (226)

When we plug this into the second row of (178) we obtain a linear homogeneous scalar equation for
χ and tab. This equation has 11 unknowns and therefore admits a non-trivial solution, generically
with χ 6= 0. It follows that if Yµ in (225) is not vanishing, then strong hyperbolicity fails. This means
that strong hyperbolicity requires ξ±ρK̃ρµχ = 0 for arbitrary null ξ±. Since generically χ 6= 0, this
implies that we must choose our gauge such that K̃µν = 0. Thus we see that strong hyperbolicity
in a generic weak-field background requires us to make the gauge choice

f =− 1 +
√

1 + G4

(1 + f)Hab =∂ΦG4gab − ∂XG3∇aΦ∇bΦ. (227)

In this gauge, equation (178) implies Yµ = 0 so M has no nontrivial Jordan block, i.e., M is
diagonalisable. Note that when G4 = 0 this reduces to the gauge choice (189).

Diagonalizability of M is a necessary condition for strong hyperbolicity to hold. It ensures
the existence of a positive definite symmetrizer K satisfying (34). But we need to check that the
remaining conditions in the definition of strong hyperbolicity are satisfied. In particular, we need to
prove that K depends smoothly on ξi. To do this, recall that K is constructed from the matrix S
which diagonalizes M , as explained above (17). S is the matrix whose columns are the eigenvectors
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of M . Hence if the eigenvectors of M depend smoothly on ξi then so does K. We will explicitly
construct the eigenvectors of M to demonstrate that they depend smoothly on ξi.

Recall that the eigenvectors of M have the form (167) where T satisfies (168). In the gauge
(227), we have

δPgg(ξ
±) = δPgΦ(ξ±) = δPΦg(ξ

±) = 0 (228)

which implies that any vector of the form T = (tab, 0)T satisfies (168) when ξ = ξ±. This proves
that the eigenvalues ξ±0 each have degeneracy 10. If we choose a basis of symmetric tensors tab that
is independent of ξi then the ξi-dependence of these eigenvectors arises only through the ξ0 in (167),
which implies that these 20 eigenvectors depend smoothly on ξi. A calculation reveals that the final
two eigenvectors have T = (tab, 1)T where

tab = − ∂XG3

1 + G4
[∇aΦ∇bΦ + gabX]− ∂Φ log(1 + G4)gab (229)

and eigenvalues ξ0 determined by

0 = fµνξµξν ≡ −PΦΦ(ξ)− 1

(1 + G4)

[
X2(∂XG3)2 + 2(∂ΦG4)2

]
ξ2. (230)

For a weak field background, fµν is close to gµν and is therefore a Lorentzian metric with f00 6= 0.
This ensures that there will be two real eigenvalues ξ0 depending smoothly on ξi. As before, the
eigenvectors depend on ξi only through ξ0 and are therefore smooth. Hence all eigenvectors have
the required smoothness in ξi so the symmetrizer is smooth. This establishes strong hyperbolicity
in the gauge (227).20

Failure of strong hyperbolicity if G5 6= 0

Finally, we include the term L5 into the Lagrangian. We refer to Ref. [21] for the explicit form of
the equations of motion. With G5 6= 0 we expect to encounter similar issues as those we encountered
in theories with ∂XG4 6= 0, G5 = 0. This can be seen easily if we consider the case G4 = 0 with
∂XG5 = 0, i.e.,

G5 = G5(Φ). (231)

In this case we can write [21, 33]

L5 = G5(Φ)Gab∇a∇bΦ
= −∂ΦG5XR− ∂ΦG5δ

ac
bd∇a∇bΦ∇c∇dΦ + 3∂2

ΦG5X�Φ− 2∂3
ΦG5X

2 + . . . (232)

where the ellipsis denotes a total derivative term which doesn’t contribute to the equations of
motion. Therefore we can rewrite L5 as a sum of lower order lagrangians

L5 = L̃4 + L̃3 + L̃2 (233)

where

G̃4 = −∂ΦG5X G̃3 = 3∂2
ΦG5X G̃2 = −2∂3

ΦG5X
2. (234)

20 Actually we should also check the inequality below (34). This follows trivially if we restrict to a compact region
of spacetime. For the L1 + L2 theory, a stronger result can be obtained [32]: this theory is symmetric hyperbolic
even outside of the “weak field” regime provided that 1 + ∂XG2 > 0 and 1 + ∂XG2 + 2X(∂2

XG2) > 0. In our case, the
smallness condition (134) implies that these conditions are satisfied.
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Since ∂X G̃4 6= 0, our previous results imply that there is no generalized harmonic gauge for which
theory is strongly hyperbolic in a generic weak-field background.21 Of course, we could cure the
above problem by adding a G4 term to cancel G̃4 but then all we’re doing is reducing the theory to a
theory with G4 = G5 = 0. The issue is that there is degeneracy between the L5 term and the other
terms in the Lagrangian. We can remove this degeneracy by supplementing the conditions (105)
with

G5(Φ, 0) = 0 (235)

which means that non-trivial G5 must depend on X.
Although we have not analyzed it in detail, there seems very little chance that a theory with

∂XG5 6= 0 could be strongly hyperbolic in some generalized harmonic gauge for a generic weak-field
background. Indeed, we expect such a theory to exhibit even worse behaviour than the ∂XG4 6= 0,
G5 = 0 case in the following sense. We mentioned above, that for the latter theory, one can find
a generalized harmonic gauge for which M generically has just 2 non-trivial Jordan blocks. We
expect a ∂XG5 6= 0 theory to be worse in the sense that, generically, for any generalized harmonic
gauge, M will have 8 non-trivial (2×2) Jordan blocks, 4 in each of V + and V −. In other words, for
this theory, all pure gauge eigenvectors will be associated to non-trivial Jordan blocks, just as for
(harmonic gauge) Lovelock theory. This is consistent with the fact that some theories of this type
can be obtained by dimensional reduction of Lovelock theories.

Summary of results for linearized theory

We have proved that, if ∂XG4 6= 0 and G5 = 0 then there exists no generalized harmonic gauge
for which linearized Horndeski theory is strongly hyperbolic in a generic weak-field background.
However, if ∂XG4 = G5 = 0 then there exists a unique generalized harmonic gauge for which
linearized Horndeski theory is strongly hyperbolic in a generic weak-field background. We have not
analyzed the case G5 6= 0 in detail but we believe that, once degeneracy with other terms has been
eliminated via (235), this case is not compatible with strong hyperbolicity in a generic weak-field
background either.

This means that any Horndeski theory (satisfying (105)) for which there exists a generalized
harmonic gauge such that the linearized equation of motion is strongly hyperbolic around a generic
weak-field background can be obtained from a Lagrangian of the form

L = R+X − V (Φ) + G2(Φ, X) + G3(Φ, X)�Φ + G4(Φ)R. (236)

More general Horndeski theories will fail to be strongly hyperbolic around a generic weak-field
background in any generalized harmonic gauge.

Causal properties of theories of the form (236) have been discussed in Ref. [34].22 It is interesting
to discuss causality using our results above. We showed above that, in an appropriate generalized
harmonic gauge, a null co-vector ξa is characteristic if, and only if, either gabξaξb = 0 or fabξaξb = 0,
where fab is defined by (230). Furthermore, if ξa satisfies the former condition then P (ξ) generically
has a 10-dimensional kernel consisting of vectors of the form (tab, 0) for general tab, whereas if ξa
satisfies the latter condition then P (ξ) generically has a 1-dimensional kernel consisting of vectors
of the form (tab, 1) with tab given by (229). Hence, roughly speaking, causality for the 10 tensor

21Note that if ∂ΦG5 = 0 then G5 is a constant, which implies that L5 is a total derivative.
22 Ref. [34] assumed G4 = 0 but for a theory of the form (236) we can always set G4 = 0 using a field redefinition,

specifically a conformal transformation.
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degrees of freedom is determined by gab whereas causality for the 1 scalar degree of freedom is
determined by fab, the inverse of fab. This agrees with Ref. [34]. Of course these degrees of freedom
are coupled together so causality for the theory as a whole is determined by both metrics gab and
fab. More precisely, the characteristic surfaces of the theory are surfaces which are null w.r.t. either
gab or fab.

Nonlinear considerations

The above discussion shows that there exists a preferred generalized harmonic gauge (227) for
which a theory of the form (236) is strongly hyperbolic when linearized around a generic weak field
background. We can now ask: does this generalized harmonic gauge condition for the linearized
theory arise by linearizing a generalized harmonic gauge condition for the nonlinear theory?

Consider a nonlinear generalized harmonic gauge condition of the form

1√
−g

∂ν
(√
−ggµν

)
= Jµ(g,Φ, ∂Φ). (237)

Note that we would not want Jµ to depend on second or higher derivatives of Φ because this would
give a gauge-fixed equation of motion involving third derivatives of Φ.

Linearizing around a general background solution gives

∇νhµν −
1

2
∇µhνν +

∂Jµ

∂(∂νΦ)
∂νψ = . . . (238)

where the ellipsis denotes terms that don’t involve derivatives of hµν or ψ and therefore don’t
influence hyperbolicity. Comparing with (112) we see that the linearized gauge condition has

Hµν

1 + f
= − ∂Jµ

∂(∂νΦ)
. (239)

It follows that the functions appearing in the linearized gauge condition must satisfy the integrability
condition

∂

∂(∂ρΦ)

(
Hµν

1 + f

)
=

∂

∂(∂νΦ)

(
Hµρ

1 + f

)
. (240)

Plugging in the functions (227), this equation reduces to

∂XG3 (gµν∂ρΦ− gµρ∂νΦ) = 0. (241)

By contracting this equation it is easy to see that the only way this can hold in a generic background
is if ∂XG3 = 0. But then G3 is independent of X, so (105) implies G3 = 0.23 If G3 = 0 then we can
find a source function Jµ consistent with equation (239):

Jµ = − ∂ΦG4

1 + G4
∂µΦ. (242)

In summary, we have imposed the requirement that the preferred generalized harmonic gauge con-
dition for the linearized theory arises by linearizing a generalized harmonic gauge condition for the

23If G3 is independent of X then a term in the action of the form L3 is degenerate with a term of the form L2 and
the conditions (105) were imposed to eliminate this degeneracy.
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nonlinear theory. The result is that this requirement excludes theories with non-trivial G3. So de-
manding that there exists a generalized harmonic gauge for which the nonlinear theory is strongly
hyperbolic in a generic weak-field background restricts the theory to one of the form

L = R+X − V (Φ) + G2(Φ, X) + G4(Φ)R. (243)

Since G4 can be eliminated by a field redefinition (footnote 22), this theory is equivalent to Einstein
gravity coupled to a “k-essence” theory. With the gauge choice (242), this theory is not just strongly
hyperbolic, it is symmetric hyperbolic (see footnote 20).

5 Discussion

We have shown that, in harmonic gauge, the linearized equation of motion of a Lovelock theory is
always weakly hyperbolic in a weakly curved background. However, it is not strongly hyperbolic in a
generic weak-field background. We have shown that, in a generalized harmonic gauge, the linearized
equation of motion of a Horndeski theory is always weakly hyperbolic in a weak-field background.
For some Horndeski theories, a generalized harmonic gauge can be found for which the linearized
equation of motion is also strongly hyperbolic in a weak field background. In particular this is true
for theories of the form (236). However, for more general Horndeski theories, we have shown that
there is no generalized harmonic gauge for which the equation of motion is strongly hyperbolic in
a generic weak-field background. Furthermore, even for theories of the form (236), imposing the
requirement that the gauge condition for the linearized theory is the linearization of a generalized
harmonic gauge condition for the nonlinear theory restricts the theory further, to one of the form
(243).

Without strong hyperbolicity, the best one can hope for is that the linearized equation of motion
is locally well-posed with a “loss of derivatives”. This means that the kth Sobolev norm Hk of the
fields at time t cannot be bounded in terms of its initial value but only in terms of the initial value
of some higher Sobolev norm Hk+l with l > 0. Whether or not even this can be done depends on
the nature of the terms with fewer than two derivatives in the equation of motion [5]. But even
if this can be achieved, the loss of derivatives is likely to be fatal for any attempt to prove that
the nonlinear equation is locally well-posed in some Sobolev space, as is the case for the Einstein
equation.24 This is because establishing well-posedness for a nonlinear equation usually involves a
“boostrap” argument in which one assumes some bound on the Hk norm and then uses the energy
estimate to improve this bound, thereby closing the bootstrap. This is not possible if the energy
estimate exhibits a loss of derivatives.

Note that our result is a statement about the full equations of motion. If one restricts the
equations of motion by imposing some symmetry on the solution (e.g. spherical symmetry) then it is
possible that the resulting equations might be strongly hyperbolic. This is because the resulting class
of background spacetimes would be non-generic and, as we have seen, for non-generic backgrounds
it is possible for the equation of motion to be strongly hyperbolic even if it is not strongly hyperbolic
for a generic background.

Our results demonstrate that we do not have local well-posedness for the harmonic gauge Love-
lock equation of motion for general initial data. So the situation is worse than for the Einstein

24 It is conceivable that one might have local well-posedness in some much more restricted function space, such a
Gevrey space.
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equation, for which the harmonic gauge equation of motion is locally well-posed for any initial data
[7]. But in practice we are not interested in general initial data, but only in initial data satisfying
the harmonic gauge condition. Since the failure of strong hyperbolicity appears to be associated
to modes which violate the harmonic gauge condition, perhaps we could restrict to initial data
satisfying this condition exactly and thereby obtain a well-posed problem. One could not do this
numerically on a computer because the gauge condition could never be imposed exactly – there
would always be numerical error. But perhaps this could be done in principle. One way to proceed
would be to consider sequences of analytic initial data, satisfying the gauge condition, which ap-
proach some specified smooth initial data. For analytic data one can solve the equation of motion
locally [3]. If one could prove that the resulting analytic solution satisfies an energy estimate with-
out a loss of derivatives (because it satisfies the gauge condition) then perhaps it would be possible
to establish local well-posedness. Having said this, we note that one could make exactly the same
remarks about the Einstein equation written in a “bad” (non-strongly hyperbolic) gauge so it is far
from clear that this method has any chance of succeeding.

If the equation of motion is not strongly hyperbolic in (generalized) harmonic gauge then could
there be some other gauge in which it is strongly hyperbolic? For example, maybe one could modify
the (generalized) harmonic gauge condition to include additional terms involving first derivatives
of hab, contracted in some way with the background curvature tensor (or scalar field). But this
raises the question of whether it is always possible to impose the new gauge condition via a gauge
transformation. This would involve solving an equation for the gauge parameters. We would then
have to analyze whether this new equation has a well-posed initial value problem, and whether the
resulting gauge condition is propagated by the gauge-fixed equation of motion. This may amount to
analyzing equations that suffer from the same kind of problems as the equations we have discussed
in this paper.

In this paper, we have been working with equations of motion for the metric. An alternative
approach would be to derive an equation of motion for curvature. The Bianchi identity can be
used to write ∇e∇eRabcd in terms of second derivatives of the Ricci tensor, and terms with fewer
than two derivatives of curvature. For the Einstein equation, one can eliminate the Ricci tensor
to obtain a nonlinear wave equation for the Weyl tensor. This equation is strongly hyperbolic and
admits a well-posed initial value problem. For a Lovelock theory one cannot solve explicitly for the
Ricci tensor but one could still replace the Ricci tensor terms using the expression obtained from
the equation of motion of the theory. This gives an equation of motion for the Riemann tensor.
In contrast with what happens for the Einstein equation, the resulting equation is subject to a
constraint, which is simply the Lovelock equation of motion. If this constraint is satisfied by the
initial data then it will be satisfied by any solution of the equation of motion for the Riemann
tensor. The situation looks analogous to the case of the harmonic gauge equation of motion for the
metric, but with more indices. It seems very likely that this equation of motion for the Riemann
tensor will fail to be strongly hyperbolic in a generic background.

Another approach would be to investigate equations of motion based on a space-time decomposi-
tion of the metric, as in the ADM formalism. It is known that the ADM formulation of the Einstein
equation gives equations that are not strongly hyperbolic [9]. However, suitable modification of
the ADM method gives equations that are strongly hyperbolic [9, 10]. Perhaps something similar
would work for Lovelock or Horndeski theories. However, it appears that there is no obvious way
of extending the approaches used for the Einstein equation to Lovelock theories [35].

Of course there is also the possibility that these theories do not admit a locally well-posed initial
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value problem, or that one only has well-posedness for some highly restricted space of initial data.
This would lead to the satisfying conclusion that these modifications of the Einstein equation can
be shown to be unviable as physical theories solely on the basis of the classical initial value problem
for weak fields.
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