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Genomic surveillance reveals 
low prevalence of livestock-
associated methicillin-resistant 
Staphylococcus aureus in the East of 
England
Ewan M. Harrison   1, Francesc Coll2, Michelle S. Toleman1,3,4, Beth Blane1, Nicholas M. 
Brown4,5, M. Estee Török1,4,5, Julian Parkhill   3 & Sharon J. Peacock1,2,3,4

Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) is an emerging problem in 
many parts of the world. LA-MRSA has been isolated previously from animals and humans in the United 
Kingdom (UK), but the prevalence is unknown. The aim of this study was to determine the prevalence 
and to describe the molecular epidemiology of LA-MRSA isolated in the East of England (broadly 
Cambridge and the surrounding area). We accessed whole genome sequence data for 2,283 MRSA 
isolates from 1,465 people identified during a 12-month prospective study between 2012 and 2013 
conducted in the East of England, United Kingdom. This laboratory serves four hospitals and 75 general 
practices. We screened the collection for multilocus sequence types (STs) and for host specific resistance 
and virulence factors previously associated with LA-MRSA. We identified 13 putative LA-MRSA isolates 
from 12 individuals, giving an estimated prevalence of 0.82% (95% CI 0.47% to 1.43%). Twelve isolates 
were mecC-MRSA (ten CC130, one ST425 and one ST1943) and single isolate was ST398. Our data 
demonstrate a low burden of LA-MRSA in the East of England, but the detection of mecC-MRSA and 
ST398 indicates the need for vigilance. Genomic surveillance provides a mechanism to detect and track 
the emergence and spread of MRSA clones of human importance.

Staphylococcus aureus is a major cause of infection in hospitals and the community. The widespread dissemi-
nation of methicillin-resistant S. aureus (MRSA) adds complexity to the treatment of infection. S. aureus also 
colonises and infects wild and domestic animals and livestock, and in the latter causes economically important 
diseases such as mastitis in ruminants, and bumble foot in poultry. Several S. aureus multilocus sequence type 
(MLST) lineages are associated with animals, including clonal complex (CC)1 (livestock) CC5 (avian), CC130 
(multi-host), CC133 (ruminants), CC151 (ruminants), CC425 (ruminants and wild mammals), and CC398 (live-
stock)1–6. Adaption of S. aureus for specific animal species can be mediated by as little as a single nucleotide 
polymorphism (SNP)7, while genetic decay1 and acquisition of mobile genetic elements encoding host specific 
virulence factors such as von Willebrand factor binding protein also play an important role8, 9. Resistance to 
tetracycline is common in livestock-associated (LA)-MRSA, and is associated with high usage of this drug in 
veterinary medicine10.

While animal-adapted S. aureus has been recognised for many years, more recently it has become clear that 
zoonotic transmission of S. aureus is relatively common11. The emergence and spread of LA-MRSA has been 
exemplified by CC398 MRSA, which is associated with pigs, poultry, cattle and horses10. Since its emergence in 
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the early 2000′s, CC398 has gone on to cause a significant and increasing burden of human disease in a number of 
European countries12, 13. In the UK, there have been numerous reports of the presence of LA-MRSA in livestock 
and animal products14–18 and rare cases of human infections3, 19 caused by CC398 and several MRSA lineages 
(CC130, CC425 and CC1943) positive for a type XI SCCmec element which encodes the mecC20. Two recent 
prevalence surveys targeting the livestock-associated mecC-MRSA in human and dairy cattle estimated that 
mecC-MRSA was present in 2.15% (95% confidence interval (CI) 1.17–3.91%) of English and Welsh dairy farms, 
and caused 0.45% (95% CI 0.24–0.85%) of human MRSA infections in England16, 21. However, no estimation of 
the total burden of LA-MRSA associated with human infection has been conducted in the UK. Here, we used an 
unbiased collection of MRSA genome sequences from a single year in Cambridgeshire to estimate the burden of 
LA-MRSA in a defined geographical region.

Results
Screening for LA-MRSA.  We screened 2,282 MRSA isolates collected from 1,465 people during a pro-
spective study conducted at the Public Health England Clinical Microbiology and Public Health Laboratory, 
Cambridge University Hospitals NHS Foundation Trust in Cambridge, UK between 18 April 2012 and 17 April 
2013. We initially screened genome sequence data for putative LA-MRSA based on known genetic features of 
LA-MRSA, namely (i) the presence of mecC or (ii) specific MLST sequence types (ST) or CCs. This identified 15 
isolates from 13 people (ST97 (n = 2), ST398 (n = 1), mecC positive (n = 12, which belonged to CC130 (n = 10), 
ST425 (n = 1), and 1 ST1943 (n = 1) (Table 1). We then expanded the screen to include virulence factors asso-
ciated with LA-MRSA (LukM/F leukotoxin22, SaPI-carried von Willebrand binding protein (vWbp)9, the allele 
variant of tst (toxic shock syndrome toxin (TSST) found on the bovine staphylococcal pathogenicity island 
(SaPIbov)23 and the avian-associated prophages: φAv1, ϕAvβ, and SaPIAv)1. This identified two isolates, both of 
which had been captured in the initial screen: an ST398 isolate (CBLA13 positive for the SaPI-carried vwb), and 
an ST1943 isolate (CBLA15 positive for the allelic variant of tst (Table 1). The minority of isolates (n = 3) were 
associated with clinical disease (skin and soft tissue infections in three people), the remainder being isolated from 
multisite screens (Table 1).

Phylogenetic analyses of LA-MRSA.  S. aureus CC97 underwent a host jump from cattle into humans 
around 40 years ago24.To determine whether the two Cambridgeshire CC97 isolates (from a single individ-
ual) belonged to the cattle or human clade, we compared these with genomes of a global collection of 43 CC97 

Isolate name
Sequence 
type

Clonal 
complex Date Source Locationa

Vitek 
antibiogramb Resistance genes Virulence genes ERR accession

LA-
MRSA

CBLA1c 97 97 01/13 Screen swab GP PEN, FOX, OXA blaZ, mecA, cadD scn, sak ERR715294 No

CBLA2c 97 97 01/13 Screen swab HOS PEN, FOX, OXA blaZ, mecA, cadD scn, sak ERR737075 No

CBLA3 1945 130 08/12 Screen swab HOS PEN, FOX blaZLGA251, mecC, 
arsB, arsC

scn, sak, edin-B, 
etd2 ERR701929 Yes

CBLA4 1245 130 09/12 Screen swab HOS PEN, FOX blaZLGA251, mecC, 
arsB, arsC edin-B, etd2 ERR714935 Yes

CBLA5 CC130 130 02/13 Screen swab HOS PEN, FOX blaZLGA251, mecC, 
arsB, arsC, cadD edin-B, etd2 ERR737232 Yes

CBLA6 1245 130 03/13 SSTI HOS PEN, FOX, ERY
msrA, smr (qacC), 
blaZLGA251, mecC, 
arsB, arsC

edin-B, etd2 ERR737543 Yes

CBLA7 130 130 03/13 Screen swab HOS PEN, FOX blaZLGA251, mecC, 
arsB, arsC edin-B, etd2 ERR737555 Yes

CBLA8d 1245 130 06/12 Screen swab GP PEN, FOX blaZLGA251, mecC, 
arsB, arsC edin-B, etd2 ERR737640 Yes

CBLA9 2574 130 05/12 SSTI GP PEN, FOX blaZLGA251, mecC, 
arsB, arsC edin-B, etd2 ERR204178 Yes

CBLA10d 1245 130 05/12 Screen swab HOS PEN, FOX blaZLGA251, mecC, 
arsB, arsC edin-B, etd2 ERR211963 Yes

CBLA11 1245 130 06/12 Screen swab HOS PEN, FOX blaZLGA251, mecC, 
arsB, arsC edin-B, etd2 ERR212880 Yes

CBLA12 1245 130 06/12 Screen swab HOS PEN, FOX, OXA blaZLGA251, mecC, 
arsB, arsC edin-B, etd2 ERR212993 Yes

CBLA13 398 398 04/13 Screen swab HOS PEN, FOX, OXA, 
ERY, TET, CLI

blaZ, mecA, ermC, 
tetM, tetK,

vwb (SaPI 
encoded) ERR715120 Yes

CBLA14 425 425 01/13 Screen swab HOS PEN, FOX, blaZLGA251, mecC, 
arsB, arsC, cadD ERR737103 Yes

CBLA15 1943 1943 03/13 SSTI GP PEN, FOX blaZLGA251, mecC, 
arsB, arsC, cadD

tst (SaPIbov), 
seg, sei ERR737480 Yes

Table 1.  Potential Livestock associated MRSA strains and associated data. aLocation: HOS = Hospital, 
GP = General practitioner. bVitek antibiogram: Three letter codes indicate resistance to: PEN = Benzlpenicillin, 
FOX = Cefoxitin, OXA = Oxacillin, FUS = Fusidic acid, ERY = Erythromycin, TET = Tetracycline, 
CLI = Clindamycin. Bold text - cdenotes that CBLA1 and CBLA2 were isolated from the same patient. ddenotes 
that CBLA8 and CBLA10 were isolated from the same patient. SSTI = skin and soft tissue infection.
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isolates24. A phylogenetic tree demonstrated that the two Cambridge ST97 isolates resided in the human clade A, 
and were most closely related to an isolate associated with a bloodstream infection in Turkey in 2007 (Fig. 1A)24. 
The host jump of CC97 into humans has been linked to the gain of a β-toxin-converting phage (ϕSa3) containing 
the human immune evasion cluster (IEC) of genes (staphylokinase (sak), staphylococcal complement inhibitor 
(scn), and chemotaxis inhibitory protein of S. aureus (chp)). The two Cambridgeshire CC97 isolates were posi-
tive for sak and scn, (IEC type E), providing further evidence of a human source (Table 1). We conclude that the 
Cambridgeshire ST97 isolates were not of a livestock origin, but rather a rare human adapted lineage of ST97 
MRSA.

The genetic relatedness between the Cambridgeshire mecC ST425 isolate (CBLA14) and the ST425 reference 
genome (an English bovine isolate, LGA251) was defined based on SNPs in the core genome3. The two isolates 
differed by more than 400 core genome SNPs, indicating that they were distantly related. A phylogenetic tree of 
the ten CC130 mecC-MRSA isolates was reconstructed based on SNPs in the core genome compared with a ref-
erence. This showed clustering that was consistent with ST designation, although isolates belonging to the same 

Figure 1.  (A) Phylogenetic relationships between Cambridgeshire CC97 isolates and most closely related 
isolates from a global collection10. Figure shows an unrooted maximum likelihood tree generated from core 
genome single nucleotide polymorphisms. (B) Phylogenetic relationships between Cambridgeshire CC130 
isolates. Figure shows an unrooted maximum likelihood tree generated from core genome single nucleotide 
polymorphisms. The two clinical isolates are highlighted in red. The two closely related isolates from the same 
patient are highlighted in blue.
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ST were not closely related (>50 SNPs different) (Fig. 1B). The exception was two ST1245 isolates (CBLA8 and 
CBLA10) isolated from the same patient 19 days apart that differed by only four SNPs. In contrast to the rest of 
the mecC-MRSA isolates, the single ST1945 (CBLA3) was positive for sak and scn, (IEC type E) suggestive of a 
human origin. However, ST1945 isolates from wild mice and deer in Spain have also been found to be positive for 
IEC type E, suggesting this may be conserved trait of ST1945 isolates, irrespective of host25, 26.

To determine the genetic relatedness of the Cambridgeshire ST398 isolate (CBLA13) to those found elsewhere, 
we compared this with a global collection of 89 CC398 isolates10. A phylogenetic tree demonstrated that CBLA13 
resided in the livestock-associated clade and was most closely related to three isolates with a porcine origin, in 
subclade IIa1ii from Austria and Slovenia (data not shown). This is consistent with a livestock source for CBLA13.

Antimicrobial resistance.  With one exception (CBLA12), mecC-MRSA isolates were resistant to cefoxitin, 
but susceptible to oxacillin based on VITEK testing, as reported previously (Table 1)27. Most mecC-MRSA isolates 
(11/12) were relatively susceptible, with resistance limited to β-lactam antibiotics out of the panel of agents tested. 
The exception (CBLA6) was resistant to erythromycin, associated with the presence of msrA, and also carried smr 
(formly qacC) that mediates resistance to quaternary ammonium compounds in antiseptics and disinfectants28. 
The single ST398 isolate (CBLA13) was resistant to erythromycin and tetracycline, which was associated with the 
presence of ermC, and tetK and tetM respectively. Tetracycline resistance is not unique to livestock-associated 
MRSA but is notable, as this is associated with livestock-associated ST39810.

Discussion
Here, we report an unbiased assessment of the prevalence of LA-MRSA isolated by a single diagnostic micro-
biology laboratory in the East of England. By searching for lineages and virulence genes associated with ani-
mal MRSA we identified 13 people (15 isolates) positive for MRSA, with features associated previously with 
LA-MRSA. Detailed genome-level analysis supported a plausible link to livestock for 12 cases (13 isolates). The 
two exceptions (two isolates from the same case) were ST97, which were assigned to the human clade of a lin-
eage that underwent a host-jump from cattle to humans around 40 years ago, and were therefore unlikely to be 
livestock-associated24. For the remaining 13 isolates (12 mecC-MRSA (CC130, ST425 and ST1943) and 1 ST398), 
the evidence suggests a likely livestock source, giving an overall prevalence rate of LA-MRSA in MRSA-positive 
people of 0.82% (95% CI 0.47% to 1.43%).

In the UK, ST398 has been detected in cattle, horses, pigs and pork meat, poultry, and in humans.12, 14, 17, 19, 29–31  
The single ST398 isolate in this study clustered with the livestock-associated clade identified by Price and 
co-workers, and was most closely related to isolates from pigs in continental Europe10. Consistent with a livestock 
origin was the observation that the isolate carried a gene encoding a von Willebrand factor binding protein that 
mediates clotting of ruminant plasma, suggesting that this isolate might have ruminant source. This concurs with 
previous reports of ST398 in bovine milk in England17. However, vwb has also been found in three ST398 MRSA 
isolates from UK retail pork samples, suggesting this might be widespread in UK ST398 isolates14. The isolate 
was also resistant to tetracycline, which is also associated with LA ST398. We noted that the isolate harboured 
two different tetracycline resistance genes (tetM and tetK), which has also been reported in Scottish Human 
CC398 isolates19. The acquisition of tetK as part of the staphylococcal cassette chromosome mec (SCCmec) type 
Vc element by tetM positive LA ST398 has been demonstrated to significantly increase fitness at sub-lethal con-
centrations of tetracycline32. The use of tetracycline in livestock is likely to be a driver for this and might have 
contributed to the success of SCCmec Vc-bearing LA-MRSA CC39832. In addition, the presence of the czrC gene 
encoding resistance to copper and zinc, which are added to animal feed, may have also contributed to the success 
of LA-MRSA CC39834. Although there are currently very low levels of ST398 in humans in the UK, its presence in 
a range of livestock species combined with the results of mathematical modelling suggests that once established in 
livestock populations, ST398 would be hard to eradicate from humans33. A 66% increase in human CC398 cases 
in Denmark between 2004–2011 was associated with a four-fold increase in the CC398 prevalence in Danish 
pigs13. Similar dramatic increases in ST398 prevalence have been reported in Germany34. Recent data has also 
highlighted the role of humans as the vector for transmission between livestock populations including between 
countries35. Further systematic sampling of livestock and livestock workers for ST398 in the UK is required to 
better understand its prevalence and epidemiology.

The majority of LA-MRSA isolates were mecC-MRSA, demonstrating that at least in this part of England, 
this is the dominant form of LA-MRSA. The prevalence in this study for mecC-MRSA of 0.75% (95% CI: 0.30% 
to 0.92%) is close to the 0.45% (95% CI 0.24%–0.85%) identified in a 2011–2012 multicentre English prevalence 
study, suggesting that prevalence is currently stable21. This is similar to a prevalence estimate from Denmark 
(0.5%)36 but higher than large studies from Belgium (0.18%)37, Germany (0, 0.09, and 0.06%)38–40, and Spain 
(0.04%)41, though some variation exists between studies from the same countries42. Both ST1245 isolates and its 
single locus variant ST2574 have been identified previously in Cambridge, in a multicentre English prevalence 
study, suggesting that these two clones are endemic in Cambridgeshire21. Importantly, ST1245 has also been 
isolated from bovine milk at two different locations in England3. Cambridgeshire is an area with low livestock 
density, but borders East Anglia where there is high density of pig and poultry production43. The predominance 
of CC130 in the Cambridgeshire LA-MRSA, a clone which is commonly isolated from sheep and cattle3, 11, 44, 45, 
suggests that the prevalence of CC130 might be higher in parts of the UK with higher sheep and cattle densities, 
or alternatively the reservoirs of mecC-MRSA are still not fully understood. Indeed, mecC-MRSA has recently 
been reported in pigs and pig workers in Denmark46. Five of the eight ST1245 isolates were detected in May and 
June (Table 1) when people are more likely to be outdoors and may come in contact with livestock, but this is 
underpowered and future studies are required to investigate this association in a robust manner.
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In summary, our data demonstrate a low burden of LA-MRSA in the East of England, but the detection of 
mecC-MRSA and ST398 indicates the need for vigilance. As demonstrated here and elsewhere47, genomic surveil-
lance provides a mechanism to detect and track the emergence of MRSA clones of human importance.

Materials and Methods
Study design.  To understand the molecular epidemiology and transmission pathways in a healthcare net-
work we conducted a prospective observational cohort study between April 2012 and April 2013. We identified 
all individuals with MRSA-positive samples processed by the Public Health England Clinical Microbiology and 
Public Health Laboratory, Cambridge University Hospitals NHS Foundation Trust in Cambridge, UK. The labo-
ratory processes samples from four Cambridgeshire hospitals (Addenbrooke’s hospital (a large university teaching 
hospital), the Rosie hospital (a maternity hospital), Papworth hospital (a specialist cardiothoracic hospital) and 
Hinchingbrooke hospital (a district general hospital) and 75 general practices in the same geographic region 
(broadly the area around Cambridge). Samples were from multisite screening swabs from hospital patients on 
admission or during a hospital stay, or from clinical specimens from hospital patients or taken from patients in 
general practice. All cases with MRSA isolated at least once, from either screening swabs and/or clinical speci-
mens, were included in the study. Clinical metadata and demographic information were collected from electronic 
and paper medical records. In accordance with national policy at this time, universal MRSA screening (a mul-
ti-site MRSA screen of all patients on hospital admission, and weekly MRSA screening of patients in critical care 
units) was conducted at all four hospitals throughout the study period.

Ethics.  The study protocol was approved by the National Research Ethics Service (ref: 11/EE/0499), the 
National Information Governance Board Ethics and Confidentiality Committee (ref: ECC 8–05(h)/2011), and the 
Cambridge University Hospitals NHS Foundation Trust Research and Development Department (ref: A092428).

Microbiology methods.  MRSA was isolated from screening samples by directly plating swabs onto 
Brilliance MRSA chromogenic medium (Oxoid, Basingstoke, UK), and from all other samples by plating onto 
Columbia Blood Agar (Oxoid, Basingstoke, UK). S. aureus was identified using a commercial latex agglutina-
tion kit (Pastorex Staph Plus, Bio Rad Laboratories, Hemel Hempstead, UK). Antimicrobial susceptibility was 
determined to a panel of antibiotics (benzylpenicillin, cefoxitin, oxacillin, ciprofloxacin, erythromycin, chloram-
phenicol, daptomycin, fusidic acid, gentamicin, linezolid, mupirocin, nitrofurantoin, rifampicin, teicoplanin, tet-
racycline, tigecycline, trimethoprim, vancomycin, clindamycin, and inducible resistance to clindamycin) using 
the VITEK 2 instrument (bioMerieux, Marcy l’Etoile, France). Antimicrobial susceptibility results were inter-
preted using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria48.

Whole genome sequencing and bioinformatics analysis.  Genomic DNA was extracted from MRSA 
isolates, libraries prepared and 150-bp paired end sequences determined on an Illumina HiSeq. 2000 as previously 
described49. Sequence data have been submitted to the European Nucleotide Archive (ENA) (www.ebi.ac.uk/ena) 
under the accession numbers listed in Table 1. Sequence data were assembled using a previously described pipeline50.  
Briefly, for each isolate the sequence reads were used to create multiple assemblies using VelvetOptimiser v2.2.551 
and Velvet v1.252. The assemblies were improved by scaffolding the best N50 and contigs using SSPACE53 and 
sequence gaps filled using GapFiller54. Multilocus sequence types (MLST) were determined from the assem-
blies using MLST check (https://github.com/sanger-pathogens/mlst_check), which was used to compare the 
assembled genomes against the MLST database for S. aureus (http://pubmlst.org/saureus/). The presence of S. 
aureus virulence factors and antibiotic resistance genes were identified using BLAST against the assemblies. For 
phylogenetic analyses, sequence reads were mapped to a relevant reference genome (CC130 and ST425 isolates 
(strain LGA251, accession number FR821779), ST97 (strain MW2, accession number BA000033), ST398 (strain 
S0385, accession number AM990992)) using SMALT (http://www.sanger.ac.uk/science/tools/smalt-0) using the 
default settings to identify single nucleotide polymorphisms (SNPs). SNPs located in mobile genetic elements 
were removed and a maximum likelihood tree created using RAxML using the default settings and 100 bootstrap 
replicates55. For the ST398 phylogeny the large block of ST8 recombination present in ST398 (S0385 genomic 
locations: 12252 to 135180) was also removed from the ST398 alignment.
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