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Abstract
Multistable shells are thin-walled structures that have more than one stable state of self-stress.
We consider isotropic axisymmetrical shallow shells of arbitrary polynomial shapes using a
Föppl-von Kármán analytical model. By employing a Rayleigh-Ritz approach, we identify stable
shapes from local minima in the strain energy formulation, and we formally characterise the level
of influence of the boundary conditions on the critical geometry for achieving bistable inversion—
an effect not directly answered in the literature. Systematic insight is afforded by connecting the
boundary to ground through sets of extensional and rotational linear springs. For typical cap-
like shells, it is shown that bistability is generally enhanced when the extensional spring stiffness
increases and when the rotational spring stiffness decreases i.e. when boundary movements in-
plane are resisted but when their rotations are not; however, for certain other shapes and large
in-plane stiffness values, bistability can be enhanced by resisting but not entirely preventing
edge rotations. Our predictions are furnished as detailed regime maps of the critical geometry,
which are accurately correlated against finite element analysis. Furthermore, the suitability of
single degree-of-freedom models, for which solutions are achieved in closed form, are evaluated
and compared to our more accurate predictions.

1. Introduction
Multistability in shells arises from the interaction of out-of-plane bending and in-plane
stretching. A bistable example from Nature is the Venus Flytrap, which can rapidly “snap-
through” and close from an open equilibrium position to ensnare prey1; artificial applications
range from familiar objects such as flick bracelets and thermostatic switches in kettles2 to semi-
conductors in the field of microelectronics3, and to recent innovations in energy harvesting
devices4 or deployable spacecraft elements5.

Fundamental research on bistable structures was first undertaken by Timoshenko 6 for curved
beams, and by Wittrick et al. 2 as well as Hyer 7 for shells. Since multistability in general is
concomitant with large deflections, the non-linear and coupled Föppl-von Kármán (FvK) theory
of shallow shell elastic deformation8 provides a suitable theoretical framework for ascertaining
their behaviour. For more intricate shells with bespoke support conditions, the finite element
(FE) method enables their analysis straightforwardly but not without computational expense
or the complete assurance that all possible stable states have been detected. Correspondingly,



2the FvK framework remains competitive and affords direct insight into the factors which govern
multistability. Often, its governing equations can be intractable unless simplifying assumptions
about the shape of shell are made. One successful approach describes the dominant deflections
by uniform curvatures and twisting curvatures for the sake of simplicity. Approximating the
shape globally this way, however, fails to capture local edge effects9, leading typically to a
non-vanishing bending moment at the boundary. Despite this, the uniform curvature (UC)
approach provides a good approximation (≈±10%) of the ratio of bending-to-stretching energies
for shells with constant thickness (e.g.2;3;7;10–13), which is suitable for most design purposes.
For a lenticular shell, where a vanishing thickness precludes edge effects, Mansfield 14 obtains
an exact solution for “extra” i.e. bistable states.

More detailed numerical approaches use higher-order polynomial basis functions for
describing the large deflection shape of shells with greater accuracy15;16. Other elaborate
analytical models also consider higher-order curvatures, for example, Vidoli 17 demonstrates
the increased accuracy of models with three degrees-of-freedom and a quadratically varying
curvature (QVC). Other recent approaches show that the snap-through processes of magnetically
actuated caps18 or the multistable behaviour of a one-sided clamped plate19 can be captured
analytically with higher-order models. To some extent, these models show superior accuracy
because a violation of the out-of-plane boundary condition (BC) is minimised at least or
completely prevented.

In this paper, we consider the bistable behaviour of linear elastic, axisymmetrical shallow
shells using polynomial displacement fields. One aim is to establish the trade-off between
performance accuracy and model complexity as the polynomial order is increased. By enforcing
axisymmetry and thus displacement fields that only vary radially, our analysis is simplified
without compromising the generality of results. Our main aim, however, is to explore the effect
that support conditions have upon the bistable character since the capability of any multistable
structure is realised only by connecting it externally. Not only do we couple to the first aim
insofar as capturing these boundary conditions exactly (where the UC model is obliged to
neglect the edge moment), we may observe if bistability is directly enhanced or eroded by
the nature of the external connection—in this case—to ground. This has not been formally
addressed although some researchers have dealt with the “limits” of connectivity, where an edge
is pinned or clamped as part of their particular study, and others have noted the importance of
particular support conditions in stability problems experimentally20. We offer a broader sense
of performance by implementing linear elastic connections of arbitrary stiffness, which behave
as spring-like foundational elements.

Our approach derives a strain energy potential for the deformed shell whose stable equilibria
are identified by familiar calculus of variations. We seek load-free, statical configurations without
considering the unstable transition between them, and we use three examples to highlight the
effectiveness of our methodology. The first is a familiar spherical cap, which is mounted on
“pinned” rollers at its edge so that bistable inversion takes place without constraint. This
example can be directly compared to similar caps in the literature, and we determine the critical
geometry at which bistable inversion just becomes possible in terms of the minimum height of
the cap relative to its thickness.

In the second example, linear springs connect the roller supports of the first cap to ground.
These springs apply radial forces to the cap that resist in-plane displacements at the edge,
where in-plane radial stresses are no longer zero. Despite this simple modification in how the
cap is supported, the critical height is found to decrease in a non-linear fashion as the stiffness
increases. In the final example, rotations of the shell boundary are resisted by torsional springs
that locally apply a radial bending moment. We consider a non-uniformly curved shell initially
with no boundary gradient but having some height because this allows us to solve efficaciously
for the deformed shape by superposing two deflection fields with specific edge characteristics:
one with zero bending moment, the other with zero slope. The contributions from each field
are obtained by matching the actual bending moment and rotation of the cap edge to the
spring element. This approach is novel and affords a reasonably compact working compared to



3one that uses a general polynomial displacement field e.g. as in Wittrick et al. 2 . This shell is
also supported on in-plane extensional springs for a completely sprung boundary and, hence,
broader insight. A non-linear performance of the critical geometry is revealed where we can
observe, for example, the effect of the limits of connectivity for stiffness extrema. We constrained
our investigations to closed shells consisting of isotropic materials with external connections at
the edge, but point out possible extensions for more complex constitutive laws21;22, support
conditions23;24, or geometries25 (e.g. polar-orthotropic annuli on elastic foundations).

The structure of this paper is as follows. In the next section, we derive the general and
particular solutions of the FvK governing equations. All results are then compared to finite
element simulations in §3, where we emphasise the stark relevances of different boundary
conditions; the FE model is briefly described in this section. A summary and outlook follows in
§4.

2. Analytical formulation
We undertake a higher-order Rayleigh-Ritz method that extends previous UC models for load-
free shells e.g. as found in Seffen & McMahon 26 . A systematic overview of the approach is given
in Fig. 1, which is elaborated next.
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Figure 1. Overview of the coupled nature of the Föppl-von Kármán equations and our Rayleigh-Ritz
solution approach.

By assuming a polynomial expression of the transverse deflection field, w, on a domain Ω

over the shell with boundary, Γ , we describe the curvatures, κ, the deflection gradients, ϕr,
the bending moment, m, the Gaussian curvature, g, as well as the bending energy, ΠB , in
terms of n degrees-of-freedom (DOF). Out-of-plane curving is coupled to the in-plane stresses
by relating the change in Gaussian curvature to the Airy stress function, Φ, using Gauss’s
Theorema Egregium9. From Φ, the in-plane stress resultants, σ, the mid-plane strains, ε, as
well as the displacement, u, and stretching energy, ΠS , are derived, whilst satisfying the in-
plane boundary conditions. Finally, stable configurations are identified by minimising the total
strain energy, Π equal to ΠB +ΠS . The general solution is given next; the particular solution,
which elucidates satisfaction of the boundary conditions on Γ , is given afterwards.



4(a) General solution
Our shell is axisymmetrical and can be connected to ground everywhere along its circumference
by linear elastic springs. Because deformations are also assumed to be axisymmetrical, the
springs resist in-plane extensions and out-of-plane rotations of the shell boundary purely in the
radial direction without circumferential variation. A shallow spherical segment is depicted in
Fig. 2(a), with a through-thickness, t, and an outer planform radius, a. We choose this segment
only to illustrate more easily the cylindrical coordinate field given by r and θ, and by z in the
direction of transverse w. For a radial variation alone and no initial deflections, the Föppl-von
Kármán plate equations can be written as27;28:

D∇4w − t

r

d
dr

[ dw
dr

dΦ
dr

]
= q (2.1a) 1

E
∇4Φ+ 1

r

dw
dr

d2w

dr2 = 0 , (2.1b)

where ∇2 is the familiar Laplacian operator, equal to d2(..)/dr2 + (1/r)d(..)/dr.
These expressions are non-linear and coupled, and are valid only when the radial curvatures,

κr� 1/t, and the gradient of the shell, dw/dr� 1, everywhere. The external transverse pressure
load is denoted by q, and the flexural rigidity is D=Et3/[12(1− ν2)], with Young’s modulus,
E, and Poisson’s ratio, ν. Even though large out-of-plane deflections are considered, the shallow
shell condition arises because the strain formulation

εr = dur
dr + 1

2

(dw
dr

)2
and εθ = ur

r
, (2.2)

is not invariant under rotation since it neglects large in-plane displacements. In order to decouple
Eqns (2.1a) and (2.1b), we first solve the “out-of-plane” problem depending on w, and later
define a surjective and not injective stress function, Φ(w), which implies that there is not a
unique inverse function, w(Φ).
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Figure 2. a) Cutaway view of a cap mounted on spring supports in a cylindrical coordinate system (r, θ, z)
with an initial midpoint deflection w0

M (top), and corresponding inverted shape for roller supported edges
(bottom); this particular shape is monostable if the edges are instead clamped. b) Geometrically non-linear
finite element simulations using ABAQUS 29 of a shell with an initial non-uniform deflection according to
Eqn (2.14b). Inverted configurations for roller supported (free) edges and for clamped edges are shown in
c) and d), respectively, where colour contours indicate transverse deflection levels.

Remark 1. The equilibrium equation, (2.1a), is in general not satisfied for polynomial
approaches of w and Φ with a finite number of terms. For an alternative state of self-stress,
q is absent, and hence, for a deflection field, w, of order p > 1, the first term in Eqn (2.1a) is of
order p− 4, whilst the second terms order is p− 3 + deg(dΦ/dr). For matching orders, the Airy



5stress function, Φ, has a logarithmic component to enforce the compatibility for the highest order
term in Eqn (2.1a); however, such an Airy stress function invokes the incompatible behaviour of
infinite strain energy due to infinite stress peaks at the centre of the plate [c.f. Eqn (2.6)]. This
problem cannot be overcome by increasing the number of terms, since every additional term also
requires an additional correction term, and a mismatch always remains. In contrast, polynomial
approaches are suitable for the second FvK equation, (2.1b), with 2 · deg(w) = deg(Φ). Since
equilibrium has the same axiomatic nature as work, we ignore the equilibrium equation, (2.1a),
by assuming some (as yet unknown) deflection instead, and find an approximate yet accurate
solution via energy minimisation.

(i) Out-of-plane curving
The initially stress-free shape, w0, is distinguished from the current shape, w, by a superscript 0;
it is specified by a function f0(r)w0

M , where w0
M is the initial midpoint deflection. The change

between the two configurations is denoted by a hat, so the deflection reads ŵ=w − w0. We
focus on finding alternative equilibrium configurations that are load-free even though a load is
needed to marshal the actual transition. We therefore substitute the load with a “forcing term”
of the deflection

ŵ= f̂(r) ŵM ; (2.3)

f̂(r), as well as f0(r), is an arbitrary polynomial expression of order p, and both are specified
in §2(b). For axisymmetrical structures, the change in gradient, ϕ̂r, radial curvature, κ̂r, as well
as hoop-wise curvature, κ̂θ, are derived from the definition of the deflection via

ϕ̂r =−dŵ
d r , κ̂r =−d2ŵ

d r2 and κ̂θ =−1
r

dŵ
d r .

(2.4)

Since the initial configuration is stress free, the principal bending moments, mr and mθ, as
well as the shear force, qr, are independent of the initial configuration, so the change in these
values corresponds to the current value, i.e. m̂r =mr. For linear elastic, isotropic constitutive
behaviour, these read:

mr =D (κ̂r + νκ̂θ) , mθ =D (κ̂θ + νκ̂r) and qr = dmr

dr + mr −mθ

r
. (2.5)

(ii) In-plane stretching
The Airy stress function, Φ, is a bi-potential function for describing the mid-plane stress
resultants as

σr = 1
r

dΦ
dr and σθ = d2Φ

dr2 . (2.6)

The corresponding strains are connected via the constitutive law

εr = 1
E

(σr − νσθ) and εθ = 1
E

(σθ − νσr) , (2.7)

and using the same relation with initial values leads to ε0
r = ε0

θ = 0. By transforming either the
radial or circumferential strains from Eqn (2.2), the radial displacement is expressed either in
terms of the in-plane strains and the out-of-plane deflections, or solely in terms of in-plane
variables, respectively:

ur =
∫
εr dr −

1
2

∫ (dw
dr

)2
−
(
dw0

dr

)2
dr , or ur = r εθ . (2.8)



6(iii) Bending-stretching interaction
The in-plane and out-of-plane responses are connected by equating the extrinsic definition of
Gaussian curvature to in-plane strains according to Gauss’s Theorema Egregium9:

g= κrκθ = 1
r

dεr
dr −

1
r

d2(r εθ)
dr2 . (2.9)

Since the initial configuration is stress free, the change in the Airy stress function equals the
current value (Φ= Φ̂), and by substituting Eqn (2.6) into Eqn (2.7), Eqn (2.9) can be rewritten
as

−Eĝ= d4Φ

dr4 + 2
r

d3Φ

dr3 −
1
r2

d2Φ

dr2 + 1
r3

dΦ
dr ,

(2.10)

where ĝ is the change in Gaussian curvature

ĝ= g − g0 = κrκθ − κ0
rκ

0
θ , (2.11)

which is a polynomial expression of order 2p− 4 in r. By introducing the coefficients αi, this
term can be sorted by order:

ĝ=
2p−4∑
i=0

αi

(
r

a

)i
, (2.12)

which facilitates a succinct notation of the corresponding Airy stress function after substituting
Eqn (2.12) into Eqn (2.10) and integrating with respect to r:

Φ=E

2p−4∑
i=0

αi r
4

(i+ 2)2(i+ 4)2

(
r

a

)i
+ 1

2C1r
2 + C2 log(r) + 1

2C3r
2
[
log(r)− 1

2

]
. (2.13)

The relevant constants of integration C1, C2 and C3 are now used to satisfy the in-plane
boundary conditions.

(b) Particular solution
Whilst the initial shape can have the form of any arbitrary polynomial expression, we choose
approximations of two very well known examples for evaluation in §3 and enforce zero
displacement at r= a:

w0 =
(
1− ρ2)w0

M (2.14a) or w0 =
(
1− ρ2)2

w0
M , (2.14b)

where w0
M denotes the initial midpoint deflection, and ρ the dimensionless radius r/a. Shape

a) resembles a uniformly curved shallow cap and is inspired by a study of initially curved
bistable beams6 using a half cosine-wave; b) represents a full cosine wave akin to the deflection
field of a plate with a clamped edge30–32, where the gradient is zero. These shells are
subjected to two possible types of boundary conditions: Dirichlet boundary conditions, which
impose displacements or rotations on a boundary ΓD, and Neumann boundary conditions,
which prescribe generalised stresses on ΓN . When springs are connected to the boundary,
these conditions become coupled, and the specific stresses (from in-plane forces or bending
moments) are related to an in-plane displacement or rotation via the spring stiffness, Ku or Kϕ,
respectively, by

−tσr =Ku ur (2.15a) and −mr =Kϕ ϕ̂r . (2.15b)

The minus sign in both expressions accords a resistive force or bending moment for positive
directions of ur and ϕ̂r. Allowing for the use of springs, the complete range of physical supports



7can be established by combining two out-of-plane boundary conditions and one additional in-
plane condition as follows:

roller support: w= 0, mr = 0, σr = 0 (2.16a)

pinned spring support: w= 0, mr = 0, − tσr =Ku ur (2.16b)

dual spring support: w= 0, −mr =Kϕ ϕ̂r , − tσr =Ku ur (2.16c)

fixed pinned support: w= 0, mr = 0, ur = 0 (2.16d)

clamped support: w= 0, ϕ̂r = 0, ur = 0 (2.16e)

continuous plate at r= 0 : qr = 0, ϕ̂r = 0, ur = 0 (2.16f )

The first three supports are directly employed in the examples of §3. The fixed pinned support
and the clamped support are equivalent to having infinite spring stiffness, so by letting Ku and
Kϕ tend to large values in Eqns (2.16b) and (2.16c), we may observe how the ideal support
conditions are approached from a “spring” perspective. The final condition ensures that we deal
with plates without central holes: if we wished to consider planform annuli, we may substitute
this final condition with one from any of the five expressions above it but written in terms of
the inner radius of the hole, see Sobota & Seffen 25 for details.

(i) Out-of-plane bending
In order to describe the transverse deflections of a shell bounded by rotational springs, ŵ is
subdivided into two fields where the edge is either free to rotate giving a “hinged” i.e. pinned
deflection field, ŵh, or is fixed to yield deflections, ŵc. The first field is a polynomial series with
n degrees-of-freedom, ηi, which by itself is the solution for cases where the boundary of shell
is pinned for all time. The rotational spring equation, Eqn (2.15b), prescribes the compatibility
between these two fields and is later used to express the clamped midpoint deflection, ŵcM ,
in terms of the n degrees-of-freedom, ηi, c.f. Eqn (2.26). Correspondingly, the total midpoint
deflection is ŵM = (ŵh + ŵc)|ρ=0, which is now computed according to the scheme in Fig. 3.

Assume w  

on domain Ω

w  h w  
cw 

Eq. (2.18)
BC:  m (ρ=1) = 0

Eq. (2.21)
BC: φ (ρ=1) = 0 

Degrees-of-freedom
η  + ... + η    

Dependent variable
w

 

 

r

  static condensation (Eq. 2.26)

w(η  + ... + η  ) = 
  

rr

  1 n M
c

w  0
Initial shape

Eq. (2.14) w = w + w  
0

 
hw   + w  

c

at ρ=1: φ Kᵩ = m r

  1 n

Figure 3. Schematic of the formulation of the deflection field components.

Hinged subset
The hinged subset has to satisfy the boundary conditions of a vanishing bending moment and
deflection at ρ= 1. To ensure this, we combine Eqn (2.4) with Eqn (2.5) and choose a polynomial



8series of even powers for the radial bending moment, i.e.

D

[
−d2ŵh

d r2 − ν
1
r

dŵh

d r

]
= D

a2

n∑
i=1

[
1− ρ2i

]
ηi . (2.17)

Solving this differential equation gives the hinged deflection field, of order p= 2n+ 2, as

ŵh =
n∑
i=1

1
2

[
1− ρ2

1 + ν
− 1− ρ2i+2

(i+ 1)(1 + 2i+ ν)

]
ηi , (2.18)

where the constant of integration enforces ŵh|ρ=1 = 0 . From this we can determine the change
in curvatures and the radial gradient

κ̂hr =
n∑
i=1

[ 1
1 + ν

− 1 + 2i
1 + 2i+ ν

ρ2i
]
ηi
a2 , κ̂hθ =

n∑
i=1

[ 1
1 + ν

− 1
1 + 2i+ ν

ρ2i
]
ηi
a2 and ϕ̂hr = r κ̂hθ ,

(2.19)

as well as the radial- and circumferential bending moments

mh
r =D

n∑
i=1

[
1− ρ2i

]
ηi
a2 and mh

θ =D

n∑
i=1

[
1− 1 + ν + 2νi

1 + 2i+ ν
ρ2i
]
ηi
a2 . (2.20)

For a single degree-of-freedom, η1, these curvature and bending moment expressions have a
quadratic variation in ρ.
Clamped subset
The clamped subset is chosen to be30;32:

ŵc =
(
1− ρ2)2

ŵcM . (2.21)

According to Eqn (2.4), the corresponding change in gradient and curvatures read:

ϕ̂cr = 4ρ
(
1− ρ2)2 ŵcM

a
, κ̂cr = 4

(
3ρ2 − 1

) ŵcM
a2 and κ̂cθ = 4

(
ρ2 − 1

) ŵcM
a2 . (2.22)

From Eqn (2.5), we deduce

mc
r = 4D

(
ρ2(3 + ν)− ν − 1

) ŵcM
a2 and mc

θ = 4D
(
ρ2(1 + 3ν)− ν − 1

) ŵcM
a2 , (2.23)

and confirm that the radial bending moment on the edge is generally non-zero for ρ= 1. Note also
that the two conditions concerning the deflection in Eqn (2.16e) are satisfied for arbitrary values
of the midpoint deflection ŵcM in the clamped deflection field, ŵc. Summing this expression
with the initial deflection, w0, and the hinged deflection, ŵh, leads to the current configuration,
w=w0 + ŵh + ŵc .

Resulting deflection field ŵ

From the boundary conditions of the hinged and clamped fields, only the former contributes to
a change of gradient at ρ= 1, which enables us to find ϕ̂r:

ϕ̂r

∣∣∣∣
ρ=1

=
n∑
i=1

[ 1
1 + ν

− 2i
1 + 2i+ ν

]
ηi
a
. (2.24)

At ρ= 1, mr = 0 for the hinged subset, so the bending moment is solely evoked by the clamped
part in Eqn (2.23):

mr

∣∣∣∣
ρ=1

=−8D
ŵcM
a2 . (2.25)



9Substituting both of these expressions into the rotational spring equation, Eqn (2.15b), we can
solve for

ŵcM =−Kϕ8D ϕ̂r

∣∣∣∣
ρ=1

= Kϕ a

8D

n∑
i=1

[ −1
1 + ν

+ 2i
1 + 2i+ ν

]
ηi , (2.26)

which enforces the compatibility of the hinged and clamped deformation modes. The edge
bending moment for the clamped mode is now related to the rotation of the hinged deflection
field, and ŵcM is now expressed in terms of the n hinged degrees-of-freedom, ηi. For a vanishing
spring stiffness, Kϕ = 0, the clamped part vanishes; for Kϕ tending to infinity, the edge rotation
becomes very small but is not allowed to vanish because the solution is achieved with respect
to the hinged degrees-of-freedom. The consequences of this assumption are addressed in §3.
Remark 2. For roller supported caps, a uniform curvature approach is also investigated in
this paper by setting ŵ= ρ2ŵM , where the midpoint deflection, ŵM = η1, serves as a single
degree-of-freedom.
Remark 3. The midpoint deflection of the clamped mode is expressed in terms of ηi from
Eqn (2.26) for n degrees-of-freedom but where the corresponding deflection variation in ρ is
always of order four, c.f. Eqn (2.21). For the hinged mode in Eqn (2.18), the variation in ρ

increases with n, up to order 2n+ 2. We do not impose a similar polynomial expansion in ρ for
the clamped mode because we find that it is simply not needed in view of producing accurate
results.

(ii) Bending-stretching interaction
The change in Gaussian curvature is calculated according to Eqn (2.11) with κr = κ0

r + κ̂hr + κ̂cr
and κθ = κ0

θ + κ̂hθ + κ̂cθ . Because these expressions become rather convoluted with increasing
order, we refer the reader to the Appendix where the values for κr, κθ, ĝ and the corresponding
αi terms, Eqn (2.12), are given for a three degree-of-freedom model with rotational edge springs;
lower-order models are straightforward to derive from these expressions by setting “unused”
degrees-of-freedom to zero. Since the product of initial curvatures also features in ĝ, the αi
terms are given for both initial shapes expressed by Eqn (2.14a) and (2.14b). For instance, the
curvatures for a hinged (Kϕ = 0), uniformly curved cap initially (κ0

r = κ0
θ = 2w0

M/a2) with a
single degree-of-freedom (n= 1) are equal to

κr = 1
a2

[
w0
M

2 + η1

(
1

ν + 1 −
3ρ2

ν + 3

)]
and κθ = 1

a2

[
w0
M

2 + η1

(
1

ν + 1 −
ρ2

ν + 3

)]
,

(2.27)

which are both quadratic variations in ρ, leading to a change in Gaussian curvature:

ĝ= 1
a4

[
w0
M

2 + η1

(
1

ν + 1 −
3ρ2

ν + 3

)][
w0
M

2 + η1

(
1

ν + 1 −
ρ2

ν + 3

)]
−
(
w0
M

2 a2

)2

. (2.28)

The αi terms, Eqn (2.12), with 2p− 4 = 4n (= 4)now read:

α0 =
(
2η1 + (1 + ν)w0

M

) 2

4a4(1 + ν)2 , α2 =−
2η1
(
2η1 + (1 + ν)w0

M

)
a4(ν + 1)(ν + 3)

, α4 = 3η2
1

a4(ν + 3)2 .
(2.29)

Note that in this particular case ŵcM = 0 follows from Eqn (2.26) with Kϕ = 0, which ought to
be expected.



10(iii) In-plane stretching
From the Airy stress function in Eqn (2.13), the in-plane stresses are calculated via Eqn (2.6)
to be:

σr =E

2p−4∑
i=0

αiρ
i+2a2

(i+ 2)2(i+ 4)
+ C1 + C2

a2ρ2 + C3[log(ρ) + log(a)],

σθ =E

2p−4∑
i=0

αi(i+ 3)ρi+2a2

(i+ 2)2(i+ 4)
+ C1 −

C2
a2ρ2 + C3[1 + log(ρ) + log(a)] .

(2.30)

At ρ= 0, the constants C2 and C3 have to be zero and, thus, Eqn (2.30) is simplified to

σr = σαr + C1 and σθ = σαθ + C1 , (2.31)

where σαr and σαθ denote the summation terms with αi. These expressions also satisfy the
condition ur|ρ=0 = 0, which is equivalent to having a biaxial stress state, σr = σθ, at the centre
of the plate. The remaining constant C1 is determined for a linear elastic in-plane extensional
spring by using ur = rεθ with

εθ = 1
E

(σαθ − νσαr + (1− ν)C1) , (2.32)

and substituting σr from Eqn (2.31) into the extensional spring relationship, Eqn (2.15a), with
ρ= 1 gives:

C1 =−E tσαr +Ku a (σαθ − ν σαr)
E t+Ku a (1− ν)

∣∣∣∣
ρ=1

. (2.33)

For the limit of a vanishing or infinite stiffness, this expression simplifies to

C1 =−σαr
∣∣
ρ=1 for Ku = 0 or C1 =−E

a
uαr

∣∣
ρ=1 =−σαθ − ν σαr1− ν

∣∣∣∣
ρ=1

for Ku→∞ ,

(2.34)

respectively. The appropriate expression for C1 can be substituted into the equations for the
stresses and strains, in order to calculate and then minimise the strain energy.

(c) Identifying stable configurations
All stress- and strain resultants are known and, hence, the bending and stretching energy
components, ΠB and ΠS , respectively, which include the spring contributions, can be calculated
via

ΠB =1
2

∫
Ω

(κ̂rmr + κ̂θmθ) dA + πaKϕϕ̂
2
r

∣∣
ρ=1 = π

∫a
0

(κ̂rmr + κ̂θmθ) r dr + πaKϕϕ̂
2
r

∣∣
ρ=1 ,

ΠS = t

2

∫
Ω

(εrσr + εθσθ) dA + πaKuû
2
r

∣∣
ρ=1 = πt

∫a
0

(εrσr + εθσθ) r dr + πaKuu
2
r

∣∣
ρ=1 .

(2.35)

The integrals are solvable since all expressions are derived from polynomials. Load-free
equilibrium configurations are found via stationary points of the total energy potential,
Π =ΠB +ΠS , where

∇ηΠ = 0 . (2.36)

∇η is the differential operator with respect to the n degrees-of-freedom, ηi . These configurations
are stable if, and only if, all eigenvalues of the strain energy function are positive, which is assured



11by a positive definite Hessian matrix of stiffness, H, where

Hij = ∂2Π
∂ηi ∂ηj

. (2.37)

For a moderate compaction of notation, the following dimensionless parameters are used:

ρ= r

a
ω= w

t
k= κ · a

2

t
KU = Ku a

E t
Kφ = Kϕ a

Et3
. (2.38)

3. Results
Recall that the first example is a spherical cap supported on rollers according to the boundary
conditions in Eqn (2.16a). The second is another spherical cap connected to ground by in-plane
springs, Eqn (2.16b), and the third is a non-uniformly curved cap with initial deflection given by
Eqn (2.14b) and supported by both extensional and rotational spring supports, Eqn (2.16c). For
all cases, the variation with key physical parameters is established as a function of the number
of degrees-of-freedom whilst comparing their accuracy to finite element results.

Finite element simulations were conducted with the commercial package ABAQUS29 using a
quasi-static implicit dynamic analysis. Only one quarter of the shell was modelled, with biaxial
symmetry applied to over 600 elements and the following parameters: E = 107, t= 0.01, a= 1,
and density equal to 10−5; c.f. Sobota & Seffen 33 for details. Mesh refinement of randomly
picked samples did not lead to any changes in the critical properties.

(a) Roller supported spherical cap
The critical dimensionless height, ω0

M Crit , required to trigger bistable inversion is shown in
Fig. 4 as a function of the Poisson’s ratio. The range of ν is governed by naturally stable
limits of ν =−1 and ν = 0.5 for isotropic materials: for homogeneous shells, the Young’s
modulus does not affect the critical geometry. Figure 4(a) first compares results from previous
studies to finite elements for the sake of revision before divulging our predictions in Fig. 4(b).
Although we do not plot them, the results for the uniform curvature assumption in Vidoli 17

and in Seffen & McMahon 26 are therefore identical to the current case using ŵ= (1− ρ2) ŵM
where (ω0

M Crit)
2 = 16/(1− ν). More interestingly, our single degree-of-freedom solution with

quadratically varying curvature (QVC) which satisfies the boundary conditions exactly can be
shown to be(
ω0
M Crit

)2
=

160
[
−9ν5 − 211ν4 − 1986ν3 − 9486ν2 − 23221ν − 23583

]
27ν7 + 691ν6 + 7527ν5 + 43967ν4 + 138001ν3 + 184089ν2 − 64915ν − 309387

.

(3.1)

The equivalent expression for two- and three degrees-of-freedom are not compactly expressed,
as noted before. All models yield the same rising trend in ω0

M Crit with the Poisson’s ratio in
Figs 4(a) and (b), where an initial height-to-thickness ratio of at least six guarantees bistable
inversion irrespective of ν. The QVC model of Vidoli 17 shows a better approximation of the
FE solution for positive Poisson’s ratios in Fig. 4(a) whilst our QVC results in Fig. 4(b) are
superior for negative ratios, which may be exhibited, say, by auxetic materials. Wittrick et al. 2

deduce that the critical height must exceed ω0
M Crit =

√
23.25 = 4.82 for ν = 1/3 and ω0

M Crit =√
19 = 4.36 for ν = 1/4; our QVC model returns lower values of 4.13 and 3.92, respectively.

Even though Mansfield 14 provides a closed-form solution of (ω0
M Crit)

2 = 4(14 + 2ν)/(1− ν)
for the different problem of a lenticular shell with tapering thickness, his results are presented
in Fig. 4(a) because, astonishingly, his solution predicts the critical initial deflection precisely
(±0.39 %) for ν ≥ 0, but for negative Poisson’s ratios the deviations rise up to 12.8%. When we
increase the number of degrees-of-freedom to three, we find a better approximation of ω0

M Crit

than found so far in literature, with a maximum deviation of 0.67% from the FE results in
Fig. 4(b) for all values of ν.
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Figure 4. Dimensionless critical initial midpoint deflection w0
M Crit for inducing bistable inversion of a

shallow spherical cap with respect to Poisson’s ratio, ν. a) Comparison of different models in key studies;
b) current models with up to three degrees-of-freedom.

(b) Spherical cap with extensional spring supports
We first set the Poisson’s ratio to be 0.5 because this correlates to the worst case in Fig. 4 in
terms of the accuracy of our QVC model for a roller supported cap. The performance of this
model in the present case is indicated in Fig. 5 along with uniform curvature predictions (c.f.
remark 2), which is also a single degree-of-freedom approach. Closed-form solutions of the critical
bistable height, ω0

M Crit , have been obtained for both approaches, where the less complex UC
solution reads as: (

ω0
M Crit

)2
= 16

1− ν ·
1 + (1− ν)KU
1 + (7− ν)KU

, (3.2)

which converges to the solution of Seffen & McMahon 26 for KU = 0, and to 16/(7− v) when
KU →∞.

The reason for including the simpler UC model is now apparent in Fig. 5 because it yields a
better approximation of the critical geometry than the QVC model and is surprisingly close
to the FE trend. However, Sobota & Seffen 25 show that this holds only for the ratio of
bending- to stretching energies—that the close accuracy of the UC model is fortuitous, and
that our single degree-of-freedom QVC model gives more accurate variations of the stress
resultants. The predictions from using two- and three degrees-of-freedom are also plotted, and
are almost identical to the FE solutions with maximum absolute deviations of 0.78% and 0.73%,
respectively.
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Figure 5. Dimensionless critical initial midpoint deflection w0
M Crit for bistability of a shallow spherical

cap supported on extensional springs of stiffness KU , with ν = 0.5.

When KU is small, in-plane displacements of the boundary are largely unrestricted, and
the cap tends towards being roller supported, Eqn (2.16a). The most accurate prediction of
the associated critical height is 5.5 times the thickness, which matches that in Fig. 4. As KU
increases, the critical height decreases, moreover, at KU ≈ 1 we observe that ω0

M Crit falls below
its previous minimum value of 2.8 in Fig. 4 for the lowest Poisson’s ratio value: by stiffening
the cap edge, the critical height can be smaller than that of the first case in view of promoting
bistability. A discernible lower bound of ω0

M Crit = 1.5 arises when KU ' 10 which corresponds
to an equivalent spring stiffness of at least 10Et/a acting on a length of 2πa. When KU becomes
larger, in-plane boundary displacements are increasingly resisted, and the cap is supported in a
manner akin to a fixed pinned support, Eqn (2.16d).

The detailed dependency on Poisson’s ratio is given in Fig. 6(a), where a similar accuracy is
confirmed from using three degrees-of-freedom. The variation in critical height is now plotted
as a “landscape” with respect to ν and to KU . Its discrete contours in Fig. 6(b) allow values of
ω0
M Crit to be read directly (say, for design applications); alternatively Eqn (3.2) can be used

within an accuracy of 8% by comparison.
We impose the same range for KU from Fig. 5, noting little variation in ω0

M Crit beyond
KU = 10. We plot against the logarithm of spring stiffness for compactness but this also allows to
infer robustly the asymptotic performances. For the case of a roller support (KU → 0), the critical
heights are largest and the variation with Poisson’s ratio is the most distinct. As KU increases,
ω0
M Crit generally decreases and the Poisson effect diminishes, suggesting that bistability is now

dominated by geometrical effects. Such behaviour is not surprising from what is known about
the bistability of a simpler curved beam 6. Whilst the beam is bistable if the ends are pinned
to ground and ω0

M ≥ 1.15, it is always monostable if one end is able to move horizontally;
and bistability can be restored if both ends are connected by a horizontal spring of sufficient
stiffness, where the critical midpoint deflection of the beam decreases with increasing spring
stiffness. Within the current approach, these tendencies are quantified for shells: depending on
the Poisson’s ratio, the critical initial height for a roller supported cap must between two- and
four times larger than that of a fixed pinned cap.

Out of interest, we have performed separate FE analysis of other shells with rhomboidal
and elliptical planforms of aspect ratios up to 7:1. Their initial shapes conform to bi-directional
sinusoidal profiles with fixed pinned supports along their boundary plane. For both types of
shell, we find that the critical bistable height lies in the range 1.45<ω0

M Crit < 2 provided ν > 0
for the rhombuses and independently of ν for the ellipses. These limits are similar to those found
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Figure 6. Dimensionless critical initial midpoint deflection w0
M Crit for bistability of a shallow spherical cap

supported on extensional springs. a) Comparison of FE results with analytical model using three polynomial
degrees-of-freedom: w0

M Crit vs spring-stiffness, log (KU ), and Poisson’s ratio, ν. Dots indicate results from
FE simulations, which virtually “float” on the surface such is the accuracy of correlation, and lines are
contour intervals of w0

M Crit of 0.5. When KU is large, the edge of cap tends towards being a fixed
pinned support, as shown, and when KU is very small, we have a roller support. b) Top view with discrete
colouring between contours.

in Fig. 5 as KU becomes large, which suggests a universal height for bistability of around two
thicknesses for this type of boundary connection irrespective of the planform shape.

(c) Non-uniformly curved shell with extensional and rotational spring
supports

The UC approach is no longer suitable since neither the initial shape nor the deformation field
have uniform curvature, recall Eqn (2.14b). Sample results for different degrees-of-freedom are
displayed in Fig. 7 and compared to FE predictions for the case of KU = 1 and ν = 0.3. The
range of rotational stiffness, Kφ, is specified from a very small value up to Kφ ≈ 100, where each
variation in ω0

M Crit reaches an apparent upper bound. Whilst models with one or two degrees-
of-freedom are suitable for the range of Kφ < 1, the error in ω0

M Crit increases considerably with
increasing rotational stiffness. At least three degrees-of-freedom are therefore needed for a good
approximation (< 2%) of the FE solution. The corresponding variation in the critical bistable
height due to both variations in the extensional and rotational spring stiffnesses is given in Fig. 8
for ν = 0.3.

Note that the axes variation forKU has been reversed in Fig. 8(a) for a more open perspective
of the solution landscape, and that larger values of KU have been used compared to previous
figures, in order to reveal the pertinent variation. The landscape topography is clearly non-
linear, for example, ω0

M Crit typically decreases with KU increasing for a given Kφ but the
trend in general reverses for Kφ varying. The behaviour for KU varying mirrors that of the
second example despite it having a different initial shape and no rotational support: that by
resisting in-plane edge displacements, bistability can prevail. A rotational spring tends to revert
the shell by definition since it applies an edge bending moment in the sense of the initial shape.
So, by reducing the applied moment by decreasing Kφ, we also promote bistability. Closer
inspection reveals an anomalous “dip” in the downwards trend of ω0

M Crit with respect to Kφ
for the largest values of KU . Importantly, the critical height is lowest for a non-zero value
of Kφ (≈ 0.39), which suggests that a moderate value of rotational spring stiffness benefits
bistability—here, this stiffness is equivalent to 4.26D/a. We surmise that this attests to the
highly non-linear interaction between stretching and bending in shells, and to their sensitivity
to edge effects, which we hope to quantify in further study. A discrete contour plot is also given
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Figure 7. Dimensionless critical initial midpoint deflection ω0
M Crit of a non-uniformly curved shell,

Eqn (2.14b), supported on extensional (KU ) and rotational (Kφ) springs. Convergence to FE results
occurs when the number of degrees-of-freedom are increased, for KU = 1 and ν = 0.3.

in Fig. 8(b) where the asymptotic support conditions are also indicated in the four corners of
the plot. In the sense of in-plane vs rotational freedoms, these are fixed-fixed (KU & Kφ→∞),
fixed-free (KU →∞, Kφ→ 0), free-fixed (KU → 0 Kφ→∞) and free-free (KU & Kφ→ 0).
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Figure 8. Dimensionless critical initial midpoint deflection ω0
M Crit for a non-uniformly curved shell

supported on extensional (KU ) and rotational (Kφ) springs. a) Comparison of FE results (dots) with
analytical model using three degrees-of-freedom, with ν = 0.3. b) Top view of the same plot with discrete
colouring and indicating the asymptotic support conditions for extreme values of spring stiffnesses.

(d) Final remarks
Because our deflection field comprises a clamped deformation mode and a hinged (pinned) mode,
we cannot capture an ideal clamped support outright because the hinged mode is inherently
coupled to the overall solution. We can only approach an ideal clamp by setting Kφ to be a
very large finite value. In the earlier derivation, the total strain energy, Π, ultimately expresses
Kφ to the fourth power (but not so for KU ), which compounds further the effect that large



16values of Kφ can have upon the numerical solution procedure, especially when solving for the
eigenvalues of the Hessian matrix, Eqn (2.37). A sensible limit for Kφ should be correlated
to the range of numerical floating-point precision of the particular software package. For basic
packages, this range is 16 decimal places (or “16-point”), so setting 0<K4

φ < 1016 should not
produce inaccuracies: we have used the general analysis software package Mathematica34, which
can express much higher precision levels, and we find our results here (up to Kφ ≤ 104) to be
indistinguishable from those of Sobota & Seffen 25 who deal with a clamped support shell from
the outset.

We have chosen specific initial shapes because of their ubiquity in other studies. Other shape
profiles are indeed amenable to our method, but we have to consider the nature of our approach,
which differs from FE analysis: both methods can theoretically lead to “false negatives” or to
“false positives”, but the first is more likely in FE analysis, whilst our choice not to linearise
the work equation increases the possibility of the latter. Using FE, we cannot exclude the
possibility of alternative equilibrium states since the linear stiffness matrix would require us
to evaluate an infinite number of possible combinations. However, because of linearisation, the
problem becomes amenable to a numerical solution process even for discretisations with a large
number of degrees-of-freedom. The current method considers a non-linear stiffness matrix, H,
which implies that computational efficiency limits us to a few degrees-of-freedom; hence, our set
of shape functions is not necessarily accurate enough. This problem can be illustrated by the
example of a uniformly curved cap now clamped on its edge, where the gradient remains non-
zero for all time. Although we never observed bistable behaviour in finite element simulations
for a wide range of initial geometries, our theoretical analysis suggests its feasibility. In the FE
simulations, we observe that the radial curvature becomes highly concentrated just before the
clamped edge, which gives way to a large restoring moment despite the “holding” effects of
significant in-plane circumferential tension. Our lower-order models fail to capture the strongly
curved domain next to the edge, but simply increasing the order is not a viable solution approach
because the midpoint deflections and, more importantly, deflection gradients (recall dw/dr� 1),
increase beyond the limits acceptable for shallow shell behaviour and thus beyond the scope of
this study.

4. Summary
We have addressed the bistable properties of an initially stress-free shell supported on its circular
edge by extensional and rotational springs. Our analytical solutions have been derived from
a Rayleigh-Ritz method with a polynomial series up to four degrees-of-freedom. The Föppl-
von Kármán compatibility equation has been satisfied by making use of Gauss’s Theorema
Egregium, and the connection between the Gaussian curvature and the Airy stress function has
been established independently of the in-plane boundary conditions. Solutions for the uniform-
and quadratically varying curvature approaches have been captured in closed form and are
accurate for most design processes when the edge is hinged. In all results, having a radial
spring stiffness promotes bistability; in the example of a roller supported cap, the critical initial
midpoint deflection for bistability has been shown to be between two and four times higher than
that of the same pinned cap but where radial edge displacements are now prevented. Whilst
the response of the former was highly dependent on the Poisson’s ratio, the latter was almost
independent of ν. Incorporating a rotational spring stiffness has shown that the response of the
structure produces a strongly non-uniform Gaussian curvature field, and therefore, higher-order
models with at least three degrees-of-freedom are needed to capture the bistable response. It
has been demonstrated that a horizontally immoveable boundary in combination with a specific
value of rotational spring stiffness, which is not an extreme case, can minimise the critical initial
height needed to achieve bistability. Compared to structures with hinged edges, fully clamped
boundaries tend to prevent bistability.
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Appendix
For a n degree-of-freedom model, the current radial and circumferential curvatures, κr and κθ,
respectively, read:

κr = κ0
r + κ̂hr + κ̂cr

=κ0
r +

n∑
i=1

[ 1
1 + ν

− 1 + 2i
1 + 2i+ ν

ρ2i
]
ηi
a2 − 4

(
3ρ2 − 1

) Kϕ a
8D

n∑
i=1

[ 1
1 + ν

− 2i
1 + 2i+ ν

]
ηi
a2 ,

κθ = κ0
θ + κ̂hθ + κ̂cθ

=κ0
θ +

n∑
i=1

[ 1
1 + ν

− 1
1 + 2i+ ν

ρ2i
]
ηi
a2 − 4

(
ρ2 − 1

) Kϕ a
8D

n∑
i=1

[ 1
1 + ν

− 2i
1 + 2i+ ν

]
ηi
a2 ,

(A.1)

where the initial values κ0
r and κ0

θ follow from Eqn (2.14). The change in Gaussian curvature
according to Eqn (2.11) is found to be:

ĝ=

[
κ0
r +

n∑
i=1

[ 1
1 + ν

− 1 + 2i
1 + 2i+ ν

ρ2i
]
ηi
a2 − 4

(
3ρ2 − 1

) ŵcM
a2

]
×

[
κ0
θ +

n∑
i=1

[ 1
1 + ν

− 1
1 + 2i+ ν

ρ2i
]
ηi
a2 − 4

(
ρ2 − 1

) ŵcM
a2

]
− κ0

rκ
0
θ ,

(A.2)

where ŵcM is defined in Eqn (2.26). The corresponding αi-terms for Eqn (2.12), where 2p− 4 =
4n, for three degrees-of-freedom and a uniformly curved initial shape [c.f. Eqn (2.14a)] read:



18

α0 =
(
2 (η1 + η2 + η3 + 4(ν + 1)ŵcM ) + (ν + 1)w0

M

) 2

4 a4 (ν + 1)2 ,

α2 =−
2 [η1 + 4(ν + 3)ŵcM ]

[
2 (η1 + η2 + η3 + 4(ν + 1)ŵcM ) + (ν + 1)w0

M

]
a4 (ν + 1)(ν + 3)

,

α4 = 3
a4

(
8η1ŵ

c
M

ν + 3 −
8η2ŵ

c
M

ν + 5 + 16w2C
M + η2

1
(ν + 3)2 −

2η2 (η1 + η2 + η3)
(ν + 1)(ν + 5) −

η2w
0
M

ν + 5

)
,

α6 = 4
a4

(
8η2ŵ

c
M

ν + 5 −
8η3ŵ

c
M

ν + 7 + 2η1η2
ν2 + 8ν + 15

− 2η3 (η1 + η2 + η3)
(ν + 1)(ν + 7) −

η3w
0
M

ν + 7

)
,

α8 = 5
2 a4

(
4η3 (4(ν + 3)ŵcM + η1)

(ν + 3)(ν + 7) + 2η2
2

(ν + 5)2

)
,

α10 = 1
a4

12η2η3
(ν + 5)(ν + 7) , α12 = 1

a4
7η2

3
(ν + 7)2 , α1 = α3 = α5 = α7 = α9 = α11 = 0 .

(A.3)

For non-uniformly curved initial shapes defined in Eqn (2.14b), the corresponding α-terms of a
model with three degrees-of-freedom are calculated to be:

α0 =
(
4(ν + 1)ŵcM + η1 + η2 + η3 + 4(ν + 1)w0

M

) 2

a4 (ν + 1)2 ,

α2 =−
4
(
4(ν + 3)ŵcM + η1 + 4(ν + 3)w0

M

) (
4(ν + 1)ŵcM + η1 + η2 + η3 + 4(ν + 1)w0

M

)
a4 (ν + 1)(ν + 3)

,

α4 = 3
2 a4

(
16η1

(
ŵcM + w0

M

)
ν + 3 + η2

[(
η1 + η2 + η3 − 16(w0

M + ŵcM )
)

ν + 5 − (η1 + η2 + η3)
ν + 1

]

+ 32
(
ŵcM + w0

M

) 2 + 2η2
1

(ν + 3)2

)
,

α6 = 8
a4

(
4η2ŵ

c
M

ν + 5 −
4η3ŵ

c
M

ν + 7 + η1η2
ν2 + 8ν + 15

− η3 (η1 + η2 + η3)
(ν + 1)(ν + 7) +

4η2w
0
M

ν + 5 −
4η3w

0
M

ν + 7

)
,

α8 = 5
2 a4

(
4η3
(
4(ν + 3)ŵcM + η1 + 4(ν + 3)w0

M

)
(ν + 3)(ν + 7) + 2η2

2
(ν + 5)2

)
,

α10 = 1
a4

12η2η3
(ν + 5)(ν + 7) , α12 = 1

a4
7η2

3
(ν + 7)2 , α1 = α3 = α5 = α7 = α9 = α11 = 0 .

(A.4)
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