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Weak compactness of operators acting on o–O type spaces

Karl-Mikael Perfekt

Abstract

We consider operators T : M0 → Z and T : M → Z, where Z is a Banach space and (M0,M) is
a pair of Banach spaces belonging to a general construction in which M is defined by a ”big-O”
condition and M0 is given by the corresponding ”little-o” condition. Prototype examples of such
spaces M are given by `∞, weighted spaces of functions or their derivatives, bounded mean
oscillation, Lipschitz-Hölder spaces, and many others. The main result characterizes the weakly
compact operators T in terms of a certain norm naturally attached to M , weaker than the M -
norm, and shows that weakly compact operators T : M0 → Z are already quite close to being
completely continuous. Further, we develop a method to extract c0-subsequences from sequences
in M0. Applications are given to the characterizations of the weakly compact composition and
Volterra-type integral operators on weighted spaces of analytic functions, BMOA, VMOA, and
the Bloch space.

1. Introduction

Let Z be a Banach space. The main result of this paper characterizes the weak compactness of
operators T : M0 → Z and T : M → Z, where (M0,M) is a pair of Banach spaces in which M is
defined by a ”big-O” condition andM0 by the corresponding ”little-o” condition. See (2) and (3)
for the precise definition. The class of spaces (M0,M) is large and examples include c0 and `∞,
weighted and the corresponding vanishing weighted spaces of continuous, analytic or harmonic
functions, Möbius invariant spaces of analytic functions, Lipschitz-Hölder spaces, bounded and
vanishing mean oscillation (BMO and VMO), and several others. The pair (M0,M) was first
introduced in [14], and the quoted examples are given there.

This paper is inspired by recent works on the compactness properties of composition and
integral operators acting on specific examples of spaces M0 and M [3], [7], [8], [10]. It often
turns out that weak compactness and compactness are equivalent for these classes of operators,
a phenomenon which can be readily understood given the main results of this article.

For the statements of the theorems, note that M is associated with a reflexive Banach space
X in which M is continuously contained (see Section 2). For instance, `∞ is continuously
contained in a weighted `2-space.

Theorem 3.2. A bounded operator T : M0 → Z is weakly compact if and only if there for
each ε > 0 exists an N > 0 such that

‖Tx‖Z ≤ N‖x‖X + ε‖x‖M , x ∈M0. (1)

A similar description of the weakly compact operators on C(K)-spaces was given by
Niculescu, and a generalization to operators acting on general C∗-algebras is due to Jarchow
[6]. More recently, characterizations in the same spirit have been given for operators acting on
H∞ ([9]) and certain subspaces of Orlicz spaces [10].
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In [14] it was proven that M∗∗0 'M in a canonical way. Therefore, Theorem 3.2 also applies
to operators T : M → Z such that (T |M0

)∗∗ = T – i.e. operators T which are weak∗-weak
continuous, a continuity property which is simple to verify in many concrete examples. See
Corollary 3.3.

To compare the weak compactness characterization with compactness criteria, note that
T : M0 → Z is completely continuous if and only if for every bounded sequence (xn) ⊂M0

such that xn converges weakly to zero, it holds that limn ‖Txn‖Z = 0. To demand instead only
weak compactness, one simply replaces the weak convergence of xn with the stronger property
(see [14]) that xn converges to zero in X-norm. The two conditions on the sequence (xn) are in
many concrete examples closely related; herein lies the explanation of why weak compactness
and compactness often are equivalent for operators on M0 and M . See the examples in Section
4.

The motivation for the proof of Theorem 3.2 comes from [15], where it was shown that M0

is an M-ideal in M . In particular, weakly compact operators on M0 can be characterized in
terms of c0-subspaces of M0. The proof hence relies on a procedure to create c0-subspaces, a
construction which we summarize as a separate theorem.

Theorem 3.1. Suppose that xn ∈M0, n = 1, 2, 3, . . ., is a sequence such that ‖xn‖M = 1
and limn→∞ ‖xn‖X = 0. Then (xn)n has a subsequence which, as a basic sequence in M0, is
equivalent to the canonical basis of c0.

This result is classical for M0 = c0, and has also been proven for the case when M0 = VMO
[12], the latter fact which has been used in [7] and [8] to characterize the weak compactness
of Volterra-type integral operators and composition operators on the analytic BMO-space.

The paper is organized as follows. In Section 2 the definitions of M0 and M are given, as well
as technical preliminaries; in Section 3 the main results are proven; Section 4 gives applications
of Theorem 3.2 and its corollary to composition and integral operators on weighted spaces of
analytic functions, Bloch spaces, and analytic BMO-spaces.

2. Definitions and preliminaries

The spaces M and M0 are defined by

M(X,L) =

{
x ∈ X : sup

L∈L
‖Lx‖Y <∞

}
(2)

and

M0(X,L) =

{
x ∈M(X,L) : lim

L3L→∞
‖Lx‖Y = 0

}
. (3)

Here X and Y are Banach spaces, where X is assumed to be separable and reflexive. L is a
collection of continuous linear operators L : X → Y that is made into a topological space (L, τ)
by a σ-compact locally compact Hausdorff topology τ . The topology should respect the strong
operator topology in the sense that for every x ∈ X, the map Tx : L → Y given by TxL = Lx
is continuous. The limit L→∞ in the definition of M0 should be understood in the sense of
one-point compactification of (L, τ) (i.e. L should escape all compact sets).

We may assume that M(X,L) is dense in X [14], and we suppose that

‖x‖M(X,L) = sup
L∈L
‖Lx‖Y

defines a norm on M(X,L) which is stronger than the X-norm. As in the concrete examples
mentioned in the introduction, we want to consider the situation where the bidual M∗∗0 can
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be canonically identified with M . For this to be true it is necessary to impose the following
approximation property.

Assumption A. For every x ∈M(X,L) there is a bounded sequence {xn}∞n=1 in M0(X,L)
such that xn converges weakly to x in X.

Henceforth we always assume that A holds. There is also the stronger hypothesis:

Assumption B. For every x ∈M(X,L) there is a bounded sequence {xn}∞n=1 in M0(X,L)
such that xn converges weakly to x in X and supn ‖xn‖M(X,L) ≤ ‖x‖M(X,L).

The next theorem, stating that indeed M∗∗0 = M holds, was proven in [14]. For its statement,
note that M0(X,L) can be viewed as a closed subspace of both M and M∗∗0 .

Theorem 2.1 [14]. The dual space X∗ is continuously contained and dense in M0(X,L)∗.
Denoting by

I : M0(X,L)∗∗ → X

the adjoint of the inclusion map J : X∗ →M0(X,L)∗, the operator I is a continuous
isomorphism ofM0(X,L)∗∗ ontoM(X,L) which acts as the identity onM0(X,L). Furthermore,
I is an isometry if Assumption B holds.

In the isometric case the author proved in [15] that M0 is an M-ideal in M . In particular,
M0 has Pe lczyński’s property (V), which as a consequence gives the following characterization
of weakly compact operators on M0 (see [5]).

Proposition 2.2 [15]. Suppose that Assumption B holds. If Z is a Banach space and
T : M0(X,L)→ Z is a bounded operator, then T is weakly compact if and only if there does
not exist a subspace F ⊂M0(X,L) isomorphic to c0 such that T |F is an isomorphism.

The proof of Theorem 3.2 is inspired by this proposition, but technically only relies on its
forward direction which follows easily for any Banach space from the fact that c0 has the
Dunford-Pettis property.

A sequence (zn)∞n=1 in a Banach space Z is called basic if it is a (Schauder) basis for its span
[zn] = span{zn}. Two basic sequences (zn) and (wn) in Banach spaces Z and W , respectively,
are said to be equivalent if there is an isomorphism between [zn] and [wn] which maps zn
onto wn, for all n. In this situation, if W = c0 and (wn) is the unit-vector basis of c0, we say
that (zn) is equivalent to the canonical basis of c0. For rudimentary information about bases,
we refer to the classical paper of Bessaga and Pe lczyński [1], the techniques of which will be
utilized to prove the main results of this paper.

3. Results and Proofs

In the proof of Theorem 3.1 we make use of the embedding operator V : M0(X,L)→
C0(L, Y ) which isometrically embeds M0 into the space of continuous Y -valued functions on
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L vanishing at infinity. Explicitly

V x(L) = Lx, x ∈M0, L ∈ L.

Theorem 3.1. Suppose that xn ∈M0(X,L), n = 1, 2, 3, . . ., is a sequence such that
‖xn‖M = 1 and limn→∞ ‖xn‖X = 0. Then (xn)n has a subsequence which, as a basic sequence
in M0(X,L), is equivalent to the canonical basis of c0.

Proof. We will construct a subsequence (zn)n of (xn)n inductively. We will also construct
two auxiliary sequences; a strictly increasing sequence of positive integers (βn)n, and a sequence
(fn)n in B(L, Y ), the space of bounded Baire measurable Y -valued functions equipped with the
supremum norm. To begin, let z1 = x1, β1 = 1 and f1 = V z1. For the construction, fix a strictly
increasing sequence K1 ⊂ K2 ⊂ · · · of compact Baire subsets of (L, τ) such that L =

⋃∞
n=1Kn.

We denote by Kcn the complement of Kn in L.
Suppose now that z1, . . . , zn−1, β1, . . . , βn−1, and f1, . . . , fn−1 have been chosen. Since each

zj belongs to M0(X,L) we can pick βn > βn−1 such that

‖Lzj‖Y ≤ 1/2j , L ∈ Kcβn , j = 1, . . . , n− 1. (4)

Since the operators L ∈ Kβn are uniformly bounded by the Banach-Steinhaus theorem, it
follows from limk ‖xk‖X = 0 that we may choose zn to be an element from (xk)k such that

{L ∈ L : ‖Lzn‖Y > 1/2n} ⊂ Kcβn . (5)

Denoting the set on the left hand side of (5) by An, let

fn = 1AnV zn,

where 1An is the characteristic function of An.
With the inductive process complete, we now claim that (zn)∞n=2 ⊂M0(X,L) has a further

subsequence equivalent to the canonical basis of c0. To see this, let

Bn = An \ ∪j>nAj , n ≥ 2.

If L ∈ Bm for some m ≥ 2, then fn(L) = 0 for n > m, while by construction

‖fn(L)‖Y ≤ 1/2n, for n < m.

Since ‖xk‖M = 1 for all k, we of course have that ‖fm(L)‖Y ≤ 1. Hence, for L ∈ Bm we have

∞∑
n=2

‖fn(L)‖Y ≤ 1 +

m−1∑
n=2

1

2n
< 3/2.

On the other hand, if L ∈ (∪kBk)
c
, then fn(L) = 0 for every n ≥ 2, since ∪kBk = ∪kAk. For

the latter equality, note that no L ∈ L can belong to infinitely many sets Ak, since Ak ⊂ Kcβk .
We have hence shown that

∞∑
n=2

‖fn(L)‖Y < 3/2, ∀L ∈ L.

Therefore, for any bounded sequence of numbers (tn)n, we find that

sup
k

∥∥∥∥∥
k∑

n=2

tnfn(L)

∥∥∥∥∥
Y

<
3

2
sup
n
|tn|, ∀L ∈ L.

This latter inequality implies that the series
∑∞
n=2 fn is weakly unconditionally Cauchy in

B(L, Y ) (see [4], p. 44). Note also that each fn was constructed as to have supremum norm 1,
‖fn‖∞ = 1. By the Bessaga-Pe lczyński selection principle (C. 1. and Lemma 3 of [1]) there is
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hence a basic subsequence (fnk)k equivalent to the canonical basis of c0. But then there is a
positive integer K such that (V znk)k≥K is also basic and equivalent to the canonical basis of
c0, since

∞∑
k=1

‖V znk − fnk‖∞ ≤
∞∑
k=1

1

2nk
< 1.

This proves that (znk)k≥K is a subsequence of the desired type.

Based on Theorem 3.1 we now prove Theorem 3.2.

Theorem 3.2. Let Z be a Banach space. A bounded operator T : M0(X,L)→ Z is weakly
compact if and only if there for each ε > 0 exists an N > 0 such that

‖Tx‖Z ≤ N‖x‖X + ε‖x‖M , x ∈M0(X,L). (6)

Proof. Since X is reflexive, the inclusion j : M0(X)→ X is a weakly compact map. Based
on this observation, it is a relatively well known fact that having (6) implies the weak
compactness of T (see e.g. Proposition 10 in [10]).

In the converse direction, suppose that (6) does not hold. Equivalently, there is an ε > 0 and
a sequence (xn)n ⊂M0(X,L) with ‖xn‖M = 1 such that

‖Txn‖Z > n‖xn‖X + ε.

The boundedness of T then automatically imposes limn ‖xn‖X = 0. Therefore Theorem 3.1
applies, so that by passing to a subsequence we may assume that (xn) ⊂M0 is equivalent to
the canonical basis of c0. In particular

∑
n xn is weakly unconditionally Cauchy in M0, and

hence
∑
n Txn is weakly unconditionally Cauchy in Z. Since also ‖Txn‖Z ≥ ε for all n, there

is, by the Bessaga-Pe lczyński selection principle, a further subsequence (Txnk) which too is
equivalent to the canonical basis of c0. But then both (xnk) and (Txnk) are equivalent to
the canonical basis of c0, and T must act as an isomorphism between the two c0-subspaces
[xnk ] ⊂M0 and [Txnk ] ⊂ Z. Hence T could not be weakly compact, or the Dunford-Pettis
property of c0 would be violated.

As a corollary of Theorem 3.2 we obtain the corresponding result for operators T :
M(X,L)→ Z which are weak∗-weak continuous. The weak∗-topology of M(X,L) referred to
is the one induced by the duality in Theorem 2.1. Hence, letting I denote the map of Theorem
2.1 and T0 the restriction T0 = T |M0

, we have that weak∗-weak continuity of T means precisely
that T ∗∗0 I−1 = T , which by abuse of notation typically is written as T ∗∗0 = T .

Corollary 3.3. Let Z be a Banach space and T : M(X,L)→ Z be a bounded and weak∗-
weak continuous operator. Then T is weakly compact if and only if there for each ε > 0 exists
N > 0 such that

‖Tx‖Z ≤ N‖x‖X + ε‖x‖M , x ∈M(X,L). (7)

Proof. Let T0 = T |M0
. The continuity hypothesis can equivalently be stated as T ∗∗0 = T .

Hence it follows from Gantmacher’s theorem that T is weakly compact if and only if (6) holds.
It remains to see that (6) implies (7). Suppose that ε,N > 0 are such that (6) holds and let

x ∈M(X,L). We renorm M∗∗0 by equipping it with the equivalent norm

‖I−1x‖alt = N‖x‖X + ε‖x‖M , I−1x ∈M∗∗0 .
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Invoking the weak-star-metrizability of the unit ball of M∗∗0 (M∗0 is separable by Theorem 2.1),
it follows that there exists a sequence of points xn ∈M0(X,L) converging weak-star to x such
that

N‖xn‖X + ε‖xn‖M ≤ N‖x‖X + ε‖x‖M , ∀n.

By the continuity of T , Txn converges weakly to Tx, and therefore

‖Tx‖Z ≤ lim
n
‖Txn‖Z ≤ lim

n
(N‖xn‖X + ε‖xn‖M ) ≤ N‖x‖X + ε‖x‖M .

4. Examples

Our first example will be of a general nature, to illustrate the idea that when compactness
for a class of operators can be determined through a testing condition, then Corollary 3.3 may
sometimes be used to show that weak compactness and compactness are equivalent for the
class.

Example 1. Suppose that {Tα}α is a family of bounded weak∗-weak continuous operators
Tα : M(X,L)→ Z, Z a Banach space, and that there is a ”testing sequence” (xn) ⊂M(X,L)
such that:

– the sequence (xn) is bounded in M(X,L),
– limn ‖xn‖X = 0, and
– for every α, limn ‖Tαxn‖Z = 0 implies that Tα is compact.

Suppose now that Tα is weakly compact. Then Corollary 3.3 immediately implies that Tαxn
must tend to zero in Z, so that Tα is actually compact. Hence, in the above situation, an
operator Tα is compact if and only if it is weakly compact if and only if limn ‖Tαxn‖Z = 0.

We now turn to several concrete examples of composition and integral operators acting on
spaces of analytic functions. For an analytic function ϕ : D→ D, Cϕ denotes the composition
operator

Cϕf(z) = f(ϕ(z)), z ∈ D,

where f is a holomorphic function on D, f ∈ Hol(D). We begin by considering composition
operators Cϕ on weighted spaces.

Example 2. Let v : D→ R+ be a strictly positive, radial, continuous weight on D such
that lim|z|→1 v(z) = 0, and consider the weighted spaces of holomorphic functions

H∞v = {f ∈ Hol(D) : sup
z∈D
|f(z)|v(z) <∞}

and

H0
v = {f ∈ Hol(D) : lim

|z|→1−
|f(z)|v(z) = 0}.

They can be realized within our framework ([14], Example 4.4) with the role of X taken on
by the analytic Bergman space on the disc with weight v2;

X = L2
a(v2 dA,D) = L2(v2 dA,D) ∩Hol(D),

where dA = dx dy denotes area measure. H∞v and H0
v are obtained by letting Y = C and letting

L consist of the linear functionals Lz, z ∈ D, defined by Lzf = |v(z)|f(z). The topology we
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impose on L is simply the one inherited from D through the parametrization z 7→ Lz. The
desired approximation property Assumption B can be verified by considering dilations f(rz)
of a function f ∈ H∞v , r < 1 (see [2]).

Let

ũ(z) = sup
‖f‖H∞v ≤1

|f(z)|

and associate with v the weight ṽ = 1/ũ. Then ṽ is a weight of the same type as v and
H∞v = H∞ṽ isometrically ([2]). v is called essential if v is comparable to ṽ. Given also a weight
w of the same type as v, Bonet et. al. characterized in [2] the compact composition operators
Cϕ : H∞v → H∞w . We utilize Theorem 3.2 to add also weak compactness to their description.
For simplicity we suppose that both v and w are essential.

Proposition 4.1. The following are equivalent:
i) Cϕ : H∞v → H∞w is compact,
ii) Cϕ : H0

v → H0
w is compact,

iii) limr→1− sup|ϕ(z)|>r
w(z)
v(ϕ(z)) = 0 or ϕ(D) ⊂ D,

iv) lim|z|→1−
w(z)
v(ϕ(z)) = 0,

i’) Cϕ : H∞v → H∞w is weakly compact,
ii’) Cϕ : H0

v → H0
w is weakly compact.

iii’) Cϕ(H∞v ) ⊂ H0
w

Proof. The equivalences of i)-iv) are established in [2], as is the (trivial) verification that
Cϕ is weak∗-weak continuous. The equivalences between i’)-iii’) follow from Gantmacher’s
theorem. We hence only need to show that i’) implies iv), which we do by following the proof
of i) implies iv) and applying the criterion given by Corollary 3.3.

If iv) does not hold, there is a sequence (zn) in D converging to a point z0 ∈ ∂D such that
w(zn) ≥ cv(ϕ(zn)) for all n, for some c > 0. Since v is essential, we can choose fn such that
‖fn‖H∞v = 1 and |fn(ϕ(zn))| ∼ 1/v(ϕ(zn)). It has to hold that |ϕ(zn)| → 1, or i’) would be
contradicted; we may select non-negative integers αn →∞ such that |ϕ(zn)|αn ≥ 1/2 for all
n. Consider the functions gn = zαnfn. Since |z|αn tends pointwise to zero in D, and |fn|vn
is uniformly bounded, it follows by dominated convergence that gn converges to zero in X =
L2
a(v2). However,

‖Cϕgn‖H∞w ≥ |gn(ϕ(zn))w(zn)| ≥ c|ϕ(zn)|αn |fn(ϕ(zn))|v(ϕ(zn)) &
c

2
,

contradicting (7).

For the next examples we introduce the spaces BMOA and VMOA of analytic functions of
bounded and vanishing mean oscillation on the unit disc D. To fit them into our framework,
for a ∈ D and λ ∈ T, let φa,λ be the disc automorphism

φa,λ(z) = λ
a− z
1− āz

.

Further, let X = Y = H2/C, where H2 is the usual Hardy space on the disc, and let L
consist of all composition operators Lφa,λ : H2/C→ H2/C,

Lφa,λf = f ◦ φa,λ − f(φa,λ(0)).

We equip L with the topology of D× T. Then

M(H2/C,L) = BMOA, M0(H2/C,L) = VMOA, (8)
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see ([14], Example 4.2). In a similar fashion we also obtain the Bloch spaces B and B0,

M(L2
a/C,L) = B, M0(L2

a/C,L) = B0, (9)

by letting X = Y = L2
a/C = (L2(D) ∩Hol(D))/C be the standard analytic Bergman space on

the disc (modulo constants) and letting L be the same collection of composition operators.

Example 3. Let ϕ : D→ D be an analytic function. Several concrete realizations of
Example 1 can be given by considering composition operators Cϕ acting on spaces of analytic
functions. In [17] it is shown that Cϕ : Z → B, where Z = B or Z = BMOA, is compact if
and only if lim|a|→1 ‖Cϕφa,λ‖B = 0, yielding that Cϕ : Z → B is weakly compact if and only
if compact. If ϕ ∈ B0, then Cϕ acts boundedly on B0, and it follows in combination with
Gantmacher’s theorem that Cϕ : B0 → B0 is weakly compact if and only if compact, a result
first shown in [13].

In connection with Example 3 we also mention the work of Laitila et. al. [8], where it was
shown that Cϕ : BMOA→ BMOA is (weakly) compact if and only if lim|a|→1 ‖Cϕφa,λ‖BMOA =
0. A version of Corollary 3.3 for M = Z = BMOA and T = Cϕ actually appears as an ingredient
of their paper. This is in line with other recent contributions to the field of compact composition
operators, e.g. [3] and [11], where the use of Banach space techniques has been essential. In
fact, something reminiscent of Theorem 3.1 plays an important role in all of the cited articles.

We conclude with an example of integral operators. The symbols of the operators will
belong either to the logarithmic BMOA-space LMOA = M(H2/C,K), or its corresponding
small space LMOA0 = M0(H2/C,K). Here we have chosen X = Y = H2/C and the collection
K of operators to consist of the weighted compositions

Kφa,λf = log
2

1− |a|
[f ◦ φa,λ − f(φa,λ(0))] .

Example 4. For an analytic function g in D, we denote by Tg the Volterra-type operator

Tgf(z) =

∫z
0

f(ζ)g′(ζ) dζ, z ∈ D, (10)

acting on analytic functions f in D. Siskakis and Zhao [16] showed that Tg : BMOA→ BMOA
is bounded if and only if g ∈ LMOA. They proved in the same paper that Tg : BMOA→ BMOA
is compact if and only if g ∈ LMOA0, and posed the question whether Tg : BMOA→ BMOA
can be weakly compact without being compact. This was answered in the negative by Laitila,
Mihkinen, and Nieminen [7]. The purpose of this example is to illustrate that the question may
in fact be resolved using Siskakis and Zhao’s original argument, when applied in conjuction
with Corollary 3.3.

First we point out that the boundedness of Tg, g ∈ LMOA, automatically implies that
Tg(VMOA) ⊂ VMOA, so that Tg|VMOA : VMOA→ VMOA is a bounded operator. Secondly,
it is easily verified that (Tg|VMOA)

∗∗
= Tg. That is, Tg is weak∗-weak continuous. By

Gantmacher’s theorem it follows that Tg (or equivalently Tg|VMOA) is weakly compact if and
only if Tg(BMOA) ⊂ VMOA.

When proving that compactness implies g ∈ LMOA0 in [16], the only step where compactness
is used, as opposed to weak compactness, is in showing that limn ‖Tgqn‖BMOA = 0, where

qn(z) = log
1− ūz
1− ūnz

,
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for a point u ∈ ∂D and a sequence (un) ⊂ D of points converging to u. However, qn is uniformly
bounded in BMOA,

‖qn‖BMOA . ‖ log(1− z)‖BMOA,

and limn ‖qn‖H2 = 0, so it follows from Corollary 3.3 that Tgqn → 0 in BMOA, assuming only
the weak compactness of Tg. With this remark in hand, one can follow the proof in [16] verbatim
to see that Tg is weakly compact if and only if g ∈ LMOA0.

Acknowledgements. The author is grateful to the referee for valuable comments that helped
to improve the paper.
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11. Lefèvre, P., Li, D., Queffélec, H. and Rodŕıguez-Piazza, L., Composition operators on Hardy-Orlicz

spaces, Mem. Amer. Math. Soc. 207 (2010).
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